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Abstract

We point out that dark matter which is produced non-adiabatically in a phase transi-
tion (PT) with fast bubble walls receives a boost in velocity which leads to long free-
streaming lengths. We find that this could be observed via the suppressed matter power
spectrum for dark matter masses around 108 − 109 GeV and energy scales of the PT
around 102 − 103 GeV. The PT should take place at the border of the supercooled regime,
i.e. approximately when the Universe becomes vacuum dominated. This work offers
novel physics goals for galaxy surveys, Lyman-α, stellar stream, lensing, and 21-cm ob-
servations, and connects these to the gravitational waves from such phase transitions,
and more speculatively to possible telescope signals of heavy dark matter decay.
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1 Introduction

Two major constraints on the properties of dark matter (DM) come from observations of the
CMB and the large scale structure of matter. The former is a powerful probe of the energy
content of the Universe, precisely constraining the matter content of baryons and dark matter,
along with the other ΛCDM parameters [1]. Observations of the matter power spectrum, on
the other hand, while helping pin down the DM density, also provide strong constraints on the
DM velocity dispersion.

The matter power spectrum has been measured at large scales through galaxy
surveys [2], at intermediate scales through weak lensing observations [3], and at the small-
est scales through Lyman-α forest data [4–7], Milky Way satellite [8], stellar stream [9], and
strong lensing observations [10–13]. The reported limits on a small scale cut in the spectrum
are typically given in the context of standard warm DM, i.e. two component fermionic DM
that freezes out while relativistic, and are in the range mWDM ≳ (2 − 7) keV [4–13]. Future
observations of the 21-cm signal could push this constraint to mWDM ≳ 15 keV [14]. The mWDM

limit is not applicable model independently. When considering alternative models, one can
instead calculate and compare with the free streaming length or velocity dispersion. Taking
a fiducial value, mWDM ≳ 5 keV, corresponds to DM free streaming length at matter-radiation
equality of λ(teq)≈ 0.1 Mpc, or a mean velocity [15–17]

v(teq) =
�

4
11

94eV
mWDM

ΩDMh2
�1/3 3.15 T eq

γ

mWDM

≃ 5× 10−5
�

5 keV
mWDM

�4/3

, (1)

where T eq
γ ≃ 0.8 eV is the photon temperature at matter-radiation equality. It is possible

to have DM with a non-negligible v(teq), which we will generically refer to as non-cold DM
(NCDM), with a mass much larger than 5 keV. Known examples are DM coming from the
evaporation of priomordial black holes [18–21], freeze-in [22–24], decay of heavier parti-
cles [22,24,25], or with large interactions [26,27]. The effect of early phase transitions (PTs)
directly on the late time DM velocity, however, through the kick the DM particles receive at
the phase boundary, has so far not been considered. For alternative mechanisms where PTs
modify the matter power spectrum, but at (much) lower temperatures, see [28–36].

Particles which gain a mass when crossing the bubble wall separating the high and low
temperature phases, also obtain a boost in the original plasma (eventual CMB) frame [37]. In
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principle, if the DM interactions with the thermal bath following the PT are sufficiently weak,
the DM will not return to kinetic equilibrium. In this way, the momentum gained at the time of
the PT, suitably redshifted, can lead to NCDM. In the case of DM simply gaining a mass during
the PT, such as in [38–40], however, the velocity dispersion is negligible compared to current
limit even if the PT is supercooled. The reason is the presence of irreducible interactions
with the scalar driving the PT, which means the DM will not retain a large enough velocity to
approach free streaming limits. Similar conclusions hold in models of supercooled composite
DM; although initially highly boosted, theoretically unavoidable interactions lead to deep-
inelastic scatterings of the DM with the dilaton field following the PT, which would also bring
the DM back into kinetic equilibrium in this case [41,42].

We therefore consider the DM production scenario introduced by Azatov, Vanvlasselaer,
and Yin; during a PT in which a scalar gains a VEV vφ , DM with mass mDM ≫ vφ is produced
non-adiabatically across the bubble wall [43–45]. The DM is produced with a large Lorentz
factor in the original plasma frame, which when redshifted leads to a non-negligible v(teq).
The crucial qualitative difference, in this case, is that mDM may be super-heavy, with mass
sufficiently above the temperature of the bath following the PT, so that interactions with the
scalarφ are out-of-equilibrium. Note in this scenario, we must assume a reheating temperature
after the usual cosmological inflation, T ≪ mDM, so that the DM begins with effectively zero
abundance in the initial radiation dominated phase, as we want the majority of our DM to be
produced with a kick during the PT. Similarly the inflaton should not decay significantly into
DM particles. (Alternatively, we may imagine some non-standard expansion history which
dilutes DM prior to the epoch of the PT.)

Finally, we remind the reader, that in this NCDM picture Neff limits at BBN are weaker than
limits from structures because DM is far less abundant at BBN times compared to a standard
hot thermal relic.

2 Phase Transition

We consider a scalar field φ, real or complex, which gains a VEV vφ during an early Universe
PT. We assume an initially radiation dominated Universe following standard cosmological in-
flation. Bubbles nucleate at some temperature Tn, expand, collide, and convert the Universe to
the new phase. Two qualitatively different expansion histories present themselves as possibil-
ities. If bubbles nucleate early enough, the Universe remains radiation dominated throughout
this epoch. If instead, nucleation is delayed, the radiation density may drop below the false
vacuum density and the Universe enters an additional inflationary phase at temperature de-
fined by

g∗π
2

30
T4

infl ≡ Λvac ≡ cvacv4
φ

. (2)

Here g∗ are the effective radiation degrees-of-freedom and cvac is a dimensionless, model de-
pendent, number parametrizing the vacuum energy difference. For brevity and simplicity, we
assume rapid scalar condensate decay following the PT, see App. A for discussion on how this
can be realised. The temperature of the radiation bath just after the PT is therefore given by

TRH ≃Max[Tn, Tinfl] . (3)

The leading order pressure from the change in particle masses across the bubble wall, in the
ultra-relativistic ballistic regime, is given by [37,46]

PLO ≃
∑

a

∆(m2
a)

∫

d3p f eq
a

(2π)32Ea
≡ ga

v2
φ

T2
n

24
, (4)
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φ

X

X

wall 〈φ〉 = 0〈φ〉 ≃ vφ

Figure 1: When light φ quanta enter the bubble of new phase, they can produce
X + X DM pairs, which are highly boosted in the original plasma frame.

where ∆(m2
a) denotes the mass squared difference between the two phases, f eq

a is the equi-
librium number density in the symmetric phase, and ga is a convenient parametrization of
the effective degress-of-freedom gaining a mass of order vφ . For sufficiently small Tn, one
has PLO < Λvac, and an effectively run-away wall. In this case, the Lorentz factor of the wall
grows linearly with distance and at collision is γwp ≃ Rcol/(3Rn) [47], where Rn and Rcol are
the bubble radii at nucleation and collision respectively. The bubbles nucleate with a typical
size Rn ≡ Abub/Tn with Abub ∼ 1− 10. At collision, Rcol ≃ (8π)1/3vw/(βH H) where βH is the
inverse timescale of the transition normalised to Hubble, H ∝ T2

RH
/MPl, where we define MPl

as the reduced Planck mass, and vw ≃ 1 is the wall velocity. Typical values for supercooled PTs
are βH ∼ 10. Close to bubble collision, when the majority of the volume is being converted to
the true vacuum, the bubble wall Lorentz factor as measured in the plasma frame is therefore
given by

γwp ≃
2
p

10TnMPl

π2/3AbubβH g1/2
∗ T2

RH

. (5)

The emission of soft quanta with phase dependent masses induces additional pressure [46,47].
If no gauge boson obtains a mass at the PT, then the resulting pressure is subleading with
respect to the LO one of Eq. (4), and Eq. (5) for the Lorentz factor is valid. We limit our
discussion to this case in the rest of the paper.

3 Non-Adiabatically Produced DM

We now introduce a real scalar DM candidate, with non-negligible DM mass in the symmetric
phase, together with an interaction with the scalar field gaining a VEV

L ⊃ −1
2

m2
DM

X 2 −
1
4
λφ2X 2 . (6)

For concreteness, we phrase our discussion assuming φ is a real scalar. To avoid problems
with domain walls when φ gains a VEV, the symmetry φ→−φ should be explicitly broken by
other terms, that can be kept small enough to not influence the rest of this paper. Our findings
will also largely be valid for a complex φ, as we will comment on later.

We assume zero initial DM abundance in the symmetric phase. This requires negligible
production via inflaton decay, and a Boltzmann suppression of thermal processes which would
generate a DM population following standard cosmological inflation, which can be achieved
provided mDM/T is always large enough, e.g. mDM/T ≳ O(30) to remain under the observed
abundance via freeze-in. Alternatively, there may be some additional dilution mechanism in
play at high T . Then the dominant DM relic abundance may be produced non-adiabatically
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when light φ quanta enter the bubbles, as we consider here. The probability of DM pair
production reads [43–45]1

P(φ→ X + X ) =
λ2v2

φ

192π2m2
DM

, (7)

assuming the Lorentz factor, introduced in Eq. (5), satisfies

γwp ≳
Lwm2

DM

Tn
≈

m2
DMp

cvacvφTn
, (8)

where we have approximated the wall width as the inverse of the scalar mass
Lw ≈ 1/mφ ≈ 1/(pcvacvφ) (see e.g. [41, 47]). The above is known as the anti-adiabatic
regime, for smaller γwp there is a further sharp suppression of the production probability. The
DM abundance normalised to entropy, in the anti-adiabatic regime, is then given by

YDM =
45ζ(3)
2π4 g∗s

λ2v2
φ

96π2m2
DM

�

Tn

TRH

�3

, (9)

where g∗s are the entropic degrees of freedom. Here the first factor represents the number
density of φ quanta normalized to entropy (we have assumed an approximately massless φ
in the symmetric phase), the second is the X + X production probability multiplied by two as
the DM is being pair produced, and the third is an entropy dilution factor. In general, there
are up to two choices of TRH which will match the observed value, YDMmDM = 0.43 eV. One
corresponds to the PT occuring in the radiation dominated regime, Tn > Tinfl, and the other in
the supercooled vacuum dominated regime, Tn < Tinfl.

Note that, as first worked out in [43], pair production induces only a small additional con-
tribution to the pressure, Eq. (4), approximately given by ga→ga+λ2 log(1+γwpT mφ/m

2
DM
)/(32π2)

which leaves our estimate of the bulk bubble properties during expansion effectively un-
changed. Locally, the momentum exchange will distort the wall, although to what extent
this would, e.g., modify the effective wall tension is an open question.2 (We do not attempt to
solve scalar equations of motion in the presence of DM pair production in the current work.)

4 Non-Cold Heavy DM

We must also determine v(teq). Consider the kinematics of light quanta entering the bubble
and pair producing DM. The situation is illustrated in Fig. 1. Going into the time independent
wall frame, which will allow us to use energy conservation across the wall, an incoming φ
quantum has energy E ∼ γwpTn. To gain intuition, consider the special case in which the out-
going X quanta share the incoming energy equally. Then, in the wall frame, the DM Lorentz
factor is γxw ∼ γwpTn/2mDM. It is a good and conservative approximation to ignore the mo-
mentum transverse to the direction of the wall velocity. Then the DM Lorentz factor in the
plasma frame is γxp ∼ γwp/2γxw ≈ mDM/Tn. (A more precise derivation is given in App. B.)
The initial DM momentum is therefore pDM(TRH)≃ m2

DM
/Tn. Accordingly, the redshifted velocity

at matter-radiation equality is given by

v(teq)≃
�

g∗s(Teq)

g∗s(TRH)

�1/3 T eq
γ mDM

TRHTn
, (10)

1Taking into account the different normalizations of the coupling, we find a factor of two smaller production
probability than [45, Eq. (58)].

2We thank the referee for pointing this out.
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Figure 2: Heavy non-cold DM from fast bubble walls in the plane of nucleation
temperature Tn vs DM mass mDM, for Tn > Tinfl (left) and Tn < Tinfl (right). We
set λ = 1 and cvac = 10−2. Viable non-cold DM can be produced in the range
mDM ≈ 108 − 109 GeV (white area), delimited by: the requirement of the anti-
adiabatic regime, Eq. (8), at bubble collision with Abub = 3 and βH = 10 (green); too
small DM yield, Eq. (9), even with the DM number maximizing choice Tinfl = Tn
(red); kinetic equilibration, i.e. violation of Eq. (11) (tan); the bubbles not run-
ning away, i.e. Λvac < PLO of Eq. (4) (gray, left); the warm DM velocity limit for
mWDM ≳ 5 keV, corresponding to v(teq) ≲ 5 × 10−5 (blue). The blue NCDM region
spans vφ/Tn ≈ 5− 7 (left) and vφ/Tn ≈ 7− 12 (right). The dashed blue line shows
the future sensitivity at mWDM = 15 keV, v(teq)≈ 10−5. Purple dashed contours show
the VEV, vφ . The region below (above) the black contour on the left (right) panel can
be tested by LISA with a signal-to-noise ratio SNR > 5. In the left panel, however,
this lies outside the valid domain of parameter space for the DM model.

where g∗s(Teq)≃ 3.91.
Finally, we need to ensure that scatterings with the thermal bath, namely X +φ→ X +φ

interactions, do not spoil our estimate of the final DM velocity. The strictest condition comes
from the four-point vertex in Eq. (6). A simple criterion is found by demanding the scattering
rate, weighted by the fractional momentum loss, be below Hubble for a point in parameter
space to be considered viable

nφσ(Xφ→ Xφ)vMøl
δpDM

pDM

= nφ
λ2pCM

8πŝ3/2
< H , (11)

where
p

ŝ is the centre-of-mass energy, pCM is the centre-of-mass momentum, and for this inter-
action δpDM ≈ pDM/2 (the above formulation does not hold for t-channel scatterings, more on
this below). In the relativistic regime, pDM ≈ m2

DM
T/(TRHTn), ŝ ≈ 4m2

DM
T2/(TRHTn), pCM ≃

p
ŝ/2,

and the number density of φ in the thermal bath is given by

nφ =
gφζ(3)

π2
T3 . (12)

In terms of the temperature, the LHS of Eq. (11) scales as T , while the RHS scales as T2.
One may therefore worry that the condition will become increasingly more stringent for lower
T . However, the above assumes massless mφ; for T ≲ mφ the number density nφ quickly
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becomes Boltzmann suppressed. Here we will make the assumption mφ ∼
p

cvacvφ ∼ TRH in
the broken phase, typical for supercooled PTs, and evaluate the above condition at T = TRH.
(The effective mφ in the symmetric phase may be somewhat different, for example mφ ∼ Tn
if it is dominated by thermal contributions to the effective potential at the time of the PT.)

There are also additional interactions with SM bath particles and φ quanta, involving
soft t-channel scalar exchange, which we have carefully checked do not lead to a significant
reduction in the X momentum. The results are given in App. C. The conclusion of our detailed
calculations, given therein, is that we are safe from a return to kinetic equilibrium provided
inequality (11) holds. We also show that even if mφ ≪ TRH, viable parameter space still exists,
due to the scaling of pCM and ŝ at lower temperatures. Furthermore, if we instead considered
a complex scalar φ = ρeia/vφ , then X scatterings with the axion-like particle a would be
dominated by hard t-channel exchange of the radial mode. We show that these do not impact
the estimate in Eq. (11) as long as TRH ≲ 10Tn.

Finally note, that in the parameter space of interest, the DM is always chemically decou-
pled following the PT, i.e. the annhilation rate X + X → φ +φ is also below H. Elastic self-
interactions between the DM can reduce the mWDM constraint by ∼ 20% [48, 49], however,
because of the super-heavy nature of our DM, its non-gravitational self-interactions are also
completely negligible.

We now combine all our calculations and constraints and display the results in Fig. 2. As
summarized in the figures, we see NCDM is possible with this mechanism at masses
mDM ∼ (108 − 109) GeV. The NCDM is realized for nucleation temperatures Tn ∼ 10 GeV, and
reheating temperatures TRH ∼ (10−102) GeV. The underlying scale of the beyond the standard
model (BSM) sector is vφ ∼ (102 − 103) GeV. The region close to the NCDM constraint could
be tested by future observations targeting a cut in matter power spectrum at small scales. The
bubble collisions following the PT will also result in a strong gravitational wave (GW) signal,
which we turn to next.

5 Gravitational Wave Signal

We now detail the expected GW signal. For our mechanism, we require the bubbles to effec-
tively run-away until collision, so that the majority of the vacuum energy is transferred to the
walls. Accordingly, in giving an estimate of the expected GWs, it is appropriate to use the
numerical results from Cutting et al. [50],

h2ΩGW( f )≡ h2 dΩGW

dlog( f )
= 2.0× 10−6 ×

� α

1+α

�2 Sφ( f )

g1/3
∗ β2

H

, (13)

where α is the energy released as bulk motion during the transition (which we approximate as
the false vacuum energy) normalized to the radiation density. Here, the shape of the spectrum
is governed by

Sφ( f ) =
(a+ b) f̃ b f a

b f̃ (a+b) + a f (a+b)
, (14)

where for PTs of our type the central numerical results indicate a = 0.742 and b = 2.16 [50].
(Also see [51–55].) The peak frequency of the signal today is

f̃ = 15 µHz × βH g1/6
∗

�

TRH

103 GeV

�

. (15)
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Figure 3: The solid (dashed) blue lines show the predicted gravitational wave spec-
trum for the PT corresponding to a DM mass mDM = 3× 108 GeV, cvac = 10−2, λ= 1,
and v(teq) at the current limit of mWDM = 5 keV (future limit of mWDM = 15 keV).
The former (latter) corresponds to a PT with TRH ≈ 40 GeV (TRH ≈ 90 GeV), in the
case Tn > Tinfl, and with TRH ≈ 50 GeV (TRH ≈ 150 GeV), in the case Tn < Tinfl. In
both cases lower (higher) DM masses would correspond to lower (higher) reheat-
ing temperatures and lower (higher) peak frequencies. We have assumed βH = 10.
The spectra are compared with power law integrated sensitivity curves, with signal-
to-noise ratio SNR= 5, for LISA [61] and a future µHz interferometer [62]. Esti-
mated astrophysical foregrounds from binary super-massive black holes [63], galac-
tic white-dwarf binaries [64] and extragalactic white-dwarf binaries [65] are also
shown. Gravity gradient noise from asteroids (not shown) could also be significant
up to∼ 10−6 Hz [66]. The signal for the Tn > Tinfl regime is below LISA expectations.

Finally, one should impose the correct ΩGW ∝ f 3 scaling for the initially super-horizon IR
modes [56–60], corresponding to frequencies today below

f∗ =

�

a(TRH)
a(Ttoday)

�

×
H(TRH)

2π
= 12 µHz × g1/6

∗

�

TRH

103 GeV

�

.

Now we are ready to use this spectrum together with our results for the NCDM. Accordingly, we
take the prediction of TRH for a given mDM and v(teq) and consider the estimated GW signal. The
resulting spectra for two parameter points are shown in Fig. 3. We also calculated the SNR for
LISA, strictly using the method given in [42], and display the contours which delineate SNR= 5
in Fig. 2. For Tn > Tinfl, the signal is suppressed by the scaling ΩGW ∝ α2 ∝ (Tinfl/Tn)8, as
α ≲ O(1). Thus this regime can only be extensively probed through its induced small scale
structure suppression, assuming ga ≳ 1, and partly through far future GW observations. For
Tn ≲ Tinfl, instead, the amplitude of the GW signal is large. For lower values of TRH, however,
the peak frequency is the IR of the LISA sensitivity. This qualitatively explains the behaviour
of the SNR contours in Fig. 2. Note the entire allowed area for Tn ≲ Tinfl, given our estimates,
can be probed by LISA (even beyond the future NCDM region).

6 Conclusion

We investigated the possibility of dark matter being both heavy and non-cold as a result of a
phase transition. In order to achieve sufficient high DM velocities at late times to be relevant
for Lyman-α observations, we considered the non-adiabatic pair production mechanism first
introduced in [43, 44]. We find viable non-cold DM compatible with Lyman-α bound in the
mass range mDM ∼ (0.1−1) (M2

plT
eq
γ )1/3 ∼ (108−109) GeV, with an underlying scale of the PT
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vφ ∼ (102−103)(MplT
eq2
γ )1/3 ∼ (102−103) GeV, reheating temperature TRH ∼ (0.1−1)vφ , and

nucleation temperature Tn ∼ (0.1−1)TRH. Despite the low TRH, which can provide a challenge
due to washout, it may be possible to use the same PT (and mechanism) for baryogenesis [67–
70].

The scale of the phase transition vφ is intriguingly close to the electroweak scale. Our PT
cannot naively be the EW one, even if some BSM physics made the latter first order, because
weak gauge bosons getting a mass would prevent the bubble walls from running away and
reaching the velocities of Eq. (5) [46,47], which are crucial for our mechanism. One may still
speculate that the kind of PT discussed in this paper arises from the breaking of some global
symmetry, which is tied to the mechanism of generation of the EW scale, as it could happen in
composite models [71, 72] or in supersymmetry [73–76]. We do not speculate further in this
direction in this paper, we just provide further details on the coincidence of scales in App. D.

The rather unique signature of the heavy DM picture we presented is the combination of
i) a suppression of structure at small scales, which will be interesting to precisely determine in
future work, and ii) a large amplitude stochastic background of GWs [17,50,53,77–79] from
the PT, with peak frequency in the range f ∼ (10−6 − 10−4) Hz.

Concerning other DM signals, direct detection is unfortunately beyond reach of conceivable
future facilities. Coming to indirect detection, the number densities and hence annihilation
signals are very small and, with the minimal content above, the DM is stable. If the Z2 sym-
metry X →−X is broken, then the DM may decay and give a signal at high-energy telescopes.
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A Scalar Decay Rate

In the main text we have assumed the φ particles and/or condensate decays rapidly following
the PT. Perhaps the simplest way this can be achieved, is by introducing a portal interaction
to the SM Higgs. To illustrate this consider the interactions between the EW Higgs doublet H
and a real scalar ϕ,

L ⊃−µ2
h|H|

2 −λh|H|4 −
µ2
φ

2
ϕ2 −

λφ

4
ϕ4 −

λhφ

2
ϕ2|H|2 , (A.1)

where λh ≃ 0.13 is the EW Higgs self-quartic, and λφ ∼ cvac is the exotic scalar analogue. In
principle other terms are also allowed, however, the above will be sufficient to illustrate the
idea. The minimum of the potential lies at (vφ , vEW) where vEW ≃ 246 GeV is the EW VEV and

µ2
h = −λhv2

EW
−

1
2
λhφv2

φ , (A.2)

µ2
φ = −λφv2

φ −
1
2
λhφv2

EW
. (A.3)
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Around the minimum, ignoring Goldstone directions, we introduce the massive scalar excita-
tions H = (vEW + h̃)/

p
2 and ϕ = vφ + φ̃. The physical mass eigenstates are

�

h
φ

�

=

�

cosθhφ sinθhφ
− sinθhφ cosθhφ

��

h̃
φ̃

�

, (A.4)

with associated mass eigenvalues

m2
h = 2λhv2

EW
cos2 θhφ + 2λφv2

φ sin2 θhφ −λhφvφvEW sin 2θhφ , (A.5)

m2
φ = 2λhv2

EW
sin2 θhφ + 2λφv2

φ cos2 θhφ +λhφvφvEW sin2θhφ . (A.6)

We have introduced the usual mixing angle θhφ between the two scalars, present once both
have gained a VEV, which is given by

tan 2θhφ =
λhφvφvEW

λφv2
φ
−λhv2

EW

≃
2λhφvφvEW

m2
φ
−m2

h

≃















λhφvφ
λhvEW

, for mφ < mh ,

λhφvEW

λφvφ
, for mφ > mh .

(A.7)

A.1 Heavy mφ

Consider first the regime mφ ≳ 2mh ≈ 250 GeV. As TRH ∼ mφ , we assume the decay occurs in
the unbroken electroweak (EW) phase. Demanding the decay rate into the SM Higgs doublet,

Γφ→HH ≃
λ2

hφv2
φ

8πmφ
, (A.8)

be above Hubble, translates into a condition

λhφ ≳ 10−7
� g∗

100

�1/4
�

10 TRH

vφ

�

� mφ
104 GeV

�1/2
. (A.9)

Once the symmetries are broken, we therefore have

θhφ ≳ 10−8
� g∗

100

�1/4
�

10 TRH

vφ

�

� mφ
104 GeV

�1/2
�

10−2

λφ

��

105 GeV
vφ

�

, (A.10)

in the heavy mφ regime.

A.2 Light mφ

If, instead, mφ is around or below the EW scale, the decay to SM Higgs bosons is kinematically
disallowed, and the decay occurs in the broken EW phase. Through the mixing angle the φ
can decay to SM fermions. In the θhφ ≪ 1 limit, the rate is given by

Γφ→ f̄ f ≈
Ncm

2
f θ

2
hφmφ

8πv2
EW

, (A.11)

where m f is the fermion mass, and Nc are the number of colours. The decay rate is faster than
Hubble provided

θhφ ≳ 10−6
� g∗

100

�1/4� 3
Nc

�1/2
�

4 GeV
m f

��

TRH

mφ

�1/2� TRH

10 GeV

�1/2

, (A.12)
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or equivalently

λhφ ≳ 10−6

�

vEW

10 vφ

�

� g∗
100

�1/4� 3
Nc

�1/2
�

4 GeV
m f

��

TRH

mφ

�1/2� TRH

10 GeV

�1/2

. (A.13)

The exotic Higgs decay h → φφ, has a branching fraction Br ≈ 10−9 × (λhφ/10−6)2 and is
safely below collider constraints for mφ above the muon threshold (the mφ parameter space
of interest for our PTs).

B Initial DM Momentum in the Plasma Frame

We consider the pair production φ→ X + X . Taking the wall to be moving at ultra-relativistic
velocity in the positive z direction, the kinematics in the wall frame can be written as

pφ = (E′, 0, 0,−
r

E′2 −m2
φ
) ,

pX
1 = (E

′[1− x], 0, k⊥,−
Ç

E′2[1− x]2 − k2
⊥ −m2

DM
) ,

pX
2 = (E

′x , 0,−k⊥,−
Ç

E′2 x2 − k2
⊥ −m2

DM
) . (B.1)

The pair production probability, in the anti-adiabatic regime, is given by [44]

P(φ→ X X )≃
λ2v2

φ

32π2

∫ 1

0

d x x(1− x)

∫

dk2
⊥

(k2
⊥ +m2

DM
)2
≃

λ2v2
φ

192π2m2
DM

. (B.2)

From the above, we can also read off the distribution in energy and k⊥ of the outgoing particles.
Azatov et al. also provide a convenient way of calculating the average energy of the out-

going X in the plasma frame. In terms of the incoming energy in the wall frame, E′, it is given
by

ĒX =
1
2

�

∫ 1

0

d x x(1− x)

�−1

×
¦

∫ 1

0

d x x(1− x)γwp

�

E′ −
Ç

E′2 x2 − k2
⊥ −m2

DM
−
Ç

E′2[1− x]2 − k2
⊥ −m2

DM

�©

≈
3γwpm2

DM

2E′
. (B.3)

Here the probability distribution of energy fraction x has been taken into account, and the
Lorentz transformation E = γwp(E′ + vwp′z) has been applied on the sum of the X energies,
which also explains the pre-factor 1/2. In evaluating the integral, the high energy limit been
applied E′x , E′(1− x)≫ mDM, and the k⊥ factor has been ignored. This is justified, as the small
x , large x , and large k⊥ ≳ mDM phase spaces are suppressed. Azatov et al. go on to substitute
E′ ∼ (1+ vw)γwpTn to find ĒX ∼ 3m2

DM
/4Tn.

Now that we have ĒX as a function of E′, however, we can also take an appropriate average
over the incoming flux. First we derive a formula for the φ flux across the wall. The relative
velocity in the z direction between the wall and a particle in the plasma frame with z velocity,
vz , is vz,rel = vw − vz ≃ 1− pz

E = 1− cθ . Here cθ ≡ cosθ where θ is the angle between pz and

11

https://scipost.org
https://scipost.org/SciPostPhys.14.3.033


SciPost Phys. 14, 033 (2023)

the z-axis. The flux, Φφ = d2Nφ/dAd t, across the wall in the plasma frame is given by

Φφ =
gφ
(2π)3

∫

d3p f (E)vz,rel

=
gφ
(2π)2

∫ 1

−1

dcθ (1− cθ )

∫ ∞

0

dEE2 f (E) (B.4)

=
gφ ζ(3)T3

n

π2
.

So Φφ is just the same as the number density.
Now remembering that E′ = γwpE(1 − cθ ), the average energy of the X after averaging

over the incoming φ flux is given by

〈ĒX 〉=
1
Φφ

g
(2π)3

∫

d3p f (E)vz,rel ĒX

=
g
Φφ

3m2
DM

4π2

∫

dEE f (E) (B.5)

=
π2

8ζ(3)

m2
DM

Tn
≃

m2
DM

Tn
.

This matches the rough derivation of the Lorentz factor, γxp = 〈ĒX 〉/mDM ≃ mDM/Tn, given in
the main text.

C DM Momentum Loss

After the PT, the absolute value of the DM momentum, pDM, evolves with redshift as
pDM = piai/a ≃ pi(t i/t)1/2, where the subscript i denotes some initial value, a is the scale
factor, and we have assumed a∝ t1/2 for consistency with the hypothesis of radiation domi-
nation. As a consequence, the rate of momentum loss due to redshift, reads

dpDM

d t

�

�

�

redshift
=

pDM

2t
≈ pDMH , (C.1)

where in the last equality we have used that the age of the Universe is proportional to Hubble
at that time, t ≈ H−1. Our estimate of v(teq) is therefore valid provided

1
pDM

dpDM

d t

�

�

�

bath
=

dlog(pDM)
d t

�

�

�

bath
< H , (C.2)

where dpDM/d t|bath is the rate of momentum loss of a DM particle because of its scatterings
with bath particles.

C.1 Relativistic DM

Consider the DM after the phase transition. As a function of temperature, the DM momentum
is given by

pDM ≈
m2

DM
T

TnTRH

. (C.3)

12

https://scipost.org
https://scipost.org/SciPostPhys.14.3.033


SciPost Phys. 14, 033 (2023)

In the plasma frame, it is relativistic until pDM ≈ mDM, i.e. for temperatures

T ≳
TnTRH

mDM

(C.4)

≈ 1 MeV

�

108 GeV
mDM

�

�

TRH

104 GeV

��

Tn

10 GeV

�

.

Now consider such relativistic DM travelling in the z-direction through the plasma frame with
energy and z-momentum component E1 ≃ p1z ≡ pDM. It undergoes scattering with some parti-
cle in the thermal plasma with energy E2 ∼ T (its precise momentum orientation is irrelevant
for the following, as pDM≫ T , for convenience, we can take it to be in the negative z-direction
in what follows). We wish to determine the momentum loss rate of the DM in the plasma
frame. Denote the initial (final) DM four momentum in the centre-of-mass (COM) frame as
p′1 (p′3), and the initial (final) bath particle four momentum in the COM frame as p′2 (p′4). We
then have

p′1 = (
q

m2
DM
+ p2

CM
, 0, 0, pCM) , (C.5)

p′2 = (pCM, 0, 0, −pCM) , (C.6)

p′3 = (
q

m2
DM
+ p2

CM
, 0, pCMsθ , pCMcθ ) , (C.7)

p′4 = (pCM, 0, −pCMsθ , −pCMcθ ) , (C.8)

where sθ ≡ sinθ , cθ ≡ cosθ , θ is the usual scattering angle, the COM energy squared is

ŝ = m2
DM
+ 4pDM T , (C.9)

and the COM momentum squared is

p2
CM
=
(ŝ−m2

DM
)2

4ŝ
. (C.10)

For later convenient reference, when we come to find constraints from DM momentum loss, it
is useful to denote two temperature regimes according to whether DM is relativistic or not in
the COM frame. In the first regime, corresponding to T ≳

p

TRHTn, we have

ŝ ≈ 4p2
CM
≈

4m2
DM

T2

TnTRH

. (C.11)

In the second regime, T ≲
p

TRHTn, and we have

ŝ ≈ m2
DM
≫ 4p2

CM
≈

4m2
DM

T4

T2
RH

T2
n

. (C.12)

In both regimes the combination p2
CM

ŝ, which appears in various expressions below, is approx-
imately the same. It reads

p2
CM

ŝ ≈
4m4

DM
T4

T2
RH

T2
n

. (C.13)

In any case, to bring the photon energy from the plasma to the COM frame requires a Lorentz
boost with

γ=
pCM

T + vT
≃

pCM

2T
, (C.14)
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X X

φ φ

X

φ

X

φ

φ

Figure 4: Interactions of the DM with the scalar driving the PT, φ, which can lead to
kinetic equilibrium being re-established following the PT.

where we take the relativistic limit v ≃ 1. Then, using the Lorentz transformation to boost
from the COM frame back into the plasma frame, E = γ(E′ + vp′z), we find a momentum loss
of the DM in the plasma frame

δpDM ≃ E1 − E3 = γvpCM(1− cθ )

= −
γv t̂
2pCM

≃ −
t̂

4T
, (C.15)

where we have used the relation t̂ = −2p2
CM
(1− cθ ). Note our expression above depends on a

relativistic boost; eventually, at low T , we have v ≪ 1, the boost reaches the Gallilean limit,
and there is an additional suppression. For relativistic DM, we therefore estimate

dlog(pDM)
d t

�

�

�

bath
≈

nbathvMøl

pDM

∫ 0

−4p2
CM

d t̂
dσ
d t̂
δpDM (C.16)

≈ −
nbathvMøl

4pDM T

∫ 0

−4p2
CM

d t̂
dσ
d t̂

t̂ (C.17)

≈ −
nbathvMøl

2pCM

p
ŝ

∫ 0

−4p2
CM

d t̂
dσ
d t̂

t̂ , (C.18)

where σ is the cross section for the process Xψ → Xψ leading to the momentum loss and
vMøl ≃ 2 is the relative (Møller) velocity between the DM and bath particles in the plasma
frame. The differential cross section is given by

dσ
d t̂
=

1
64πp2

CM
ŝ
|M|2 , (C.19)

where M is the usual matrix element. Given our field content, we will be interested in cross-
quartic scalar interactions, and diagrams with scalar exchange in the t-channel.

Note that, in the massless limit, dσ/d t̂ ∝ |M|2/ŝ2. And with our field content, we will
always have a 1/ŝ2 suppression in this quantity. This is qualitatively different to examples
featuring vector mediated interactions, such as in Møller scattering or its scalar QED analogue,
in which |M|2 ∝ ŝ2/ t̂2 type terms lift the suppression, and lead to IR enhancements in the
momentum loss through soft gauge boson exchange. This is the key reason why, in the end,
our naive approximation of the momentum loss rate via hard scattering, Eq. (11), gives the
appropriate, i.e. the strongest constraint. Note, however, that care must be taken for t-channel
diagrams when p2

CM
< m2

DM
, in order to check that the suppression is not lifted by the p2

CM
term

in the denominator of Eq. (C.19), leading to a rapid momentum loss. This is what we go on
to check below. (Of course, in the deep IR, divergences will also be removed by the mass of
the mediating particles.)
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C.1.1 Interactions within the BSM sector

Scattering with the scalar driving the PT — We first consider scatterings X +φ→ X +φ, for
which the Feynman diagrams are shown in Fig. 4. We begin with the cross quartic interaction
in Eq. (6). Ignoring interference with the second diagram for now, we have

dσ
d t̂
=

λ2

64πp2
CM

ŝ
. (C.20)

Using Eq. (C.18) and demanding Eq. (C.2) hold, we obtain the condition

dlog(pDM)
d t

≈ nφ
λ2pCM

8πŝ3/2
≈

nφλ
2

16πŝ
< H . (C.21)

In the second approximation, we have used pCM ≃
p

ŝ/2≫ mDM, valid here because we only
have to consider high temperatures, as nφ becomes Boltzmann suppressed at T < mφ ∼ TRH.
Note Eq. (C.21) is just the same as Eq. (11) in the main text, thus confirming the latter as a
suitable estimate. Finally, plugging Eq. (C.11) into Eq. (C.21) and taking T ≃ TRH, we obtain
the upper bound on the coupling

λ < 1.5×
� mDM

108 GeV

�

�

10 GeV
Tn

�1/2

. (C.22)

It is also interesting to consider a more general case with mφ ≲ TRH or even mφ ≪ TRH. Then
nφ does not become Boltzmann suppressed until lower temperatures. Nevertheless, retaining
the temperature dependencies of ŝ and pCM from Eqs. (C.11) and (C.12), we find the strongest
constraint on λ comes from around T ≈

p

TnTRH, when DM turns non-relativistic in the COM
frame. The constraint then reads

λ < 1.5×
� mDM

108 GeV

�

�

10 GeV
Tn

�1/4�10 GeV
TRH

�1/4

. (C.23)

This collapses to Eq. (C.22) for Tn = TRH and becomes stronger for Tn < TRH. Thus the allowed
parameter space for the Tn < Tinfl case becomes somewhat smaller, but still allows for NCDM
(for further details see App. D [Fig. 8]).

Realistically, φ will also have a quartic coupling, λφ , which will lead to an additional
Feynman diagram for the process X +φ → X +φ. This involves t-channel φ exchange, and
so the scattering rate can have an IR enhancement. First, we ignore the interference term and
consider only the amplitude squared of the t-channel diagram. We get

dσ
d t̂
=

9λ2λ2
φ

v4
φ

16πp2
CM

ŝ( t̂ −m2
φ
)2

. (C.24)

This gives a momentum loss

dlog(pDM)
d t

≃ nφ
9λ2λ2

φ
v4
φ

16πp3
CM

ŝ3/2
×
�

log

�

1+
4p2

CM

m2
φ

�

−
4p2

CM

m2
φ
+ 4p2

CM

�

. (C.25)

We find that Eq. (C.25) gives a much weaker constraint than Eq. (C.21),3

λ <
108

λφ

� mDM

108 GeV

�3
�

105 GeV

v2
φ

�2
� mφ

104 GeV

�5/2
�

104 GeV
TRH

�3/2�
10 GeV

Tn

�3/2

, (C.26)

3We report the numerical constraints on the couplings even when these are nominally≫ 1 and thus outside of
the realistic perturbative regime. These can then simply be interpreted as meaning that any sensible perturbative
choice of the coupling will not lead to issues with DM momentum loss via said process.
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X X

a
tree

a

σ

loop 1

XX

aa

σ σ

a

loop 2

XX

aa

σ σ

X

loop 3

XX

aa

σ σ

X

loop 4

a

XX

aa

σ σ

Figure 5: Tree and loop diagrams contributing to the elastic scattering of scalar dark
matter X with angular mode a.

where we have again allowed for the possibility mφ < TRH.
So far we have ignored the interference term. But this cannot realistically give us a stronger

limit, as |2Re[M1M†
2]| ≤ 2|M1||M2| ≤ |M1|2 + |M2|2. Indeed, direct computation shows

the leading interference term gives a momentum loss which is suppressed by an additional
power of v2

φ
/ŝ ≪ 1, compared to Eq. (C.21) (and also, of course, by the possible Boltzmann

factor at T ≲ mφ ∼ TRH).
Scattering with the eventual angular mode. — In the case where the scalar field driving

the phase transition is complex, Φ = (vφ + σ)e
ia/vφ/
p

2, the Goldstone boson a when not
eaten by a gauge boson can eventually slow DM down. Scattering of scalar DM with Goldstone
bosons are induced by the terms

L ⊃ ∂µΦ†∂ µΦ−
λ

2
|Φ|2X 2

⊃

�

σ

vφ
+
σ2

2v2
φ

�

∂µa∂ µa−
λ

2

�

vφσ+
σ2

2

�

X 2 , (C.27)

where λ is the X − φ quartic coupling. The matrix element for X a → X a, from tree-level
t-channel exchanges of a radial mode σ, see Fig. 5 left, reads

M= λ
t̂/2−m2

a

t̂ −m2
σ

, (C.28)

where mσ and ma are the masses of the radial and angular modes.4 In the high momentum
exchange limit t̂ ≫ m2

σ, m2
a, we obtain the momentum loss for X a→ X a

dlog(pDM)
d t

≃ na
λ2pCM

32πŝ3/2
. (C.29)

The maximal momentum loss rate is obtained for T =
p

TnTRH when the temperature depen-
dence of the squared energy ŝ and DM momentum pCM in the COM frame changes from∝ T
to∝ T0, and from∝

p
T to∝ T , respectively. We obtain the condition

λ <
� mDM

108 GeV

�

�

10 GeV
Tn

�1/2�10Tn

TRH

�1/4

, (C.30)

which becomes competitive with Eq. (C.22) for TRH ≳ 10Tn. In Fig. 8, with orange shading
we show the region where momentum loss of DM due to scattering with the Goldstone mode
is important. We also study the effects of loop-induced 4-scalar terms. The four diagrams are

4For scatterings X +σ → X +σ, we can simply use the computations done for the real scalar φ, and replace
mφ → mσ.
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X

h h

X X

h φ

X

h φ

XX

h, φ

h h

XX

h, φ

h, φ

h, φ h, φ

h, φ

V V

XX

γ, g γ, g

XX

N N

XX

f f

XX

Figure 6: Interactions of the DM with the particles of SM plasma; the SM Higgs, h, el-
ementary fermions, f , massive gauge bosons, V , photons, γ, gluons, g, and nucleons
N , which can lead to kinetic equilibrium being re-established following the PT. Note
at high enough momentum, the DM may instead interact with the partons inside the
nucleon, and also break apart the initial nucleon. All corresponding amplitudes of
diagrams shown here are suppressed by at least one power of the portal coupling
λhφ .

pictured in Fig. 5. The corresponding matrix elements in the large momentum transfer limit
t̂ →∞ reads

M1 +M2 ≃
λ

32π2

m2
φ

v2
φ

log

�

m2
φ

− t̂

�

, (C.31)

M3 ≃
λ2

128π2
log2

�

m2
DM

− t̂

�

, (C.32)

M4 ≃ −
λ2

32π2

�

1+ log2

�

−
m4

DM

ŝ t̂

��

. (C.33)

We deduce the resulting contribution to the DM momentum loss

dlog(pDM)
d t

≃ 10−6 na
λ4pCM

ŝ3/2
, (C.34)

where we have kept only the contribution from the fourth diagram, since λ > m2
φ
/v2
φ

in
the parameter space of our interest. We obtain the same parametric as for the t-channel in
Eq. (C.29) with an additional suppression due to the extra loop factor (λ/16π2)2. We conclude
that the loop contributions can be neglected.

C.1.2 Interactions with the SM sector

We now turn to momentum loss due to interactions with the SM bath. These exist once a
portal interaction is introduced, to allow φ to decay rapidly into the SM following the PT,
as discussed in App. A. The applicable Feynman diagrams are shown in Fig. 6. These pro-
cesses are all suppressed∝ λ2

hφ , either directly, or through the mixing angle between the two
scalars. However, the initial state bath particles may have a different mass threshold, i.e. be-
low mφ ∼ TRH. We therefore have to check whether the scattering at lower T can lift the λ2

hφ
suppression at any points in parameter space, and therefore lead to a more stringent bound
from kinetic equilibrium. We shall find that this is not the case, but still provide an overview,
for completeness, of the scattering rates below.

Scattering with the EW Higgs. — We begin by emphasising that for mφ ≲ vEW, these scat-
tering are necessarily suppressed compared to the scatterings with the φ we have considered
earlier, so we will always be assuming we are in the heavy mφ regime for the purposes of the
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checks performed here. Compared to Fig. 2, this corresponds to regions outside the current
non-cold DM limit, but the discussion could be relevant if the limit is substantially improved.
From now we suppress numerical pre-factors from our estimates of the cross sections.

We first consider the quartic interaction leading to inelastic scattering X +h→ X +φ. The
differential cross section is given by

dσ
d t̂
∼
θ2

hφλ
2

p2
CM

ŝ
, (C.35)

which leads to a momentum loss

dlog(pDM)
d t

≃ nh

θ2
hφλ

2pCM

ŝ3/2
< H . (C.36)

Taking into account the Boltzmann suppression of nh at temperatures below TEW and using
Eqs. (C.11) and (C.12), one can readily show that a sufficient condition for the above to be
below the Hubble rate is

θhφ ≲
10−2

λ

� mDM

108 GeV

�

�

104 GeV
TRH

�1/4�
10 GeV

Tn

�1/4

, (C.37)

in both pCM ≃
p

ŝ/2 and pCM ≲
p

ŝ/2 regimes. The condition (C.37) is compatible with our
previous constraint (A.9), showing both rapid decay and absence of kinetic equilibrium can
be satisfied. Note the example values we have substituted, correspond to an aggressive choice
along the kinetic equilibrium line coming from Eq. (11) in Fig. 2, smaller choices of Tn and
TRH would lead to a weaker constraint.

We now move on to consider the t-channel scattering involving external scalar states
X + h→ X + h. First consider the φ exchange diagram. The cross section behaves as

dσ
d t̂
∼

λ2
φhλ

2v4
φ

p2
CM

ŝ( t̂ −m2
φ
)2

. (C.38)

Hence, we have an approximate momentum loss

dlog(pDM)
d t

∼
nhλ

2
φhλ

2v4
φ

p3
CM

ŝ3/2
log

�

4p2
CM

m2
φ

�

< H . (C.39)

This gives a very weak constraint

λφh ≲
103

λ

� mDM

108 GeV

�3
�

105 GeV
vφ

�2�
104 GeV

TRH

�3/2�
10 GeV

Tn

�3/2

. (C.40)

(Here we have assumed parameter space with pCM > mφ at T ≈ mh, if instead pCM < mφ , the
limit would be weakened, due to finite mass propagator effects.) This condition is obviously
compatible with our constraint (A.9). Similar or weaker constraints arise for the cross sections
coming from the squared amplitudes of the X + h → X + h via h exchange diagram and the
t-channel X + h→ X +φ diagrams. As argued above, interference terms do not lead to any
stronger constraints. We are therefore safe from scatterings with the EW Higgs.

Scattering with massive EW gauge bosons. — We now consider scatterings with the
massive EW gauge bosons, in order to check whether there can be any additional enhance-
ment compared to the above processes, due to the presence of the external vectors. Taking
into account the relative minus sign between the φ and h exchange diagrams, coming from
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the rotation into the mass basis, we find the tree level diagrams squared give a cross sections
of the form

dσ
d t
∼
λ2

hφλ
2v4
φ

p2
cmŝ

�

8m4
V + ( t̂ − 2m2

V )
2
�

( t̂ −m2
φ
)2( t̂ −m2

h)
2

, (C.41)

where mV is the gauge boson mass, and we have substituted in for the mixing angle using
Eq. (A.7). In the above, we have used the polarization sum completion relation for massive
vectors. Note the absence of any dependence on the gauge coupling or EW VEV for the term
∝ t̂2 in the numerator. In the high energy limit, this term corresponds to scatterings with
longitudinal gauge bosons, which through the Goldstone boson equivalence theorem can be
related to scatterings of the DM with would-be EW Goldstone bosons via t-channelφ exchange.
The latter amplitude is manifestly independent of the gauge coupling or EW VEV, which ex-
plains the absence of these parameters in the above term of the cross section.

After performing the integral over t̂, in the mφ ≳ mV , mh parameter space, we find a
momentum loss

dlog(pDM)
d t

∼
nVλ

2
hφλ

2v4
φ

p3
CM

ŝ3/2

�

log

�

1+
4p2

CM

m2
φ

�

−
4p2

CM

m2
φ
+ 4p2

CM

�

, (C.42)

where nV is the gauge boson number density. The strongest constraint comes from the loga-
rithmic term at temperature T ≈ mV . Even for parameter space in which pCM > mφ at such
temperatures, the constraint is very weak,

λhφ ≲
102

λ

� mDM

108 GeV

�3
�

105 GeV
vφ

�2�
104 GeV

TRH

�3/2�
10 GeV

Tn

�3/2

, (C.43)

again showing compatibility with Eq. (A.9).

Scattering with fermions. — Finally we also consider scatterings with the elementary SM
fermions. Again taking into account the relative minus sign between the φ and h exchange
diagrams, we find

dσ
d t̂
∼
λ2

hφλ
2v4
φ

m2
f

p2
CM

ŝ

(4m2
f − t̂)

( t̂ −m2
φ
)2( t̂ −m2

h)
2

, (C.44)

where m f is the fermion mass, and we have again substituted in for the mixing angle using
Eq. (A.7). In the regime where mφ ≳ mh, we obtain a momentum loss

dlog(pDM)
d t

∼
n f λ

2
hφλ

2v4
φ

m2
f

p3
CM

ŝ3/2m2
φ

4p2
CM

4p2
CM
+m2

φ

. (C.45)

The strongest constraint comes from momentum loss at T ≈ Max[TRH

p

Tn/mDM, m f ], where
the first condition comes from pCM > mφ and the second from simply having an unsuppressed
fermion population in the bath. We thus set our hypothetical fermion mass to
m f = TRH

p

Tn/mDM, in order to derive the strongest possible constraint (taking into account
the actual SM fermion masses would only weaken the derived constraint). With this substitu-
tion, together with our earlier assumption mφ ∼ TRH, we obtain a constraint from demanding
the momentum loss be below the Hubble rate,

λhφ ≲
102

λ

� mDM

108 GeV

�9/4
�

105 GeV
vφ

�2� TRH

104 GeV

��

10 GeV
Tn

�3/4

. (C.46)
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One can readily check that at lower pCM, the momentum loss becomes suppressed by m4
φ

and

eventually also by m4
h, due to the propagators. Thus no stronger constraint arises at lower pCM,

even accounting for the possibility of the m2
f > − t̂ in the numerator of Eq. (C.44). Similar

arguments hold if we instead begin with the assumption mφ ≲ mh (taking into account the
lower TRH this implies for consistency). Comparison of Eq. (C.46) to Eqs. (A.9) and (A.13)
shows compatibility with the rapid φ decay assumption. So we are safe.

Scattering with photons and gluons. — The population of photons and gluons does not
become Boltzmann suppressed at low T (although the gluons eventually become confined.)
We therefore also check whether scatterings of the DM with massless gauge bosons can lead to
non-negligible momentum loss at low T . Fermionic triangle diagrams in the broken EW phase
lead to the effective coupling of the Higgs to gluons via the effective operator

L∼ αs

vEW

hGa
µνGaµν . (C.47)

Here αs is the QCD fine structure constant and Ga
µν are the QCD field strength tensors. A

similar operator for the photons arises from fermionic triangle diagrams and loop diagrams
involving charged gauge bosons,

L∼ αEM

vEW

hFµνFµν , (C.48)

where Fµν is the electromagnetic (EM) field strength tensor.
After the φ − h mixing is taken into account, we find a differential cross section

dσ
d t̂
∼
α2

EM,sλ
2λ2

hφv4
φ

p2
CM

ŝ
t̂2

( t̂ −m2
φ
)2( t̂ −m2

h)
2

. (C.49)

The contribution to the vertex coming from the top triangle diagram is suppressed at large
momentum exchange, − t̂ > m2

t , by a factor ∼ m2
t /(2 t̂)log2(− t̂/m2

t ), which in turn suppresses
the above cross section for the gluon scattering. The EM counterpart, however, includes effects
of the longitudinal W bosons for which — in analogy with the heavy Higgs limit in the decay
h→ γγ [80]— we do not expect any suppression. Hence, to derive a sufficient constraint in
a simple manner, we use the cross section as written above also for pCM > mt . Considering
our benchmark values for which mφ > mh, and ignoring the finite mh for simplicity, we have
a momentum loss

dlog(pDM)
d t

∼
nγ,gα

2
EM,sλ

2λ2
hφv4

φ

p3
cmŝ3/2

�

log

�

1+
4p2

CM

m2
φ

�

−
4p2

CM

m2
φ
+ 4p2

CM

�

, (C.50)

where nγ (ng) is the photon (gluon) number density. Note, up to the two powers of the relevant
fine structure constant and suppressed loop factors, this is just the same as the scattering
with the gauge bosons, Eq. (C.42), which is also dominated by the longitudinal gauge boson
contribution at large momentum exchange. For the scattering with the massless gauge bosons,
however, we now no longer have the Boltzmann suppression of the bath particles, so the
constraint can be somewhat stronger. Using Eq. (C.50), together with Eqs. (C.12) and (C.13),
one finds a sufficient condition to avoid momentum loss given by

λhφ ≲
10−2

αEM,sλ

� mDM

108 GeV

�7/4
�

105 GeV
vφ

�2� TRH

104 GeV

��

10 GeV
Tn

�1/4

, (C.51)

where we have used that the strongest constraint comes from when pCM ≈ mφ (note for
the benchmark values this occurs before the QCD phase transition when the gluons con-
fine). Similarly weak constraints arise for areas of parameter space where we instead have
mh ≳ mφ ≈ TRH. So we are safe.
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Scattering with nucleons. — After QCD confinement, at TQCD ≈ 0.1 GeV, relativistic DM
can interact with the nucleons. The latter are non-relativistic as mN/TQCD > 3. In the plasma
frame we write the four-momenta as

pµ
DM
≡ p1 ≃ (

q

p2
DM
+m2

DM
, 0, 0, pDM) , (C.52)

pµN ≡ p2 ≃ (mN , 0, 0, 0) . (C.53)

The centre-of-mass energy squared is

ŝ ≃ m2
DM
+ 2pDMmN ≃ m2

DM
, (C.54)

as pDMmN < m2
DM

for T < TnTRH/mN which is always satisfied in our model for T ≤ TQCD. The
momentum in the centre-of-mass frame is

p2
CM
=
(ŝ− (mDM +mN )2)(ŝ− (mDM −mN )2)

4ŝ

≃
�

pDMmN

mDM

�2

≃
�

mDMmN T
TnTRH

�2

.
(C.55)

Now if pCM > mN the incoming DM probes the internal constituents of the nucleon and deep
inelastic scattering (DIS) is possible. This translates into a condition pDM > mDM, so DIS is
possible as long as DM is relativistic. Consider now the interaction of the DM with a parton
carrying fractional momentum p′p = x pCM, where 0< x < 1. In the DM-nucleon centre-of-mass
frame we have four-momenta of the DM and parton

p′
DM
≡ p′1 ≃ (

q

p2
CM
+m2

DM
, 0, 0, pCM) , (C.56)

p′p ≡ p′2 ≃ (x pCM, 0, 0,−x pCM) . (C.57)

We now go into the DM-parton COM frame, in which quantities will be denoted with a double
prime. Accordingly, the momenta are

p′′1 ≃ (
q

p2
CM
+m2

DM
, 0, 0, pCM) , (C.58)

p′′2 ≃ (x pCM, 0, 0,−x pCM) . (C.59)

The COM energy squared is

ŝ′′ = (p′1 + p′2)
2

≃ m2
DM
+ 2x pCMmDM (C.60)

≃ m2
DM
+ 2x pDMmN ,

where we have used that pCM ≪ mDM in our temperature/parameter range of interest.5 This
implies the boost from the prime to the doubly primed frame is a non-relativistic one. From
this we find

p′′
CM
≃ x

pDMmN

mDM

≃ x pCM . (C.61)

We consider elastic scatterings at the parton level

p′′3 = (
q

m2
DM
+ p′′

CM
2, 0, p′′

CM
sθ , p′′

CM
cθ ) , (C.62)

p′′4 = (p
′′
CM

, 0, −p′′
CM

sθ , −p′′
CM

cθ ) . (C.63)

5The kinematics is thus different to the usual terrestrial DIS, because in terrestrial experiments with electron
beams one has pCM > mN > me. In contrast, we have DM playing the role of the electron projectile, and the
hierarchy is instead mDM > pCM > mN .
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The Mandelstam variable at the parton level is

t̂ ′′ = 2m2
DM
− 2p′′1 · p

′′
3 = −2p′′

CM
(1− cθ ) . (C.64)

The momentum loss of the relativistic DM in the plasma frame, can be estimated from the
difference in its energy before/after scattering in said frame,

δpDM ≃ γvp′′
CM
(1− cθ ) = −

t̂ ′′

2xmN
, (C.65)

where γ = pCM/mN is the Lorentz factor of the boost from the plasma to the DM-parton COM
frame (at our level of approximation equal to the Lorentz factor for the boost from the plasma
to the DM-nucleon COM frame), and v ≃ 1 is the associated velocity.

The approximate momentum loss of the DM is therefore

dlog(pDM)
d t

(C.66)

≈
nN vMøl
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d x ,

where fp(x) is the parton distribution function for parton p, vMøl ≃ 1, and

nN ∼Max
�

(mN T )3/2e−mN/T , YBT3
�

, (C.67)

is the nucleon density (which is set by the baryon asymmetry, YB ≈ 10−10, at late times). It is
also useful to remember the relation,

∫ 1

0

∑

p

x fp(x)d x = 1 , (C.68)

coming from the physical requirement that the sum over the partonic momenta should equal
the total nucleon momentum. This implies

∫ 1
0 x fp(x)≤ 1, which we shall use below.

We now consider DM interacting with a quark in the nucleon. We take the cross section
from Eq. (C.44), with Mandelstam and momenta in the DM-parton COM frame. We substitute
this into Eq. (C.66) and find, assuming mh > mφ > m f , a momentum loss
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∼
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. (C.69)
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In deriving the above inequality, we have used the following trick: (i) we split the integral over
x into effective regions in which the momentum exchange falls above/below relevant mass
thresholds, (ii) we then chose x f f (x) to be a delta function which maximizes each individual
contribution. The true contribution is necessarily below this due to the condition (C.68). Thus
we avoid having to explicitly substitute in the parton distribution functions and arrive at the
bound in the final line. Then demanding our upper bound on the momentum loss be below
the Hubble rate, we find a sufficient condition on the coupling

λhφ ≲
102

λ

�

GeV
m f

�

� mDM

108 GeV

�� mφ
10 GeV

�

�

Tn

10 GeV

�1/2� TRH

10 GeV

�1/2
�

102 GeV
vφ

�2

, (C.70)

where the constraint comes from highest applicable temperature T ∼ 0.1 GeV. Note we have
chosen a somewhat different benchmark point, which for this process leads to a numerically
stricter constraint. Also note the constraints for parameter points with mφ > mh are not stricter
than the above. So we are safe.

Let us now consider DM interacting with a gluon in the nucleon. We can take our partonic
cross section to be as in Eq. (C.49). Consider again mh > mφ , then the momentum loss from
DIS is

dlog(pDM)
d t

∼
nNα

2
sλ

2λ2
hφv4

φ

ŝ3/2
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��
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2
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2λ2
hφv4

φ
pCM

ŝ3/2m4
h

, (C.71)

where we have used a similar trick as above. Thus a sufficient condition for the momentum
loss to be below Hubble reads

λhφ ≲
10
λ

� mDM

108 GeV

�

�

TRH

10 GeV

�1/2� Tn

10 GeV

�1/2
�

102 GeV
vφ

�2

, (C.72)

where the constraint again comes from the highest applicable temperature T ∼ 0.1 GeV. Sim-
ilar weak conditions arise for parameter space in which mφ > mh, so we are safe. Although
we have dealt with nucleons, scatterings with lighter QCD bound states such as pions would
in principle also occur. Around the QCD cofinement temperature, their number density is un-
suppressed compared the nucleons. However, the constraints we derived above would be very
weak even if we artificially set YB = 1. Hence, we expect also DIS with pions and other light
QCD bound states to give only weak limits, and hence no substantial DM momentum loss.

C.1.3 Direct coupling of the DM with the Higgs

Due to diagrams of the type shown in Fig. 7, after some running under the renormalization
group equations (RGEs), we expect also a portal coupling between the DM and the SM Higgs

L ⊃ −λhx|H|2X 2 , (C.73)

with λhx ∼ λhφ as λ ∼ 1. This interaction does not lead to any more stringent constraint on
the model than what has been considered above. For example, with regard to the diagrams
controlling t-channel scatterings with the EW gauge bosons and fermions, there is now no can-
cellation between propagators, but vEW enters in numerators instead of vφ . This compensates
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X

X

H

H†

φ

λhφλ

φ

Figure 7: One loop correction contributing to the beta function of the λhx coupling.

and leads to comparable or weaker limits. Let us anyway run through the most important
constraints.

Scattering with the EW Higgs. — The strongest constraint on scattering with the EW
Higgs again comes from the four point vertex. The differential cross section is given by

dσ
d t̂
∼
λ2

hx

p2
CM

ŝ
. (C.74)

The momentum loss is
dlog(pDM)

d t
∼

nhλ
2
hxpCM

ŝ3/2
. (C.75)

Assuming T ≳ mh, so that the Higgs number density in the plasma is not suppressed, we find
a resulting sufficient condition to avoid momentum loss

λhx ≲ 10−3
� mDM

108 GeV

�

�

104 GeV
TRH

�1/4�
10 GeV

Tn

�1/4

, (C.76)

covering both relativistic and non-relativistic DM in the COM frame. The t-channel diagram
mediating the DM scattering with h leads to much weaker limits.

Scattering with massive EW gauge bosons. — Consider now the scattering
X + V → X + V via a t-channel h propogator. The coupling (C.73) leads to a differential
cross section

dσ
d t̂
∼
λ2

hx

p2
CM

ŝ

( t̂2 − 4 t̂m2
V + 12m4

V )

( t̂ −m2
h)

2
. (C.77)

The strongest constraint comes from the∝ t̂2 term in the numerator, which from the momen-
tum loss leads to the same limit on λhx, Eq. (C.76), as for the scattering with the EW Higgs.
The term∝ m4

V eventually leads to a much weaker constraint. To see this, we calculate the
corresponding momentum loss

dlog(pDM)
d t

∼
nVλ

2
hxm4

V

p3
CM

ŝ3/2

�

log

�

1+
4p2

CM

m2
h

�

−
4p2

CM

m2
h + 4p2

CM

�

. (C.78)

Given the cut-off below T ∼ mV , together with our parameter space of interest which gives
pCM > mh at such temperatures, this translates into a very weak constraint

λhx ≲ 109
� mDM

108 GeV

�3
�

104 GeV
TRH

�3/2�
10 GeV

Tn

�3/2

, (C.79)

where we have used Eq. (C.13), so we are safe from scattering with the massive EW gauge
bosons.

24

https://scipost.org
https://scipost.org/SciPostPhys.14.3.033


SciPost Phys. 14, 033 (2023)

Scattering with fermions. — We now consider the λhx induced DM scattering with
fermions via t-channel Higgs exchange. We have

dσ
d t̂
∼
λ2

hxm2
f

p2
CM

ŝ

(4m2
f − t̂)

( t̂ −m2
h)

2
. (C.80)

The momentum loss is dominated by the∝ t̂ term in the numerator, because if − t̂ is below
the EW scale, there is a m4

h suppression due to the propagator. The momentum loss is given
by

dlog(pDM)
d t

∼
n f λ

2
hxm2
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p3
CM

ŝ3/2
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16p4
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CM
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h

��

. (C.81)

The strongest constraint occurs for the lowest applicable T , and largest applicable m f . This oc-
curs when

p

TnTRH coincides with m f around the EW scale, but still results in a weak sufficient
condition

λhx ≲ 103
� mDM

108 GeV

�2
�

104 GeV
TRH

�3/4�
10 GeV

Tn

�3/4

, (C.82)

covering both relativistic and non-relativistic DM in the COM frame. So we are safe from
scatterings with fermions.

Scattering with photons and gluons. — The differential cross section arising due to the
λhx coupling and the effective operator (C.47) or (C.48) is given by

dσ
d t̂
∼
α2

EM,sλ
2
hx

p2
CM

ŝ
t̂2

( t̂ −m2
h)

2
. (C.83)

The strongest constraints come from the regime pCM > mh, where the momentum loss is given
by

dlog(pDM)
d t

∼
nγ,gα

2
EM,sλ

2
hxpCM

ŝ3/2
. (C.84)

From this, one readily finds a sufficient condition to avoid momentum loss

λhx ≲
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, (C.85)

encompassing both the pCM > mDM and pCM < mDM regimes. So we are safe from scatterings
with gluons and photons.

Scattering with nucleons. — We can also find constraints on λhx from the DIS scatterings
with nucleons. The general formula for the momentum loss in this case has of course already
been derived above. First we considering DIS scatterings with quarks inside the nucleons.
Adapting our cross section in Eq. (C.80) to the DM-parton COM frame, and using Eq. (C.66)
we find a momentum loss

dlog(pDM)
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∼
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. (C.86)
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Demanding our upper bound on the momentum loss not exceed the Hubble rate, we find a
sufficient condition on the portal coupling

λhx ≲ 104

�

GeV
m f

�
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108 GeV

�

�
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10 GeV

�1/2� TRH

10 GeV

�1/2

, (C.87)

coming from T ∼ 0.1 GeV. So we are safe.

We can also check the constraint from DIS with the gluons. Adapting the cross section in
Eq. (C.83) to the DM-parton COM frame, we find a momentum loss

dlog(pDM)
d t

∼
nNα

2
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2
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ŝ3/2

(
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. (C.88)

This results in a constraint

λhx ≲ 10
� mDM
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�
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10 GeV
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. (C.89)

So we are safe.

C.2 Non-Relativistic DM

We now turn to considering scatterings when the DM is non-relativistic as measured in the
plasma frame. This corresponds to temperatures,

T ≲
TnTRH

mDM

(C.90)

≈ 1 MeV

�

108 GeV
mDM

�

�

TRH

104 GeV

��

Tn

10 GeV

�

.

We need to check whether these lead to a stronger constraints on the portal couplings than
what we have found above.

Consider first scattering with radiation. In our simplified treatment we take the particles
in the plasma frame to have four momenta

p1 = (mDM, 0, 0, mDM vDM) , (C.91)

p2 = (T, 0, 0,−T ) . (C.92)

Consequently we have
ŝ ≈ m2

DM
+ 2mDM T (1+ vDM) , (C.93)

and
pCM ≈ T (1+ vDM)≈ T . (C.94)

To go into the COM frame we must boost with a non-relativistic velocity

u=
pDM − T
mDM + T

≃
pDM

mDM

. (C.95)

In the COM frame, as before, we have four-momenta

p′1 = (
q

m2
DM
+ p2

CM
, 0, 0, pCM) , (C.96)

p′2 = (pCM, 0, 0, −pCM) , (C.97)

p′3 = (
q

m2
DM
+ p2

CM
, 0, pCMsθ , pCMcθ ) , (C.98)

p′4 = (pCM, 0, −pCMsθ , −pCMcθ ) . (C.99)
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Following the scattering, boosting back into the plasma frame via a Gallilean transformation
one finds

δpDM = −
t̂

2pCM

, (C.100)

where we have again used t̂ = −2p2
CM
(1− cθ ). We therefore estimate the momentum loss as

dlog(pDM)
d t

�

�

�

bath
≈

nbathvMøl

pDM

∫ 0

−4p2
CM

d t̂
dσ
d t̂
δpDM (C.101)

≈ −
nbathvMøl

2pDM pCM

∫ 0

−4p2
CM

d t̂
dσ
d t̂

t̂ . (C.102)

(As pCM ≈ T and vMøl ≃ 1, this is the same as Eq. (C.17) but differs to Eq. (C.18) for relativistic
DM.)

Scattering with photons. — We can immediately apply our results to non-relativistic DM
scattering with photons (for all our parameter space DM is still relativistic at the QCD phase
transition). For the λhφ mediated process we can use the cross section in Eq. (C.49) with
appropriate replacement of the strong force associated quantities with their electromagnetic
analogues. The momentum loss is then

dlog(pDM)
d t

∼
nγα

2
EMλ

2λ2
hφv4

φ
p5

CM

pDM ŝm4
hm4

φ

. (C.103)

Demanding this be below the Hubble rate implies the easily satisfied

λhφ ≲
1016

λ

� mDM

108 GeV

�9/2
�

105 GeV
vφ

�2�
104 GeV

TRH

�

�

10 GeV
Tn

�3

, (C.104)

in the appropriate non-relativistic regime pCM ≃ T . In deriving the above, we have set T to its
largest value in the non-relativistic regime, T ≃ TnTRH/mDM, and assumed mφ ≃ TRH. Because
pCM≪ m4

h, m4
φ

, the resulting limit is much weaker than for relativistic DM, Eq. (C.51).
The picture repeats. For the λhx mediated process we can use the cross section (C.83)

adapted for the photons. The momentum loss is given by

dlog(pDM)
d t

∼
nγα

2
EMλ

2
hxp5

CM

pDM ŝm4
h

, (C.105)

which again gives a very weak constraint

λhx ≲ 1018
� mDM

108 GeV

�9/2
�

104 GeV
TRH

�3�
10 GeV

Tn

�3

. (C.106)

Thus we are safe from scatterings with photons.

Scattering with relativistic fermions. — We first consider non-relativistic DM scattering
with relativistic fermions (for our standard benchmark parameter values the DM turns non-
relativistic at T a little above the electron mass). For the λhφ mediated process we can use the
cross section (C.44). The momentum loss is

dlog(pDM)
d t

∼
n f λ

2λ2
hφv4

φ
m2

f p3
CM

pDM ŝm4
hm4

φ

. (C.107)
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We can then substitute m f = me as this is the only SM fermion of relevance in this regime. By
demanding the momentum loss be below the Hubble rate find

λhφ ≲
1014

λ

� mDM

108 GeV

�7/2
�

105 GeV
vφ

�2�
10 GeV

Tn

�2

, (C.108)

where the strongest constraint again comes from T ≃ TnTRH/mDM, and we have set mφ ∼ TRH.
For the λhx mediated process we instead use the cross section (C.80) to find the momentum
loss,

dlog(pDM)
d t

∼
n f λ

2
hxm2

f p3
CM

pDM ŝm4
h

. (C.109)

The resulting constraint is

λhx ≲ 1016
� mDM

108 GeV

�7/2
�

104 GeV
TRH

�2�
10 GeV

Tn

�2

, (C.110)

which does not pose any problems.

Scattering with non-relativistic fermions. — We can also consider scattering with non-
relativistic fermions. In the current context this means electrons and nucleons. As we shall
see below, the low pCM here means we can take the DM to be effectively interacting with the
entire nucleon rather than probing its internal structure. The number density of the fermions
is taken approximately as

n f ∼Max
�

(m f T )3/2e−m f /T , YBT3
�

, (C.111)

where the electron density at low T is approximately related to the baryon asymmetry, YB, in
order for the Universe to be net EM charge neutral. In our simplified treatment we take the
particles in the plasma frame to have four momenta

p1 ≈ (mDM, 0, 0, mDM vDM) , (C.112)

p2 = (m f , 0, 0, 0) , (C.113)

as the SM fermion momentum is always negligible compared to pDM. Here we have

ŝ ≈ m2
DM
+m2

f + 2mDMm f , (C.114)

and

pCM ≃
m f

mDM

pDM ≃
mDMm f T

TnTRH

. (C.115)

As before we have

δpDM = −
t̂

2pCM

, (C.116)

and the approximate momentum loss

dlog(pDM)
d t

�

�

�

bath
≈

n f vMøl

pDM

∫ 0

−4p2
CM

d t̂
dσ
d t̂
δpDM (C.117)

≈ −
n f vMøl

2pDM pCM

∫ 0

−4p2
CM

d t̂
dσ
d t̂

t̂ . (C.118)
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The relative velocity is approximately

vMøl ∼Max





mDM T
TnTRH

,

√

√

√
T

m f



 . (C.119)

The first term is simply the speed of the DM in the plasma frame and the second the fermion
speed. The latter follows from the usual non-relativsitic relation with the kinetic energy of the
fermion, taken to be∼ T (as these are still kinetically coupled to the photon bath). Throughout
this regime the electrons are always faster than the DM while the nucleons are slower down
to keV scales, even assuming our extremal benchmark parameter point.

Using our previously derived cross sections for the scattering with fermions, we find the
momentum loss for the λhφ dependent scattering,

dlog(pDM)
d t

∼
n f λ

2λ2
hφv4

φ
y2

f m4
f pCM vMøl

pDM ŝm4
hm4

φ

, (C.120)

where y f ≡ 1 (∼ 0.2) for electrons (nucleons) as the latter are composite and one must
include the effective Higgs-nucleon coupling [81]. For the λhx dependent scattering we have
momentum loss

dlog(pDM)
d t

∼
n f λ

2
hx y2

f m4
f pCM vMøl

pDM ŝm4
h

. (C.121)

From these, the strictest bounds on the couplings come from scatterings with the nucleons at
the highest temperatures for which DM is non-relativistic in the plasma frame T ≃ TnTRH/mDM.
They read

λhφ ≲
1011

λ

� mDM

108 GeV

�2
�

105 GeV
vφ

�2
� mφ

104 GeV

�2
�

104 GeV
TRH

�1/2�
10 GeV

Tn

�1/2

, (C.122)

and

λhx ≲
1013

λ

� mDM

108 GeV

�2
�

104 GeV
TRH

�1/2�
10 GeV

Tn

�1/2

. (C.123)

We are therefore safe.

C.3 Summary of the DM scattering constraints

We thus conclude our examination of momentum loss. The strongest constraint in general
came from hard X +φ→ X +φ scatterings at T ≈ mφ ∼ TRH, given after a careful derivation
in Eq. (C.21), and given via an approximation in the main paper as Eq. (11). If φ is complex,
scattering with the angular mode must also be accounted for TRH ≳ 10Tn, compare (C.30)
and (C.21). The strongest constraints on the portal couplings, in contrast, arose from hard
scatterings with the EW Higgs X +h→ X +φ, X +h→ X +h in the regime of relativistic DM in
the plasma frame. These limits were given in Eqs. (C.37) and (C.76) and are easily compatible
with the couplings required for rapid φ decay following the PT, given in Eqs. (A.9), (A.10),
(A.12), and (A.13).
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Figure 8: Heavy non-cold DM from fast bubble walls in the plane of vφ vs DM mass
mDM, for Tn < Tinfl. The heavy DM is efficiently produced by fast bubble walls (outside
of the green area), compatible with Lyman-α bound (outside of the blue area - here
taking mWDM > 3 keV), and kinetically decoupled from the bath (outside of the orange
area). Bounds from kinetic equilibration via scatterings of DM with light radial and
angular modes σ and a, Eqs. (C.23) and (C.30), have also been indicated. Future
21-cm reach is shown with a dashed blue line. Amount of supercooling is shown with
dotted purple lines. At fixed DM abundance, the decrease of the DM-scalar mixing λ
(from left to right) leads to an increase of the phase transition scale vφ which implies
a longer redshift of the DM momentum, and results in colder DM. In red, the yield YDM

in Eq. (9) is insufficient to explain DM. In brown, the Bodeker&Moore criterium [37]
PLO > Λvac is satisfied and the acceleration of bubble walls is stopped by thermal
friction (we chose ga = 20 and cvac = 0.01). In gray (right panel), the reheating
temperature is larger than the DM freeze-out temperature TRH > TFO and DM goes
back into thermal equilibrium (we assumed the maximal annihilation cross-section
allowed by unitarity).

D Analytic Derivation of the Coupling and Mass Scales

In the following, it will be useful to remember that the temperature of matter-radiation equal-
ity, the DM mass, and yield are related by

YDMmDM =
3
4

g∗(T
eq
γ )

g∗s(T
eq
γ )

T eq
γ − YBmN (D.1)

≃ 0.54 T eq
γ ≃ 0.43 eV . (D.2)

D.1 The quartic coupling

In order to have NCDM, the coupling λ cannot be arbitrarily small. Requiring v(teq), Eq. (10),
be above some reference value vlim we find

λ≳
� vlim

10−4

�1/2 � cvac

10−2

�1/4 � g∗
102

�5/12�TRH

Tn

��

TRH

Tinfl

�

, (D.3)

where we have used the DM yield, Eq. (9), to relate temperatures and mass scales appearing in
the expressions. The temperature ratios appearing above are at their minima, unity, precisely
at the vacuum dominated border Tn = TRH = Tinfl, so we immediately get a lower bound on λ.
The coupling λ is of course limited from above by the usual arguments from perturbitivity.
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D.2 The DM mass scale

To avoid a return to kinetic equilibrium following the PT, we impose Eq. (11), which gives a
lower bound on the DM mass

mDM > 8.0× 107 GeV

× g2/3
φ
λ2/3

� cvac

10−2

�1/6 � g∗
102

�1/6
 

M2/3
Pl T eq 1/3

γ

1.7× 109 GeV

!

�

TRH

Tn

�1/3� TRH

Tinfl

�2/3

. (D.4)

Here we have explicitly included the factor (M2
Pl

T eq
γ )1/3 ≃ 1.7× 109 GeV, to show the scaling

with these cosmological quantities. The temperature ratios appearing are at least one, and λ
is bounded from below, so we obtain a lower bound on the DM mass.

Conversely, we can use the anti-adiabaticity condition, coming from Eqs. (5) and (8), to
find an upper bound on the DM mass

mDM <
9.4× 108 GeV

λ2/3

×
� cvac

10−2

�1/3� 30
AbubβH

�2/3
 

M2/3
Pl T eq 1/3

γ

1.7× 109 GeV

!

�

Tn

TRH

�1/3

, (D.5)

where the temperature ratio is now at most unity. Thus from Eqs. (D.5), (D.4),
(D.3), together with perturbativity of the coupling, we arrive at the DM mass scale
mDM ∼ (0.1− 1) (M2

Pl
T eq
γ )1/3 ∼ (108 − 109) GeV.

D.3 The scale of the VEV

As shown in Fig. 8, fast bubble walls produce NCDM if the VEV of the scalar driving the PT is
around the electroweak scale vφ ∼ 0.1 TeV. In order to explain this coincidence, we can also
derive this scale analytically. Avoiding kinetic equilibrium gives a lower bound

vφ > 110 GeV
g1/3
φ

λ2/3

� g∗
102

�5/12 � cvac

10−2

�1/12
 

M1/3
Pl T eq2/3

γ

1.2 GeV

!

�

TRH

Tn

�5/3� TRH

Tinfl

�1/3

. (D.6)

The requirement for anti-adiabaticity gives an upper bound

vφ <
360 GeV
λ4/3

� g∗
102

�1/2 � cvac

10−2

�1/6� 30
AbubβH

�1/3
 

M1/3
Pl T eq 2/3

γ

1.2 GeV

!

�

TRH

Tn

�4/3

. (D.7)

The range of the VEV in the NCDM region — which is centered around Tn ∼ Tinfl — is therefore
roughly vφ ∼ (102 − 103)(MPlT

eq 2
γ )1/3 ∼ (102 − 103) GeV. Indeed, in the case Tn ≥ Tinfl the

range of the VEV can only be tightened by considering some Tn > Tinfl. While in the case
Tn < Tinfl, we can restrict the range of the VEV by requiring the DM to have some non-negligible
v(teq) = vlim, which implies a given temperature ratio TRH/Tn. For a lower bound, we thus have

vφ > 115 GeV× g1/3
φ
λ

�

102

g∗

�5/18�
10−2

cvac

�1/3�
10−4

vlim

�5/6
 

M1/3
Pl T eq2/3

γ

1.2 GeV

!

. (D.8)

And for an upper bound we have

vφ < 370 GeV

�

102

g∗

�1/18�
10−2

cvac

�1/6�
10−4

vlim

�2/3�
30

AbubβH

�1/3
 

M1/3
Pl T eq2/3

γ

1.2 GeV

!

. (D.9)
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Thus conclusively showing that the range of the VEV in the current NCDM region is approxi-
mately vφ ∼ (102 − 103)(MPlT

eq2
γ )1/3 ∼ (102 − 103) GeV.

On the other hand, ignoring the requirement of being close to the current NCDM bound,
we can find where the bounds (D.6) and (D.7) intersect, in the case Tn < Tinfl. This gives the
absolute upper bound,

vφ ≲
50 TeV

g4/3
φ
λ4

� g∗
102

�5/6 � cvac

10−2

�1/2� 30
AbubβH

�5/3
 

M1/3
Pl T eq2/3

γ

1.2 GeV

!

, (D.10)

which corresponds to the peak of the allowed region in Fig. 8.
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