
SciPost Phys. 14, 030 (2023)

Non-Hermitian quantum quenches in holography

Sergio Morales-Tejera1,2⋆ and Karl Landsteiner1†

1 Instituto de Física Teórica UAM/CSIC, c/Nicolás Cabrera 13-15,
Campus de Cantoblanco, 28049 Madrid, Spain

2 Departamento de Física Teórica, Universidad Autónoma de Madrid,
Cantoblanco, 28049 Madrid, Spain

⋆ sergio.moralest@uam.es, † karl.landsteiner@csic.es,

Abstract

The notion of non-Hermitian PT symmetric quantum theory has recently been gen-
eralized to the gauge/gravity duality. We study the evolution of such non-Hermitian
holographic field theories when the couplings are varied with time with particular em-
phasis on the question non-unitary time vs. unitary time evolution. We show that a
non-unitary time evolution in the dual quantum theory corresponds to a violation of
the Null Energy Condition (NEC) in the bulk of the asymptotically AdS spacetime. We
find that upon varying the non-Hermitian coupling the horizon of a bulk AdS black hole
shrinks. On the other hand varying the Hermitian coupling in the presence of a constant
non-Hermitian coupling still violates the NEC but results in a growing horizon. We also
show that by introducing a non-Hermitian gauge field the time evolution can be made
unitary, e.g. the NEC in the bulk is obeyed and an exactly equivalent purely Hermitian
description can be given.
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1 Introduction

One of the core axioms of quantum mechanics is that observable quantities are represented
by Hermitian operators. It is then a bit surprising that some seemingly non-Hermitian Hamil-
tonians can have real energy spectra. In [1–4] it has been realized that the underlying reason
for this is that such Hamiltonians have an anti-linear Z2 symmetry commonly denoted by PT .
In simple cases it can be thought of as the product of parity and time-reversal. PT symmetric
quantum mechanics has raised much interest and is reviewed in the recent book [5]. The basic
properties of a PT symmetric Hamiltonian are that there are two regimes separated by a PT
critical point. In the so-called PT symmetric regime the eigenvectors of the Hamiltonian are
simultaneous eigenvectors of PT which implies that the energies are real. In the PT broken
regime the eigenvectors of the Hamiltonian come in doublets under the PT symmetry with
energy eigenvalues that are complex conjugate to each other.

It has also been pointed out that in the PT symmetric regime the Hamiltonian is pseudo-
Hermitian, i.e. there exists a Hermitian similarity transformation such that ηHη−1 = h with
h† = h being Hermitian [6–9]. An early example of this was investigated by Dyson in [10] and
thus η is sometimes called the "Dyson map". This observation allows to construct a PT sym-
metric Hamiltonian starting from a Hermitian one. A simple example for a two dimensional
Hilbert space is a follows. Every Hermitian Hamiltonian acting on a two dimensional Hilbert
space can be written as a linear combination of Pauli matrices

h=
3
∑

i=1

giσi . (1.1)

A physically equivalent Hamiltonian can be obtained by a unitary transformation with
U = exp(iαn̂.σ⃗/2) which is just a rotation by an angle α around the axis defined by a unit
vector n̂. It is also possible to generate an equivalent non-Hermitian Hamiltonian by analyti-
cally continuing the angle α = iβ . This gives the Dyson matrix η = exp(β n̂.σ/2) and defines
a non-Hermitian Hamiltonian. As concrete example consider

H = gσx + iΓσz , (1.2)

with eigenvalues E± = ±
p

g2 − Γ 2 and PT symmetry σx K , where K is complex conjugation.
Obviously the energy eigenvalues are real as long as |Γ | < |g|. Setting g = g0 cosh(β) and
Γ = g0 sinh(β) it is clear that the non-Hermitian Hamiltonian is generated from the Hermitian
h = g0σx by a similarity transformation η = exp(βσy/2). The critical point g = Γ can be
reached by taking β → ∞ and simultaneously g0 → 0 keeping the product fixed. On the
other hand the PT - broken regime with |g| < |Γ | can not be reached from the Hermitian
Hamiltonian by any similarity transformation or limits thereof.

We now make a key observation which allows to translate the concept of PT symmetry
to the gauge/gravity duality in a straightforward way. Since the Dyson map is an analytically
continued rotation around the y-axes we can write the final Hamiltonian as H = giRi jσi with
the rotation denoted by Ri j . This makes it obvious that we can also define the new Hamiltonian
by a transformation acting on the couplings gi rather than acting directly on the Hilbert space.
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Indeed starting from the vector of couplings g⃗0 = (g0, 0, 0) the new non-Hermitian couplings
are obtained by a hyperbolic rotation by the hyperbolic angle β .

While the PT symmetric regime is therefore mathematically equivalent to quantum me-
chanics with a Hermitian Hamiltonian the physical interpretation is quite different. A standard
Hermitian Hamiltonian describes a closed isolated quantum system whereas a PT symmetric
Hamiltonian describes an open quantum system with an exact balance between inflow and
outflow. The Hamiltonian (1.2) can be understood as the one for a particle hopping between
two locations with amplitude g and where in the first location the particle can escape to an
open environment at a rate of 2Γ whereas in the other location identical particles can enter
the system at precisely the same rate. As long as |Γ |< |g| the system is in a steady state since
a surplus particle which just has entered, will hop to the other location and leave the system
before another particle can enter. On the other hand if |Γ | > |g| particles escape faster than
new particles can enter and hop to the leaky location. So the first location will be emptied
whereas particles will accumulate without bound in the other location.

Let us suppose now that an experimenter can manipulate the leak/growth rate Γ and the
hopping rate g in a time dependent manner while keeping always the exact balance between
entrance and escape rates. In this situation the non-Hermitian Hamiltonian at any time t
would be quasi-Hermitian

H(t) = η(t)−1h(t)η(t) , (1.3)

with η determined by a time dependent, hyperbolic angle β(t). Is such an open and time
dependent quantum system still equivalent to a usual Hermitian time dependent quantum
system? There are basically two radically different answers to this question.

We can first simply consider the time dependent Schrödinger equation based on the Hamil-
tonian (1.3)

i∂t |Ψ〉= H |Ψ〉 . (1.4)

If we think of the experimenter manipulating the hopping parameter g and the leak/growth
rate Γ in a time dependent way this seems indeed the natural guess of describing how the open
quantum system evolves in time. This is however problematic since the time evolution does
not respect unitarity. To see this we note that at any given moment the Hilbert space can be
mapped to the one of the Hermitian Hamiltonian h(t) by |Ψ〉= η−1 |ψ〉. Furthermore it is easy
to see that the following product is equivalent to the standard Hermitian product of vectors

〈Ψ|Φ〉η := (〈Ψ|η2) |Φ〉= 〈ψ|ϕ〉 . (1.5)

In the time dependent case this product is not conserved under the time evolution (1.4)

∂t(〈Ψ|Φ〉η) = 2〈Ψ|(η−1∂tη)Φ〉η , (1.6)

where one uses H†η2 = η2H. So one necessarily is faced with a non-unitary time evolution!
A second point of view leaves at least a formal cure to this problem. If we define the

modified time dependent Schrödinger equation

i(∂t +η
−1η̇) |Ψ〉= H |Ψ〉 , (1.7)

then indeed we have with this new rule for updating state vectors

∂t(〈Ψ|Φ〉η) = 0 . (1.8)

A mathematically natural interpretation is that we have introduced a time component of a
gauge field for the gauged Schrödinger equation

iDt |Ψ〉= i(∂t − iAt) |Ψ〉= H |Ψ〉 . (1.9)
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Treating the time dependent similarity transformation therefore as a gauge transformation
one sees that the Hermitian system described by h, |ψ〉, At = 0 is gauge equivalent to
H = η−1hη, |Ψ〉 = η−1 |ψ〉 and At = iη−1∂tη. In particular for our two dimensional toy
model At = i∂tβσy/2.

It is a priori impossible to decide which of the two possibilities of time evolution (1.4) or
(1.7) is the unique "correct" one. The second one is mathematically equivalent to a standard
unitary time evolution based on a Hermitian Hamiltonian, but it is not necessarily the unique
physically correct one. We stress that even in the time independent case the non-Hermitian
Hamiltonian describes a physically different system: open with balanced gain/loss whereas the
Hermitian Hamiltonian describes a closed quantum system. Therefore we advocate the point
of view that an experimenter who manipulates the gain/loss rate also would need to do some
additional manipulation corresponding to switching on the gauge field At = iη−1∂tη in order
to maintain a unitary time evolution. In our case the form of the gauge field At = i∂tβσy/2
suggests that the forward hopping amplitude has to be different form the backward hopping
amplitude. In this way non-Hermitian hopping amplitudes are introduced which compensate
for the change in the leak/gain rates in precisely the correct way as to maintain a steady
state equilibrium. This in turn allows the mapping the Hamiltonian back to a Hermitian time
dependent one. In this way the non-Hermitian "gauge" field has a physical interpretation.
While formally it appears like a pure gauge it has a non-trivial physical consequence. This is of
course in stark contrast to real gauge fields in which a pure gauge has no physical consequence.
If, on the other hand, the experimenter only manipulates the Hermitian hopping amplitude
and/or the gain/loss rates then the time evolution is described by (1.4). It will be necessarily
non-unitary and thus reflecting the openness of the quantum system. Time dependent PT
quantum mechanics has been reviewed recently in [11] and [12].

After these introductory remarks on the issues involved in time dependent PT symmetric
quantum mechanics we now want to briefly outline the motivation for the present research.
There are a number of attempts to generalize the concept of PT symmetry to quantum field
theories, some recent works include [13–21]. In particular [22] investigates the consequences
of a space-dependent non-Hermitian gauge field. For a recent review of model building efforts
with non-Hermitian quantum field theories see also [23]. Quantum field theory provides of
course additional technical and conceptual difficulties when compared to simple quantum me-
chanical systems. In particular time dependent Hamiltonians (or Lagrangians) present already
quite some technical difficulties in the usual Hermitian setup and call for advanced tools of
non-equilibrium quantum field theory [24,25].

Surprisingly it is considerably less difficult to deal with some strongly coupled quantum
field theories which allow a holographic description in terms of a (classical) gravitational the-
ory in one higher dimension. For good introductions to the gauge/gravity duality see [26,27].
The application of the gauge/gravity duality to out-of-equilibrium physics has lead to an im-
proved understanding of relativistic hydrodynamics and might even be relevant to real world
experimental observations since it allows to model the time evolution of the quark gluon
plasma in heavy ion collisions [21,28–31].

What makes the gauge/gravity duality so powerful in the investigation of non-equilibrium
phenomena is that one can easily implement time dependence of the couplings of the dual
strongly coupled field theory by imposing time dependent boundary conditions on the fields
in an asymptotically Anti de-Sitter spacetime. This motivates us to investigate the question
of time evolution in PT symmetric quantum field theory in a strongly coupled setup within
the gauge/gravity paradigm. A holographic model with PT symmetry has been developed
in [32]. There it was shown that indeed in holography the two regimes, PT symmetric and
PT broken, are realized and separated by a critical point. The key ingredient was to gener-
alize the boundary conditions on the fields at asymptotic infinity to non-Hermitian ones by
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a complexified U(1) transformation. Here we would like to emphasize that non-Hermitian
boundary conditions on fields are quite common in the gauge/gravity duality. In particular in
the study of quasinormal modes one imposes infalling boundary conditions at the horizon of
an asymptotically Anti de-Sitter black hole. These infalling boundary conditions break Her-
miticity and are responsible for the eigenfrequncies to be complex numbers. From this point of
view a holographic PT theory is different in the fact that the Hermiticity breaking boundary
conditions are imposed not at the horizon but at asymptotic infinity. The physical interpre-
tation is also different. The infalling boundary conditions on the horizon lead to dissipation
and diffusion typical to finite temperature field theory. On the other hand the non-Hermitian
but PT symmetric boundary conditions at the asymptotic boundary of Anti de-Sitter space
signal that the quantum system under consideration is open and suffers from a balanced in-
and outflow to and from an environment.

The article is organized as follows. In section two we introduce the holographic PT model
and briefly review the results of [32]. In section three we present the results of the numerical
simulations. There are various different situation to consider. First we study quenches in
the purely non-Hermitian direction, i.e. the coupling to the non-Hermitian operator is time
dependent. We show that generically the null energy condition is violated on the horizon. Then
we study quenches which include excursions into the PT broken regime. It turns out that one
can stay some finite amount of time in the PT broken regime and them go back into the PT
symmetric regime and settle down at a static equilibrium solution. We also study periodic
variations of the non-Hermitian coupling and find that the system evolves towards formation
of a naked singularity. Then we study quenches in the purely Hermitian direction but with
a constant non-vanishing non-Hermitian operator switched on. In this case the null energy
conditions is still violated in the bulk but not on the horizon. Consequently the horizon grows
similarly to a usual Hermitian quench. Finally we also introduce a non-Hermitian gauge field
and show explicitly that the resulting time evolution is exactly equivalent to a conventional
Hermitian quench. We summarize our conclusion in section four and present some technical
details in the appendices.

2 Holographic model

A minimalistic approach to construct a holographic model for a non-Hermitian quantum field
theory is to consider a Hermitian quantum field theory defined by its holographic dual and
render both non-Hermitian by performing analogous manipulations in either side. This has
been carried out in [32]. Following this approach we study the theory defined by the action

S =
1

2κ2

∫

M
d4 x
p

−g
�

R+
6
L2
− DµφDµφ −m2φφ −

V
2
φ2φ

2
−

1
4

FµνFµν
�

+ SGHY + Sc t ,

(2.1)
where SGHY is the Gibbons-Hawking-York boundary term to make the variational problem well
defined, Sc t are the renormalization counterterms, L is the AdS radius and κ2 is the Newton
constant. We work with the mostly plus metric. The field content consists of a U(1) gauge
field Aµ, with field strength F = dA, a complex massive scalar field with charge q under the
gauge symmetry and the metric gµν. That the fields are charged under the gauge symmetry is
interpreted as having a symmetry in the quantum field theory under which the couplings also
transform non trivially. We remind the reader that the couplings in the dual field theory are
defined by the boundary conditions at asymptotic infinity. The Lagrangian (2.1) is thus left
invariant but we land in a different theory, inasmuch as the coupling constants have changed.
The covariant derivative Dµ is defined to act on the scalar field as Dµ = ∂µ − iqAµ and the
overbar denotes complex conjugation. Finally, the quartic term in the potential for the scalar
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field is required to find regular zero temperature domain wall solutions interpolating between
two AdS geometries [32].

The equations of motion derived from the action read:

1
p
−g
∂µ

�

p

−g Dµφ
�

+ iqAµDµφ −m2φ − Vφ|φ|2 = 0 ,

1
p
−g
∂µ
�p

−gDµφ
�

− iqAµDµφ −m2φ − Vφ|φ|2 = 0 ,

1
p
−g
∂µ
�p

−gFµν
�

− 2q2Aν|φ|2 + iq
�

φ∂µφ −φ∂µφ
�

= 0 ,

Rµν −
1
2

gµν

�

R+
6
L2
− DαφDαφ −m2φφ −

V
2
φ2φ

2
−

1
4

Fαβ Fαβ
�

− D(µφDν)φ −
1
2

FµαFν
α = 0 ,

(2.2)

with the indices in parenthesis denoting the symmetric part of the tensor. Note that the
equations of motion are invariant under the U(1) gauge transformation Aµ → Aµ + ∂µα(x),
φ→ eiqα(x)φ as they should. We set at this point the unphysical scale L to 1 . The mass param-
eter and charge of the scalar field are chosen to be m2 = −2 and q = 1. This model is basically
the same as the one used to study holographic superconductors in [33]. Our case differs in
that we explicitly break the bulk gauge symmetry by sourcing the scalar field via non-trivial
boundary condition.

We will solve the equations of motion with asymptotically anti-de Sitter (AAdS) bound-
ary conditions on the metric. More concretely, we have chosen to write the metric ansatz in
infalling Eddington-Finkelstein coordinates, with v and u denoting the temporal and radial
coordinates respectively. The boundary is located at u= 0 , and the boundary coordinates are
collectively denoted as x

ds2 = − f dv2 −
2
u2

eg dudv + S2(d x2
1 + d x2

2) , (2.3)

where ( f , g, S) are functions of (u, v) whose asymptotic (near boundary) expansion for small
u recover the AdS geometry

lim
u→0
(u2 f ) = 1 , lim

u→0
g = 0 , lim

u→0
S = 1 . (2.4)

In order to render the problem non-Hermitian recall that the leading (non-normalizable)
term φ1(x) in the asymptotic expansion of each scalar field with our choice of mass is

φ(u, x) = uφ1(x) +O(u2) , (2.5)

φ̄(u, x) = uφ̄1(x) +O(u2) . (2.6)

The leading term takes the role of a coupling, i.e. φ1, φ̄1 acts as the source for a charged
scalar operator O, Ō of conformal dimension ∆ = 2. Since our scalar field is complex we
can write the leading term in the polar form φ1(x) = eiα(x)ψ1(x) with ψ(x) real-valued.
Accordingly, the leading term in the expansion of the complex conjugate field φ(x , u) is simply
φ1(x) = e−iα(x)ψ1(x). At this point we can continue the phase to purely imaginary values
α(x) → iβ̂(x), so that now the non-normalizable terms become φ1(x) = e−β̂(x)ψ1(x) and
φ1(x) = eβ̂(x)ψ1(x). As a consequence, φ and φ are no longer complex conjugate of each
other and we have broken Hermiticity of the theory by breaking it at the level of the boundary
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values, i.e. at the level of the couplings in the dual QFT. Following the conventions of [32] we
define

eβ̂(x) =

√

√1+ ξ(x)
1− ξ(x)

, (2.7)

ψ1(x) =
Æ

1− ξ2(x)ϕ1(x) . (2.8)

The scalar fields now asymptote to

φ1(x) = (1− ξ(x))ϕ1(x) , (2.9)

φ1(x) = (1+ ξ(x))ϕ1(x) . (2.10)

Notice that for ξ(x) = 0 we recover Hermiticity. Thus ξ(x) parametrizes the non-Hermiticity
of the system. Changing the sign of ξ(x) simply exchanges the roles of φ and φ, thus we
restrict to positive values of ξ(x) only.

So far we have only considered the boundary conditions on the scalar fields. As we empha-
sized in the introduction, such a procedure will result in a non-unitary time evolution as soon
as the parameter ξ or equivalently β becomes time dependent. A unitary time evolution can
be obtained by also introducing a gauge field. In our case and generalizing to full space-time
dependence this gauge field would be given by

Aµ = i∂µβ =
i∂µξ

1− ξ2
. (2.11)

We will use such a gauge field to show explicitly that the time evolution in that case is equiv-
alent to a usual time evolution with Hermitian boundary conditions obeying φ∗1 = φ̄1 where
the star denotes complex conjugation.

The PT symmetry acts as (r, t, x1, x2) → (r,−t,−x1, x2) , (φ, φ̄) → (φ, φ̄), A→ −A for
the 1-form gauge field, ds2 → ds2 and as i → −i on the imaginary unit. The non-Hermitian
boundary conditions are PT invariant if ξ is a constant. A detailed discussion of the discrete
symmetries is presented in the appendix A.

For the case of constant ξ this theory has been investigated in [32]. We briefly review
the results now. It was found that in the regime |ξ| < 1 the zero temperature solutions are
domain walls interpolating between two asymptotic AdS spaces. At |ξ| = 1 there is a critical
point with the metric being exactly anti de-Sitter space whereas for |ξ| > 1 there are two
solutions to the boundary condition which are complex conjugate to each other. In this way
the holographic model reproduces the usual phase transition between the PT -symmetric and
the PT -broken regime. The underlying reason is of course that for |ξ| < 1 there is always a
similarity transformation (Dyson transformation) which brings the boundary conditions back
to Hermitian. More surprisingly it was found that for solutions containing a black hole and
thus corresponding to a finite temperature field theory solutions with real metric exists even
in the PT -broken regime. However, upon studying linear fluctuations on top of the solutions
with |ξ| > 1 there was always an unstable mode with exponentially growing behavior. The
question arises if the system would settle down to a new stable ground state upon switching
on the unstable perturbation. This was also investigated in [32] but no stable ground state
was found.

Our aim will be to study how the system behaves once ξ is considered to be a function
of time. We will generically start with an asymptotically AdS black hole solution and then
vary the parameter ξ as prescribed by a given function of the asymptotic time v. The ansatz
to solve this problem depends on the radial and temporal components only. The two scalar
fields are generic functions of v and u, and the U(1)-connection 1-form is A= a(v, u)dv . The
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metric fields ( f , g) introduced in 2.3 are also kept generic, whereas S takes the simple form
S(v, u) = 1/u+ λ(v) for some arbitrary function λ(v) which is a remnant of diffeomorphism
symmetry. In our numerical approach we closely follow [28]. In particular we choose the arbi-
trary function λ(v) so as to keep the position of the apparent horizon, defined by the condition
∂vS− 1

2u2 f e−g∂uS = 0 , fixed at uh = 1. The precise details of the horizon fixing may be found
in appendix C. Plugging the full ansatz into the equations of motion 2.2 we are left with a
set of eight equations, three of which are constraints whereas the remaining five provide the
dynamical evolution of the fields:

2g ′S′

S
−

4S′

uS
−

2S′′

S
−φ′φ

′
= 0 , (2.12)

f ′+
a′2S
4S′
+ f
�

S′

S
−

S
2S′
φ′φ

′
�

−
e2gS
2u4S′

�

6−m2φφ −
1
2

Vφ2φ
2
�

−
eg

u2

�

2Ṡ
S
+

2Ṡ′

S′

�

= 0 , (2.13)

a′′ − a′
�

g ′ −
2S′

S
−

2
u

�

− iq
eg

u2

�

φ′φ −φφ
′�
= 0 , (2.14)

dφ′ +
S′

S
dφ − iq
�

1
2

a′φ +
aS′φ

S
+ aφ′
�

− u2 f e−g S′φ′

2S
+

eg

2u2

�

m2φ + Vφ2φ
�

+
Ṡφ′

S
= 0 ,

(2.15)

dφ
′
+

S′

S
dφ + iq

�

1
2

a′φ +
aS′φ

S
+ aφ

′
�

−
u2 f e−gS′φ

′

2S
+

eg

2u2

�

m2φ + Vφφ
2
�

+
Ṡφ
′

S
= 0 ,

(2.16)

da′−a′e−g d g+
1
2

u2e−g a′
�

f ′ − f g ′ − 2 f
S′

S
+ 4eg Ṡ

u2S

�

+iq
eg

u2
(dφφ−dφφ)+q2 2aeg

u2
φφ = 0 ,

(2.17)
eg

u2
d g ′ −

1
2

f ′′ + f ′
�

g ′ −
S′

S
−

1
u

�

+ f
�

g ′S′

S
+

g ′

u
−

2S′

uS
−

1
2

g ′2 +
1
2

g ′′ −
S′′

S

�

+
1
4

a′2

+ iqa
eg

2u2

�

φ′φ −φφ
′�
+

eg

2u2

�

dφφ
′
+ dφφ′
�

+
e2g

2u4

�

6−m2φφ −
1
2

Vφ2φ
2
�

+
2Ṡ′

u2S
eg = 0 ,

(2.18)

d f + d g

�

2eg Ṡ
u2S′
− 2 f

�

+ f 2u2e−g
�

−g ′ +
3S
4S′
φ′φ′ −

IS′

S

�

−
f ′Ṡ
S′
−

eg

u2S′

�

dφdφS + S̈
�

+ f

�

−
1
2

e−g

�

u2a′2S
2S′

+ u2 f ′
�

+
g ′Ṡ + 4Ṡ′

S′
+

egS
2u2S′

�

6−m2φφ −
1
2

Vφ2φ
2
�

+
2Ṡ
S

�

+ iqa
egS
u2S′

(dφφ − dφφ)− q2a2 egS
u2S′

φφ = 0 ,

(2.19)

where the dot and prime stand for temporal and radial partial derivatives respectively and
d = ∂v −

1
2u2 f e−g∂u is the derivative along infalling null geodesics. The use of d allows to

get a nested system of equations. Notice that if the gauge field has trivial (or purely imag-
inary) boundary conditions, then the reality of the leftover fields forces a(v, u) to be purely
imaginary.1 In this case we actually work with redefined gauge field a = iã and ã ∈ R. Impos-
ing AAdS boundary conditions and recalling that S(v, u) = 1/u+λ(v) we find the asymptotic

1A similar fact was observed in the field theoretical model of [22].
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solution to be

f (v, u)≃
�

1
u
+λ
�2

− 2λ̇+ f1u+O(u2) ,

g(v, u)≃ −
1
4
(1− ξ2)ϕ2

1u2 −
1
3

�

1
2
(1− ξ2)λϕ1 + (1+ ξ)φ2 + (1− ξ)φ2

�

u3 +O(u4) ,

φ(v, u)≃ u(1− ξ)ϕ1 + u2φ2 +O(u3) ,

φ(v, u)≃ u(1+ ξ)ϕ1 + u2φ2 +O(u3) ,

a(v, u)≃ a0 + a1u+
�

1
2

iqϕ1

�

(1+ ξ)φ2 − (1− ξ)φ2

�

− a1λ

�

u2 +O(u3) ,

(2.20)

where all free coefficients are taken to be functions of time. The subleading terms in a and f
are further constrained by the equations of motion to obey

ȧ1 = iq
�

2ϕ1ξ̇+ (1+ ξ)φ2 − (1− ξ)φ2

�

ϕ1 − 2q2a0(1− ξ2)ϕ1 ,

ḟ1 = −∂v [(1+ ξ)ϕ1]∂v [(1− ξ)ϕ1]−
1
6
[(1+ ξ)ϕ1]

3 ∂v

�

φ2

(1+ ξ)2ϕ2
1

�

−
1
6
[(1− ξ)ϕ1]

3 ∂v

�

φ2

(1− ξ)2ϕ2
1

�

+
1
6
λ3∂v

�

1
λ2
(1− ξ2)ϕ2

1

�

+ iqa0ϕ1(4ϕ1ξ̇+ (1+ ξ)φ2 − (1− ξ)φ2)− q2a2
0(1− ξ

2)ϕ2
1 .

(2.21)

The subleading free coefficients in the expansion are directly related to the 1-point func-
tions in the dual quantum field theory. Making use of the holographic prescription for the
renormalized action 2.1 and plugging in the expansion 2.20 we obtain the expectation values
of the various operators in the dual field theory as

2κ2



Oφ
�

= φ2 − ξ̇ϕ1 − (1+ ξ)ϕ̇1 − iqa0(1+ ξ)ϕ1 ,

2κ2
¬

O
φ

¶

= φ2 + ξ̇ϕ1 − (1− ξ)ϕ̇1 + iqa0(1− ξ)ϕ1 ,

2κ2 〈J v〉= −a1 := −iã1 ,

κ2 〈Tvv〉= − f1 −
1
6
ϕ1

�

(1− ξ)φ2 + (1+ ξ)φ2

�

,

κ2



Tx1 x1

�

= κ2



Tx2 x2

�

= −
1
2

f1 +
1
6
ϕ1

�

(1− ξ)φ2 + (1+ ξ)φ2 + 3ξξ̇ϕ1

�

.

(2.22)

Note in particular that the expectation value for the charge 〈J v〉 is purely imaginary. This is a
clear sign for the non-Hermiticity of the time evolution. As we will see at late times the system
settles down to equilibrium solutions in the PT symmetric regime with vanishing charge. The
details of the renormalization can be found in B.

3 Numerical Results

In this section we show explicitly the temporal evolution of the system for some concrete
interesting examples. Both initial and final states correspond to equilibrium unless otherwise
stated. We first study the response of the system whenever ξ interpolates between two different
values, starting at the Hermitian point ξ= 0 and ending either in the PT -symmetric phase, i.e.
|ξ|< 1, or at the exceptional point. Afterwards we shall dive for some finite time into the PT -
broken, i.e. |ξ|> 1. Emphasis should be given to the fact that no equilibrium solution exists for
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the PT -broken regime at zero temperature, whereas the real solutions at finite temperature
where found to be unstable. Motivated by the results of the previous cases, we also take a
look at the situation where ξ is forever oscillating. Afterwards we monitor the system under
a quench in the Hermitian direction. Finally, we discuss the mapping from a non-Hermitian
evolution to a genuinely Hermitian one. All simulations are made for V = 3 and q = 1 .
Further details regarding the numerical setup may be found on the appendix C.

3.1 PT -symmetric evolution

In figures 1 and 2 we display the evolution of the quantum field theory observables when the
PT -breaking parameter ξ evolves according to

ξ(v) = ξi +
ξ f − ξi

2

h

1+ tanh
� v − vm

τ

�i

, (3.1)

for different values of τ. Both groups of simulations start at the Hermitian point ξi = 0, the
difference being that in 1 we end up in the PT -symmetric regime, in particular ξ f = 0.8,
whereas in 2 we land in the exceptional point, i.e. ξ f = 1 .

Figure 1: Expectation values 2.22 for a quench with profile 3.1 for several values of
τ which interpolates between the Hermitian point ξi = 0 and a final value ξ f = 0.8 .
We set vm = 10τ .
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Figure 2: Expectation values 2.22 for a quench with profile 3.1 for several values of
τ which interpolate between the Hermitian point ξi = 0 and the exceptional point
ξ f = 1.0 . We set vm = 10τ . Note that the current settles to a final equilibrium value
different from 0 . This feature is distinctive for the exceptional point.

A few remarks are in order. First of all note that in all cases the system settles down to a new
equilibrium state. However, the behaviour of the current 〈J v〉 depends on whether one ends
up in PT -symmetric point or in the exceptional point. In the first case it relaxes to zero. The
system reaches at late times the equilibrium solution already described in [32], where no gauge
field was switched on. In the second case, in which one ends up at the exceptional point ξ= 1,
the expectation value of the current settles down to a non-trivial value, making it into a solution
not previously described. We emphasize that this is still a purely imaginary expectation value
of the charge operator. The exceptional point can be reached from a Hermitian Hamiltonian
only by taking a limiting procedure. There is no unique map back to a Hermitian theory. Our
result also suggests that the properties of the theory at the exceptional point depend on how
this point is reached.

As for the scalar operators, they follow the expected evolution from the initial to the final
equilibrium states. An extra piece of information is provided when plotting the sum and the dif-
ference of both scalar operators. They are identified as the Hermitian and anti-Hermitian parts
of the expectation values respectively. The fact that we start the evolution in the Hermitian
point translates into the non-Hermitian operator vanishing initially. Note that the expectation
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Figure 3: (Top) We check the NEC Tµνdµdν ≥ 0 for the particular simulation of figure
1 withτ= 0.4 at different stages v/τ of the evolution. It is clearly violated, especially
at the horizon uL = 1 . (Bottom) We display the size of the apparent horizon for the
simulations of figure 1. All of them show a shrinking horizon, which is tightly related
to violating the NEC.

value for the Hermitian operator also develops a non-trivial profile despite the quench being
made only in the non-Hermitian direction.2

Secondly, it is interesting to observe that the smaller the value of τ, the lower the energy
of the dual quantum field theory κ2 〈Tvv〉. Such decrease in the energy is encompassed with
a decrease in temperature and a subsequent decrease of the area of the black hole apparent
horizon (see for instance figure 3 bottom), which is simply given by 4π(1+λ(v))2 . It should be
expected that a subset of all possible profiles ξ(v) result into a dramatic shrink of the horizon,
so that one dangerously approaches the singularity inside of it. Hence gravity is no longer
weakly coupled there and the effective description breaks down. Such a construction, for a
specific profile ξ(v), is shown in section 3.3.

The shrinking of the horizon poses no contradiction to the second law of black hole thermo-
dynamics, which states that the area of the horizon has to grow in any given process provided
the null energy condition (NEC) is satisfied. Indeed, all the non-Hermitian processes here
studied do violate the NEC. It suffices to take the null vector tangent to infalling null geodesics
d defined after 2.19. Then Tµνdµdν = (dφ− iqaφ)(dφ+ iqaφ), where Tµν is the bulk energy
momentum tensor, should be positive if the NEC was to hold. We have monitored this during
the time evolution and found that the NEC is violated. The same applies for sections 3.2 and
3.3. In figure 3 top we display the quantity Tµνdµdν at different stages of the evolution for the
particular simulation of figure 1 with τ= 0.4 . The NEC is known to hold for standard forms of
matter, so in this respect it appears that the non-Hermitian extension of the holographic model
2.1 yields to exotic matter in the bulk. Nonetheless, the bulk is here regarded as an effective
description of the quantum field theory. It is the QFT that is taken to be fundamental and it
should not be worrisome to find uncommon features in the bulk.

3.2 PT -broken evolution

It is well known that in the PT -broken phase, the time-independent Hamiltonian of the theory
can no longer be mapped to a Hermitian one. However, when the PT -breaking parameter is
promoted to be a function of the coordinates, in particular of time, one can wonder whether

2Recalling the parametrisation 2.9 and 2.10 of the boundary values for the scalar fields it is clear that varying
only ξ amounts to varying the difference φ1 −φ1 while keeping the corresponding sum fixed. Thus the quench
is performed in the non-Hermitian direction. The complementary approach of quenching only in the Hermitian
direction is studied in section 3.4.

12

https://scipost.org
https://scipost.org/SciPostPhys.14.3.030


SciPost Phys. 14, 030 (2023)

a solution exists after one spends a finite amount of time in the PT -broken region. In order
to address this question we give ξ the profile

ξ(v) = ξi +
ξm − ξi

2

h

1+ tanh
� v − vm

τ

�i

+
ξ f − ξm

2

�

1+ tanh
�

v − ṽm

τ̃

��

. (3.2)

We will focus on the evolution that takes place when both the initial and final states lie in the
Hermitian point, i.e. ξi = ξ f = 0 . In figure 4 we present several profiles for the PT -breaking
parameter as well as the associated observables. Surprisingly one can enter and leave the PT -
broken regime and still find a suitable final equilibrium state. However we find restrictions
to the maximum value ξ can take along the evolution. In particular, if one goes above some
critical value ξc , no real solution is found. Such critical value depends on the particular state
one has at each time, making its quantitative prediction unfeasible. A similar feature was
described in [32] for the time independent case.

Figure 4: Expectation values 2.22 for a quench with profile 3.2 for
ξm = {1.0 ,1.05 ,1.1 ,1.2 ,1.3} . The initial and final states are located at ξ = 0.8
and we set τ= τ̃= 0.25 , vm = 10τ and ṽm = 12τ̃ . We explore here the PT -broken
regime |ξ| > 1 going deeper and deeper into it. Even though the system spends
significant amount of time in the PT broken regime it settles down to real and well
behaved solutions once it re-enters the PT symmetric regime.
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Figure 5: Expectation values 2.22 for a quench with profile 3.2 for
ṽm/τ̃ = {20 , 25 , 30 , 35 , 40} . The initial and final states are located at ξ = 0.8,
besides we set ξm = 1.1 and τ = τ̃ = 0.25 . We explore here the PT -broken regime
|ξ|> 1 remaining progresively more time into it. An instability starts to develop, see
for instance the green and orange curves, but it eventually fades out as we re-enter
the PT -symmetric region.

At this point we already know that we can dive into the PT -broken regime. Apparently one
cannot stay forever there, as these solutions are indeed unstable [32], yet one could in principle
stay some arbitrarily long time there provided it eventually goes back into the PT -symmetric
region. In figure 5 we show how these kind of constructions look like. The instability is
crearly there, as soon as ξ > 1 both scalar operators and the current expectation values start
to diverge, yet once we re-enter |ξ|< 1 the system relaxes down to an appropriate equilibrium
state.

3.3 Oscillating evolution

All the features displayed so far, particularly the fact that the apparent horizon shrinks, suggest
that one cannot have a situation where the PT -breaking parameter is always varying with
time even within the PT -symmetric region. To illustrate this fact we study the evolution of
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Figure 6: (Top) Expectation values 2.22 for a quench with profile 3.3 and parameters
ξi = 0 , A = 0.2 , ω = 1/(4π) , vm = 2.5 and τ = 0.25 . This corresponds to non-
Hermitian oscillations around the Hermitian point. (Bottom) Evolution of the Ricci
scalar at the apparent horizon for the same simulation as in top. It diverges at the
end as a consequence of the shrinking of the apparent horizon, which gets us too
close to the interior singularity.

the system when ξ is given the profile

ξ= ξi + Asin(ωv)
h

1+ tanh
� v − vm

τ

�i

. (3.3)

In particular we study small oscillations around the Hermitian point. This can be thought
of as mimicking non-Hermitian fluctuations of an otherwise Hermitian coupling in the dual
quantum field theory. The result is shown in figure 6. Indeed the horizon diminishes its area
and at some point one gets too close to the singularity. An explicit evaluation of the Ricci
scalar at the horizon reveals divergent behaviour, confirming thus the previous statement. As
a consequence, one would need to take quantum gravity effects into account in order to carry
on with the time evolution.

3.4 Quenching the Hermitian direction

In previous sections we have studied the response of the system as we quench the parameter ξ
controlling the non-Hermiticity of the system, i.e. we quench in the non-Hermitian direction.
In this section we envisage a different problem in which we start with non-Hermitian boundary
conditions but we perform a quench in the Hermitian direction. Specifically we parametrize
the boundary conditions now as

φ1(x) = (χ(x)− 1)ζ1(x) , (3.4)

φ1(x) = (χ(x) + 1)ζ1(x) , (3.5)

so that the quench so far described corresponds to varying χ(t) with time while keeping
ζ1 fixed. One can recover the original parametrisation by sending ζ1(x) → ξ(x)ϕ1(x) and
χ(x)→ 1/ξ(x) . Note that the PT -symmetic regime lies now within |χ|> 1, with the Hermi-
tian point located at infinity and the exceptional point kept at χc = 1 .

Once again we focus on an interpolating profile for χ(t) as given in 3.1. We interpolate be-
tween χi = 10 and χ f = 2.0 for several values of τ. The temporal evolution of the expectation
values 2.22 is depicted in figure 7. The response on both scalar expectation values are fairly
similar. However, their difference, which as explained in section 3.1, gives the expectation
value for the non-Hermitian operator, does develop a non-trivial profile. The current operator

15

https://scipost.org
https://scipost.org/SciPostPhys.14.3.030


SciPost Phys. 14, 030 (2023)

Figure 7: Expectation values 2.22 for a quench with parametrisation 3.4 of the
boundary values of the fields with profile 3.1 for χ and for several values of τ la-
belling different curves. We interpolate between χi = 10 and χ f = 2.0 , and set
vm/τ= 10 .

however takes considerably more time to settle down to equilibrium (where it should vanish)
as compared with, for instance, the quench in figure 1.

Another distinctive feature is that now the energy 〈Tvv〉 can be either increasing or de-
creasing. Very interestingly we find that quenching the Hermitian direction results now into
a growing apparent horizon whatsoever, as can be appreciated in figure 8 bottom where we
display how the area of the apparent horizon evolves with time. Nevertheless the null energy
condition is still being violated as a consequence of the non-Hermitian boundary condition.
A slight violation is observed taking the same null vector d as in section 3.1 or more clearly
taking the null vector k = ∂u , which yields kµkνTµν = φ′φ

′
. Such quantity is exhibited at dif-

ferent stages of the evolution in figure 8 top, corresponding to the simulation in figure 7 with
τ = 0.2 . Indeed kµkνTµν becomes negative within the bulk, violating thus the null energy
condition. Either with d or with k the NEC is obeyed at the horizon. This fact is relevant to
explain the growth of the horizon as we proceed to discuss.

The mathematical reason behind the fact that in section 3.1 the violation of the NEC gave
a decreasing horizon and not here can be understood form equations C.2 and C.3 in appendix
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Figure 8: (Top) We check the NEC Tµνkµkν ≥ 0 for the particular simulation of figure
7 with τ = 0.2 at different stages v/τ of the evolution. It is violated in between
the boundary and the horizon. The polygonal form of the curves is a consequence of
using only 20 gridpoints in the radial direction, as explained in appendix C. (Bottom)
We display the size of the apparent horizon for the simulations of figure 7. All of them
show a growing horizon.

C. First recall that the area of the apparent horizon is given by 4π(1+λ(v))2, so its evolution
is controlled solely by the radial shift function λ. According to equation C.2 the sign of λ̇ is the
opposite to the sign of f at the horizon (uh = 1), wich in agreement with C.3 is proportional
to the sign of (dφ − iqaφ)(dφ + iqaφ) at the horizon. Now this last equation is precisely the
null energy condition for the vector d = ∂v−

1
2u2 f e−g∂u, so the growth or decrease of the area

of the apparent horizon depends on whether dµdνTµν ≥ 0 is violated at the horizon or not.
Finally it is worth noting that a forever oscillating quench in the Hermitian direction would

not suffer from the pathology found in section 3.3, where the quench was performed in the
non-Hermitian direction.

3.5 Mapping back to Hermiticity

As we discussed in the introduction,a unitary time evolution may be obtained by switching on
an additional non-Hermtitian gauge field. In holography this enters as the leading mode in
the asymptotic expansion (2.20) of the gauge field by setting

a0 =
i∂vξ

1− ξ
, (3.6)

which compensates for the time dependence of ξ in the boundary values of both scalar fields.
We provide now an explicit realisation of this setup. In particular we repeat the simulation

of figure 1 with τ = 0.4 and the non-normalizable mode of the gauge field switched on.
We shall refer to this first quench as simulation A. Such simulation should be equivalent to a
genuinely Hermitian quench achieved by sending ξ→ 0, so that we sit on the Hermitian point,
and vary the boundary value of the scalar fields according toϕ1(v) =

p

1− θ (v)2ϕ1(0), where
θ (v) follows the same profile that ξ(v) took on simulation A. We name this second quench as
simulation B.

It is easy to check that 3.6 already gives a solution for the gauge field equation of motion.
Consequently, simulations A and B are truly related by a (complexified) gauge transformation
and we should thus have φA = eβφB and φA = e−βφB with β defined as in 2.7 and the
subscript labelling the corresponding simulation. In figure 9 we display the subleading modes
of both scalar fields for the Hermitian simulation B and for the simulation A once we apply
the gauge transformation described before. This way it is manifest that both quenches are
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phisically equivalent. Furthermore we also remark that in this case because of the singularity
in the gauge field at ξ= 1 it is not possible to go into the PT broken regime or even to reach
the exceptional point.

Figure 9: Subleading coefficients of both scalar fields as defined in 2.20 for simu-
lations B, labelled as Hermitian, and for simulation A once we perform the gauge
transformation, labeled Gauge Transformed. Both simulations overlap and are phisi-
cally equivalent.

4 Conclusions

We have studied non-Hermitian holographic quantum quenches and have found a quite rich
phenomenology. As we have outlined in the introductory section, the question of how to
define even the time evolution arises with two distinct possibilities, namely a non-unitary one
vs. a unitary time evolution with introduction of a non-Hermitian gauge field. Holography
allowed us to study both possibilities rather easily. It turned out that the non-Hermitian time
evolution violates the Null Energy Condition in the bulk of the AdS spacetime. Interestingly
there is a difference if one quenches purely in the non-Hermitian direction. In this case the
NEC is violated at the Horizon and this leads to a shrinkage of the Horizon and eventually
the appearance of divergence in the curvature signaling the possible appearance of a naked
singularity. We also found that one can make excursions of finite duration into the PT broken
regime. Furthermore we found that if one ends precisely at the PT critical point some finite
non-zero and purely imaginary charge 〈J v〉 is induced.

On the other hand a quench in the Hermitian direction in the presence of a constant non-
Hermitian coupling still leads to a non-unitary time evolution but this time the NEC is violated
in the bulk but not on the Horizon. This leads to a more standard time evolution with growing
Horizon. This could perhaps have been expected since in that case one only varies the coupling
of a perfectly nice Hermitian operator.

Finally we have explicitly demonstrated that upon introducing a non-Hermitian gauge field
the time evolutions is exactly equivalent to a standard Hermitian quench.

The numerical setup and its interpretation rely on the concept of the apparent horizon.
However it is the event horizon the one that ultimately isolates the black hole interior. The
event horizon is teleological in nature and the full evolution of spacetime must be known in
order to locate it accurately. In standard general relativity simulations the NEC is satisfied
and the apparent horizon is guaranteed to lie inside the event horizon [34]. Consequently,
integrating up to the apparent horizon one is including all physically relevant information
which may influence the region outside the event horizon. Intuitively, a light ray outside the
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apparent horizon at some time v∗ will tend to move outside of it and eventually reach the
boundary at infinity provided the light ray is also outside of the event horizon. It may be the
case that the light ray is outside the apparent horizon but inside the event horizon. Then it
will start moving towards infinity, but the apparent horizon grows faster than the light ray,
forcing it to change direction and eventually reach the singularity.

On the other hand, our non-Hermitian simulations violate the NEC and there is no robust
statement regarding the relative position of the apparent and event horizons. We can exploit
the intuition gained above and the fact that the evolution of the apparent horizon (either
shrinkage or expansion) is monotonous (see figures 3 and 8) to infer where the event horizon
should be. Let us focus on the monotonous shrinking. Suppose we have a lightray slightly out-
side the apparent horizon at some time v∗. Then it propagates towards infinity. Subsequently,
the apparent horizon will further contract and nothing keeps the light ray from reaching in-
finity. On the contrary, a light ray starting inside the apparent horizon at some time v∗ will
tend to move towards the singularity. As before, if the apparent horizon shrinks faster than
the light ray falls, it will be forced to reverse direction and eventually reach infinity, showing
that the event horizon is actually further inside the apparent horizon. This kind of behaviour
has been shown explicitly using the Vaidya metric as a toy model [35].

The fact that we are integrating up to the apparent horizon has now several consequences.
Firstly, the region in between the apparent and event horizons is now causally connected with
infinity and has not been included in the simulation. The effect this has in the boundary is
likely to be small, especially at early times, but a more careful analysis is needed. Secondly,
locating the actual event horizon is involved in this setup, for one would need to know the
metric inside the apparent horizon. Finally, further quenching the non-Hermitian direction
as in section 3.3 would result in the absence of the event horizon, suggesting that a reliable
simulation should include the full interior of the apparent black hole.

While our studies were limited to holographic field theories we think they contain valuable
lessons also for weakly coupled quantum field theories. In particular we expect that also
in weakly coupled field theories there will be a noticeable difference in the time evolution
depending on whether the non-Hermitian or the Hermitian coupling is varied. We leave these
intriguing questions for future study.
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A Discrete symmetries in the holgoraphic model

We discuss here how the discrete symmetries parity P, time reversal T and charge conjugation
C act in the holographic model. It is easiest to switch to form language in which the gauge
field is a 1-from A = Aµd xµ. Similarly instead of a metric we use a vielbein 1-form with
ds2 = eaebηab. Then the spin connection is defined by the condition of vanishing torsion
dea +ωa

beb = 0 and the curvature 2-form is Rab = dωab +ωa
c ∧ωcb. The action can be
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written as

S =

∫

�

Rab ∧ ∗(ec ∧ ed)ηacηbd + D̄φ̄ ∧ ∗(Dφ) + dA∧ ∗(dA) + V (φ̄φ) ∗ (1)
�

. (A.1)

Here ∗ denotes the Hodge dual taking a p-form to a D− p form in D space-time dimensions, in
particular ∗(1) is the volume D-form. In order to define parity and time reversal we assume that
the action is integrated on a manifold of the form R×MD−1 where the time t parametrizes
the R factor. Furthermore MD−1 is taken to be orientable. This is indeed the case for the
asymptotically AdS spaces in our model.

For concreteness we specialize now to coordinates t, r, x1, x2 where t parametrizes the R
factor and parity (orientation reversal) on M3 is implemented by P : x1 → −x1. We remind
the reader that a definition of parity that works in all space time dimension is by reflection
of one (space-like) coordinate. Since we want this to descend onto the parity transformation
in the dual field theory living on the boundary at r = ∞ and parametrized by (t, x1, x2).
In order to get a homogeneous transformation law for the gauge field we take P : A → A.
In particular this implies that the electric field transforms in same way as the coordinates,
i.e. E1 → −E1. Now let us infer the transformation of the scalar field. We can do this by
noting Dφ = dφ − iqAφ. The exterior derivative is invariant P : d → d. Therefore we have
P : (φ, φ̄)→ (φ, φ̄) for the scalars. The vielbein is taken to be parity even P : ea → ea which
entails the spin connection and the curvature to be parity even as well. To see invariance of
the action we note that the integral is parity odd and that the Hodge star is also parity odd.
Then the action is parity invariant and parity is a symmetry of the theory.

In order not to clutter the expressions too much we have suppressed the arguments of the
fields. We note that the transformed fields have to be evaluated at the parity reflected point,
i.e. P : φ(r, t, x1, x2) → φ(r, t,−x1, x2) and so on. The analogous statement holds for the
time reversal transformation T .

Time reversal T : t → −t is anti-linear and also acts as i → −i on the imaginary unit.
Its action on the field can be defined by T : A→ −A which makes the field strength 2-form
T-odd and thus the electric field Ei = Ft i T -even. Analyzing the covariant derivative we have
T (Dφ) = dT (φ)+ i(−A)T (φ)which gives T : (φ, φ̄)→ (φ, φ̄). The vielbein, spin-connection
and curvature are T -even. Again the action is invariant under T .

We can also define a charge conjugation transformation by C : A→−A and C : (φ, φ̄)→(φ̄,φ)
without any action on the coordinates and i.

We summarize the transformation laws in the following table

A φ φ̄ ds2 i (r, t, x1, x2)
P A φ φ̄ ds2 i (r, t,−x1, x2)
T −A φ φ̄ ds2 −i (r,−t, x1, x2)
C −A φ̄ φ ds2 i (r, t, x1, x2)

The definition time reversal symmetry is not unique. Its defining property is reflection of
the time coordinate and complex conjugation, but that does not uniquely determine T . We
could also define an alternative time reversal transformation by taking the product T ′ = C T
acting as T ′ : (r, t, x1, x2)→ (r,−t, x1, x2), i→−i, (φ, φ̄)→ (φ̄,φ) and A→ A.3 Similarly we
could have defined an alternative parity transformations P ′ = C P.

The anti-linear PT symmetry is then indeed the product P.T as defined above. Finally we
note that the non-Hermitian boundary conditions eqs. (2.9) and (2.10) are PT invariant if ξ
is constant.

3This alternative definition was implicitly used in [32].
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B Holographic renormalization.

In order to compute the 1-point functions of interest we need first to render the on-shell action
finite. The renormalization is achieved via the inclusion of convenient covariant counterterms
on the boundary which do not affect the dynamics of the system.

Let us first find the divergent contributions to the on-shell action. To do so we evaluate
the bare action S0 with the asymptotic expansion 2.20 and integrate in the radial direction up
to some cutoff scale ε≪ 1. For simplicity in this derivation we set λ(v) = 0. Thus we find

Sreg =
1
κ2

∫

u=ε
d3 x
�

−
2
ε3
−

1
2ε
(1− ξ2)ϕ2

1 + finite
�

. (B.1)

Now we ought to find a suitable covariant counterterm that kills those divergences. The
standard way of proceeding is to invert the asymptotic expansion 2.20 and rewrite Sreg in
terms of the original fields. One arrives thus to

Sc t =
1
κ2

∫

∂M
d3 x
p

−γ
�

2+
1
2
φφ

�

. (B.2)

It is immediate to check that Ssub = Sreg + Sc t is now finite on-shell. At this point we are able
to follow the holographic prescription to obtain the 1-point functions:

2κ2



Oφ
�

= 2κ2 lim
ε→0

�

1
ε3−1

1
p
−γ
δSsub

δφ

�

= φ2 − ξ̇ϕ1 − (1+ ξ)ϕ̇1 − iqa0(1+ ξ)ϕ1 , (B.3)

2κ2
¬

O
φ

¶

= 2κ2 lim
ε→0

�

1
ε3−1

1
p
−γ
δSsub

δφ

�

= φ2 + ξ̇ϕ1 − (1− ξ)ϕ̇1 + iqa0(1− ξ)ϕ1 , (B.4)

2κ2 〈J v〉= 2κ2 lim
ε→0

�

1
ε3

1
p
−γ
δSsub

δAv

�

= −a1 := −iã1 , (B.5)

κ2 〈Tvv〉= κ2 lim
ε→0

�

1
ε

2
p
−γ
δSsub

δγvv

�

= − f1 −
1
6
ϕ1

�

(1− ξ)φ2 + (1+ ξ)φ2

�

, (B.6)

κ2



Tx1 x1

�

= κ2



Tx2 x2

�

= −
1
2

f1 +
1
6
ϕ1

�

(1− ξ)φ2 + (1+ ξ)φ2 + 3ξξ̇ϕ1

�

. (B.7)

C Numerical methods.

The equations of motion 2.12 -2.19 have been solved numerically in the programming lan-
guage Julia [36] by means of pseudospectral methods for the radial integration and a 4-th
order Runge-Kutta mehtod for the time evolution. A useful introduction to pseudospectral
methods may be found in [37]. The idea is to represent the radial dependence of all fields and
their derivatives in a truncated basis of Chebyshev polynomials and solve for the expansion
coefficients, reducing the problem to solving a sytem of equations, which in our case is linear.
The radial gridpoints4 are disposed in the so-called Chebyshev-Gauss-Lobatto grid, which is
tailor designed to minimize the error in the solution. For sufficiently well-behaved functions
the convergence grows exponentially with the number of gridpoints. Besides, these methods
can deal with regular singular points, as it is the boundary u = 0. We have used Nu = 20
gridpoints in the radial direction. Checks have been made comparing to a bigger number of
gridpoints with no significant difference observed. As for the time direction we used a timestep
∆v in the range 0.01< 20N2

u∆v < 1 to avoid the so-called CFL numerical instabilities.

4Only an even number of gridpoints is allowed.

21

https://scipost.org
https://scipost.org/SciPostPhys.14.3.030


SciPost Phys. 14, 030 (2023)

Another advantage is that one can simultaneously impose boundary conditions at the
boundary and at the horizon. Convergence is further improved if one redefines the field sub-
tracting explicitly the divergent terms which appear in the boundary expansion. It is also
helpful that the fields vanish at most linearly as one approaches the boundary [28]. Thus we
numerically work with

f (v, u) :=
�

1
u
+λ(v)
�2

+ fs(v, u) ,

g(v, u) := u2 gs(v, u) ,

a(v, u) := ias(v, u) .

(C.1)

The arbitrariness in the radial shift function λ(v) is exploited to keep the apparent horizon
at a fixed location uh = 1 . As a result the domain of integration, which should include from
the boundary to the horizon, becomes rectangular and boundary conditions at the horizon
are easily implemented. In a metric given by 2.3 the apparent horizon is defined through the
condition dS(v, uh) = 0. Forcing it to lie at uh = 1 gives the condition

λ̇+
1
2

e−g(v,1) f (v, 1) = 0 . (C.2)

In order to keep the horizon fixed at all times the previous condition should be time indepen-
dent, more precisely ∂vdS(v, u)|u=1 = 0 . A straightforward computation allows to rewrite it
as

2 f
�

6−m2φφ −
V
2
φ2φ

2
− e2gu4a′2
�

+ (dφ − iqaφ)(dφ + iqaφ)

�

�

�

�

u=1
= 0 , (C.3)

which is understood as a boundary condition at the horizon for f (v, u) . Thus one is able to
dynamically evolve λ by computing λ̇ either by direct computation of C.2 or by reading it off
of the asymptotic expansion 2.20. Regarding the boundary conditions for the remaining fields,
they can also be extracted from 2.20 in the standard manner.

Now let us discuss the numerical algorithm. The system of equations 2.12 -2.19 contains
three constraints, i.e. three equations with no time derivatives in it, and five dynamical equa-
tions. It can be shown that the time derivatives of the constraints are implied by the remaining
equations, so that they are guaranteed to be satisfied so long as they are satisfied at some initial
time. Alternatively, and we will do so, one can solve 2.12 -2.16 at each time and regard the
leftover equations as constraints which are satisfied at every point provided they hold at the
boundary, for their radial derivative is implied by 2.12 -2.16 . Clearly this second alternative
is easier to implement, not only the equations of motion are simpler but the system is decou-
pled if one solves for (g, f , a, dφ, dφ) . The time derivative of both scalar fields are extracted
from (dφ, dφ) . It should be noted that even though the system of equations is uncoupled,
the boundary condition C.3 couples ( f , dφ, dφ) non-linearly. In order to skip complications
derived from it we simply estimate the values of (dφ, dφ) at the horizon with an extrapolation
formula.

The initial equilibrium state is prepared by introducing some seed non-equilibrium state5

and evolving it until it relaxes down. Once the system is completely equilibrated we implement
the non trivial profile of ξ(v). The initial value of λ(v) cannot be found a priori and a shooting
method was introduced to that end.

Hence one solves the system of equations and obtains the sought subleading values from
the profiles of the fields at each time.

5We set ϕ1 = 1 , f1 = −2.0 and give an initial radial profile φ = (1− ξi)ϕ1u and φ = (1+ ξi)ϕ1u .
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