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Abstract

We consider the partition function for Euclidean SU(N) super Yang-Mills on a squashed
seven-sphere. We show that the localization locus of the partition function has instanton
membrane solutions wrapping the six “fixed" three-spheres on the S7. The ADHM vari-
ables of these instantons are fields living on the membrane world volume. We compute
their contribution by localizing the resulting three-dimensional supersymmetric field
theory. In the round-sphere limit the individual instanton contributions are singular, but
the singularities cancel when adding the contributions of all six three-spheres. The full
partition function on the S7 is well-defined even when the square of the effective Yang-
Mills coupling is negative. We show for an SU(2) gauge theory in this regime that the
bare negative tension of the instanton membranes is canceled off by contributions from
the instanton partition function, indicating the existence of tensionless membranes. We
provide evidence that this phase is distinct from the usual weakly coupled super Yang-
Mills and, in fact, is gravitational.
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1 Introduction and summary

The gravity duals of nonconformal gauge theories can lead to new insights on both sides of
the correspondence. The duals of maximally supersymmetric gauge theories in flat p + 1 di-
mensions were first found by taking the near horizon limit of a stack of Dp branes [1]. Except
for p = 3, all such gauge theories are nonconformal. In order to make direct quantitative
comparisons between the gauge theories and the supergravity duals, it is helpful to put the
theory on a Euclidean sphere. The first direct check was made in [2], where the authors found
a consistent truncation of five-dimensional gauged N = 8 supergravity which correctly re-
produced the free energy of N = 2∗ SU(N) gauge theory on S4 at large N and large ’t Hoof
coupling [3–7].

Recently, further progress was made on gauge theories that preserve a maximal amount of
supersymmetry in dimensions other than four [8, 9]. In [8] the supergravity duals, including
their ten-dimensional uplifts, were constructed for theories sourced by a stack of Euclidean
spherical p-branes for 1 ≤ p ≤ 6. The spherical branes have Euclidean SU(N) gauge theo-
ries living on them, so presumably the supergravity solutions are the gravity duals for these
gauge theories on Sp+1. In [9] the free energies and expectation values of BPS Wilson loops
were computed using localization and were shown to match at strong coupling with the corre-
sponding quantities derived from the supergravity solutions in [8], up to possible identifiable
counter terms.

The most intriguing result was the p = 6 case, where the gauge theory is on S7 with radius
R. Seven turns out to be the largest dimension where one can preserve the supersymmetry
on the sphere [10, 11]. Here the “strongly" coupled gauge theory corresponded to taking the
inverse effective ’t Hooft coupling λ−1

eff ≡
R3

g2
YMN

from +∞, which corresponds to the true weak

coupling limit, through the normal strong coupling point at λ−1
eff = 0 to the negative side.

The match with supergravity then occurs as λ−1
eff → −∞, if one also analytically continues

the supergravity solution such that the dictionary flips the sign in the relation of the string
coupling to the Yang-Mills coupling.

A negative coupling is usually ill-defined in a gauge theory, but a similar phenomenon
occurs in five dimensions which has a well understood physical interpretation [12]. Consider
an N = 1 SU(N) gauge theory in five dimensions with an adjoint hypermultiplet with mass
M . In this situation the gauge coupling is renormalized to

4π2

g2
YM

=
4π2

g2
0

−M N , (1.1)

where g0 is the coupling that appears in the bare Lagrangian. If we take M →∞ then the
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hypermultiplet decouples and we have a pure N = 1 theory at energy scales much lower than
M . As one varies M , one can tune g0 to keep gYM fixed. Even with a positive g0, we can
tune gYM to be negative. To probe the phases of this theory it is more appropriate to consider
the effective coupling g2

eff = g2
YME, where E is the energy scale. The SU(N) gauge theory

flows to one of three different phases: the normal weakly coupled phase where 1
g2

eff
→ ∞;

the UV fixed-point phase at 1
g2

eff
= 0,1 where effective field theory breaks down and there is

a nontrivial superconformal field theory (SCFT) [12, 14]; and a different field theory phase
at 1

g2
eff
→ −∞, which could include five-dimensional Chern-Simons theories [15, 16]. For

example, for an SU(2N) gauge group at weak negative coupling the theory is equivalent to
an SU(N)N × SU(N)−N × SU(2) theory, where the SU(N) theories are pure Chern-Simons at
levels ±N , and the SU(2) is an ordinary weakly coupled Yang-Mills theory. One thing that
distinguishes the different weak coupling phases are the massless particles. In the positive
coupling phase the theory has massless W -bosons and instanton particles with mass mI =

4π2

g2
YM

.

In the negative coupling phase the instantons are massless and exchange their role with some
of the W -bosons.

Like this five-dimensional example, the gauge coupling of seven-dimensional SYM runs
linearly with the scale. Hence, the λeff relevant for the localized partition function as well as
for the gauge-gravity dictionary is related to the bare coupling g0 by

λeff
−1 ≡

R3

g2
YMN

=
R3

g2
0 N
−

n0

2π4
, (1.2)

where n0≫ 1 is a cutoff of the spherical harmonic modes. Cutting off these modes corresponds
to imposing a UV cutoff Λ, which we can relate to n0 by n0 = ΛR. The cutoff Λ could represent
the string scale or an eleven-dimensional Planck scale. As in the five-dimensional example,
the effective coupling can be negative for various ranges of the parameters, even assuming a
positive bare coupling.

However, unlike five dimensions, the sign of the effective coupling can depend on R for
fixed g0 and Λ, since their contributions in (1.2) come with different powers of R. This means
that λeff

−1 = 0 cannot be a UV fixed point since the position of the zero is R dependent.
Of course, this is a good thing since seven-dimensional SCFTs do not exist [17]. We then
essentially have only two phases, the normal weakly coupled SYM as λ−1

eff → ∞, and the
more mysterious phase as λ−1

eff → −∞. Any consistent UV completion of the gauge theory
is expected to include gravity, and the main outcome of this paper suggests that the phase at
λ−1
eff = −∞ is also gravitational. This is in line with the prediction by Peet and Polchinski that

there are two distinct phases for SYM in seven dimensions, one of them being gravitational
[18]. The relation in (1.2) shows that while the λ−1

eff < 0 phase is at a higher energy scale
than the normal weak coupling phase, we can still reach this phase at a scale well below the
cutoff Λ. In fact this condition is required in our analysis.

We can analyze these different regimes by studying the localized partition functions of the
gauge theories on spheres, where the different phases are smoothly connected. For instance,
one can study the five-dimensional SCFTs by setting 1

g2
eff
= 0 in the localized theory, as was

done to great effect in [19]. Likewise, one can study the phase at weak negative coupling by
looking for the emergence of massless particles which are distinct from those in the normal
weak coupling phase. In the five-dimensional gauge theories these are the instantons.

Localization reduces the functional integrals to matrix integrals whose integrands de-
compose into a classical, a perturbative, and a non-perturbative contribution. For the five-

1The term “UV fixed-point" is somewhat of a misnomer. A more proper way to think of it is as a nontrivial IR
fixed point that has the Yang-Mills Lagrangian as a relevant operator (c.f. [13]).
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dimensional theory on a squashed S5, the non-perturbative contributions come from the world-
lines of point-like instantons that extend along circles fibered over the fixed-points of a two-
dimensional complex base. At weak positive coupling these contributions are suppressed by

factors of exp
�

−4π2nI

g2
YM

2πR
ωi

�

, where R is the radius of the S5, nI is the instanton number, and

ωi is one of the three squashing parameters. This is the world-line contribution for nI instan-
ton particles with mass mI on a fixed circle. If g2

YM is large and negative, then the instanton
contribution appears to be exponentially enhanced. However, to see the emergence of the
massless instantons one needs to consider the contribution of the Nekrasov partition function,
which is derived from the quantum mechanics of the ADHM variables. Here one finds that
the negative instanton mass is canceled off by an exponentially suppressed piece from the
Nekrasov partition function, leaving a contribution one would expect from a massless particle.

In this paper we show that a similar phenomenon happens for supersymmetric Yang-Mills
on S7. If one examines the perturbative contribution to the partition function, one sees that it
has qualitatively the same behavior as in our five-dimensional example. One can then ask if
there is similar behavior when it comes to the instantons when crossing from positive to neg-
ative inverse coupling. Of course, in five dimensions the usual co-dimension four instantons
are particles while in seven dimensions they are membranes with tension TI =

4π2

g2
YM

, so the

seven-dimensional case will not have instantons and W -bosons exchanging roles. However,
one might still expect a cancelation of the negative tension of the membranes from the ana-
log of a Nekrasov partition function once the threshold between positive and negative inverse
coupling is crossed. We will show that this is precisely what happens.

In order to regulate divergences it is necessary to consider the squashed sphere and then
take the round sphere limit. The instanton contributions come from six S3 subspaces of the S7.
In the round sphere limit the S7 is familiarly written as an S1 fibration over a CP3 base. The
six S3 subspaces are the S1 fiber over six CP1 subspaces of CP3. For each S3 the instantons are
point-like on the co-dimension four space transverse to the S3. Hence, their contribution to
the partition function will be as a three-dimenisional field theory for the ADHM variables. The
structure of the instanton contributions are similar to the four- and five-dimensional cases [20,
21] and contain a sum over colored partitions represented as sums over Young tableaux. The

various terms in the sum each come with an overall factor of exp
�

− 4π2

g2
YM

vol(S3)nI

�

, where nI

is the instanton number and vol(S3) is the volume of the S3. Like the five-dimensional case,
when the inverse coupling is large and negative this exponential enhancement is canceled by
the instanton partition function and the resulting factor is that of a membrane with tension
T = 2

πR3δσ, where δσ is a dimensionless scalar field. Hence, at the origin of δφ the tension
is zero.

In five dimensions the instantons couple to a U(1) gauge field which is part of a vector
multiplet. Hence, in the weak negative phase this U(1) is enhanced to an SU(2). In seven
dimensions, if we follow our five-dimensional example, the light instanton membranes in the
weak negative phase should couple to a three-form field. The only supermultiplet containing
this field is the gravity multiplet, hence we expect this phase to consist of weakly coupled
gravity.

A useful check on our formalism is the cancelation of divergences. The instanton contri-
bution at each S3 is singular in the round sphere limit. This is an indication that at the limit
the localization locus can move off the six three-spheres. Nevertheless, one should expect that
the overall partition function remain finite in the limit. We will see that at the one instanton
level the singularities are fourth order poles and indeed we find that the singularities cancel
when summing up their contribution over all six three-spheres.

The rest of the paper is organized as follows. In section 2 we review previous localization
results for round and squashed seven-spheres. In section 3 we consider the localized partition
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function for pure N = 1 gauge theory on the squashed five-sphere, in particularly examining
the behavior of the theory when the effective squared coupling is negative. In section 4 we
study instanton contributions on the squashed seven-sphere, constructing an explicit partition
function that includes these contributions. Specializing to an SU(2) gauge group we show
that that negative tension of the instanton membranes is canceled by contributions from the
instanton partition function and that the tension then has a simple dependence on a scalar
field. In section 5 we conclude with some speculations about the nature of the SU(2) gauge
theory at weak negative coupling and its relation to seven-dimensional minimal supergravity.
The two appendices contain several technical details regarding the instanton contributions.

2 Preliminaries

In this section we study the SYM on the round and the squashed S7. We review the construc-
tion and the localization of the theory. We extend these results to compute the perturbative
partition function for small and negative ’t Hooft coupling.

We realize S2r−1 by an embedding in R2r = Cr given by

r
∑

i=1

|z|2i = 1 , (2.1)

where zi are complex. The metric on the squashed sphere can be expressed as

ds2
S2r−1 =R2

r
∑

i=1

�

dρ2
i +ρ

2
i dφ2

i

�

+R2 1

1−
∑r

i=1 a2
i ρ

2
i

� r
∑

i=1

aiρ
2
i dφi

�2

, (2.2)

where zi = ρie
iφi and ωi = 1 + ai are the squashing parameters. We further require that

∑

i ai = 0. S2r−1 can be seen as a fibration over CPr−1 and this condition ensures that the
squashing acts only on the base CPr−1 [22]. For a physical squashed sphere ωi ∈ R+, but it
will be necessary to give them a small imaginary piece in order to have a well behaved partition
function.

2.1 The round sphere

For the round sphere, where all ωi = 1, we can place the SYM on S7 while preserving 16
supersymmetries [11]. In this case we consider the Killing vector, v =

∑4
i=1 ∂φi

which is
constructed from a Killing spinor ξ, v = ξΓµξ∂µ. The round sphere has a contact structure
with contact form κ, where v acts as the corresponding Reeb vector satisfying ιvκ= 1.

The partition function can be obtained by localizing w.r.t to the supersymmetries generated
by ξ. The localization locus is given by

vµFµν = 0 ,

vσ Hσµνλ = 0 ,

Dµφ0 = 0 , Km = −
4
r
φ0 (νmΛε) ,

bF+µν = DσΦµν
σ ,

f = − 1
12[Φµνλ,Φµνσ]dκ

λσ . (2.3)

Here Km, m = 1 . . . 7 are auxilary fields for the seven dimensional vector multiplet, φ0 is one
of the three scalar fields that make up the vector multiplet, Φµνλ are three forms made from

5

https://scipost.org
https://scipost.org/SciPostPhys.14.3.028


SciPost Phys. 14, 028 (2023)

the other two scalar fields,

Φµνλ =
1
2
φA

�

ξΓµνλΓ
A0ξ

�

, (2.4)

and H is the field strength for Φ,

Hσµνλ ≡ DσΦµνλ − DµΦσνλ − DνΦµσλ − DλΦµνσ . (2.5)

The field strength has been decomposed into a vertical and horizontal part, F = FV + FH , with
κ∧ ιv F = FV and

FH = bF
+ + bF− −

1
12

f dκ . (2.6)

The bF± components are defined by

bF± = ±ιv ∗
�

−
1
2
bF± ∧ dκ

�

. (2.7)

Because of the contact structure, the horizontal space has an almost complex structure,
such that Φ decomposes into (3,0) and (0,3) forms Φ±, while bF+ decomposes into (2, 0) and
(0, 2) forms, and bF− and F̌ ≡ −1

2 f dκ are (1,1) forms. In terms of the contact structure we
can rewrite (2.3) as [23]

ιv F = 0 ,

ιvdAΦ = 0 ,

dAφ0 = 0 ,
bF+ = ∗dA ∗Φ ,

F̌ ∧ dκ∧ dκ = 4[Φ−,Φ+] , (2.8)

where Φ+ is the (3,0) form and Φ− is the (0,3) form. The bottom three equations are those of
the six-dimensional Hermitian Higgs-Yang-Mills equations discussed in [24].

The perturbative contribution to the partition function has F = Φ = 0 and φ0 constant. It
is given by [11]

Zpert =

∫ N
∏

i=1

dσiδ

�

∑

i

σi

�

e
− 4π4R3

g2
0

∑

i σ
2
i

N
∏

i< j

∞
∏

n=−∞

¦

(n2 +σ2
i j)

n2+1
©

, (2.9)

where σi are the eigenvalues of Rφ0, σi j ≡ σi −σ j and g2
0 is the bare coupling that appears

in the Lagrangian. This partition function is divergent and needs to be regularized [9]. This
can be accomplished by multiplying and dividing by e−σ

2
i j within the curly brackets and then

instituting a cutoff, n0 = ΛR in the mode numbers n. The cutoff is justified if the dominant
contributions to the partition function come from the integration regions where |σi| ≪ n0.
Using that

∑

i< j

σ2
i j = N

∑

i

σ2
i −

�

∑

i

σi

�2

= N
∑

i

σ2
i , (2.10)

we can rewrite the perturbative partition function as

Zpert =

∫ N
∏

i=1

dσiδ

�

∑

i

σi

�

e
− 4π4R3

g2
YM

∑

i σ
2
i

N
∏

i< j

∞
∏

n=−∞

¦

(n2 +σ2
i j)

n2+1e−σ
2
i j
©

, (2.11)
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where g2
YM is the renormalized coupling satisfying

4π4R3

g2
YM

=
4π4R3

g2
0

− 2NΛR . (2.12)

Note that while the bare coupling is positive definite, the renormalized coupling could be
negative.

We can solve the partition function in (2.11) by saddle point [9]. Extremizing the partition
function leads to the equations

8π4

λ
σi =

2π
N

∑

j ̸=i

(1−σ2
i j) cothπσi j , (2.13)

where λ is the dimensionless ’t Hooft coupling λ = g2
YMNR−3. These equations are very

similar to those found for pure N = 1 super Yang-Mills on S5 [25] so we can borrow many
of the methods from there. We are most interested in having λ be small and negative. To
simplify the discussion we assume that N is even. In this case the solution to (2.13) can be
well approximated by

σi = σ0 +δσi , 1≤ i ≤ N/2 ,

σi+N/2 = −σ0 +δσ̃i , (2.14)

where we choose

N/2
∑

i

δσi =
N/2
∑

i

δσ̃i = 0 . (2.15)

(2.13) then becomes

8π4N
λ
(σ0 +δσi) = π

N/2
∑

j ̸=i

�

2− 2(δσi −δσ j)
2
�

coth(π(δσi −δσ j)) (2.16)

+πN −πN
�

4σ2
0 + 4σ0δσi + (δσi)

2
�

− 2π
N/2
∑

j=1

(δσ̃ j)
2 +O(e−2πσ0) .

If we sum (2.16) over i, we then find

4σ2
0 +

8π3

λ
σ0 − 1+δσ2 +δσ̃2 = O(e−2πσ0) , (2.17)

where the averaged squares are defined as

δσ2 ≡
2
N

N/2
∑

i=1

δσ2
i , δσ̃2 ≡

2
N

N/2
∑

i=1

δσ̃2
i . (2.18)

Dropping the exponentially suppressed term, we find for λ→ 0−

σ0 ≈ −
2π3

λ
−
λ

8π3
δ0 , (2.19)

where

δ0 = (1−δσ2 −δσ̃2) . (2.20)
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Substituting back into (2.16) we end up with

πN
�

δσ2
i −

λ

2π3
δ0δσi −δσ2

�

= π
N/2
∑

j ̸=i

�

2− 2(δσi−δσ j)
2
�

coth(π(δσi−δσ j)) , (2.21)

One finds an analogous equation for δσ̃i . Note that the validity of the cutoff requires that
σ0≪ n0. Hence, the bare coupling in (2.12) needs to be tuned in order that 1≪−2π4

λ ≪ n0.
As in the five-dimensional case, the term linear in δσi can be dropped for small negative

λ. Moreover, in the large N limit δ0 is suppressed by a factor of 1/N [25]. The remaining
terms on the left hand side of (2.21) can be generated by the free energy

F = πN
N/2
∑

i=1

�

1
3
(δσi)

3 +χ(δσi)
�

, (2.22)

where χ = −δσ2. We can interpret the δσi as the eigenvalues for an adjoint scalar in the
vector multiplet of an SU(N/2) gauge theory. The first term in F originates from the term in
the effective action

i
N

48π3

∫

Tr(σ3)κ∧ dκ∧ dκ∧ dκ , (2.23)

where we used that the volume form is given by Vol = − 1
48κ ∧ (dκ)

3. (2.23) is part of the
supersymmetric completion [23] of

N
2

∫

c3(A)∧ κ , (2.24)

where c3(A) is the third Chern character

c3(A) =
1

24π3
Tr(F ∧ F ∧ F) . (2.25)

(2.24) is topological and equals Nkπ where k is an integer. Since we have assumed that N is
even this is a multiple of 2π and will not contribute to the partition function.

2.2 The squashed sphere

Under a general squashing, the sphere is a Sasaki-Einstein manifold which preserves two su-
persymmetries [23,26]. In this case the Reeb vector is

v =
4
∑

i=1

ωi∂φi
, (2.26)

which for general ωi does not generate closed orbits except in isolated cases. Localizing with
respect to the Killing spinor that generates (2.26) one finds the same form for the localization
locus as in (2.8) and a perturbative partition function given by [11,23]

Zpert =

∫ N
∏

i=1

dσie
− 4π4R3ϱ

g2
YM

∑

i σ
2
i

N
∏

i< j

S4(iσi j;ω1,ω2,ω3,ω4)

× S4(−iσi j;ω1,ω2,ω3,ω4) ,

(2.27)
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where S4(x;ω1,ω2,ω3,ω4) is the quadruple sine, which in unregularized form is given by

S4(z;ω1,ω2,ω3,ω4) =

∞
∏

i, j,k,l=0
(iω1 + jω2 + kω3 + lω4 + z)

∞
∏

i, j,k,l=1
(iω1 + jω2 + kω3 + lω4 − z)

, (2.28)

and ϱ = (ω1ω2ω3ω4)−1 is the volume ratio of the squashed to the round sphere.
We are again interested in small negative g2

YM, where the eigenvalues split into two groups
separated far from each other. In this case, it is convenient to write the quadruple sine in
product form [27],

S4(z; ω⃗) = exp
�

πi
24

B44(z; ω⃗)
�

×
∞
∏

j,k,l≥0

�

1− e2πi
�

z
ω4
+ j

ω1
ω4
+kω2

ω4
+l

ω3
ω4

�

��

1− e2πi
�

z
ω2
+ j

ω1
ω2
−(k+1)ω3

ω2
−(l+1)ω4

ω2

�
�

�

1− e2πi
�

z
ω3
+ j

ω1
ω3
+kω2

ω3
−(l+1)ω4

ω3

�

��

1− e2πi
�

z
ω1
−( j+1)ω2

ω1
−(k+1)ω3

ω1
−(l+1)ω4

ω1

�

�

= exp
�

−
πi
24

B44(z; ω⃗)
�

×
∞
∏

j,k,l≥0

�

1− e−2πi
�

z
ω1
+ j

ω4
ω1
+k

ω3
ω1
+l ω2

ω1

�

��

1− e−2πi
�

z
ω3
+ j

ω4
ω3
−(k+1)ω2

ω3
−(l+1)ω1

ω3

�

�

�

1− e−2πi
�

z
ω2
+ j

ω4
ω2
+k

ω3
ω2
−(l+1)ω1

ω2

�
��

1− e−2πi
�

z
ω4
−( j+1)ω3

ω4
−(k+1)ω2

ω4
−(l+1)ω1

ω4

�

�
,

(2.29)

where B44(z; ω⃗) is a multiple Bernoulli polynomial whose odd terms are given by

1
2
(B44(z; ω⃗)− B44(−z; ω⃗)) = −

2z3 + z(ω1ω2 + perms)
ω1ω2ω3ω4

(ω1 +ω2 +ω3 +ω4)

= −4
2z3 + z(ω1ω2 + perms)

ω1ω2ω3ω4
. (2.30)

The products as written in (2.29) are well-defined only if the ωi are given small imaginary
pieces such that Im(ωi/ω j)> 0 (and so Im(ω j/ωi)< 0) if i < j. For large positive or negative
imaginary z, we then see that

log
�

S4(z; ω⃗)S4(−z; ω⃗)
�

(2.31)

≈ −
πϱ

3

�

2|Im (z)|3 − |Im (z)|(ω1ω2+ω1ω3+ω1ω4+ω2ω3+ω2ω4+ω3ω4)
�

.

From this and (2.27) we learn that for small negative λ, the saddle point equation for the
partition function (2.17) is modified in the squashed case to

4σ2
0 +

8π3

λ
σ0 −

(ω1ω2+ω1ω3+ω1ω4+ω2ω3+ω2ω4+ω3ω4)
6

+δσ2 +δσ̃2

= O(e−2σ0) .
(2.32)

The perturbative partition function is well-defined for small coupling. For positive cou-
plings, the non-perturbative effects are exponentially suppressed. For negative λ, instantons
can no longer be ignored and one needs their contribution to find the total partition function.
We will return to this problem in section 4.
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3 A five-dimensional detour

Before confronting the problem of negative ’t Hooft coupling λ, let us first consider the similar
problem for 5d N = 1 SYM with an adjoint hypermultiplet. In this case we have an under-
standing of what happens at negative couplings due to [12]. Our aim here is to explore the
negative coupling regime using localization and learn lessons which will then be applied to
the seven dimensional case.

3.1 The localized partition function

On S5 localizing with respect to the Killing spinor that generates the Reeb vector one finds for
the locus [28]

ιv(∗F) = −F ,

dAφ = 0 , (3.1)

where φ is the real adjoint scalar that is part of the vector multiplet. Notice that the first
equation also implies that ιv F = 0. It then follows that LvA = d(ιvA) + [A, ιvA], i.e. the Lie
derivative of the gauge field A along v is a gauge transformation. As in the case for seven
dimensions, the orbit generated by v does not close for generic toric data (|z1|, |z2|, |z3|) and
squashing parametersωi . In this case the orbit is dense on the three-torus over (|z1|, |z2|, |z3|).
This suggests that for these orbits, in order to avoid singular configurations ιv F = 0 im-
plies F = 0 [29]. Hence, the only nontrivial contributions can occur at the fixed points
(|z1|, |z2|, |z3|) = (1,0, 0), (0,1, 0), or (0,0, 1)where the orbits close and there can be point-like
instantons along the orbit. The space transverse to each closed orbit can be replaced with aC2,
and in circling the orbit the transverse space is twisted. For example, at (0,0, 1) we have that

(z1, z2)→ (z1e2πi
ω1
ω3 , z2e2πi ω2

ω3 ). Hence, the nonperturbative contribution from each fixed point
to the partition function is the Nekrasov partition function [20, 21], Zinst(iσ, iµ,βi ,ε1,i ,ε2,i),
where βi =

2π
ωi

, the equivariant parameters are given by the other two squashing parameters
and µ= MR where M is the mass of the hypermultiplet.

This then fits with the factorization hypothesis in [30], where the authors exploited the
resemblance of the perturbative partition function to partition functions in topological string
theory to conjecture a full nonperturbative partition function on the squashed sphere. For the
case with the adjoint hypermultiplet this is given by

Z =
∫ N
∏

i=1

dσie
− 4π3Rϱ5

g2
0

∑

i σ
2
i

×
N
∏

i< j

S3(iσi j;ω1,ω2,ω3)S3(−iσi j;ω1,ω2,ω3)

S3(iσi j+
∆
2 +iµ;ω1,ω2,ω3)S3(−iσi j+

∆
2 +iµ;ω1,ω2,ω3)

× Zinst

�

iσ, iµ,
2π
ω1

,ω2,ω3

�

Zinst

�

iσ, iµ,
2π
ω2

,ω3,ω1

�

(3.2)

× Zinst

�

iσ, iµ,
2π
ω3

,ω1,ω2

�

,

where ∆=ω1+ω2+ω3 = 3, ϱ5 = (ω1ω2ω3)−1 and S3(x; ω⃗) is the triple sine, which we can
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write as

S3(z; ω⃗) = exp
�

−
πi
6

B33(z; ω⃗)
�

×
∞
∏

j,k≥0

�

1− e2πi
�

z
ω3
+ j

ω1
ω3
+kω2

ω3

�

��

1− e2πi
�

z
ω1
−( j+1)ω2

ω1
−(k+1)ω3

ω1

�

�

�

1− e2πi
�

z
ω2
+ j

ω1
ω2
−(k+1)ω3

ω2

�
�

= exp
�

+
πi
6

B33(z; ω⃗)
�

×
∞
∏

j,k≥0

�

1− e−2πi
�

z
ω1
+ j

ω3
ω1
+kω2

ω1

�

��

1− e−2πi
�

z
ω3
−( j+1)ω2

ω3
−(k+1)ω1

ω3

�

�

�

1− e−2πi
�

z
ω2
+ j

ω3
ω2
−(k+1)ω1

ω2

�
�

, (3.3)

with B33(z; ω⃗) given by

B33(z; ω⃗) =
z3

ω1ω2ω3
−

3(ω1+ω2+ω3)
2ω1ω2ω3

z2 +
ω3

1+ω
2
2+ω

2
3 + 3(ω1ω2+ω2ω3+ω3ω1)

2ω1ω2ω3
z

−
(ω1+ω2+ω3)(ω1ω2+ω2ω3+ω3ω1)

4ω1ω2ω3
. (3.4)

The explicit instanton partition functions are given by [20,21]

Zinst

�

iσ, iµ,
2π
ω1

,ω2,ω3

�

=
∑

Y⃗

e
− 4π2 |Y⃗ |

g2
0

2πR
ω1

N
∏

i, j=1

∏

s∈Yi

�

S1

�

iσ ji+
∆
2 +iµ−(vi(s)+1)ω2+h j(s)ω3;ω1

�

S1

�

iσi j+
∆
2 +iµ−

�

h j(s)+1
�

ω3+vi(s)ω2;ω1

�

S1

�

iσ ji−(vi(s)+1)ω2+h j(s)ω3;ω1

�

S1

�

iσi j −
�

h j(s)+1
�

ω3+vi(s)ω2;ω1

�

�

,

(3.5)
where S1(x ,ω) is the “single" sine function, defined as

S1(x ,ω) =
∞
∏

n=0

(nω+ x)
∞
∏

n=1

(nω− x) = 2sin
�π

ω
x
�

. (3.6)

The sum in (3.5) is over the colored partitions, with Y⃗ representing the N -tuple {Y1, Y2, . . . YN}.
Each Yi refers to a Young diagram, with |Yi| the number of boxes for that diagram, and
|Y⃗ | =

∑

i |Yi| which is the instanton number. The product over s refers to each box in the
particular diagram while h j(s) measures the horizontal distance to the edge for box s in dia-
gram Yj , and vi(s) measures the vertical distance to the edge for box s in diagram Yi . Since
s ∈ Yi is not necessarily a box in Yj , h j(s) can be negative.

Let us take the adjoint mass parameter µ to infinity such that the theory reduces to a pure
N = 1 SU(N) gauge theory. Using the product formulae in (3.3), up to an overall constant
one can replace the partition function with

Z ′ =
∫ N
∏

i=1

dσie
− 4π3Rϱ5

g2
YM

∑

i σ
2
i

N
∏

i< j

S3(iσi j;ω1,ω2,ω3)S3(−iσi j;ω1,ω2,ω3)

×Z ′inst

�

iσ,
2π
ω1

,ω2,ω3

�

Z ′inst

�

iσ,
2π
ω2

,ω3,ω1

�

Z ′inst

�

iσ,
2π
ω3

,ω1,ω2

�

,

(3.7)
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where 4π2

g2
YM
= 4π2

g2
0
− N M and

Z ′inst

�

iσ,
2π
ω1

,ω2,ω3

�

=
∑

Y⃗

e
− 4π2 |Y⃗ |

g2
YM

2πR
ω1

N
∏

i, j=1

∏

s∈Yi

�

1

S1

�

iσ ji−(vi(s)+1)ω2+h j(s)ω3;ω1

�

S1

�

iσi j −
�

h j(s) + 1
�

ω3+vi(s)ω2;ω1

�

�

.

(3.8)

3.2 The theory at negative coupling and instantons

As in the seven-dimensional case, we can have g2
YM < 0 in 5d. But here we have an under-

standing of how to interpret the theory at negative coupling. For the sake of simplicity let us
consider the case of SU(2). At generic positive coupling there is a global U(1) symmetry com-
ing from the instanton current ⋆ (F ∧ F). On the Coulomb branch the mass of the W -bosons
is mw = φ, where φ is the expectation value of the real adjoint scalar in the vector multiplet.
The instantons have charges ±1 under the unbroken U(1) gauge symmetry and their mass is
mI = φ+

4π2

g2
YM

. At the origin of the Coulomb branch both the W -bosons and instantons become

massless at infinite coupling and the global U(1) symmetry is enhanced to SU(2) [12,14,31].
Under a Weyl reflection for the global SU(2) the parameters transform as 4π2

g2
YM
→ − 4π2

g2
YM

and

φ→ φ − 4π2

g2
YM

and the roles of the W -bosons and instantons are reversed.

One can describe the above using (p, q) webs of five branes [15,16], as shown in figure 1.
Here the web has 4 fixed external branes with (p, q) charges (±1,1), along with two parallel
NS5 branes and two parallel D5 branes orthogonal to the NS5 branes. The separation between
these two sets of branes can change. Figure 1 (a) shows the positive coupling case. The W -
bosons correspond to strings stretched between the two D5 branes. The separation of the
branes φ leads to their mass. The instantons correspond to D1 branes stretched between the
two NS5 branes whose separation is φ + 4π2

g2
YM

. Figure 1 (b) shows the negative coupling case.

Here the separation between the NS5 branes is φ and the separation between the D5 branes
is φ − 4π2

g2
YM

, so that the roles of the two particles have interchanged.

Because of the SU(2) global symmetry at the superconformal fixed point, or by the SL(2, Z)
duality of the type IIB string theory that the (p, q) branes live in, we see that the SU(2) gauge
theory with coupling g2

YM is equivalent to the one with coupling −g2
YM. One should be able to

see this in the partition function in (3.7). This is not obvious from the form of the instanton
partition functions, but it is guaranteed to work from the conjectured structure of the partition
function in [30] and the relations shown in [32] between the instanton and topological string
partition functions.

Let us sketch how this works when the coupling is small but negative. At the saddle point
the eigenvalue σ1 = −σ2 is large, hence we can make the approximation

e
− 4π3Rϱ5

g2
YM

σ2
12
2

S3(iσ12; ω⃗)S3(−iσ12; ω⃗)

≈ exp

�

−
4π3Rϱ5

g2
YM

σ2
12

2
−
πϱ5

3

�

σ3
12 −

ω3
1+ω

2
2+ω

2
3 + 3(ω1ω2+ω2ω3+ω3ω1)

2
σ12

��

= C exp

�

4π3Rϱ5

g2
YM

δσ2

2
−
πϱ5

3

�

δσ3 −
ω3

1+ω
2
2+ω

2
3 + 3(ω1ω2+ω2ω3+ω3ω1)

2
δσ

��

,

(3.9)
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(a) g2
YM > 0 (b) g2

YM < 0

Figure 1: (p, q)web for N = 1 SU(2) gauge theory at positive and negative coupling.
D5 branes are (1,0) branes and NS5 branes are (0, 1). The coupling is determined
by the positions of the fixed (±1, 1) external branes.

where δσ = σ12 +
4π2R
g2

YM
. Hence, the last line of (3.9) has the same form as the line above,

except it has the opposite coupling term.
Let us now consider the instanton contribution. Note that the argument of the exponential

in (3.8) is the negative of the world-line action of |Y⃗ | instanton particles with mass 4π2

g2
YM

along

the Reeb orbit. However, the mass is missing the contribution of the Coulomb branch which
lurks in the rest of the expression in (3.8). To flesh this out, if we examine this expression we
see that there are essentially two types of terms, depending on whether or not i = j. For a
given Y⃗ = {Y1, Y2} the contribution from all terms where i ̸= j is
∏

s1∈Y1

1
4

csc
�

π

ω1
((v1(s1)+1)ω2−h2(s1)ω3+iσ12)

�

× csc
�

π

ω1
((h2(s1)+1)ω3−v1(s1)ω2−iσ12)

�

×
∏

s2∈Y2

1
4

csc
�

π

ω1
((v2(s2)+1)ω2−h1(s2)ω3−iσ12)

�

× csc
�

π

ω1
((h1(s2)+1)ω3−v2(s2)ω1+iσ12)

�

≈
∏

s1∈Y1

exp
�

π

ω1
(i (2v1(s1)+1)ω2−i (2h2(s1)+1)ω3−2σ12)

�

×
∏

s2∈Y2

exp
�

π

ω1
(i (2h1(s2)+1)ω3−i (2v2(s2)+1)ω2−2σ12)

�

= e
8π3 r|Y⃗ |
g2
YMω1 e−

2π|Y⃗ |δσ
ω1

∏

s1∈Y1

exp
�

π

ω1
i ((2v1(s1)+1)ω2+(2h1(s1)+1)ω3)

�

×
∏

s2∈Y2

exp
�

−
π

ω1
i ((2h2(s2)+1)ω3+ (2v2(s2)+1)ω2)

�

, (3.10)

where we have again expanded around the saddle point σ12 = −
4π2R
g2

Y M
in the small negative
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g2
Y M limit. The last step involves the identity shown in appendix A. The contribution from the

terms where i = j is
∏

s1∈Y1

1
4

csc
�

π

ω1
((v1(s1)+1)ω2−h1(s1)ω3)

�

csc
�

π

ω1
((h1(s1)+1)ω3−v1(s1)ω2)

�

×
∏

s2∈Y2

1
4

csc
�

π

ω1
((v2(s2)+1)ω2− h2(s2)ω3)

�

csc
�

π

ω1
((h2(s2)+1)ω3−v2(s2)ω2)

�

. (3.11)

From (3.10) and (3.11) we see that we can write the instanton contribution in (3.8) as the
factorized product

Z ′inst

�

iσ,
2π
ω1

,ω2,ω3

�

≈ Z(δσ|ω1;ω2,ω3)Z(δσ|ω1;−ω2,−ω3) , (3.12)

where

Z(δσ|ω1;ω2,ω3)

=
∑

Y

e−
2π|Y |δσ
ω1

∏

s∈Y

1
4 exp

�

π
ω1

i ((2v(s) + 1)ω2 + (2h(s) + 1)ω3)
�

sin
�

π
ω1
((v(s)+1)ω2− h(s)ω3)

�

sin
�

π
ω1
((h(s)+1)ω3−v(s)ω2)

�

=
∑

Y

q|Y |
∏

s∈Y

1
�

y v(s)+1 − xh(s)
� �

y v(s) − xh(s)+1
� , (3.13)

with q = e−
2πδσ
ω1 , y = e−2πi ω2

ω1 and x = e−2πi
ω3
ω1 . Note that all dependence on the coupling has

dropped out and the only δσ dependence is in q. In fact q = e−SI , where SI is the world-
line action for the instanton particle with mass δσR−1. Hence, δσR−1 plays the role of the
Coulomb branch scalar and at its origin the instanton particle is massless.

While we won’t explicitly demonstrate it here, one can show that
Z(δσ|ω1;ω2,ω3) = (q; x , y)∞, where (q; x , y)∞ is the shifted q-factorial [27,29],

(q; x , y)∞ ≡
∞
∏

n=0

∞
∏

m=0

(1− q xn ym) , |x |< 1, |y|< 1 , (3.14)

and its generalization to other regimes for x and y . This, and the fact that
S3(−x; ω⃗) = S3(x +∆; ω⃗) is enough to show that

exp

�

−
πϱ5

3

�

δσ3 −
ω3

1+ω
2
2+ω

2
3 + 3(ω1ω2+ω2ω3+ω3ω1)

2
δσ

��

×Z(δσ|ω1;ω2,ω3)Z(δσ|ω1;−ω2,−ω3)Z(δσ|ω2;ω3,ω1)Z(δσ|ω2;−ω3,−ω1)

×Z(δσ|ω3;ω1,ω2)Z(δσ|ω3;−ω1,−ω2)

= S3(δσ, ω⃗)S3(−δσ, ω⃗) . (3.15)

Hence, summing over all instantons reproduces the perturbative contribution to the parti-
tion function. Note that the instanton partition function in (3.13) is not invariant under
δσ→−δσ. However, the complete expression in (3.15) is invariant, which is a consequence
of the Weyl symmetry for the instanton SU(2) gauge theory.

4 Instantons in seven dimensions

In this section we analyze the negative coupling region of the 7d SYM in light of what we
have learnt from the five dimensional case. The first step in this undertaking is to understand
what kind of non-perturbative contributions exist on the squashed sphere and which ones are
of importance in the considered limit.
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4.1 The instanton partition function

Inspired by the previous section, we start from considering whereto instantons localize. The
first thing to note then is that for generic squashing parameters almost all Reeb orbits do not
close but are dense on the T4 over the toric base. This might suggest, as in five dimensions,
that nonperturbative configurations should live on the closed orbits over the fixed points on the
six-dimensional base. As in the five-dimensional case the space transverse to each closed orbit
can be replaced with a twisted C3. Their contribution is then given by the partition function of
the ADHM quiver quantum mechanics associated to the D0− D6 brane systems [33–35]. The
classical contribution of these configurations is zero. One could introduce the term [11,24]

ϑ

48π3

∫

F ∧ F ∧ F ∧ κ (4.1)

to measure these instantons. However supersymmetrizing this term would lead to a Trσ3

term in the localized action and thus we choose to not include it. Moreover, the quantum
contribution of these instantons is independent of the Coulomb branch parameters. Hence,
these instantons contribute an over all g2

YM-independent-factor to the partition function and
are not of interest.

In seven dimensions there can be other non-perturbative configurations. A simple scaling
argument shows that only co-dimension 4 configurations can contribute to the Yang-Mills ac-
tion. We are thus led to consider configurations that live on the squashed S3 ⊂ S7 invariant
under the action of the Reeb vector. That is to say, the non-trivial BPS solutions have support
on the subspaces

|zi|2 + |z j|2 = 1 , i ̸= j , i, j = 1, 2,3, 4 . (4.2)

We then conjecture that any of the forms in the localization locus in (2.8) that have components
on the S3 are forced to be zero. This sets Φ± = F̌ = 0. From the fourth equation in (2.8) it
follows that bF+ = 0. Hence, we find that only contact instantons satisfying

∗F =
1
2

F ∧ κ∧ dκ , (4.3)

supported on a fixed three-sphere are allowed. These describe membranes wrapping the S3

which are point-like on the four-dimensional space transverse to the S3. In Appendix B we
show how such membranes can be obtained by uplifting point-like instantons from four di-
mensions.

To determine the instanton contribution to the partition function let us recall how one
derives the instanton partition function in (3.5). Instanton solutions on R4 were classified in
[36] in terms of a set of equations for the ADHM variables. Supersymmetrizing and assuming
an Ω-background for the R4, the instantons become point-like [20]. Once the space gets lifted
to R4×S1, one ends up with a supersymmetric quantum mechanics on the circle for the ADHM
variables [37–40]. Due to the twisting on the R4 this quantum mechanics describes instantons
point-like in the directions transverse to the circle. From here the partition function in (3.5)
can be computed, where ω2 and ω3 play the role of Nekrasov’s equivariant parameters ϵ1,2

and 2π
ω1

is the circumference of the circle.
From this brief review of the five-dimensional case, let us give an intuitive argument for

the instanton contribution in seven dimensions. A more technical explanation is given in
Appendix B. Here we have membrane-like instantons on R4 × S3, which wrap the S3 and
are point-like on R4. Of the four squashing parameters on the S7, two squash the S3 and the
other two twist the R4. The choice of which parameters do what depends on which fixed
three-sphere is being considered. Moreover, on S7 there are 16 supersymmetries so we expect
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some similarity to (3.5) at µ = 0 where the five-dimensional theory is enhanced to N = 2
supersymmetry.

The difference on S7 is that the ADHM variables are not the fields for a supersymmetric
quantum mechanics anymore, but instead the fields for a three-dimensional supersymmetric
field theory on the squashed S3. The k-instanton contribution is then given by the partition
function of an U(k) gauge theory. These theories can be localized and the partiton function
can be written as a matrix integral involving the double sine function S2(z;ω1,ω2) [41]. Com-
puting the matrix integrals requires a contour prescription. Using the same prescription as in
4d and 5d, the instanton contribution can then be computed and it involves the same sum
over colored partitions as in 4d and 5d.

Hence, the discussion of the last two paragraphs naturally suggests, based on (3.5), that the
instanton partition function coming from the squashed three-sphere defined by |z1|2+|z2|2 = 1
takes the form

Zinst

�

iσ;ω1,ω2;ω3,ω4

�

=
∑

Y⃗

e
− 4π2 |Y⃗ |

g2
YM

2π2R3
ω1ω2

N
∏

i, j=1

∏

s∈Yi

�

S2

�

iσ ji+
∆
2 −(vi(s)+1)ω3+h j(s)ω4;ω1,ω2

�

S2

�

iσi j+
∆
2 −
�

h j(s)+1
�

ω4+vi(s)ω3;ω1,ω2

�

S2

�

iσ ji−(vi(s)+1)ω3+h j(s)ω4;ω1,ω2

�

S2

�

iσi j−
�

h j(s)+1
�

ω4+vi(s)ω3;ω1,ω2

�

�

,

(4.4)

where now ∆ = ω1+ω2+ω3+ω4 = 4. Notice that the instantons come weighted with the
usual gauge factor 4π2

g2
YM

, which in seven dimensions has units of a tension, multiplied by the

volume of the squashed S3.
In product form the double sine is given by the expressions

S2(z;ω1,ω2) = exp
�

+
πi
2

B22(z;ω1,ω2)
� ∞
∏

j≥0

�

1− e2πi
�

z
ω2
+ j

ω1
ω2

�
�

�

1− e2πi
�

z
ω1
−( j+1)ω2

ω1

�

�

= exp
�

−
πi
2

B22(z;ω1,ω2)
� ∞
∏

j≥0

�

1− e−2πi
�

z
ω1
+ j ω2

ω1

�

�

�

1− e−2πi
�

z
ω2
−( j+1)ω1

ω2

�
�

, (4.5)

B22(z;ω1,ω2) =
z2

ω1ω2
−
ω1 +ω2

ω1ω2
z +

ω2
1 +ω

2
2 + 3ω1ω2

6ω1ω2
. (4.6)

where we have assumed that Im (ω1/ω2) > 0. Using this, it is straightforward to establish
that

S2

�

z +
ω1 +ω2

2
;ω1,ω2

�

S2

�

−z +
ω1 +ω2

2
;ω1,ω2

�

= 1 . (4.7)

This allows us to simplify (4.4) to

Zinst

�

iσ;ω1,ω2;ω3,ω4

�

=
∑

Y⃗

e
− 4π2 |Y⃗ |

g2
YM

2π2R3
ω1ω2

N
∏

i, j=1

∏

s∈Yi

�

1

S2

�

iσ ji−(vi(s)+1)ω3+h j(s)ω4;ω1,ω2

�

S2

�

iσi j−
�

h j(s)+1
�

ω4+vi(s)ω3;ω1,ω2

�

�

=
∑

Y⃗

e
− 4π2 |Y⃗ |

g2
YM

2π2R3
ω1ω2

N
∏

i, j=1

∏

s∈Yi

S2

�

4+iσi j−
�

h j(s)+1
�

ω4+vi(s)ω3;ω1,ω2

�

S2

�

iσi j−
�

h j(s)+1
�

ω4+vi(s)ω3;ω1,ω2

� . (4.8)

Note that the original “hypermultiplet" term in (4.4) is equal to 1, which is pleasing since
N = 1 super Yang-Mills in seven dimensions only has a vector multiplet.
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4.2 Instantons at small negative coupling

Let us now see how instantons contribute when the coupling is small but negative. As in
the previous section let us specialize to the case of SU(2) and assume that we have a small
negative coupling. From the saddle point equation in (2.17) we see that we should set
σ12 = −

2π3R3

g2
YM
+ δσ, where we assume that |δσ| ≪ −2π3R3

g2
YM

. As before, we have two types of

terms, depending on whether or not i = j. For a given Y⃗ = (Y1, Y2), the contribution from all
terms with i ̸= j in Zinst

�

iσ;ω1,ω2;ω3,ω4

�

is

∏

s1∈Y1

S2

�

4+iσ12−(h2(s1)+1)ω4+v1(s1)ω3;ω1,ω2

�

S2

�

iσ12−(h2(s1)+1)ω4+v1(s1)ω3;ω1,ω2

�

×
∏

s2∈Y2

S2

�

4−iσ12−(h1(s2)+1)ω4+v2(s2)ω3;ω1,ω2

�

S2

�

−iσ12−(h1(s2)+1)ω4+v2(s2)ω3;ω1,ω2

�

≈
∏

s1∈Y1

exp
�

−
2π
ω1ω2

�

2σ12 − i (2v1(s1) + 1)ω3 + i (2h2(s1) + 1)ω4

�

�

×
∏

s2∈Y2

exp
�

−
2π
ω1ω2

�

2σ12 + i (2v2(s2) + 1)ω3 − i (2h1(s2) + 1)ω4

�

�

= e
8π4R3 |Y⃗ |
g2
YMω1ω2 e−

4π|Y⃗ |
ω1ω2

δσ
∏

s1∈Y1

exp
�

+
2πi
ω1ω2

�

(2v1(s1) + 1)ω3 + (2h1(s1) + 1)ω4

�

�

×
∏

s2∈Y2

exp
�

−
2πi
ω1ω2

�

(2v2(s2) + 1)ω3 + (2h2(s2) + 1)ω4

�

�

, (4.9)

where we made use of (A.1) to get the last expression. The terms with i = j are

∏

s1∈Y1

S2

�

4−(h1(s1)+1)ω4+v1(s1)ω3;ω1,ω2

�

S2

�

−(h1(s1)+1)ω4+v1(s1)ω3;ω1,ω2

�

×
∏

s2∈Y2

S2

�

4−(h2(s2)+1)ω4+v2(s2)ω3;ω1,ω2

�

S2

�

−(h2(s2)+1)ω4+v2(s2)ω3;ω1,ω2

�

=
∏

s1∈Y1

S2

�

2−x(s1)+
ω1+ω2

2 ;ω1,ω2

�

S2

�

−2+x(s1)+
ω1+ω2

2 ;ω1,ω2

�

∏

s2∈Y2

S2

�

2−x(s2)+
ω1+ω2

2 ;ω1,ω2

�

S2

�

−2+x(s2)+
ω1+ω2

2 ;ω1,ω2

� , (4.10)

where we have defined x(s) ≡ (v(s) + 1/2)ω3 − (h(s) + 1/2)ω4. Note that in the last line in
(4.10) every factor is invariant under x(s)→−x(s), and hence under the explicit substitution
ω3,4→−ω3,4. Therefore, in the negative weak coupling approximation, we can factorize the
instanton contribution as

Zinst

�

iσ;ω1,ω2;ω3,ω4

�

≈ Z(δσ|ω1,ω2;ω3,ω4)Z(δσ|ω1,ω2;−ω3,−ω4) , (4.11)

where

Z(δσ|ω1,ω2;ω3,ω4) =
∑

Y

e−
4π|Y |
ω1ω2

δσ
∏

s∈Y

exp
�

−
2πi
ω1ω2

�

(2v(s)+1)ω3+(2h(s)+1)ω4

�

�

(4.12)

×
S2

�

2+x(s)+ω1+ω2
2 ;ω1,ω2

�

S2

�

−2+x(s)+ω1+ω2
2 ;ω1,ω2

� .
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The argument of the exponent in the leading term has the form

−vol(S3)|Y⃗ |
2δσ
πR3

, (4.13)

which is the contribution one expects from a membrane with tension T = 2
πR3δσ wrapping

the three-sphere |Y⃗ | times.
As in the five-dimensional case, the instanton partition function in (4.8) is not an even

function of δσ. However, we suspect that when combined with the dominant contribution of
the perturbative partition function in (2.27), which is given by

Zpert ∼ exp





2π4R3ϱ

g2
YM

δσ2 −
π

3
ϱ

 

2δσ3 −δσ
∑

i< j

ωiω j

!



 , (4.14)

the full partition function will be invariant under δσ→−δσ.
The expression in (4.12) is divergent at the round sphere limit whereωi → 1 for all i. This

is expected since at the round sphere limit there are zero modes, reflecting the enhancement
of supersymmetry and hence the freedom to choose new Reeb orbits. However, we also expect
the complete partition function to be convergent when summing over the contributions of all
three-spheres, since the divergence is really an artifact of the localization. If we consider the
one instanton contribution in (4.12), where x(s) = 1

2(ω3 −ω4), we can rewrite the double
sines as

S2

�

2+ω3−ω4
2 +ω1+ω2

2 ;ω1,ω2

�

S2

�

−2+ω3−ω4
2 +ω1+ω2

2 ;ω1,ω2

� = S2 (ω3+ω1+ω2;ω1,ω2)S2

�

ω4+ω1+ω2;ω1,ω2

�

=
S2 (ω3;ω1,ω2)S2

�

ω4;ω1,ω2

�

16 sin πω3
ω1

sin πω4
ω1

sin πω3
ω2

sin πω4
ω2

. (4.15)

In the last expression, as ωi → 1 for all i, the numerator approaches 1, while the denom-
inator has a fourth order zero. To see that these poles cancel when summing over all six
three-spheres we can expand ω3 about ω1 and ω4 about ω2 and then use the fact that
S2 (ω1;ω1,ω2)S2 (ω2;ω1,ω2) = 1, along with the relations for the derivatives

S′2(ω1;ω1,ω2)

S2(ω1;ω1,ω2)
= −

1
p
ω1ω2

�

1−
1
3

�

1
8
+
π2

6

�

δ2 +O(δ4)

�

,

S′′2 (ω1;ω1,ω2)

S2(ω1;ω1,ω2)
=
π2

3
δ

ω1ω2
+

�

S′2(ω1;ω1,ω2)

S2(ω1;ω1,ω2)

�2

,

S′′′2 (ω1;ω1,ω2)

S2(ω1;ω1,ω2)
=

1
p

(ω1ω2)3

�

2π2

3
+O(δ2)

�

+ 3
S′′2 (ω1;ω1,ω2)

S2(ω1;ω1,ω2)

S′2(ω1;ω1,ω2)

S2(ω1;ω1,ω2)
− 2

�

S′2(ω1;ω1,ω2)

S2(ω1;ω1,ω2)

�3

,

S′′′′2 (ω1;ω1,ω2)

S2(ω1;ω1,ω2)
=

4π4

45
δ

(ω1ω2)2
+ 4

S′′′2 (ω1;ω1,ω2)

S2(ω1;ω1,ω2)

S′2(ω1;ω1,ω2)

S2(ω1;ω1,ω2)

+ 3

�

S′′2 (ω1;ω1,ω2)

S2(ω1;ω1,ω2)

�2

− 12
S′′2 (ω1;ω1,ω2)

S2(ω1;ω1,ω2)

�

S′2(ω1;ω1,ω2)

S2(ω1;ω1,ω2)

�2

+ 6

�

S′2(ω1;ω1,ω2)

S2(ω1;ω1,ω2)

�4

, (4.16)
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where δ = ω1−ω2p
ω1ω2

. Derivatives for the argument at ω2 are found by making the substitution
ω1↔ω2 in (4.16). Using this, one can show after a tedious computation that the divergences
cancel in the round sphere limit and that the one instanton contribution in (4.11) at negative
weak coupling is

Z (1)inst (iσ; 1, 1, 1, 1) ≈ e−4πδσ

�

12−
785

72π2
+

11
12π4

+
�

11
3π3
−

677
18π

�

δσ

−
�

106
3
−

7
π2

�

(δσ)2 +
20
3π
(δσ)3 +

8
3
(δσ)4

�

. (4.17)

5 Concluding remarks

The main results of this paper are (4.8) and (4.12). At present we are not able to significantly
simplify either expression by carrying out the sum over all instantons, as one can do with
the five-dimensional analogs. Nevertheless, we have seen that the instantons for the SU(2)
gauge theory behave like membranes wrapped around the squashed S3 with a non-negative
tension T = 2

πR3δσ. This is reminiscent to what happens for the instanton particles in five
dimensions. However, in five dimensions we have seen that the SU(2) theory at negative
coupling is equivalent to the same theory at positive coupling. This is certainly not the case
in seven dimensions. In the remainder of this section we offer a plausible scenario for the
seven-dimensional negative coupling regime.

The R dependence in the tension suggests that δσ is not part of a vector multiplet. Since a
membrane is minimally coupled to a three-form field, the scalar is expected to lie in a multiplet
that also contains this field. In seven dimensions the only such multiplet is the N = 2 gravi-
ton multiplet [42].2 This contains the graviton, a three-form field, an SU(2) triplet of vector
fields, and a real scalar. Since we wish to place the theory on S7 we should consider a Euclidean
version of this supergravity theory, where also the SU(2) symmetry becomes SL(2,R). To pre-
serve supersymmetry on-shell this requires that the SL(2,R) symmetry be gauged [43–46].
However, since the theory will be localized which requires it be off-shell, we will assume that
it is possible to keep the SL(2,R) global symmetry on S7 and still maintain off-shell super-
symmetry.3 This has the advantage of matching the global symmetry for the usual Yang-Mills
theory at positive coupling.

The bosonic part of the Euclidean action for the ungauged graviton multiplet is [43–46]

SE =
1

2κ2
7

∫

d7 x
�

p
g
�

−R+
1
4

e
q

2
5ρηI J F I

µνF Jµν +
1
48

e−2
q

2
5ρGµνκλGµνκλ +

1
2
∂µρ∂

µρ

�

−
i
2
ηI J C ∧ F I ∧ F J

�

, (5.1)

where

F I = dAI , I = 1,2, 3 , ηI J = diag{−,+,+}, G = dC . (5.2)

The various effective couplings on S7 are easily read off from (5.1), with

g2
1 ∼
(2κ2

7)
3/5

R3
e−
q

2
5ρ , g2

3 ∼
R

(2κ2
7)1/5

e2
q

2
5ρ , g2

ρ ∼
2κ2

7

R5
, (5.3)

2In the supergravity literature minimal supersymmetry in seven dimensions is called N = 2, reflecting the
underlying R-symmetry.

3Progress in localizing supergravity theories has been made in [47–50]. The localization requires that the theory
have a boundary where the fluctuations are zero. Since S7 has no boundary, this suggests that a proper localization
will also require the H2,2/ZN internal space of the supergravity dual described in [8].
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where g1 is the coupling for the three U(1) gauge bosons, g3 is the three-form coupling and
gρ is the scalar coupling. Note that the three-form field Cµνλ couples to the three U(1) instan-
ton terms. Normally there are no U(1) instanton solutions but here we are considering the
localized action on S7 where the twist allows for nontrivial point-like solutions [20,51].

By shifting ρ by a constant and absorbing it into Fµν and Gµνκλ we can normalize the
instantons such that

∫

F1 ∧ F1 = 8π2(2κ2
7)

2/5k , k ∈ Z+ . (5.4)

Notice that there is a preferred direction in the R-symmetry space, corresponding to the pre-
ferred direction taken for the localization Killing spinor. If we assume that one should take
another Euclidean rotation, as one does for the scalar field in the super Yang-Mills multiplet,
then the tension of k membranes is

T =
4π2e

q

2
5ρ

(2κ2
7)3/5

k ∼
k

g2
1R3

, (5.5)

which we can see directly from the action in (5.1) or by computing the ADM tension for the
classical solution sourced by the instanton [52,53].

Equation (5.5) and the previous expression for the tension suggests that we identify

δσ =
2π3R3

(2κ2
7)3/5

e
q

2
5ρ ∼

1

g2
1

. (5.6)

From (5.6) we then have that

∂µδσ∂
µδσ =

2
5

�

2π3R3

(2κ2
7)3/5

�2

e2
q

2
5ρ∂µρ∂

µρ , (5.7)

which leads to the effective coupling for the δσ field,

g2
δσ ∼

R6

(2κ2
7)6/5

e2
q

2
5ρ

2κ2
7

R5
∼ g2

3 . (5.8)

If we compare this to (4.14), we see that

g2
3 ∼ −

g2
YM

R3
. (5.9)

Since we assume that δσ≪− R3

g2
YM

, (5.6) and (5.9) imply that g2
3 ≪ g2

1 . Furthermore, we can

write g2
3 ∼

2κ2
7

R5 g−4
1 , so we must also choose g2

1 < 1 if the three-form coupling is to be stronger

than gravity. If we write g2
1 ∼

�

2κ2
7

R5

�α

, then the couplings satisfy

2κ2
7

R5
≪ g2

3 ≪ g2
1 < 1 , (5.10)

if 0< α < 1/3.

In the region where − g2
YM
R3 ≪ 1, we can approximate the partition function as

Z ≈
∫

dδσ e
2π4R3

g2
YM

δσ2

Zq(δσ) , (5.11)
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where Zq(δσ) contains the coupling independent terms in (4.14) and the contribution of the
instantons in (4.12). If we know Zq(δσ) we can solve (5.11) by saddle point and find δσ. At
present we do not know the behavior of Zq(δσ), but if it had the same behavior as in the five-

dimensional case with Zq(δσ) ∼ δσ2 for |δσ| ≪ 1, then at the saddle point δσ ∼
r

− g2
YM
R3 .

This would correspond to having α = 1/4, which is inside the desired window. It would be
interesting to explore this further.

Acknowledgements

We thank L. Cassia, A. Dabholkar, J. Gomis, P. Jefferson, M. Kim, S. Murthy, V. Rodriguez
and M. Zabzine for helpful conversations and correspondence. This research was supported
in part by Vetenskapsrådet under grants #2016-03503 and #2020-03339, by the Knut and
Alice Wallenberg Foundation under grant Dnr KAW 2015.0083, and by the National Science
Foundation under Grant No. NSF PHY-1748958. JAM thanks the KITP for hospitality during
the course of this work.

A An identity

In this section of the appendix we show that
∑

s1∈Y1

(2h2(s1) + 1)−
∑

s2∈Y2

(2h1(s2) + 1) =
∑

s2∈Y2

(2h2(s2) + 1)−
∑

s1∈Y1

(2h1(s1) + 1) , (A.1)

where Y1 and Y2 are two Young diagrams, s1 and s2 the respective boxes in the diagrams, and
hi(s) is the horizontal distance to the edge of diagram Y1 from box s. Let the rows for Y1 be
given by {λ1,λ2, . . . ,λn} with λi ≥ λi+1. Likewise let the rows for Y2 be {λ′1,λ′2, . . . ,λ′n′} with
λ′i ≥ λ

′
i+1.

We then have that

∑

s1∈Y1

(2h2(s1) + 1) =
n
∑

k=1

λk
∑

j=1

�

2(λ′k − j) + 1
�

=
n
∑

k=1

(2λ′kλk −λk
2) , (A.2)

where we use that λ′k = 0 if k > n′. Likewise, we have that

∑

s2∈Y2

(2h1(s2) + 1) =
n′
∑

k′=1

(2λk′λ
′
k′ −λ

′
k′

2) . (A.3)

Hence,

∑

s1∈Y1

(2h2(s1) + 1)−
∑

s2∈Y2

(2h1(s2) + 1) =
n′
∑

k′=1

λ′k′
2 −

n
∑

k=1

λk
2 . (A.4)

Next, we have that

∑

s2∈Y2

(2h2(s2) + 1) =
n′
∑

k′=1

λ′
k′
∑

j′=1

�

2(λ′k′ − j′) + 1
�

=
n′
∑

k′=1

λ′k′
2 ,

∑

s1∈Y1

(2h1(s1) + 1) =
n
∑

k=1

λk
∑

j=1

�

2(λ′k − j) + 1
�

=
n
∑

k=1

λk
2 . (A.5)

Hence, (A.1) is true.
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B Technicalities regarding instanton contributions

In this part of the appendix we give additional details about the instanton contributions dis-
cussed in the main text. We will not attempt to find the full set of solutions to the BPS equations
(2.3).

We start by assuming the vanishing of the three-form Φ. Then the only non-trivial compo-
nent of the gauge field strength is F̂−. Thus, we look for solutions to the equation

∗F =
1
2

F ∧ κ∧ dκ . (B.1)

A set of solutions can be found by uplifting point-like instantons from four dimensions by
wrapping them on a unit S3 ⊂ S7. Treating S7 as an S3 fibered over S4, it is clear that the
gauge field configuration for a point-like instanton on the base can be lifted to the S7 by taking
it to be constant along the fiber. The field-strength of the lift will be non-zero only on a single
S3 fiber and will only have components that are transverse to that fiber. By squashing the S7,
the three-spheres the instantons can wrap are the six invariant under the action of the Reeb
vector.

It is possible to explicitly check that these uplifted contact instantons satisfy the equation.
We choose coordinates (θ ,φ,χ, x i) for i = 5,6, 7,8, on the S7 and embed it into R8 by setting

x1 = ρ1 cosφ =
p

1− r2 cos(θ ) cos(φ) ,

x2 = ρ1 sinφ =
p

1− r2 cos(θ ) sin(φ) ,

x3 = ρ2 cosχ =
p

1− r2 sin(θ ) cos(χ) ,

x4 = ρ2 sinχ =
p

1− r2 sin(θ ) sin(χ) ,

1≥ r2 = ρ2
3 +ρ

2
4 = (x

5)2 + (x6)2 + (x7)2 + (x8)2 .

This choice explicitly distinguishes between the S3 coordinates (θ ,φ,χ), and the transverse
space (x5, x6, x7, x8). In these coordinates the Reeb vector for the squashed sphere takes the
form

Rµ∂µ =ω1∂φ +ω2∂χ +ω3

�

x5∂x6 − x6∂x5

�

+ω4

�

x7∂x8 − x8∂x7

�

. (B.2)

This form of the Reeb vector makes it clear that the supersymmetry approaches that of
S3
ω1
ω2

× R4
ω3,ω4

, that is a squashed three-sphere times the Ω-background, as we go to

x5 = x6 = x7 = x8 = 0. For the metric on the squashed sphere we take

ds2 = gµνdxµdxν =
α2

β2

4
∑

i=1

�

dρ2
i +ρ

2
i dφ2

i

�

+
1
β2

�

∑

i

aiρ
2
i dφi

�2

, (B.3)

where α2 = 1−
∑

i a2
i ρ

2
i and β = 1+

∑

i aiρ
2
i . This metric is conformally equivalent to the

metric in (2.2) and ensures that the Reeb vector has unit norm. With this metric, we have the
contact-metric structure [54–56] on the squashed sphere,

v = R , κ= g (v, ·) =
α2

β2

∑

i

ρ2
i dφi +

1
β

∑

i

aiρ
2
i dφ , gµλJλν = dκµν . (B.4)

As we zoom in on the chosen S3, by taking the limit r → 0 the metric becomes

ds2 =
1− a2

1 cos2 θ − a2
2 sin2 θ

�

1+ a1 cos2 θ + a2 sin2 θ
�2

�

dθ2 + cos2 θdφ2 + sin2 θdχ2
�

+

�

a1 cos2 θdφ + a2 sin2 θdχ
�2

�

1+ a1 cos2 θ + a2 sin2 θ
� +δi jdx idx j . (B.5)
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On this same S3 the lifted four-dimensional instantons have a field-strength which satisfies

F = − ⋆R4 F , (B.6)

i.e., it has no component along S3, while on the transverse R4 it satisfies the usual anti-self-
duality condition. It is then straightforward to show that this field strength satisfies the seven-
dimensional contact instanton equation,

1
2

F ∧ k ∧ dk = −
1
2

F ∧ volS3 =
1
2
p

gϵ i j
θφχkℓ Fi jdθ ∧ dφ ∧ dχ ∧ dx i ∧ dx j = ⋆F . (B.7)

We have thus argued that at least some of the seven-dimensional contact instantons wrap
these six distinguished S3’s in the S7. Moreover, we noted that the form of the Reeb vector sug-
gests that the supersymmetry approaches that of twisted R4 times squashed S3 as we approach
these loci. This leads than to the following two conjectures:

1. On the squashed seven-sphere all contact membrane instantons localize to the six dis-
tinguished three-spheres.

2. The instanton contribution of each such three-sphere can be computed from ADHM data
on this squashed S3.

In the rest of this section we build upon these conjectures to derive two formulas. First the
ADHM data on the S3 will give us an integral formula for the instantons,

�

S2

�

−ω3 −ω4

�

S2 (−ω3)S2

�

−ω4

�

�k ∫
dkφ

k!
�

i
p
ω1ω2

�k

K
∏

i=1

N
∏

A=1

1

S2 (φi − aA)S2

�

−φi + aA−
�

ω3 +ω4

��

∏

i ̸= j

S2

�

φi j

�

S2

�

φi j −ω3 −ω4

�

S2

�

φi j −ω3

�

S2

�

φi j −ω4

� . (B.8)

Note that here and in the rest of this appendix we will be suppressing the two squashing
parameters ω1,ω2 for the three-sphere when we write the double sine function. The unusual
normalization factor for the contour integrals is because S′2(0) =

2πp
ω1ω2

. In the second step
we evaluate this integral by giving a prescription for which poles should be enclosed by the
integration contour, giving us the k-instanton result

Zk =
∑

|Y |=k

N
∏

i, j=1

∏

s∈Yi

1

S2

�

iσ ji−(vi(s)+1)ω3+h j(s)ω4

�

S2

�

iσi j−
�

h j(s)+1
�

ω4+vi(s)ω3

� . (B.9)

B.1 ADHM construction

The ADHM data consists of two adjoint chiral multiplets B1,2 as well as two chirals I , J re-
spectively in the representations (N , k) and (N , k) of U(N) × U(k). They are subject to the
constraints

µR ≡ [B1, B†
1] + [B2, B†

2] + I I† − J†J = 0 ,

µC ≡ [B1, B2] + I J = 0 . (B.10)

This ADHM data parametrizes the instanton moduli space. Regularization of this moduli space
requires modifying the constraints to s⃗ = (µR−ζ,µC) = 0. In addition, we have the U(k) vector
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multiplet (A,ψ,φ,α, D). Twisted supersymmetry of the vector and chiral multiplets is

QA=ψ , Qψ= ιRLR + [φ, A] ,

Qφ = 0 ,

Qα= D , QD = ιRdα+ [φ,α] ,

QB1,2 =ψ1,2 , Qψ1,2 = ιRdB1,2 + [φ, B1,2] + ε1,2B1,2 ,

Qχ1,2 = Y1,2 , QY1,2 = ιRdχ1,2 + [φ,χ1,2]− ε1,2χ1,2 , (B.11)

QI =ψI , QψI = ιRdI +φ I − Ia ,

QχI = YI , QYI = ιRdχI +φχI −χI a ,

QJ =ψJ , QψJ = ιRdJ − Jφ + aJ − (ε1 + ε2)J ,

QχJ = YJ , QYJ = ιRdχJ −χJφ + aχJ − (ε1 + ε2)χJ ,

where we have used the cohomological fields in [57, 58]. In addition, we need a projection
multiplet to lift from µ−1

R (ζ) ∩ µ
−1
C (0)/U(k) to µ−1

R (ζ) ∩ µ
−1
C (0), and Fadeev-Popov ghosts to

gauge fix. We do not focus on these latter points here. Instead we concentrate on the effect
of the ADHM constraints as this is the only thing that is nonstandard for three-dimensional
localization. To impose them we could simply introduce a delta function δ(s⃗) into the path
integral. As is done fort gauge fixing, the delta function can be replaced by an insertion of the
Gaussian factor

exp

�

−
∫

d3 x
1

2gH
Tr(s2
R + |sC|

2)

�

=

∫

DHRDHC exp

�

−
∫

d3 x
� gH

2
Tr(H2

R + |HC|
2) + i Tr(HRsR +H†

CsC)
�

�

. (B.12)

Obviously we should do this so that supersymmetry is preserved. However, it is straightforward
to deduce which fields to include to make it supersymmetric. Namely, the density in (B.12)
should be part of a positive definite Lagrangian density of the form

Q Tr
� gH

2
(χRQχR +χ

†
CQχC) + i(χRsR +χ

†
CsC)

�

. (B.13)

It is then clear that we should require the following SUSY transformations,

QχR = HR , QHR = ιRdχR + [φ,χR] ,

QχC = HC , QHC = ιRdχC + [φ,χC] + (ε1 + ε2)χC . (B.14)

This way we make sure that Q2 = LR+Gφ +Gε1,ε2
squares to the sum of bosonic symmetries.

Note that χC , HC transform under the torus action on the R4 such that H†
CsC is invariant. Diag-

onalizing Q2, it is easy to see that the (χR, HR) multiplet does not contribute to the partition
function, after taking care of its zero mode.

The other ghost multiplet needs more work, as we have to extend the multiplet to
(χC, HC,ξC, DC). This can be seen by remembering that so far we are using a twisted ver-
sion of off-shell N = 2 supersymmetry. Then the field χC is still a fermionic scalar in the
non-twisted formalism, while HC comes from a bosonic spinor Hα. Twisting this spinor gives
the desired HC as well as the auxiliary DC. Matching the number of bosonic and fermionic
degrees of freedom in the non-twisted formalism introduces the fermionic auxiliary scalar ξ,
which becomes ξC after twisting. Schematically, the SUSY transformation rules of the multi-
plet (χC, Hα,ξ) are

{Qα,χC}= Hα ,

[Qα, Hβ] = (γµ)αβ∂µχ + ε
αβξ , (B.15)

{Qα,ξ}= (γµ)αβDµHβ .
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We observe that this multiplet is a ghost version of a chiral multiplet, viz. with the statistics
reversed. Consequently this multiplet will contribute the inverse of a corresponding chiral
multiplet to the partition function. Hence, the respective contributions to (B.8) are

(A,ψ,φ,α, D) → S2(φi j) ,

(χC, HC,ξC, DC) → S2(φi j −ω3 −ω4) ,

(B1,ψ1,χ1, Y1) → S2(φi j −ω3)
−1 ,

(B2,ψ2,χ2, Y2) → S2(φi j −ω4)
−1 , (B.16)

(I ,ψI ,χI , YI) → S2(φi − aA)
−1 ,

(J ,ψJ ,χJ , YJ ) → S2(−φi + aA− (ω3 +ω4))
−1 .

B.2 Towards k-instantons in the abelian theory

In this section we sketch an argument that provides more evidence for the general validity
of our conjecture. Here we focus on an abelian gauge group and look at the k-instanton
contribution coming from a particular Young diagram, Y . From here we can find a k + 1-
instanton contribution by adding a box to Y at an appropriate place to obtain a new Young
diagram, Y+. We now show that

Zk+1,Y+
Zk,Y

computed from our conjecture matches the ADHM
contour formula.

We label the position of each box s in the Young diagram by a pair of integers (n, m). We
add a box at a position (n̂, m̂) to the diagram Y to obtain Y+. The horizontal and vertical
distances to the edge for boxes in Y+ are related to those in Y as follows:

hY+ (s) =

¨

hY (s) , m ̸= m̂ ,

hY (s) + 1= n̂− n , m= m̂ ,
(B.17)

and

vY+ (s) =

¨

vY (s) , n ̸= n̂ ,

vY (s) + 1= m̂−m , n= n̂ ,
(B.18)

with

hY+ (n̂, m̂) = vY+ (n̂, m̂) = 0 . (B.19)

Using this and our conjecture we can write the ratio as

Zk+1,Y+

Zk,Y
=

1

S2 (−ω3)S2

�

−ω4

�

×
n̂−1
∏

n=1

S2

�

−
�

Y T
n −m̂+1

�

ω3+(n̂−n−1)ω4

�

S2

�

−(n̂−n)ω4+
�

Y T
n −m̂

�

ω3

�

S2

�

−
�

Y T
n −m̂+1

�

ω3+(n̂−n)ω4

�

S2

�

−(n̂−n+1)ω4+
�

Y T
n −m̂

�

ω3

�

×
m̂−1
∏

m=1

S2

�

−(m̂−m)ω3 + (Ym−n̂)ω4

�

S2

�

−(Ym−n̂+1)ω4+(m̂−m−1)ω3

�

S2(−(m̂−m+1)ω3+(Ym−n̂)ω4)S2

�

−(Ym−n̂+1)ω4+(m̂−m)ω3

� ,

(B.20)

where Ym is the number of boxes in row m of Y and Y T
n is the number of boxes in column n

of Y . The first term in (B.20) comes from the square (n̂, m̂), the first product comes from the
squares with m= m̂, and the second product comes from the squares with n= n̂.

Many terms in the products in (B.20) cancel. To see the cancellations we can visualize the
products in a diagram, as shown in figure 2a. The key thing to note is that the boxes

�

n, Y T
n

�
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and (Ym, m) are on the edge of the diagram and the product over n moves us along the bottom
edges from the left until n = n̂ − 1 and the product over m moves us along the side edges
from the top until m = m̂− 1. We can then represent each term in the product of (B.20) as
four boxes, with each box representing an S2 in the product. If we define the position of a
box at (n, m) as nω4 + mω3 and the distance between two boxes as the difference in their
positions, then the arguments of the S2 are plus or minus the distances between boxes in Y
and the new box at (n̂, m̂). The boxes are further labeled by a ‘+’ or a ‘−’, indicating if the S2 is
in the numerator or denominator. As we move along the edges most poles and residues cancel
between adjacent values of n and m.

(a) Before cancellations (b) After cancellations

Figure 2: The left figure is a diagrammatic representation of eq. (B.20). Each term
in the products in (B.20) are represented by four boxes along the edge of Y , with
a ‘+’ box representing an S2 in the numerator and a ‘−’ box representing an S2 in
the denominator. After various cancellations the leftover factors in eq. (B.21) can be
expressed in terms of the distance of the boxes from the extra box as shown in the
right figure. The red dashed lines indicate the division into nr rectangles.

After cancellations we are left with 2nr boxes contributing to the denominator and 2nr
to the numerator, where nr is the number of stacked rectangles that make up Y , as shown in
figure 2b. For i = 0, · · ·nr , let Ai be the positions of all allowed boxes that can be added to Y .
We assume that i = x represents the position of the box that makes Y+. Then the positions of
the ‘−’ boxes are at Ai and Ai −ω3−ω4, i ̸= x . If we also let Bi , i = 1, . . . 4, be the position of
the bottom right corner of each rectangle, then the positions of the ‘+’ boxes are located at Bi
and Bi +ω3 +ω4. With these definitions we can write (B.20) as

Zk+1,Y+

Zk,Y
=

1

S2 (−ω3)S2

�

−ω4

�

nr
∏

i=1

S2

�

Ax − Bi −ω3 −ω4

�

S2 (Bi − Ax)

nr
∏

i=0
i ̸=x

S2 (Ax − Ai)S2

�

Ai − Ax −ω3 −ω4

�

. (B.21)

We now show that the ADHM contour integral in (B.8) gives the recursion relation in
(B.21). We start by assuming that Zk,Y follows from (B.8), where the contours are chosen so
that φi has a pole at φ̂i = a1 + Ci −ω3 −ω4, where Ci is the position of one of the k boxes in
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Y . It then follows that

Zk+1,Y+

Zk,Y
=

S2

�

−ω3 −ω4

�

S2 (−ω3)S2

�

−ω4

�

∫

dφk+1

i
p
ω1ω2

1

S2 (φk+1 − a1)S2

�

−φk+1 + a1 −ω3 −ω4

�

×
k
∏

i=1

∏

η=±1

S2

�

η(φk+1 − φ̂i)
�

S2

�

η(φk+1 − φ̂i)−ω3 −ω4

�

S2

�

η(φk+1 − φ̂i)−ω3

�

S2

�

η(φk+1 − φ̂i)−ω4

� . (B.22)

Each term in the product involves eight terms. There are many cancellations which happen
after performing the product. A diagrammatic approach allows us to track all cancellations.
This is shown in figure 3. Note the resemblance to figure 2b. Thus the final expression takes
the form

Zk+1,Y+

Zk,Y
=

S2

�

−ω3 −ω4

�

S2 (−ω3)S2

�

−ω4

�

∫

dφk+1

2πi

∏nr
i=1 S2

�

φk+1 − Bi −ω3 −ω4

�

S2 (Bi −φk+1)
∏nr

i=0 S2 (φk+1 − Ai)S2

�

Ai −φk+1 −ω3 −ω4

� .

(B.23)

We now perform the contour integral over φ picking up the residue associated with the
additional box corresponding to Y+. If Ax is the position of the additional box then it is easy
to see that we get the ratio (B.21).

Figure 3: Representation of the integrand for general k. We divide the diagram into
rectangles as indicated by the dashed red lines. Factors in the numerator correspond
to a box at the bottom right corner of each rectangle and a box shifted by ω3 +ω4.
Factors in the denominator correspond to each allowed box that can be added to get
a valid k+1-instanton diagram and a box shifted by −ω3−ω4. We highlight in blue
factors with φk+1, while those in green have −φk+1.

B.3 Towards k-instantons in the non-abelian theory

In this subsection we extend the argument from the previous subsection to SU(N) super Yang-
Mills.

We start with a vector of N Young diagrams Y⃗ = (Y1, . . . , YN ) with |Y⃗ | = k. Now, Y⃗+ is the
set of diagrams where we have added to the diagram Yâ a box at position (n̂, m̂). The changes
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for the horizontal and vertical distances are

hY+a
(s) =

¨

hYa
(s) + 1= n̂− n , m= m̂ and a = â ,

hYa
(s) , otherwise ,

(B.24)

vY+b
(s) =

¨

vYb
(s) + 1= m̂−m , n= n̂ and b = â ,

vYb
(s) , otherwise ,

(B.25)

hY+â
(n̂, m̂) =vY+â

(n̂, m̂) = 0 . (B.26)

Starting from our conjectured expression (B.9), the first thing to note is that we only have to
keep terms with either index i or j equal to â. Also, plugging in expressions for the horizontal
and vertical distances, it is clear that only the contributions from boxes in row m̂ or column n̂
do not cancel. With these simplifications we find

ZY⃗+

ZY⃗
=

 

N
∏

b ̸=â

1
S2(iσb,â −ω3 + (Yb,m̂ − n̂)ω4)S2(iσâ,b − (Yb,m̂ − n̂+ 1)ω4)

(B.27)

m̂−1
∏

m=1

S2

�

iσb,â − (m̂−m)ω3 + (Yb,m − n̂)ω4

�

S2

�

iσâ,b − (Yb,m − n̂+ 1)ω4 + (m̂−m− 1)ω3

�

S2

�

iσb,â − (m̂−m+ 1)ω3 + (Yb,m − n̂)ω4

�

S2

�

iσâ,b − (Yb,m − n̂+ 1)ω4 + (m̂−m)ω3

�

�





N
∏

a ̸=â

Ya,m̂
∏

n=1

S2

�

iσâ,a − (Y T
a,n − m̂+ 1)ω3 + (n̂− n− 1)ω4

�

S2

�

iσa,â − (n̂− n)ω4 + (Y T
a,n − m̂)ω3

�

S2

�

iσâ,a − (Y T
a,n − m̂+ 1)ω3 + (n̂− n)ω4

�

S2

�

iσa,â − (n̂− n+ 1)ω4 + (Y T
a,n − m̂)ω3

�





m̂−1
∏

m=1

S2

�

−(m̂−m)ω3 + (Yâ,m − n̂)ω4

�

S2

�

−(Yâ,m − n̂+ 1)ω4 + (m̂−m− 1)ω3

�

S2

�

−(m̂−m+ 1)ω3 + (Yâ,m − n̂)ω4

�

S2

�

−(Yâ,m − n̂+ 1)ω4 + (m̂−m)ω3

�

n̂−1
∏

n=1

S2

�

−(Yâ,n − m̂+ 1)ω3 + (n̂− n− 1)ω4

�

S2

�

−(n̂− n)ω4 + (Yâ,n − m̂)ω3

�

S2

�

−(Yâ,n − m̂+ 1)ω3 + (n̂− n)ω4

�

S2

�

−(n̂− n+ 1)ω4 + (Yâ,n − m̂)ω3

�

1
S2(−ω3)S2(−ω4)

.

The first factor comes from i = â and all contributions are from column n̂. The second factor
is from j = â and all contributions come from row m̂. In the last two lines, where i = j = â,
contributions come both from column n̂ and row m̂, and the box at (n̂, m̂). Yb,m denotes the
length of the m-th row in the diagram Yb, and similar Y T

b,n is the height of the n-th column in
Yb. The ranges of a and b are the same, so we can just use one multiplication. We also note
that the last two lines are the abelian expression for the diagram Yâ, hence we have

ZY⃗+

ZY⃗
=

ZY+â

ZYâ

N
∏

b ̸=â

1
S2(iσb,â −ω3 + (Yb,m̂ − n̂)ω4)S2(iσâ,b − (Yb,m̂ − n̂+ 1)ω4)

(B.28)

m̂−1
∏

m=1

S2

�

iσb,â − (m̂−m)ω3 + (Yb,m − n̂)ω4

�

S2

�

iσâ,b − (Yb,m − n̂+ 1)ω4 + (m̂−m− 1)ω3

�

S2h
�

iσb,â − (m̂−m+ 1)ω3 + (Yb,m − n̂)ω4

�

S2

�

iσâ,b − (Yb,m − n̂+ 1)ω4 + (m̂−m)ω3

�

Yb,m̂
∏

n=1

S2

�

iσâ,b − (Y T
b,n − m̂+ 1)ω3 + (n̂− n− 1)ω4

�

S2

�

iσb,â − (n̂− n)ω4 + (Y T
b,n − m̂)ω3

�

S2

�

iσâ,b − (Y T
b,n − m̂+ 1)ω3 + (n̂− n)ω4

�

S2

�

iσb,â − (n̂− n+ 1)ω4 + (Y T
b,n − m̂)ω3

� .

As for the abelian case, many of the factors actually cancel against each other. We can write
the expression in terms of boxes Ab,i which can be added to the diagram Yb as well as the right
lower boxes Bb,i of the rectangles making up the diagram Yb. Tallying up the factors, we end
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up with the following expression

ZY⃗+

ZY⃗
=

1
S2(−ω3)S2(−ω4)

∏

i S2(Bâ,i − Aâ,x)S2(Aâ,x − Bâ,i −ω3 −ω4)
∏

i ̸=x S2(Aâ,i − Aâ,x −ω3 −ω4)S2(Aâ,x − Aâ,i)
N
∏

b ̸=â

∏

i S2(iσb,â + Bb,i − Aâ,x)S2(iσâ,b + Aâ,x − Bb,i −ω3 −ω4)
∏

i S2(iσb,â + Ab,i − Aâ,x −ω3 −ω4)S2(iσâ,b + Aâ,x − Ab,i)
,

(B.29)

where Aâ,x is the position of the box that takes us from Y⃗ to Y⃗+.
Now let us compare (B.29) against the ADHM integral

ZY⃗+

ZY⃗
=

S2(−ω3 −ω4)
S2(−ω3)S2(−ω4)

∫

dφk+1

i
p
ω1ω2

N
∏

a=1

1
S2(φk+1 − aa)S2(−φk+1 + aa −ω3 −ω4)

×
k
∏

i=1

∏

η=±1

S2(η(φk+1 − φ̂i))S2(η(φk+1 − φ̂i)−ω3 −ω4)

S2(η(φk+1 − φ̂i)−ω3)S2(η(φk+1 − φ̂i)−ω4)
, (B.30)

where φ̂i , i = 1, . . . , k, is the pole picked up by the contour integration of φi according to the
Young diagrams Y⃗ . Explicitly they are at ab+(m−1)ω3+(n−1)ω4 for box (n, m) in diagram
Yb, b = 1, . . . , N . Then, we can convince ourselves once again by considering the diagrams
that most factors cancel, leaving us with the integral

ZY+

ZY
=

S2(−ω3 −ω4)
S2(−ω3)S2(−ω4)

∫

dφk+1

2πi

×
N
∏

a=1

∏

i S2(φk+1 − aa − Ba,i −ω3 −ω4)S2(aa −φk+1 + Ba,i)
∏

i S2(φk+1 − Aa,i − aa)S2(aa −φk+1 + Aa,i −ω3 −ω4)
.

(B.31)

The different poles that we now can pick up (or want to allow to be picked up) are at
φk+1 = Aa,i + aa. If we do this for a = â and i = x and set aa − ab = iσab, we find eq. (B.29),
confirming our conjecture.
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