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Abstract

We study and classify Lie algebras, homogeneous spacetimes and coadjoint orbits
(“particles”) of Lie groups generated by spatial rotations, temporal and spatial transla-
tions and an additional scalar generator. As a first step we classify Lie algebras of this type
in arbitrary dimension. Among them is the prototypical Lifshitz algebra, which motivates
this work and the name “Lifshitz Lie algebras”. We classify homogeneous spacetimes of
Lifshitz Lie groups. Depending on the interpretation of the additional scalar generator,
these spacetimes fall into three classes:

1. (d + 2)-dimensional Lifshitz spacetimes which have one additional holographic
direction;

2. (d+ 1)-dimensional Lifshitz–Weyl spacetimes which can be seen as the boundary
geometry of the spacetimes in (1) and where the scalar generator is interpreted as
an anisotropic dilation;

3. and (d+ 1)-dimensional aristotelian spacetimes with one scalar charge, including
exotic fracton-like symmetries that generalise multipole algebras.

We also classify the possible central extensions of Lifshitz Lie algebras and we discuss the
homogeneous symplectic manifolds of Lifshitz Lie groups in terms of coadjoint orbits.
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1 Introduction

Since the 1980s, numerous examples of condensed matter systems without a quasiparticle
description have been found [1,2]. These systems cannot be described using traditional Landau-
Fermi liquid theory; therefore, these non-Fermi liquids, such as cuprate superconductors [3–
5], heavy fermion systems near a quantum phase transition [6–8] and graphene in metallic
states [9–11] require a new set of tools for understanding their thermodynamic and transport
properties [12,13]. In particular, there is great interest in understanding the universal behaviour
of certain physical properties near quantum critical points [13–15]. For example, in [16–18], it
was shown that resistivity grows linearly with temperature in heavy fermion materials. For
systems with Lifshitz invariance, Lorentz invariance is broken, and we observe an anisotropic
scaling between time and space,

t→ λzt and x → λx , (1)

where z ̸= 1. However, away from these critical points, there is the option that Lorentz
invariance is restored, corresponding to z = 1 above.

Over the last two decades, holography has developed into a novel tool for investigating
the physical properties of condensed matter systems without a quasiparticle description. A
wealth of literature has appeared under the title AdS/CMT, which seeks to build a holographic
dictionary between the strongly-coupled quantum field theories underlying these systems and
gravitational theories (see, e.g., [1,19–22]). This work has led to exciting connections between
black hole physics and the thermal physics of strongly interacting condensed matter [22], new
ways (see, e.g., [23]) of calculating entanglement entropy in Lifshitz field theories [24,25] and
searching for universal properties of non-relativistic field theories [19]; it has also led to fields
of research such as holographic superconductors [26] and holographic hydrodynamics [27].

Tailoring this AdS/CMT toolkit to the strongly-coupled systems near criticality mentioned
previously, we arrive at a field of research known as Lifshitz holography, so-called due to
the anisotropic Lifshitz scaling present in the field theory at the boundary. The gravitational
theories dual to these Lifshitz field theories are built upon Lifshitz spacetimes, where the
scaling symmetry of the boundary field theory is geometrised as the presence of the radial
dimension [19,28]. This transformation of the scaling symmetry into a radial direction has a
nice interpretation, which was highlighted in [29]. Namely the Lie algebra of Killing vector
fields (KVFs) of the bulk geometry, which is isomorphic to the Lifshitz algebra, becomes the
Lie algebra of conformal Killing vector fields (CKVFs) of the boundary geometry. We can view
this transformation from KVFs to CKVFs as an artefact of the boundary geometry being the
quotient of the bulk geometry with respect to the Killing vector field corresponding to the radial
direction.

To see this transformation, consider the (d+ 2)-dimensional Lifshitz metric [28] (with unit
radius of curvature), with exponent z, given in local coordinates (r, t, x) ∈ (0,∞)× R× Rd by

g = −
dt2

r2z
+
dr2

r2
+
dx2

r2
. (2)
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Here, dx2 is the euclidean metric on Rd. For generic values of the exponent z, the Lie algebra
of Killing vector fields of the above metric has dimension d(d+ 1)/2 + 2 and is spanned by

ξJab = −xa∂b+xb∂a , ξPa
= ∂a , ξH = ∂t and ξD = r∂r+x

a∂a+zt∂t , (3)

which satisfy the (opposite) Lie brackets to those of the Lifshitz Lie algebra spanned by
Jab = −Jba, Pa, H and D:

[Jab, Jcd] = δbcJad − δacJbd − δbdJac + δadJbc ,

[Jab,Pc] = δbcPa − δacPb ,

[D,Pa] = Pa ,

[D,H] = zH ,

(4)

with no other nonzero Lie brackets. It is clear that the Killing vector fields above span every
tangent space, so that the Lie algebra is transitive and hence the Lifshitz metric is (locally)
homogeneous. In fact, it is not hard to show that the spacetime is homogeneous. There are two
special values of the exponent for which the metric admits additional Killing vector fields. As
mentioned previously, if z = 1, then the Lorentz boost invariance of the metric is restored and
(2) describes the Poincaré patch of AdSd+2. In this case, the space is maximally symmetric,
admitting a Lie algebra of isometries of dimension (d+ 2)(d+ 3)/2. The other special value is
z = 0. With this value for the exponent, equation (2) describes a conformally flat lorentzian
metric on the product of a timelike line with (d+ 1)-dimensional hyperbolic space.

Notice that the Killing vector ξD is the only vector field with a ∂r component. The boundary
at r = 0 is diffeomorphic to the hypersurface r = ϵ for some small ϵ > 0, and the integral
curves of ξD hit the hypersurface r = ϵ at precisely one point. In other words, the hypersurface
can be identified with the space of orbits of ⟨ξD⟩; that is, the hypersurface can be identified
with the quotient of the homogeneous Lifshitz spacetime by ⟨ξD⟩. This quotient space is what
we will call a (d+ 1)-dimensional Lifshitz–Weyl spacetime in this paper.

This story is analogous, albeit not precisely, to conformal geometry. One can think of an
orientable conformal n-dimensional manifold as one whose frame bundle admits a reduction
to the similitude group CO(n) ∼= SO(n)×R+. Here, we describe an anisotropic version of such
a structure: namely, a (d+ 1)-dimensional manifold with a CO(d)-structure. This modification
allows us to break the tangent bundle of such a manifold as a direct sum of a rank-d vector
bundle and a line bundle, and the dilatation subgroup of CO(d) assigns a priori different
weights to these bundles.

In this work we provide the first systematic study of Lifshitz Lie algebras, spacetimes and
particles, as well as a first step in the classification of exotic aristotelian symmetries. We will
now provide a summary of these results.

2 Summary and overview of the results

This work can roughly be separated into three parts:

1. a Lie algebraic part (Section 3) devoted to the classification of Lifshitz Lie algebras;

2. a geometric part (Sections 4 and 5) devoted to the classification of homogeneous space-
times of Lifshitz Lie groups;

3. and a symplectic part (Section 6) which is devoted to the partial classification of homo-
geneous symplectic manifolds of Lifshitz Lie groups.

We will now provide a largely self-contained overview and summary of the main results of this
paper and refer to the following sections for the proofs and further details.

4

https://scipost.org
https://scipost.org/SciPostPhys.14.3.035


SciPost Phys. 14, 035 (2023)

2.1 Lie algebras

We start with an algebraic classification of Lifshitz Lie algebras, which by definition are Lie
algebras which contain a rotational so(d) subalgebra spanned by J under which the remaining
generators transform as one vector P and two scalars H and D. This definition indeed leads to
the prototypical Lifshitz symmetries but, as we will see, also to other interesting algebras and
spacetimes which do not necessarily share the same interpretation. The definition fixes the Lie
brackets

[Jab, Jcd] = δbcJad − δacJbd − δbdJac + δadJbc ,

[Jab,Pc] = δbcPa − δacPb ,

[Jab,H] = 0 ,

[Jab,D] = 0 .

(5)

The remaining undetermined Lie brackets are only subject to the Jacobi identity. Up to iso-
morphism there are seven classes of Lifshitz Lie algebras, which are listed in Table 1 for all
d ⩾ 2. Two of the classes consist of two inequivalent Lie algebras distinguished by a sign and
one of the classes is a one-parameter (z) family, as in equation (1). This Lie algebra, denoted
az3 here, is the prototypical Lifshitz algebra and it motivates our generalisations. The details of
the classification are given in Section 3.1, 3.2, 3.3 and 3.4. Their interrelations are visualised
in Figure 1 and interpreted geometrically in Section 4.3.

Table 1: Lifshitz Lie algebras in d ⩾ 2.

Label d Nonzero Lie brackets in addition to [J, J] = J and [J,P] = P Comments

a1 ⩾ 2 iso(d)⊕ R2

a2 ⩾ 2 [D,H] = H
az3 ⩾ 2 [D,H] = zH [D,Pa] = Pa z ∈ R
a±4 ⩾ 2 [Pa,Pb] = ±Jab so(d, 1)⊕ R2, so(d+ 1)⊕ R2

a±5 ⩾ 2 [D,H] = H [Pa,Pb] = ±Jab
a6 2 [Pa,Pb] = ϵabH
a7 2 [D,H] = 2H [D,Pa] = Pa [Pa,Pb] = ϵabH

One might argue that it would be natural to restrict our attention to Lifshitz Lie algebras
where none of the scalar generators, D or H, is central. Under such a restriction we would
ignore, as the reader is free to do, the Lie algebras a1, az=0

3 , a±4 and a6. We nevertheless
keep them for completeness and uniformity, but we will see that they are mostly (rather
trivial) generalisations of the aristotelian algebras and spacetimes without a particularly close
connection to the prototypical Lifshitz algebra and spacetime.

A natural algebraic question, especially with our later applications in mind, is if the Lie
algebras admit nontrivial central extensions. Some do, as we show in Section 3.5 and as
summarised in Table 6.

2.2 Homogeneous spacetimes

In Section 4 we classify homogeneous spacetimes of the Lifshitz Lie algebras. These are smooth
manifolds (with temporal and spatial directions) on which the Lifshitz Lie groups act transitively.
Intuitively, the spacetimes look the same at every point, i.e., there are no preferred points. Well-
known homogeneous spacetimes that therefore also have these properties are the lorentzian
Minkowski and (anti) de Sitter spacetimes.

Homogeneous spaces of a Lie group G are described infinitesimally by Klein pairs (g, h)
consisting the Lie algebra g of G and a Lie subalgebra h integrating to a closed subgroup of G.
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Therefore a practical way to classify homogeneous spaces of G is to classify the Klein pairs (g, h).
In practice this means searching for Lie admissible subalgebras h of the Lie algebras in Table 1.
It is only once we realise the Lie algebra as vector fields in a homogeneous space that we may
assign a geometric interpretation to the generators in g, be it as rotations, translations in both
space and time or (generalised) dilatations. We now discuss the three kinds of homogeneous
spacetimes of Lifshitz Lie groups that we discuss in this paper.

2.2.1 (d+ 2)-dimensional Lifshitz spacetimes

Here we quotient by the rotational part of the algebra, i.e., h is spanned by J. This leads to
(d+ 2)-dimensional spacetimes of which, loosely speaking and following the discussion in the
Introduction, one direction could be interpreted as being holographic. These homogeneous
Lifshitz spacetimes are summarised in Table 2 and there is one for each of the Lie algebras of
Table 1. The details can be found in Section 4.1.

Table 2: (d+2)-dimensional homogeneous Lifshitz spacetimes for d ⩾ 2. S is the static
aristotelian spacetime, Ed is the d-dimensional euclidean space, TS the torsional static
aristotelian spacetime, Hd is d-dimensional hyperbolic space, Sd is the d-dimensional
sphere, G is the simply-connected two-dimensional Lie group whose Lie algebra is
[D,H] = H and N is the simply-connected three-dimensional Heisenberg group. See
Table 5 for more details on the aristotelian geometries.

L# a d Homogeneous space

1 a1 ⩾ 2 S × R ∼= Ed × R2

2 a2 ⩾ 2 Ed ×G
3z=0 az=0

3 ⩾ 2 TS × R
3z̸=0 az ̸=0

3 ⩾ 2 Lifshitz spacetime
4± a±4 ⩾ 2 Hd × R2, Sd × R2

5± a±5 ⩾ 2 Hd ×G, Sd ×G
6 a6 2 N× R
7 a7 2 N fibration over R

They all share the same invariants of low rank: namely, H and D, their dual one-forms η, δ,
as well as the degenerate metric π2 and degenerate co-metric P2. As we discuss in Section 5.1
one can use these invariants to construct nondegenerate metrics, in particular we explicitly
recover the prototypical Lifshitz metric (2).

There is another class of homogeneous spaces that we can interpret as spacetimes of the
Lifshitz algebras. When we quotient by one additional scalar generator we obtain (d + 1)-
dimensional spacetimes and they are the subject of Section 4.2. Here we must discriminate
between two cases depending on whether or not the Lifshitz Lie group acts effectively.1 When
the action is effective, we interpret all symmetries as spacetime symmetries and we are led to
what we term Lifshitz–Weyl spacetimes.

On the other hand, if the action is not effective, then one of the scalars does not act on the
spacetime. These spacetimes are aristotelian and we may interpret the additional generator as
a scalar charge, such as, for example, an electric charge. If the Lie algebra does not split as
a direct sum of an aristotelian algebra and the one-dimensional subalgebra spanned by the
scalar charge, we call it an exotic spacetime symmetry.

1An action is effective if every non-identity element of the group moves some point.
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2.2.2 (d+ 1)-dimensional Lifshitz–Weyl spacetimes

For Lifshitz–Weyl spacetimes we quotient by one additional generator (D in our notation), to
obtain a (d+ 1)-dimensional homogeneous space. The name of these spacetimes originates
from the interpretation of D as a (generalised) dilatation and we have summarised them in
Table 3.

Table 3: Effective (d + 1)-dimensional homogeneous Lifshitz–Weyl spacetimes in
d ⩾ 2. The bases are such that the stabiliser subalgebra h is spanned by J and D.
These spacetimes admit a canonical torsion-free invariant connection which is either
flat or not (as denoted in the final column).

LW# a d Nonzero Lie brackets in addition to [J, J] = J and [J,P] = P Geometry

1 a2 ⩾ 2 [D,H] = H z = ∞, flat
2z az3 ⩾ 2 [D,H] = zH [D,P] = P z, flat
3± a±5 ⩾ 2 [D,H] = H [P,P] = ±J z = ∞, not flat
4 a7 2 [D,H] = 2H [D,P] = P [P,P] = H z = 2, not flat

These homogeneous spaces can be roughly interpreted as “going to the holographic bound-
ary” with respect to the (d+ 2) Lifshitz spacetimes based on the same Lie algebra. As described
in Section 5.2 the invariants of Lifshitz–Weyl spacetimes are rotational invariant tensors on M
which transform according to some weight. We have summarised these conformal weights in
Table 7.

2.2.3 (d+ 1)-dimensional aristotelian spacetimes with scalar charge

For the (d + 1)-dimensional aristotelian spacetimes we again quotient by rotations and one
scalar charge. In this case this scalar acts trivially on the spacetime and is therefore not
interpretable as a dilatation or any other spacetime symmetry, but as a scalar charge Q.
Consequently, the underlying geometry is not Lifshitz but aristotelian. Aristotelian geometries
permit rotational, spatio-temporal translational symmetries, but no boosts nor dilations (see [30]
for a classification of aristotelian Lie algebras and spacetimes). We have summarised all of
them in Table 4 where one can see that that they fall into two classes.

The first class consists of Lifshitz Lie algebras which are isomorphic to a direct sum
⟨J,H,P⟩ ⊕ RQ of an aristotelian Lie algebra and the one-dimensional Lie algebra spanned by
the scalar charge Q. The scalar charge decouples from the spacetime algebra and we think of
such symmetries as trivial.

The second class is more interesting. It consists of Lifshitz Lie algebra where Q is acted on
nontrivially by the spacetime symmetries. Hence although Q still acts trivially on the spacetime,
its nontrivial interaction with the spacetime symmetries promotes it to an “exotic spacetime
symmetry” in an underlying aristotelian geometry. We call these spacetime-dependent charges
and we say they are exotic because the “usual” (non-exotic) internal charges decouple from
the spacetime symmetries. In some cases, e.g., E4, the scalar charge is a central extension,
but not in all, e.g., E1. It is interesting to note that the only consistent way to get exotic
symmetries in generic dimension is via a charge in the [H,Q] commutator. We provide further
context concerning exotic spacetime symmetries and their connection to multipole algebras
and fractons in the concluding Section 7.

2.3 Lifshitz particles

Finally, in Section 6, we analyse (classical) Lifshitz particles, equivalently the elementary
systems with Lifshitz symmetry. These are homogeneous symplectic manifolds of a Lifshitz
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Table 4: (d+ 1)-dimensional aristotelian spacetimes with one scalar charge in d ⩾ 2.
The bases are such that the stabiliser subalgebra h is spanned by J and Q. In all cases
the underlying spacetime geometry is aristotelian. As denoted in the first column
some of them are exotic symmetries (E1 to E5) where the charge is influenced by the
aristotelian symmetries. The remaining cases are such that the Lie algebra is a direct
sum of an aristotelian algebra and the charge. S is the static aristotelian spacetime,
TS the torsional static aristotelian spacetime, Hd is d-dimensional hyperbolic space,
Sd is the d-dimensional sphere and N is the simply-connected three-dimensional
Heisenberg group. See Table 5 for more details on the aristotelian geometries.

E# a d Nonzero Lie brackets in addition to [J, J] = J and [J,P] = P Geometry

a1 ⩾ 2 S
1 a2 ⩾ 2 [H,Q] = Q S

az=0
3 ⩾ 2 [H,P] = P TS

2z ̸=0 az ̸=0
3 ⩾ 2 [H,Q] = zQ [H,P] = P TS

a±4 ⩾ 2 [P,P] = ±J Hd × R, Sd × R
3± a±5 ⩾ 2 [H,Q] = Q [P,P] = ±J Hd × R, Sd × R

a6 2 [P,P] = H N
4 a6 2 [P,P] = Q S
5 a7 2 [H,Q] = 2Q [H,P] = P [P,P] = Q TS

Lie group. They can be thought as the mechanistic description of elementary particles. The
geometric quantisation of these symplectic manifolds give rise (as is well known for Poincaré
and Galilei groups) to unitary irreducible representations of the group. As described in more
detail in Section 6.1 a simply-connected homogeneous symplectic manifold of a Lie group G is
the universal cover of a coadjoint orbit of G or possibly of a one-dimensional central extension.
One is therefore led to study the central extensions of the Lie algebras, see Section 3.5, and
the structure of the coadjoint orbits. It is important to emphasise that coadjoint orbits are an
intrinsic property of the Lie group and only once a choice of homogeneous spacetime is made
can they be interpreted as the space of motions of classical particles in a spacetime.

We construct the coadjoint actions for all cases and highlight the structure of the coadjoint
orbits. We put special emphasis on the prototypical case az ̸=0

3 and provide the necessary
information to perform the classification, if so desired.

3 Lifshitz Lie algebras

In this section we classify Lifshitz Lie algebras, but first a definition.2

Definition 1. A Lifshitz Lie algebra is a (d(d+ 1)/2 + 2)-dimensional real Lie algebra g with
basis Jab = −Jba,Pa,H,D, for a,b = 1, . . . ,d, such that Jab span a Lie subalgebra r ∼= so(d),
under which Pa transforms as a vector and H and D transform as scalars.

2In [31], one of us introduced the notion of a “generalised Lifshitz algebra” to be a graded kinematical Lie
algebra together with the grading element. The Lifshitz Lie algebras in the present paper will be seen to be graded
aristotelian Lie algebras together with the grading element. This means that the “generalised Lifshitz algebras”
in [31] are a special class of boost-extended Lifshitz Lie algebras, which will be the subject of a follow-up paper.
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Unpacking this definition, we see that all such Lie algebras share the following Lie brackets:

[Jab, Jcd] = δbcJad − δacJbd − δbdJac + δadJbc ,

[Jab,Pc] = δbcPa − δacPb ,

[Jab,H] = 0 ,

[Jab,D] = 0 ,

(6)

and the additional Lie brackets not involving Jab are subject only to the Jacobi identity.
If d = 1 then there are no rotations and hence any three-dimensional Lie algebra is Lifshitz.

These were classified by Bianchi [32] and we will not discuss them further in this paper, except
briefly when discussing the associated spacetimes. It will be convenient to break the discussion
of the d > 1 algebras into three cases: d = 2, d = 3 and d > 3. For the following it will be
useful to recall the aristotelian spacetimes.

The classification of aristotelian Lie algebras and aristotelian homogeneous spacetimes was
done in [30], which we recall in Table 5. The notation is as in [30, Table 2], except that we
have introduced N (as in “Nilmanifold”) for the Heisenberg group which in [30] was called
“A24”. Since every aristotelian Lie algebra gives rise to a unique aristotelian Lie pair, this Table
provides both the Lie algebras and the classification of simply-connected aristotelian spacetimes
up to isomorphism.

Table 5: Aristotelian Lie algebras and simply-connected homogeneous (d + 1)-
dimensional aristotelian spacetimes. The bases are such that the subalgebra h of the
spacetimes is spanned by J.

Name d Nonzero Lie brackets in addition to [J, J] = J and [J,P] = P Comments

S ⩾ 0 static
TS ⩾ 1 [H,P] = P torsional static
R×Hd ⩾ 2 [P,P] = J

R× Sd ⩾ 2 [P,P] = −J

N 2 [P,P] = H Heisenberg group

3.1 Lifshitz algebras with d > 3

If d > 3, then the so(d)-equivariance of the brackets — equivalently, the Jacobi identity
involving Jab — implies that the brackets involving D are given by

[D,H] = aH+ bD and [D,Pa] = λPa . (7)

In particular, D and H span a two-dimensional Lie subalgebra. Up to isomorphisms, there are
precisely two such Lie algebras and we can therefore assume that [D,H] = aH, where a ∈ {0, 1}.
In any case we see that [D,−] is diagonal and hence D is a grading element. Since D does
not appear in the RHS of any Lie brackets, we conclude that D is a grading element for the
aristotelian Lie subalgebra spanned by the remaining generators: Jab,Pa,H.

3.2 Lifshitz algebras with d = 3

Now let d = 3. The so(3)-equivariance of the Lie brackets restricts their form to

[H,Pa] = αϵabcJbc + βPa ,

[Z,Pa] = γϵabcJbc + δPa ,

[D,H] = aH ,

[Pa,Pb] = εϵabcPc + ηJab .

(8)
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The terms with coefficients α,γ, ε are unique to d = 3. We will show that they can be set to
zero, which extends the results of d > 3 also to d = 3. We start with the observation that by
shifting Pa 7→ Pa + ε

4ϵabcJ
bc, we can (and will) set ε = 0 without loss of generality. Since we

are in d = 3, it is more convenient to change basis to Jab = −ϵabcJ
c, where Ja = −1

2ϵabcJ
bc.

In this way, [Ja, Jb] = ϵabcJc, et cetera. Independently of the [D,H] bracket, the [H,P,P] Jacobi
forces α = 0 and the [D,P,P] Jacobi forces γ = 0. Since α = γ = 0, we see that the possible
new terms in d = 3 do not arise and hence the results for d > 3 also apply to d = 3. In other
words, Ja,Pa,H span an aristotelian Lie algebra and D is a grading element.

3.3 Lifshitz algebras with d = 2

We now consider the case d = 2. Now Jab = −ϵabJ spans r ∼= so(2), which is abelian. The
(non-zero) brackets are now

[J,Pa] = ϵabPb ,

[Pa,Pb] = ϵab(αJ+ βH+ γD) ,

[D,H] = aJ+ bH+ cD ,

[D,Pa] = δPa + ξϵabPb ,

[H,Pa] = θPa +ψϵabPb .

(9)

The first observation is that we can set ξ = ψ = 0 without loss of generality by redefining
D 7→ D−ξJ and H 7→ H−ψJ. Having done that, there are three Jacobi identities which need to
be checked: [H,P,P], [D,P,P] and [D,H,P]. (The [P,P,P] Jacobi identity is identically satisfied
because there are only two Pa.) Since [D,−] and [H,−] act diagonally on Pa, [[D,H],−] must
act trivially. This says that J cannot appear in [D,H] and hence a = 0. In addition, we see that
bθ+ cδ = 0. Since a = 0, D,H span a two-dimensional Lie algebra and hence we can change
basis so that [D,H] = bH where b ∈ {0, 1}. Therefore again we see that D is a grading element
for the aristotelian Lie algebra spanned by J,Pa,H.

3.4 Summary

In summary, we have seen that every Lifshitz Lie algebra is obtained by adjoining a grading
element to an aristotelian Lie algebra. It is a now simple matter to determine the possible
gradings of the aristotelian Lie algebras in Table 5.

Theorem 1. Every Lifshitz Lie algebra is isomorphic to precisely one of the Lie algebras in Table 1.

Proof. As explained above, we need to determine the possible gradings of the aristotelian
Lie algebras. These Lie algebras are in one-to-one correspondence with the homogeneous
aristotelian spacetimes in Table 5. We go through them in turn, using as labels the names of
the corresponding spacetimes.

(S) Any grading is possible: [D,P] = λP and [D,H] = µH. We distinguish three cases:

1. If λ = µ = 0, we obtain a1 in Table 1, which is simply the direct sum s⊕RD, where
s is the static aristotelian Lie algebra.

2. If λ = 0 but µ ̸= 0, we may rescale D 7→ µ−1D and we are left with [D,P] = 0
and [D,H] = H, which could be thought of as the case z = ∞ of the Lifshitz Lie
algebra (4). We label it a2 in Table 1.

3. If λ ̸= 0, we may rescale D 7→ λ−1D so that [D,P] = P and, letting z := µ/λ,
[D,H] = zH. This is the Lifshitz algebra in equation (4), which we label az3 in
Table 1.
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(TS) In this case [D,H] = 0 and [D,P] = λP. We must distinguish two cases, according to
whether or not λ = 0.

1. If λ = 0, we may rename H↔ D to arrive at a Lie algebra isomorphic to az=0
3 .

2. If λ ̸= 0, we may rescale D 7→ λ−1D and arrive at [D,P] = P and then change basis
H 7→ H−D, so that [H,P] = 0. The resulting Lie algebra is also isomorphic to az=0

3 .

(R×Hd) Here [D,P] = 0, so we have [D,H] = µH and we must distinguish two cases depending
on whether or not µ = 0. As in the previous case, µ = 0 says D is central and gives a
direct sum Lie algebra, whereas if µ ̸= 0, we may rescale D so that [D,H] = H. The
former is labelled a+4 in Table 1 and the latter is labelled a+5 .

(R× Sd) This case is similar to the above and leads to the Lie algebras a−4 and a−5 in Table 1.

(N) The only compatible grading is [D,P] = λP and [D,H] = 2λH. If λ = 0 we have the Lie
algebra a6 in Table 1 and if λ ̸= 0, we may rescale D 7→ λ−1D so that [D,P] = P and
[D,H] = 2H, which is Lie algebra a7.

The Lifshitz Lie algebras are related via contractions which are depicted in Figure 1. Since
the homogeneous Lifshitz spacetimes are in one-to-one correspondence with the Lifshitz Lie
algebras, that figure also depicts limits between the spacetimes. Every node in the figure
represents an isomorphism class of Lifshitz Lie algebras, with the red nodes only arising when
d = 2. The thin edges correspond to contractions between the algebras, whereas the thick
edge is the continuum az3. We see that limz→±∞ az3 = a2, so that z should really be thought of
parametrising a circle. We can make this manifest by defining z = cot θ

2 with θ ∈ [0, 2π]. There
are two distinguished points in this circle: θ = 2 cot−1 2, corresponding to z = 2, and θ = 0
(equivalently, θ = 2π) which corresponds to z = ∞.

a1

a2

a±4

a±5

a2
3

a6

a7

az3

Figure 1: Contractions between Lifshitz Lie algebras.

(The red nodes and their corresponding arrows only exist if d = 2.)

3.5 Central extensions

As we will recall in Section 6, homogeneous symplectic manifolds (elementary particles in
the language of Souriau [33]) of a Lie group G are given locally by coadjoint orbits of G or
possibly of a one-dimensional central extension of G. As a first step in the determination of
homogeneous symplectic manifolds of the Lifshitz Lie groups, we will work out the central
extensions of the Lifshitz Lie algebras in Table 1.
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Central extensions of a Lie algebra g are classified by the second Chevalley–Eilenberg
cohomology group H2(g) (with values in the trivial one-dimensional representation). Since a
Lifshitz Lie algebra g contains a rotational subalgebra r which acts reducibly on the Chevalley–
Eilenberg complex and trivially on the cohomology, H2(g) can be calculated from the (typically
much smaller) subcomplex consisting of r-invariant cochains.

For the purposes of this paper, namely the determination of homogeneous symplectic
manifolds of a Lifshitz Lie group there is one additional subtlety. Not every central extension of
the Lie algebra integrates to a central extension of the Lie group G; although they always do if
we were to take G to be simply connected. For example, it follows from [J,D] = Z, that the
adjoint action of J on D integrates to

Adexp(θJ)D = exp(θ adJ)D = D+ θZ , (10)

which is not periodic in θ. Hence it is not a central extension of the Lie group G where
the rotational group is SO(2); although it is a central extension of the universal covering
group where the “rotation” subgroup is R. As explained briefly in Section 6, we restrict3 to
compact rotations and therefore these central extension are not relevant for the determination of
homogeneous symplectic manifolds with symmetry groupG. This means we can actually restrict
ourselves not just to the r-invariant subcomplex, but even further to the r-basic subcomplex
which calculates the relative cohomology H2(g; r). We choose to calculate H2(g) below, since
this may be of independent interest, but later in the paper we shall only be interested in some
of these central extensions.

By introducing a suitable parameter, we may treat the Lie algebras a1, a2 and az3 together.
Similarly we may treat a±4 and a±5 together and also a6 and a7 together. The results are
summarised in Table 6, where central extensions in H2(g) which are not in H2(g; r) have been
parenthesised and we shall ignore them in the remainder of the paper.

Table 6: Nontrivial central extensions of the Lifshitz Lie algebras in Table 1. This
table shows the central extensions of the Lifshitz algebras g. The dimension of the
cohomology group H2(g) depends in some cases on the dimension d of the Lie algebra
g. For compact rotations, the central extensions in parentheses do not integrate to
the group and are related to the relative cohomology H2(g; r), where r is spanned by
the rotations.

g d dimH2(g) dimH2(g, r) Nonzero Lie brackets of central extensions

a1 ⩾ 3 1 1 [D,H] = Z
2 4 2 [D,H] = Z [Pa,Pb] = ϵabZP ([J,D] = ZD) ([J,H] = ZH)

a2 ⩾ 3 0 0
2 2 1 [Pa,Pb] = ϵabZP ([J,D] = ZD)

az ̸=0
3 ⩾ 3 0 0

2 1 0 ([J,D] = ZD)

az=0
3 ⩾ 3 1 1 [D,H] = Z

2 3 1 [D,H] = Z ([J,D] = ZD) ([J,H] = ZH)

a±4 ⩾ 2 1 1 [D,H] = Z
a±5 ⩾ 2 0 0
a6 2 1 0 ([J,D] = ZD)

a7 2 1 0 ([J,D] = ZD)

3Let us however note that we could envision interesting physics for the case where one drops this restriction: for
example, Lifshitz anyons in d = 2 as in [34].
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3.5.1 Central extensions of a1, a2 and az3

We introduce a parameter w ∈ {0, 1} and modify the Lie brackets by [D,P] = wP. We can then
treat all three Lie algebras simultaneously with a1 corresponding tow = z = 0, a2 corresponding
to w = 0, z = 1 and az3 corresponding to w = 1. Any other choice of w, z is related to one of
these by rescaling the generator D.

Let g (depending on w, z) be one of these Lie algebras. A basis for g is Jab,Pa,H,D and
the canonical dual basis for g∗ is λab,πa,η, δ. We will use the notation ⟨· · · ⟩ to mean the
real span of the enclosed vectors, so that g = ⟨Jab,Pa,H,D⟩ and g∗ =

〈
λab,πa,η, δ

〉
. We let

r = ⟨Jab⟩. We are interested in the following fragment of the r-invariant subcomplex of the
Chevalley–Eilenberg complex

(g∗)r (∧2g∗)r (∧3g∗)r ,∂ ∂ (11)

where
(g∗)r =

〈
η, δ, 1

2ϵabλ
ab

〉
, (12)

and

(∧2g∗)r =
〈
η∧ δ, 1

2ϵabλ
ab ∧ δ, 1

2ϵabλ
ab ∧ η,

1
2ϵabπ

a ∧ πb, 1
2ϵabcλ

ab ∧ πc, 1
8ϵabcdλ

ab ∧ λcd
〉

, (13)

and where a term involving the Levi-Civita ϵ symbol only appears in the relevant dimension.
The Chevalley–Eilenberg differential on generators is given by

∂λab = −λac ∧ λcb , ∂πa = −λab ∧ πb −wδ∧ πa , δη = −zδ∧ η and ∂δ = 0 . (14)

We see that the space of 2-coboundaries B2(g)r = ∂(g∗)r ⊂ (∧2g∗)r is given by

B2(g)r =

{
⟨δ∧ η⟩ , if z ̸= 0 ,

0 , if z = 0 .
(15)

We calculate ∂ : (∧2g∗)r → (∧3g∗)r to obtain

∂(δ∧ η) = 0 ,

∂(1
2ϵabλ

ab ∧ δ) = 0 ,

∂(1
2ϵabλ

ab ∧ η) = zϵabλ
ab ∧ δ∧ η ,

∂(1
2ϵabπ

a ∧ πb) = −2wϵabπa ∧ πb ∧ δ ,

∂(1
2ϵabcλ

ab ∧ πc) = −2ϵabcλab ∧ πc ∧ δ ,

∂(1
8ϵabcdλ

ab ∧ λcd) = −2ϵabcdλae ∧ λeb ∧ λcd .

(16)

We see that the space of 2-cocycle Z2(g)r = ker∂ : (∧2g∗)r → (∧3g∗)r is given by

Z2(g)r =



〈
δ∧ η, 1

2ϵabπ
a ∧ πb, 1

2ϵabλ
ab ∧ δ, 1

2ϵabλ
ab ∧ η

〉
, if w = z = 0 ,〈

δ∧ η, 1
2ϵabπ

a ∧ πb, 1
2ϵabλ

ab ∧ δ
〉

, if w = 0 and z ̸= 0 ,〈
δ∧ η, 1

2ϵabλ
ab ∧ η, 1

2ϵabλ
ab ∧ δ

〉
, if w = 1 and z = 0 ,〈

δ∧ η, 1
2ϵabλ

ab ∧ δ
〉

, if w = 1 and z ̸= 0 .

(17)

Therefore we see that H2(g) = Z2(g)r/B2(g)r behaves quite differently in d = 2 and d ⩾ 3.
The latter is given by

H2(g)d⩾3 =

{
⟨[δ∧ η]⟩ , if z = 0 ,

0 , if z ̸= 0 ,
(18)
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where here and in the sequel square brackets denotes the cohomology class of the enclosed
cocycle. We see that for d ⩾ 3, a2 and az ̸=0

3 do not admit any nontrivial central exten-
sions, whereas a1 and az=0

3 admit a one-dimensional nontrivial central extension with bracket
[D,H] = Z.

If d = 2 things are more complicated:

H2(g)d=2 =



〈
[1
2ϵabλ

ab ∧ δ]
〉

, if w = 1 and z ̸= 0 ,〈
[1
2ϵabλ

ab ∧ δ], [1
2ϵabπ

a ∧ πb]
〉

, if w = 0 and z ̸= 0 ,〈
[δ∧ η], [1

2ϵabλ
ab ∧ δ], [1

2ϵabλ
ab ∧ η]

〉
, if w = 1 and z = 0 ,〈

[δ∧ η], [1
2ϵabλ

ab ∧ δ], [1
2ϵabλ

ab ∧ η], [1
2ϵabπ

a ∧ πb]
〉

, if w = z = 0 .

(19)

So that if d = 2, the Lifshitz Lie algebra az ̸=0
3 admits a nontrivial central extension with

additional bracket [J,D] = ZD; the Lie algebra a2 admits a two-dimensional space of nontrivial
central extensions with brackets [J,D] = ZD and [Pa,Pb] = ϵabZP; the Lie algebra az=0

3 admits
a three-dimensional space of nontrivial central extensions with brackets [D,H] = Z, [J,D] = ZD

and [J,H] = ZH; and a1 admits a four-dimensional space of nontrivial central extensions with
brackets [D,H] = Z, [J,D] = ZD, [J,H] = ZH and [Pa,Pb] = ϵabZP.

3.5.2 Central extensions of a±4 and a±5

We treat these two Lie algebras simultaneously by introducing a parameter z ∈ {0, 1} and
defining the bracket [D,H] = zH. If z = 0 we are in a±4 and if z = 1 we are in a±5 . The bases for
g and g∗ are as in the previous section and the spaces of r-invariant 1- and 2-cochains are as
before and given in equations (12) and (13), respectively. The Chevalley–Eilenberg differential
is of course different and given on generators by

∂λab = −λac ∧ λcb ∓ πa ∧ πb , ∂πa = −λab ∧ πb , ∂η = −zδ∧ η and ∂δ = 0 . (20)

So that the space of 2-coboundaries is now given by

B2(g)r =
〈
zδ∧ η, 1

2ϵabπ
a ∧ πb

〉
. (21)

We calculate the differential on the 2-cochains and obtain

∂(δ∧ η) = 0 ,

∂(1
2ϵabλ

ab ∧ δ) = ∓1
2ϵabπ

a ∧ πb ∧ δ ,

∂(1
2ϵabλ

ab ∧ η) = ∓1
2ϵabπ

a ∧ πb ∧ η+ 1
2zϵabλ

ab ∧ δ∧ η ,

∂(1
2ϵabπ

a ∧ πb) = 0 ,

∂(1
2ϵabcλ

ab ∧ πc = ∓1
2ϵabcπ

a ∧ πb ∧ πc ,

∂(1
8ϵabcdλ

ab ∧ λcd) = −1
4ϵabcdλ

a
e ∧∧λeb ∧ λcd ∓ 1

4ϵabcdπ
a ∧ πb ∧ λcd ,

(22)

so that the space of 2-cocycles is

Z2(g)r =
〈
η∧ δ, 1

2ϵabπ
a ∧ πb

〉
. (23)

In summary, the cohomology is then

H2(g) =

{
⟨[η∧ δ]⟩ , if z = 0 ,

0 , if z ̸= 0 .
(24)

Hence a±4 admits a one-dimensional non-trivial central extension with bracket [D,H] = Z and
a±5 admits none.
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3.5.3 Central extensions of a6 and a7

Finally, we introduce a parameter w ∈ {0, 1} in the brackets [D,P] = wP and [D,H] = 2wH
so that if w = 0 we are in a6 and if w = 1 we are in a7. We are in d = 2 here, so that the
r-invariant 1- and 2-cochains are

(g∗)r =
〈
η, δ, 1

2ϵabλ
ab

〉
, (25)

and
(∧2g∗)r =

〈
η∧ δ, 1

2ϵabλ
ab ∧ δ, 1

2ϵabλ
ab ∧ η, 1

2ϵabπ
a ∧ πb

〉
. (26)

The action of the differential on generators is now

∂λab = 0 , ∂η = −2wδ∧ η− 1
2ϵabπ

a ∧ πb ,

s∂πa = −λab ∧ πb −wδ∧ πa and ∂δ = 0 . (27)

The 2-coboundaries are then

B2(g)r =
〈1

2ϵabπ
a ∧ πb + 2wδ∧ η

〉
. (28)

We calculate the differential on r-invariant cochains to be

∂(η∧ δ) = −1
2ϵabπ

a ∧ πb ∧ δ ,

∂(1
2ϵabλ

ab ∧ η) = wϵabλ
ab ∧ δ∧ η+ 1

2λ
ab ∧ πa ∧ πb ,

∂(1
2ϵabλ

ab ∧ δ) = 0 ,

∂(1
2ϵabπ

a ∧ πb) = −wϵabπ
a ∧ πb ∧ δ .

(29)

We see that the space of 2-cocycles is given by

Z2(g)r =
〈1

2ϵabπ
a ∧ πb + 2wδ∧ η, 1

2ϵabλ
ab ∧ δ

〉
, (30)

so that the cohomology is given by

H2(g) =
〈
[1
2ϵabλ

ab ∧ δ]
〉

. (31)

Therefore both a6 and a7 admit a one-dimensional nontrivial central extension with bracket
[J,D] = ZD.

4 Spatially isotropic homogeneous Lifshitz spacetimes

In this section we classify the homogeneous spacetimes associated to the Lifshitz algebras in
Table 1. As discussed in the introduction, we are interested in two kinds of homogeneous
spacetimes. Firstly, we have the (d+ 2)-dimensional Lifshitz spacetimes which are described
infinitesimally by Klein pairs of the form (a, r), where a is a Lifshitz algebra and r ∼= so(d)

is the rotational subalgebra, which are the subject of Section 4.1. Secondly, we have the
(d+1)-dimensional Lifshitz–Weyl spacetimes whose Klein pairs are now (a, h), where a is again
a Lifshitz algebra, but now h ∼= co(d) = so(d)⊕ R is spanned by the rotations and one one of
the scalars in the span of D,H. This is the subject of Section 4.2.

15

https://scipost.org
https://scipost.org/SciPostPhys.14.3.035


SciPost Phys. 14, 035 (2023)

4.1 Homogeneous Lifshitz spacetimes

We now list the possible Klein pairs (a, r) where a is one of the Lie algebras of Table 1 and
r ∼= so(d) is the subalgebra spanned by Jab. Clearly these are indexed by the Lie algebras
a in Table 1 themselves. We may easily identify the corresponding homogeneous spaces,
partially from the classification in [30, Appendix A]. The results are tabulated in Table 2. The
notation is such that Hd is d-dimensional hyperbolic space, Sd is the d-dimensional sphere, Ed

is the d-dimensional euclidean space, S is the static aristotelian spacetime, TS the torsional
static aristotelian spacetime, N is the simply-connected three-dimensional Heisenberg group
(a three-dimensional aristotelian spacetime prosaically labelled A24 in [30]) and G is the
simply-connected two-dimensional Lie group whose Lie algebra is [D,H] = H. For d = 1, since
r = 0, the Klein pairs are simply the Lie algebras themselves, which are the Bianchi Lie algebras.
The spacetimes are the simply-connected three-dimensional Lie groups, as in Bianchi’s original
paper [32].

The simply-connected four-dimensional homogeneous Lifshitz spacetime with Klein pair
(a7, r) may be identified with the simply-connected Lie group G whose Lie algebra g is an
extension-by-derivation of the three-dimensional Heisenberg Lie algebra n, so fitting into an
exact sequence

0 n g RD 0 . (32)

The group G is foliated by copies of the Heisenberg group N and fibres over the real line.

4.2 Homogeneous Lifshitz–Weyl and aristotelian spacetimes with scalar charge

We now list the possible Klein pairs (a, h) where a is one of the Lie algebras of Table 1 and
h = r⊕RS is the subalgebra spanned by Jab and a scalar S in the span of D and H. These Klein
pairs describe homogeneous Lifshitz–Weyl spacetimes or aristotelian spacetimes with one scalar
charge. For each Lie algebra a in Table 1, we determine the possible one-dimensional scalar lines
(spanned by S) up to the action of J-preserving automorphisms of a; that is, automorphisms of
a which are the identity on r. For d = 1, the Klein pairs were already classified (from the point
of view of kinematical spacetimes) in [30, Section 3.4] and further studied in [35].

4.2.1 Klein pairs associated to a1

The J-preserving automorphisms are given by

P 7→ µP , H 7→ aH+ bD and D 7→ cH+ dD , (33)

where µ ̸= 0 and
(
a b

c d

)
is invertible. Clearly, we can take any S to D via an automorphism.

The resulting Klein pair is not effective, since D spans an ideal both of a and of h. Quotienting
by this ideal, we obtain a Klein pair (s, r) where s is the aristotelian static Lie algebra and r

is the rotational subalgebra. As shown in [30], this is the Klein pair of the static aristotelian
spacetime S.

4.2.2 Klein pairs associated to a2

The J-preserving automorphisms are given by

P 7→ µP , H 7→ aH and D 7→ D+ cH , (34)

where µ,a ̸= 0 and c ∈ R. Suppose that S = αH + βD. Then under such an automorphism,
S 7→ (aα + βc)H + βD. If β ̸= 0, then we can choose c so that S = βD and if β = 0, then
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S = αH. In other words, we can take h = r⊕ RD or h = r⊕ RH. The latter Klein pair is not
effective, since H spans an ideal of both a and h. Quotienting by this ideal gives the Klein
pair of the aristotelian static spacetime S. The former Klein pair is effective and describes a
homogeneous flat Lifshitz spacetime with z = ∞.

4.2.3 Klein pairs associated to az3

Here the J-preserving automorphisms are given by

P 7→ µP , H 7→ aH and D 7→ D+ cH , (35)

where µ,a ̸= 0 and c ∈ R, and as before we have two choices of scalar lines up to automorph-
isms: h = r⊕RD or h = r⊕RH. The latter Klein pair is not effective, since H spans an ideal of
both a and h. Quotienting by this ideal gives the Klein pair of the aristotelian torsional static
spacetime TS. The former Klein pair is effective and describes a homogeneous flat Lifshitz–Weyl
spacetime with scaling exponent z ̸= 0.

4.2.4 Klein pairs associated to a±4

The J-preserving automorphisms are given by

P 7→ ±P , H 7→ aH+ bD and D 7→ cH+ dD , (36)

where
(
a b

c d

)
is invertible. We may take S = D without loss of generality, resulting in a

non-effective Klein pair describing Hd × R or Sd × R.

4.2.5 Klein pairs associated to a±5

The J-preserving automorphisms are given by

P 7→ ±P , H 7→ aH and D 7→ D+ cH , (37)

where a ̸= 0 and c ∈ R. There are two possibilities, namely S = H and S = D. If S = H, the
resulting Klein pair is non-effective and quotienting by the ideal generated by H gives either
Hd × R or Sd × R. If we take S = D then we get an effective Klein pair corresponding to a
generalised Lifshitz spacetime with z = ∞, but this time with curvature.

4.2.6 Klein pairs associated to a6

The J-preserving automorphisms are given by

P 7→ λP , H 7→ λ2H and D 7→ aD+ bH , (38)

with a, λ nonzero. As before, there are two possibilities: S = D and S = H. Neither case is
effective, quotienting by the ideal generated by D we obtain the Heisenberg group N as an
aristotelian spacetime, whereas quotienting by the ideal generated by H we obtain the static
aristotelian spacetime S.

4.2.7 Klein pairs associated to a7

The J-preserving automorphisms are given by

P 7→ λP , H 7→ cH and D 7→ aD+ bH , (39)

where a, c, λ are nonzero. As in the previous case, there are two possibilities: S = H and S = D.
If we take S = H, the resulting Klein pair is not non-effective and quotienting by the ideal
generated by H recovers the torsional static aristotelian spacetime TS. Taking S = D we get an
effective Klein pair describing a Lifshitz–Weyl geometry with z = 2 and nonzero curvature.
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4.2.8 Summary

We summarise this discussion in Tables 3 and 4, which list the homogeneous Lifshitz–Weyl and
aristotelian spacetimes with scalar charge, respectively. We list the Klein pairs (a, h) and we
have changed basis so that the scalar S in h is denoted D in the case it acts effectively or Q in
case it does not.

The Lifshitz–Weyl spacetimes are all both reductive and symmetric. Being symmetric
homogeneous spaces, they have a canonical torsion-free invariant connection, which is flat in
the first two cases (LW1 and LW2z) and not flat in the next two (LW3± and LW4).

4.3 Geometric interpretation of the limits

Having understood the nature of the homogeneous Lifshitz spacetimes, we may now give a
geometric interpretation of some of the Lie algebra contractions in Figure 1. The contractions
a±5 → a2 are flat limits in that the round metric on Sd and the hyperbolic metric onHd flatten to
become the euclidean metric on Ed. This interpretation also holds for the (d+ 1)-dimensional
homogeneous aristotelian spacetimes with scalar charge. For the (d+ 1)-dimensional Lifshitz–
Weyl spacetimes, the interpretation is slightly different. In this case the flat limit refers to the
flatness of the canonical torsion-free invariant connection.

The contractions a±5 → a±4 and a2 → a1 are such that the nonabelian Lie group G becomes
abelian. They may be understood geometrically as an aristotelian limit of the Lifshitz geometries:
essentially in this limit the action of the scale transformations becomes trivial. A similar
interpretation can be given to the contraction a7 → a6, where the four-dimensional Lie group
G, which is a semidirect product R+ ⋉ N becomes a direct product R+ × N again via the
trivialisation of the scale transformations.

5 Geometrical properties of the spacetimes

5.1 Invariants of Lifshitz spacetimes

The Lifshitz spacetimes in Table 2 are all homogeneous spaces of the form G/H where
H ∼= SO(d). Weyl [36, Theorem 2.11.A] proved that the primitive tensor invariants of SO(d),
out of which any other invariant tensor can be written, are the Kronecker δab and the Levi-Civita
ϵab···c. Therefore all homogeneous Lifshitz spacetimes in Table 2 share the same invariant
tensors. In low rank, they are given by vector fields H and D, their dual one-forms η, δ, as well
as π2 = δabπ

aπb and P2 = δabPaPb. In addition we have the corresponding volume forms.
Notice that each of these spaces admits invariant metrics of signatures (d + 2, 0), (d + 1, 1)
and (d, 2); although perhaps it is the lorentzian case which is the most relevant in the present
context. Even in this case, there is of course a choice: e.g., π2 + 2ηδ and π2 + δ2 − η2 give rise
to different invariant lorentzian metrics.

We will now show that the Lifshitz metric (2) is indeed one of the invariant metrics of the ho-
mogeneous Lifshitz spacetime L3z. Parametrising the group element as σ(t, x, ρ) = etH+x·PeρD

we can calculate the pull back of the (left-invariant) Maurer-Cartan form ϑ (for the details of
this computation see, e.g., [35, Section 3.6.])

σ∗ϑ = e−zρdtH+ e−ρdx · P+ dρD = θ . (40)

Since the canonical invariant connection vanishes it is also equivalent to the soldering form
θ. We can now use the soldering form to map the invariant tensors to the tangent space
of the manifold, e.g., θ(η) = e−zρdt, θ(δ) = dρ, and θ(πa) = e−ρdxa. We can now write
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−η2 + δ2 + π2 in coordinates

−e−2zρdt2 + dρ2 + e−2ρdx · dx , (41)

which with the change of coordinates r = eρ leads us to the Lifshitz metric (2).

5.2 Invariants of Lifshitz–Weyl spacetimes

For the (d + 1)-dimensional Lifshitz–Weyl spacetimes in Table 3 – that is, those (d + 1)-
dimensional spaces corresponding to effective Klein pairs – the natural invariants are not
tensors but what we could term conformal classes of tensors. These Lifshitz–Weyl spacetimes
are quotients of the Lifshitz spacetimes in Table 2 by the one-parameter subgroup generated
(in the notation of Table 3) by D. As homogeneous spacetimes, the Lifshitz–Weyl spacetimes
are diffeomorphic to G/H, where H ∼= CO(d) ∼= SO(d)× R+ is the d-dimensional similitude
group. In particular, they are base manifolds for a principal H-bundle for which all the tensor
bundles are associated bundles. For example, the tangent bundle of a Lifshitz–Weyl spacetime
M is associated to the reducible representation of CO(d) given by (V ⊗ Lλ)⊕ (S⊗ Lµ), where
V and S are the vector and scalar representations of SO(d), respectively, and Lw is the one-
dimensional representation of the subgroup of dilatations of weight w. Here, λ and µ are the
D-weights of Pa and H, respectively. The natural invariant tensors on M are then rotational
invariants which transform according to some weight. The result of Weyl [36] quoted above
says that the rotational invariant tensors of low rank are the vector H, the dual one-form
η, the symmetric rank-2 covariant tensor π2 and the symmetric bivector P2. In Table 7 we
tabulate the “conformal” weights of these low-rank invariant tensors for the Lifshitz–Weyl
spacetimes. It follows from this table that the only such spacetime with a conformal structure
(either lorentzian π2 − η2 or riemannian π2 + η2) is LW2z=1, corresponding to conformally
compactified Minkowski spacetime, since L2z=1 is the Poincaré patch of AdS and LW2z=1 is
the quotient by the dilatations, which as mentioned in the introduction is diffeomorphic to the
conformal boundary.

Table 7: Conformal weights of low-rank invariants of homogeneous Lifshitz–Weyl
spacetimes.

Weights
LW# H η P2 π2

1 1 −1 0 0
2z z −z 2 −2
3± 1 −1 0 0
4 2 −2 2 −2

5.3 Invariants of the aristotelian spacetimes

Since the action of the charge Q on the geometry is not effective the invariants are the same
as for the aristotelian spacetimes without the scalar charge. In particular they admit all the
aforementioned invariants H, η, P2 and π2 as true invariants, not just as conformal ones.
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6 Lifshitz particles

We now shift attention to another class of homogeneous manifolds of Lifshitz Lie groups, the Lie
groups of the Lifshitz Lie algebras in Table 1. They are not to be interpreted as spacetimes, but
as elementary systems (loosely, particles) with Lifshitz symmetry; that is, symplectic manifolds
admitting a transitive action of a Lifshitz group via symplectomorphisms. Let us briefly review
the relationship between homogeneous symplectic manifolds and coadjoint orbits of certain
central extensions. A more detailed description motivated by the present paper can be found
in [37].

6.1 Coadjoint orbits

Let G be a connected Lie group acting transitively on a simply-connected symplectic manifold
(M,ω) via symplectomorphisms. If we let g ∈ G also denote the diffeomorphism of M induced
by g, then this condition is simply g∗ω = ω. As shown by Souriau [33], associated to such data
there is a moment map µ :M→ g∗, with g the Lie algebra of G, defined up to the addition of a
constant element of g∗ and such that it is G-equivariant: intertwining between the G-action on
M and an affinisation of the coadjoint action of G on g∗; that is, for all g ∈ G and p ∈M,

µ(g · p) = Ad∗
g µ(p) + θ(g) , (42)

where θ : G→ g∗ is a symplectic group cocycle. In other words, θ obeys the cocycle condition

θ(g1g2) = θ(g1) + Ad∗
g1
θ(g2) , (43)

and its derivative deθ : g → g∗ at the identity is such that

⟨(deθ)(X), Y⟩ = − ⟨(deθ)(Y),X⟩ . (44)

If θ were a coboundary, so that θ(g) = µ0 − Ad∗
g µ0 for some constant µ0 ∈ g∗, then we could

redefine the moment map: µ 7→ µ ′ = µ− µ0, so that now

µ ′(g · p) = Ad∗
g µ

′(p) (45)

is equivariant relative to the (linear) coadjoint action. If θ is cohomologically nontrivial, then
it defines a one-dimensional central extension Ĝ of G (see [37, Theorem 15]) and the affine
action of G on g∗ is now essentially the coadjoint representation of Ĝ on ĝ∗. It then follows
that M is the universal cover of a coadjoint orbit of Ĝ.

One-dimensional central extensions4 of G are classified by the smooth group cohomology
group H2(G). The celebrated van Est theorem [38] (see also [39]) implies that H2(G) is
isomorphic to the relative Lie algebra cohomology H2(g, k), where k is the Lie algebra of a
maximal compact subgroup of G. Hence to determine (up to coverings) the homogeneous
symplectic manifolds of G we need to determine the coadjoint orbits of every one-dimensional
central extension of G whose van Est derivative defines a class in H2(g, k).

As an illustration of how coadjoint orbits arise from particle motion, let us consider briefly
geodesic motion in the Lifshitz spacetime (Md+2,g) where g is the metric tensor in equation (2).
For generic values of z (here z ̸= 0, 1), g admits Killing vector fields given by equation (3)
generating an action of the Lifshitz group G with Lie algebra g = az3 on M by isometries. Let
γ : I → M be an affinely-parametrised geodesic of the Levi-Civita connection defined by g.
Every such geodesic γ defines an element αγ ∈ g∗; that is, a linear map αγ : g → R given by
X 7→ g(γ̇, ξX), which is a constant along the geodesic. If we let a ∈ G, let ϕa :M→M denote

4Strictly speaking with kernel ∼= R, but the topology of the kernel is of no consequence.
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the corresponding diffeomorphism. Then ϕa ◦ γ : I → M is also an affinely parametrised
geodesic and it is not hard to show that αϕa◦γ = Ad∗

a αγ. Therefore a geodesic γ defines a
map G→ g∗, sending a ∈ G to αϕa◦γ = Ad∗

a αγ, which is none other but the coadjoint orbit
map. The image of this map is precisely the coadjoint orbit of αγ.

Let us observe that this assignment from particle trajectories in a spacetime to coadjoint
orbits is not bijective, in that different spacetimes might give rise to the same coadjoint orbit.
This simply reflects the fact that coadjoint orbits are an intrinsic property of the Lie group and
not a property of the spacetime.

In this section we present some partial results on the calculation of coadjoint orbits of some
Lifshitz Lie groups. We divide the discussion into parts labelled by the Lie algebras in Table 1.

6.2 a1, a2 and az3

As in Section 3.5.1, we treat them together by introducing a new parameter w and declar-
ing [D,Pa] = wPa. Rescaling D, we see that (w, z) are defined only up to multiplication
by a nonzero real number. The choice (z,w) = (0, 0) gives a1, whereas a2 corresponds to
(z,w) = (1, 0) and az3 corresponds to (z,w) = (z, 1).

6.2.1 Adjoint and coadjoint actions

Let g be the Lie algebra spanned by Jab,Pa,H,D subject to the brackets (6) together with

[Pa,Pb] = 0 , [H,Pa] = 0 , [D,Pa] = wPa and [D,H] = zH . (46)

When discussing coadjoint orbits associated to a Lie algebra g we need to specify the
Lie group G under consideration. One way is to take G to be the unique connected and
simply-connected group with Lie algebra g. This group typically does not act effectively on
g (and hence on its dual), but a certain quotient (known as the adjoint group) does. For
example, for g = su(n), one would take G = SU(n) and the adjoint group is the quotient
by the Zn subgroup consisting of scalar matrices. For the Lie algebra g under consideration,
defined by the brackets (6) and (46), we may take G to be the group with underlying manifold
R+ × SO(d)× Rd × R and multiplication given by

(σ1,A1, v1,h1) · (σ2,A2, v2,h2) = (σ1σ2,A1A2, v1 + σw1 A1v2,h1 + σz1h2) . (47)

The group G is not simply-connected: its universal cover would have underlying manifold
R+ × Spin(d)× Rd × R (if d > 2) or R+ × R2 × R2 × R (if d = 2), but all the representations
of so(d) appearing in the Lie algebra are tensorial and hence factor through SO(d), so that the
adjoint group is G, at least when z ̸= 0. If z = 0 then the adjoint representation has nontrivial
kernel and the adjoint group is the quotient of G by this kernel.

It follows from the multiplication law (47) that the identity of G is (1,1, 0, 0) and inversion
is given by

(σ,A, v,h)−1 = (σ−1,A−1,−σ−wA−1v,−σ−zh) . (48)

As a check, let us calculate the Lie algebra of G. Consider a curve γ(t) = (σ(t),A(t), v(t),h(t))
in G with γ(0) = (1,1, 0, 0) and γ ′(0) = (λ,X,p, ε) ∈ R⊕ so(d)⊕ Rd ⊕ R.

The adjoint action on g ∈ G on γ ′(0) ∈ g is given by the velocity at the identity of the curve
gγ(t)g−1. If we let g = (σ,A, v,h) and γ ′(0) = (λ,X,q, θ) as before, we find that

Ad(σ,A,v,h)(λ,X,q, θ) = (λ,AXA−1,σwAq−wλv−AXA−1v,σzθ− zλh) . (49)

It follows from this expression that

ker Ad =


{(1,1, 0, 0)} , if z ̸= 0 ,

{(1,1, 0,h)|h ∈ R} , if z = 0 and w ̸= 0 ,

{(σ,1, 0,h)|σ ∈ R+, h ∈ R} , if z = w = 0 .

(50)
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Replacing (σ,A, v,h) by a curve (σ(s),A(s), v(s),h(s)) in G through the identity in equa-
tion (49), we obtain a curve in g through (λ,X,q, θ), whose velocity there is the bracket

[(σ ′(0),A ′(0), v ′(0),h ′(0)), (λ,X,q, θ)] . (51)

Performing this calculation we obtain (after changing notation)

[(λ1,X1,q1, θ1), (λ2,X2,q2, θ2)]

= (0, [X1,X2],w(λ1q2 − λ2q1) + X1q2 − X2q1, z(λ1θ2 − λ2θ1)) .
(52)

Comparing with (6) and (46), we see that

Jab = (0,Eab, 0, 0) , Pa = (0, 0, ea, 0) , H = (0, 0, 0, 1) and D = (1, 0, 0, 0) , (53)

where ea are the elementary vectors in Rd and Eab ∈ so(d) is the skew-symmetric endomorph-
ism defined by

Eabec = δbcea − δaceb . (54)

We may identify g∗ with g as vector spaces, under the inner product ⟨−,−⟩ : g × g → R
defined by

⟨(µ, Y,p, ε), (λ,X,q, θ)⟩ = λµ+ 1
2 tr(YTX) + pTq+ θε . (55)

In this way, we can identify the canonical dual basis λab,πa,η, δ for g∗ with

λab = (0,Eab, 0, 0) , πa = (0, 0, ea, 0) , η = (0, 0, 0, 1) and δ = (1, 0, 0, 0) . (56)

This inner product is not invariant under the adjoint representation, so that the adjoint and
coadjoint representations are not equivalent. The coadjoint action can be worked out using the
above inner product:〈

Ad∗
(σ,A,v,h)(µ, Y,p, ε) , (λ,X,q, θ)

〉
=

〈
(µ, Y,p, ε), Ad(σ,A,v,h)−1(λ,X,q, θ)

〉
. (57)

Using the explicit expression (49) for the adjoint action, we find that the coadjoint action is
given by

Ad∗
(σ,A,v,h)(µ, Y,p, ε) = (µ ′, Y ′,p ′, ε ′) , (58)

where

µ ′ = µ+wσ−wvTAp+ zσ−zhε ,

Y ′ = AYA−1 + σ−w(ApvT − v(Ap)T ) ,

p ′ = σ−wAp ,

ε ′ = σ−zε ,

(59)

which differs from the adjoint action (49), as expected. This expression is to be interpreted as
the action of the group G = R+ × SO(d)×Rd ×R (with the group multiplication (47)) on the
vector space R⊕∧2Rd ⊕Rd ⊕R. Notice, parenthetically, that for nonzero ε and p the rational
function ε2/z

(pTp)1/w is an invariant of the coadjoint orbit. To interpret this invariant we restrict to

w = 1 and rewrite it as ε2 = v2
z(p

Tp)z which we can understand as a dispersion relation. For
z = 1 it indeed agrees with the well known relation ε2 = c2 pTp of massless Poincaré particles
where v1 is given by the speed of light c. This also agrees with the Lifshitz particle presented
in [40]. For vanishing p the spin tr(YTY) is an invariant and when additionally ε is zero µ is
also invariant.
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Special cases of the coadjoint action are

Ad∗
(σ,1,0,0)(µ, Y,p, ε) = (µ, Y,σ−wp,σ−zε) ,

Ad∗
(1,A,0,0)(µ, Y,p, ε) = (µ,AYA−1,Ap, ε) ,

Ad∗
(1,1,v,0)(µ, Y,p, ε) = (µ+wvTp, Y + pvT − vpT ,p, ε) ,

Ad∗
(1,1,0,h)(µ, Y,p, ε) = (µ+ zhε, Y,p, ε) .

(60)

The first two are as expected: (σ,1, 0, 0) rescales p and ε, whereas (1,A, 0, 0) acts like a
rotation: conjugating Y and rotating the vector p.

6.2.2 Structure of coadjoint orbits

The group G is actually a semidirect product CO(d) ⋉ T , where the abelian group T ∼= Rd+1

and where the action of (σ,A) ∈ CO(d) on (v,h) ∈ T is given by

(σ,A) · (v,h) = (σwAv,σzh) . (61)

Coadjoint orbits of such semidirect products have been studied, for example, in the thesis
of Oblak [41] and the references therein. Let us write G = K ⋉ T , with K a connected Lie
group and T abelian. We will let g = k ⊕ t as a vector space and hence g∗ = k∗ ⊕ t∗, where
we identify k∗ with the annihilator to = {α ∈ g∗|α(X) = 0 ∀X ∈ t} of t and, similarly, t∗ with
the annihilator ko of k. Let α ∈ g∗ and decompose it as α = (κ, τ) ∈ k∗ ⊕ t∗. Since K acts
on T by automorphisms, it acts on its Lie algebra t and hence on the dual t∗. Let Oτ ⊂ t∗

denote the K-orbit of τ in t∗. There is a K-equivariant diffeomorphism Oτ
∼= K/Kτ, where

Kτ = {k ∈ K|k · τ = τ} is the stabiliser of τ in K. This exhibits K as the total space of a principal
Kτ bundle K→ Oτ and given any manifoldM on which Kτ acts, we may construct an associated
fibre bundle K×Kτ

M → Oτ, whose typical fibre is a copy of M. For example, Kτ acts on k∗

and, since kτ ⊂ k is a Lie subalgebra, this action preserves the annihilator koτ . Since this is a
linear representation of Kτ, the associated fibre bundle K×Kτ

koτ is a vector bundle, and using
the isomorphism koτ

∼= (k/kτ)
∗ can be seen to be the cotangent bundle T∗Oτ of Oτ. Another

example of associated fibre bundles, this time not a vector bundle, is given by considering a
coadjoint orbit O ′ of Kτ and constructing K×Kτ

O ′. With these definitions behind us, we can
describe the coadjoint orbits of G = K⋉ T . The G-coadjoint orbit of α = (κ, τ) is the associated
fibre bundle K×Kτ

(koτ ×Oκτ) → Oτ, where κτ ∈ k∗τ is the restriction of κ to kτ and Oκτ is its
Kτ-coadjoint orbit. The total space of the bundle K×Kτ

(koτ ×Oκτ) → Oτ is the fibred product
of the cotangent bundle T∗Oτ and the associated fibre bundle K×Kτ

Oκτ over Oτ. As a check,
notice that the dimension is 2 dimOτ + dimOκτ , which is indeed even, since Oκτ is a coadjoint
orbit itself.

Two extremal cases are worth noting: if τ = 0, then this simply the K-coadjoint orbit of κ,
whereas if κ = 0, this is simply the cotangent bundle T∗Oτ.

To determine the coadjoint orbits of our groups of interest G = CO(d) ⋉ T we need to
first decompose t∗ into CO(d)-orbits and determine their stabilisers and then to determine the
coadjoint orbits of the stabilisers. The action of CO(d) on t∗ can be read off from the last two
entries in equation (58) for the coadjoint action after setting v and h to zero:

(σ,A) · (p, ε) = (σ−wAp,σ−zε) . (62)

To continue, we must consider several cases depending on the values of (z,w).

6.2.3 CO(d)-orbits in t∗ for z = w = 0

If z = w = 0 the action (62) reduces to

(σ,A) · (p, ε) = (Ap, ε) . (63)
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There are two kinds of orbits:

• point-like orbits {(0, ε)}, with stabiliser CO(d); and

• spherical orbits Sd−1
|q|

×{ε} through (p ̸= 0, ε), with stabiliser CO(p⊥)=R+×SO(p⊥) ∼=CO(d−1).

Here the notation is that Sd−1
|p|

is the sphere of radius |p|, the euclidean norm of p ∈ Rd.

6.2.4 CO(d)-orbits in t∗ for w = 0 and z ̸= 0

We keep w = 0 but now have z ̸= 0, which can be set to z = 1 without loss of generality by
rescaling D. Then the action (62) reduces to,

(σ,A) · (p, ε) = (Ap,σ−1ε) . (64)

We have the following orbits, depending on (p, ε):

• a point-like orbit {(0, 0)}, with stabiliser CO(d);

• a spherical orbit Sd−1
|p|

× {0} through (p ̸= 0, 0), with stabiliser CO(p⊥);

• two ray-like orbits {0}× R± through (0, ε) with ±ε > 0 and stabilisers SO(d);

• two cylindrical orbits Sd−1
|p|

×R± through (p ̸= 0, ε), with ±ε > 0, and stabiliser SO(p⊥).

6.2.5 CO(d)-orbits in t∗ for w ̸= 0 and z = 0

Next we consider z = 0 and w ̸= 0. Again we can set w = 1 without loss of generality, resulting
in the action

(σ,A) · (p, ε) = (σ−1Ap, ε) . (65)

There are two kinds of orbits:

• point-like orbits {(0, θ)}, with stabiliser CO(d); and

• orbits
(
Rd \ {0}

)
× {θ}, through (p ̸= 0, ε), with stabiliser SO(p⊥).

6.2.6 CO(d)-orbits in t∗ for w ̸= 0 and z ̸= 0

Finally we have the case w = 1 (without loss of generality) and z ̸= 0, resulting in the action

(σ,A) · (p, ε) = (σ−1Ap,σ−zε) . (66)

We have the following orbits:

• a point-like orbit {(0, 0)}, with stabiliser CO(d);

• two ray-like orbits {0}× R± through (0, ε) with ±ε > 0 and stabiliser SO(d);

• an orbit
(
Rd \ {0}

)
× {0}, through (p ̸= 0, 0), with stabiliser SO(p⊥); and

• cylindrical orbits through (p ̸= 0, ε) with ±ε > 0, and stabiliser SO(p⊥). These orbits can
be thought of as a sphere-bundle over the half-line, where the radius of the sphere varies
with the point on the line, i.e., these are the generalized lightcones ε2 − v2

z(p
2)z = 0.
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6.2.7 Summary

In summary, the stabilisers are in all cases isomorphic to one of CO(d), CO(d − 1), SO(d) or
SO(d− 1). We next determine the coadjoint orbits of these groups, where we restrict ourselves
to d ⩾ 2. The coadjoint action of CO(d) on co(d)∗ can be read off from the first two entries in
equation (58) after setting v and h to zero:

Ad∗
(σ,A)(µ, Y) = (µ,AYA−1) . (67)

We therefore see that the coadjoint orbit through (µ, Y) is {µ}×OY , where OY is the coadjoint
orbit of Y ∈ so(d)∗ under SO(d). In other words, we are left with the task of studying the
coadjoint orbits of SO(n) for n ⩾ 1, since n = d or n = d− 1 and d ⩾ 2. Of course, the cases
n = 1 and n = 2 have only point-like orbits: this is because so(1) = 0 and so(2) is abelian. The
coadjoint orbits for so(3) are well known: we have the origin of so(3)∗ and then the spheres
of radius equal to the norm of Y under the euclidean inner product induced by the Killing
form. What about for n > 3? Being semisimple, the adjoint and coadjoint representations are
equivalent, and hence we may work with the adjoint orbits. These have been characterised
in [42], where it is shown in Theorem 3.1 of that paper, that coadjoint orbits of SO(n) are
hermitian flag manifolds in Rn. We describe some of them in Appendix C.

This describes all the ingredients required to determine, at least in principle, the coadjoint
orbits of the Lifshitz groups associated to a1, a2 and az3.

6.2.8 Coadjoint orbits from Lifshitz geodesics

Let us consider the case g = az3, thought of as Killing vector fields (3) in the Lifshitz spacetime
(Md+2,g) for the metric g given in equation (2).5 Let γ(s) = (t(s), r(s), xa(s)) be an affinely
parametrised geodesic. As discussed in Section 6.1, γ defines an element αγ = (∆, ℓ,k,E) ∈ g∗,
where

∆ = g(γ̇, ξD) = ṙ
r + z tṫ

r2z + xaẋ
a

r2 = ṙ
r − ztE+ kax

a ,

ℓab = g(γ̇, ξJab) = −xakb + xbka = −xaẋb+xbẋa

r2 ,

ka = g(γ̇, ξPa
) = ẋa

r2 ,

E = g(γ̇, ξH) = − ṫ
r2z .

(68)

Under the coadjoint action Ad∗
(σ,A,v,h)(∆, ℓ,k,E) = (∆ ′, ℓ ′,k ′,E ′), where

∆ ′ = ∆+ σ−1vTAk+ zσ−zEh ,

ℓ ′ab = (AℓA−1)ab + σ−1 ((Ak)avb − (Ak)bva) ,

k ′a = σ−1(Ak)a ,

E ′ = σ−zE .

(69)

Consider a geodesic with ℓ = 0 and ∆ = 0 and with E ̸= 0 and k ̸= 0. Then the corresponding
coadjoint orbit has dimension 2d and, from the discussion in Section 6.2.2, it is the cotangent
bundle T∗Oα, where Oα is the orbit of α = kaπ

a + Eη ∈ g∗ under the action of the subgroup
CO(d) generated by Jab and D. This orbit is a generalised cylinder with equation E2/|k|2z = c

for some constant c > 0.
The stabiliser subgroup of α = kaπ

a +Eη is isomorphic to SO(d− 1)×R, where SO(d− 1)
is the subgroup of SO(d) which fixes kaπa and R is the subgroup Γ ⊂ G consisting of elements
of the form (1, 1,−zEh

|k|2
k,h) for h ∈ R. The coadjoint orbit of α is the base of a (trivial)

5There are other Lifshitz-invariant metrics, but since this section is for the purpose of illustrating the method, we
pick the metric which was already discussed above.
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principal Γ -bundle whose total space is the evolution space in the sense of Souriau [33].
It has a presymplectic structure (i.e., a closed 2-form) obtained by pulling back the Kirillov–
Kostant–Souriau symplectic form on the coadjoint orbit, whose kernel defines a one-dimensional
(integrable) distribution on the evolution space, whose leaves are the particle trajectories.

It is possible to define a particle lagrangian for such trajectories purely from the data defining
the coadjoint orbit. One might argue that we already have a lagrangian, namely the one for
geodesics. Let us make two remarks about this. The first is that extremals of the geodesic action
principle are affinely parametrised geodesics regardless of the causal type, whereas the action
constructed from the coadjoint orbit is tied to a causal type. This is well-known from the case of
Minkowski geodesics, since the coadjoint orbits of lightlike and timelike geodesics are different.
The second remark is that we do not always have an invariant metric on a homogeneous space
and hence we do not necessarily have an action principle for geodesics, whereas we can often
construct an action principle from the coadjoint orbit.

Let us illustrate this method for the coadjoint orbit of (0, 0,k,E), with k ∈ Rd and
E ∈ R nonzero. As we saw above the stabiliser subalgebra of (0, 0,k,E) is isomorphic to
so(d− 1)⊕ RZ where so(d− 1) is the stabiliser of k in the vector representation of so(d) and
Z = (0, 0,− zE

|k|2
k, 1) ∈ g. The corresponding evolution space is also a homogeneous space of

G with stabiliser SO(d − 1), the subgroup of SO(d) which fixes k. We may parametrise the
evolution space locally via the coset representative

g = etHex
aPa︸ ︷︷ ︸

g0

erDeθ
iRi , (70)

where Ri, i = 1, . . . ,d−1 generate rotations which do not preserve k and where g0 parametrises
a point in the (d+ 1)-dimensional Lifshitz–Weyl spacetime obtained from M by quotienting by
the one-parameter group generated by D. This is just for convenience in the calculation of the
pull-back of the left-invariant Maurer–Cartan one-form, which gives

g−1dg = drD+ e−zrdtH+ e−r

(
cos ∥θ∥dx∥ + sin ∥θ∥

∥θ∥
θ · x⊥

)
P∥ + · · · , (71)

where x∥ = x·k
∥k∥2k is the component of x along k (and similarly for P∥), x⊥ = x − x∥ is the

component perpendicular to k and ∥θ∥ = δijθ
iθj. In this expression we have omitted any terms

which are not invariant under so(d− 1). If γ(s) is a curve in the evolution space, it is described
in these coordinates by (t(s), xa(s), r(s), θi(s)) and the lagrangian is the pull-back of a linear
combination of the so(d− 1)-invariant components of g−1dg to the s-interval parametrising
the curve. Letting dots denote derivative with respect to s, we have that the most general
lagrangian is given by

L = c0ṙ+ c1e
−zrṫ+ c2e

−r

(
cos ∥θ∥ẋ∥ + sin ∥θ∥

∥θ∥
θ · ẋ⊥

)
, (72)

for some constants c0, c1, c2. We can ignore the first term, since it is a total derivative, so
without loss of generality we may set c0 = 0.

The canonical momenta are given by

E :=
∂L

∂ṫ
= c1e

−zr ,

p∥ :=
∂L

∂ẋ∥
= e−rc2 cos ∥θ∥ ,

p⊥i :=
∂L

∂ẋ⊥i
= e−rc2

sin ∥θ∥
∥θ∥

θi .

(73)
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The Euler–Lagrange equations say that E,p∥,p⊥i are constant, so that if we assume that none of
z, c1, c2 are zero, we obtain that r and θi are constant. The momentum satisfies the constraint

p2 = (p∥)2 + (p⊥)2 = c2
2e

−2r , (74)

so that we recover the constraint that is satisfied by the coadjoint orbit: namely,
E2/∥p∥2z = (c1/c

z
2)

2. For prior work related to dynamical realisations of the Lifshitz group see
the unpublished work of Gomis and Kamimura described in [40] and the more recent work of
Galajinsky [43].

6.2.9 Central extensions

As shown in Table 6, for d = 2 the Lie algebras a1 and a2 admit central extensions which
integrate to central extensions of the corresponding Lie groups. Coadjoint orbits of these
central extensions give rise to homogeneous symplectic manifolds of the corresponding two-
dimensional Lifshitz Lie groups. We shall not discuss them in this paper, but might it be
interesting to study them in the future.

The Lie algebras a1 and az=0
3 do have a central extension for all values of d. In the case of a1,

the central extension is isomorphic to iso(d)⊕ h3, where h3 is a Heisenberg algebra. Coadjoint
orbits of a direct product of Lie groups are products of coadjoint orbits: those of the Heisenberg
group are discussed in Appendix B, whereas those of the euclidean group ISO(d) = SO(d)⋉Rd

can be obtained via the method explained in Section 6.2.2: they boil down to the determination
of the coadjoint orbits of SO(d− 1), being the stabiliser of a nonzero p ∈ (Rd)∗. The central
extension of az=0

3 is now isomorphic to a semidirect product (so(d)⊕h3)⋉Rd, where Rd = ⟨Pa⟩
is an abelian ideal. The discussion in Section 6.2.2 again applies and all the situation is very
similar to the one described above with SO(d)×H3 replacing CO(d). We do not discuss them
further here, but leave them for future work.

6.3 a±4 and a±5

We discuss these two Lie algebras together by introducing a parameter z ∈ {0, 1} and letting
[D,H] = zH. The Lie algebra a±4 corresponds to z = 0 and a±5 to z = 1. These Lie algebras are
direct sums of the Lie algebras: the subalgebra spanned by Jab,Pa and the two-dimensional Lie
algebra spanned by D,H. The former Lie algebra has brackets [Pa,Pb] = ±Jab in addition to
those involving Jab. It is isomorphic to so(d, 1) if the sign is + and to so(d+ 1) if the sign is −.
A coadjoint orbit of either of these two Lifshitz Lie groups is therefore a product of a coadjoint
orbit of SO(d, 1)0 or SO(d + 1), for d ⩾ 2 and a coadjoint orbit of the two-dimensional Lie
group generated by D and H. They are described in the appendices.

The connected (and simply-connected) Lie group G generated by D and H is given by

G =

{(
a b

0 a1−z

)∣∣∣∣a,b ∈ R, a > 0
}

. (75)

Let us consider a±5 , so z = 1. As shown in Section 3.5.2, this Lie algebra admits no central ex-
tensions and hence any simply-connected homogeneous symplectic manifold covers a coadjoint
orbit. These are determined in Appendix A.

As shown in Section 3.5.2, the Lie algebra a±4 admits a one-dimensional central extension
[D,H] = Z. This promotes the two-dimensional abelian group generated by D,H to the
Heisenberg group, whose coadjoint orbits are described in Appendix B. The relevant coadjoint
orbits of the central extension are now products of coadjoint orbits of the Heisenberg group
with those of either SO(d+ 1) or SO(d, 1)0.
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6.4 a6 and a7

As in Section 3.5.3, we introduce a parameter w ∈ {0, 1} in order to treat both algebras
simultaneously. Let g (depending on w) be the Lie algebra under consideration. The brackets
are then

[D,Pa] = wPa , [D,H] = 2wH , [J,Pa] = ϵabPb and [Pa,Pb] = ϵabH . (76)

It has the structure of a semidirect product of the abelian subalgebra spanned by J and D acting
as derivations on the Heisenberg ideal spanned by Pa,H.

The Lie algebra g = k⋉h3 is a semidirect product of the abelian two-dimensional Lie algebra
k = ⟨J,D⟩ ∼= co(2) with the Heisenberg algebra: h3 = ⟨Pa,H⟩.

6.4.1 Group law and (co)adjoint actions

The first task is to explicitly write down the group law in G = K⋉H3. Let H3 be the Heisenberg
group generated by Pa,H. It is a unipotent matrix group diffeomorphic to R3, given explicitly
by

H3 =


1 a c

0 1 b

0 0 1

∣∣∣∣∣∣a,b, c ∈ R

 . (77)

Every element of H3 can be uniquely written as a product of matrix exponentials:1 a c

0 1 b

0 0 1

 = exp

0 0 c

0 0 0
0 0 0

 exp

0 0 0
0 0 b

0 0 0

 exp

0 a 0
0 0 0
0 0 0


= exp(cH) exp(bP2) exp(aP1) ,

(78)

where

P1 =

0 1 0
0 0 0
0 0 0

 , P2 =

0 0 0
0 0 1
0 0 0

 and H =

0 0 1
0 0 0
0 0 0

 . (79)

It is easy to write down the action of K on the Lie algebra h3 spanned by Pa,H by exponentiating
[J,Pa] = ϵabPb, [D,Pa] = wPa and [D,H] = 2wH. If we write P = P1+iP2 and then the adjoint
action of J is simply multiplication by −i. Therefore we find that, of course, exp(θJ)H = H and
that

exp(θJ)(P1 + iP2) = e
−iθ(P1 + iP2) = (P1 cos θ+ P2 sin θ) + i(P2 cos θ− P1 sin θ) , (80)

whereas
exp(σD)Pa = ewσPa and exp(σD)H = e2wσH . (81)

The general element k = exp(σD) exp(θJ) ∈ K acts on h3 as

g · P1 = ewσ(P1 cos θ+ P2 sin θ) ,

g · P2 = ewσ(P2 cos θ− P1 sin θ) ,

g ·H = e2wσH .

(82)

One checks that this is an automorphism of h3:

[g · X,g · Y] = g · [X, Y] , ∀X, Y ∈ h2 , (83)
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so that it defines a map ϕ : K→ Aut(h3) sending every g ∈ K to the automorphism ϕg of h3

defined by ϕgX = g · X in equation (82). Fix g ∈ K. Then ϕg : h3 → h3 is in particular a
Lie algebra homomorphism and thus, by the Lie correspondence, lifts to a unique Lie group
homomorphism Φg : H3 → H3. To work it out we argue as follows. The graph γ ⊂ h3 ⊕ h3 of
ϕg is a Lie subalgebra of h3 ⊕ h3 (because ϕg is a homomorphism) and hence it exponentiates
there to a connected subgroup Γ ⊂ H3×H3. There are two cartesian projections H3×H3 → H3:
restricting the left projection to Γ gives a covering Γ → H3 which can be shown in this case to
be an isomorphism, whereas restricting the right projection to Γ gives the desired Φg. In detail,
the graph γ ⊂ h3 ⊕ h3 is spanned by

(P1,g · P1) = (P1, ewσ(P1 cos θ+ P2 sin θ)) ,

(P2,g · P2) = (P2, ewσ(P2 cos θ− P1 sin θ)) ,

(H,g ·H) = (H, e2wσH) .

(84)

We can write γ explicitly as the span of the following three block-diagonal 6 × 6 matrices:

P̂1 :=



0 1 0
0 0 0
0 0 0

0 ewσ cos θ 0
0 0 ewσ sin θ
0 0 0


,

P̂2 :=



0 0 0
0 0 1
0 0 0

0 −ewσ sin θ 0
0 0 ewσ cos θ
0 0 0


,

Ĥ :=



0 0 1
0 0 0
0 0 0

0 0 e2wσ

0 0 0
0 0 0


,

(85)

and they exponentiate to the subgroup of GL(6,R) consisting of matrices of the form

exp(hĤ) exp(p2P̂2) exp(p1P̂1)

=



1 p1 h

0 1 p2

0 0 1
1 ewσ(p1 cos θ− p2 sin θ) e2wσ(h− p1p2 sin2 θ+ 1

2(p
2
1 − p2

2) sin θ cos θ)
0 1 ewσ(p2 cos θ+ p1 sin θ)
0 0 1


,

(86)

from where read off that the Lie group automorphism Φg : H3 → H3 corresponds to1 p1 h

0 1 p2

0 0 1

 7→

1 ewσ(p1 cos θ− p2 sin θ) e2wσ(h− p1p2 sin2 θ+ 1
2(p

2
1 − p2

2) sin θ cos θ)
0 1 ewσ(p2 cos θ+ p1 sin θ)
0 0 1

 . (87)

One checks that Φ : K→ Aut(H3) is indeed a Lie group homomorphism, so that Φgg ′ = ΦgΦg ′

for all g,g ′ ∈ K.
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With these results in hand, we can now write down the group law on G = K ⋉ H3. If
(k1,h1), (k2,h2) ∈ G, their product is given by

(k1,h1)(k2,h2) = (k1k2,h1(Φk1h2)) , (88)

from where we read off that the inverse of (k,h) ∈ G is given by

(k,h)−1 = (k−1,Φk−1h−1) . (89)

Notice that any automorphism commutes with inversion so that (Φkh)
−1 = Φkh

−1. Explicitly,
the inverse of the group element with coordinates (θ,σ,p1,p2,h) is the group element with
coordinates (

− θ, −σ, −e−wσ(p1 cos θ+ p2 sin θ), e−wσ(p1 sin θ− p2 cos θ)

e−2wσ(p1p2 cos2 θ− h− 1
2(p

2
1 − p2

2) sin θ cos θ)
)

.
(90)

We can now work out the adjoint representation of G. If (k,h) ∈ G and (k2(t),h2(t)) is a
curve in G with k2(0) = 1K, h2(0) = 1H3 , k ′2(0) = X ∈ k and h ′

2(0) = Y ∈ h3, then

Âd(k,h)(X, Y) =
d

dt

∣∣∣∣
t=0

(k,h)(k2(t),h2(t))(k
−1,Φk−1h−1)

=
d

dt

∣∣∣∣
t=0

(kk2(t),h(Φkh2(t)))(k
−1,Φk−1h−1)

=
d

dt

∣∣∣∣
t=0

(kk2(t)k
−1,h(Φkh2(t))Φkk2(t)(Φk−1h−1))

=

(
AdK

k X,
d

dt

∣∣∣∣
t=0

(
h(Φkh2(t))Φkk2(t)k−1h−1

))
=

(
X,

d

dt

∣∣∣∣
t=0

(
h(Φkh2(t))Φkk2(t)k−1h−1

))
,

(91)

using that K is abelian.
If we let k = (θ,σ) ∈ K and X = (x,y) ∈ k, and also

h =

1 p1 h

0 1 p2

0 0 1

 ∈ H3 and Y =

0 u s

0 0 v

0 0 0

 ∈ h3 , (92)

then Âd(k,h)(X, Y) = (X, Y ′), where

Y ′ =

0 −wyp1 + xp2 + ewσ(u cos θ− v sin θ) Ξ

0 0 −wyp2 − p1x+ e
wσ(u sin θ+ v cos θ)

0 0 0

 , (93)

where

Ξ = wy(p1p2 −2h)− 1
2(p

2
1 +p

2
2)x+ e

2wσs+ ewσ((up1 + vp2) sin θ+(vp1 −up2) cos θ) . (94)

Relative to the basis (J,D,P1,P2,H) for g, the matrix of Âd(k,h) is given by

Âd(k,h) =


1 0 0 0 0
0 1 0 0 0
p2 −wp1 ewσ cos θ −ewσ sin θ 0
−p1 −wp2 ewσ sin θ ewσ cos θ 0

−1
2(p

2
1 + p2

2) w(p1p2 − 2h) ewσ(p1 sin θ− p2 cos θ) ewσ(p2 sin θ+ p1 cos θ) e2wσ

 , (95)
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and hence relative to the canonical dual basis (λ, δ,π1,π2,η) for g∗, the matrix of the coadjoint
action Âd

∗
(k,h) is given by the inverse transpose of the above matrix:

Âd
∗
(k,h) =


1 0 e−wσ(p1 sin θ− p2 cos θ) e−wσ(p1 cos θ+ p2 sin θ) −1

2e
−2wσ(p2

1 + p2
2)

0 1 e−wσw(p1 cos θ+ p2 sin θ) e−wσw(p2 cos θ− p1 sin θ) e−2wσw(2h− p1p2)

0 0 e−wσ cos θ −e−wσ sin θ e−2wσp2

0 0 e−wσ sin θ e−wσ cos θ −e−2wσp1

0 0 0 0 e−2wσ

 , (96)

so that the coadjoint action by (k,h) given in equation (92) on the dual basis is explicitly:

λ 7→ λ ,

δ 7→ δ ,

π1 7→ e−wσ
(
π1 cos θ+ π2 sin θ+ (p1 sin θ− p2 cos θ)λ+w(p1 cos θ+ p2 sin θ)δ

)
,

π2 7→ e−wσ
(
−π1 sin θ+ π2 cos θ+ (p1 cos θ+ p2 sin θ)λ+w(p2 cos θ− p1 sin θ)δ

)
,

η 7→ e−2wσ
(
η− p1π

2 + p2π
1 − 1

2(p
2
1 + p2

2)λ+w(2h− p1p2)δ
)

.

(97)

Let us introduce coordinates xλ, xδ, xπ1 , xπ2 , xη for g∗. Then the infinitesimal generators of the
coadjoint representation are the following vector fields on g∗:

ξJ = −xπ2
∂

∂xπ1
+ xπ1

∂

∂xπ2
,

ξD = −wxπ1
∂

∂xπ1
−wxπ2

∂

∂xπ2
− 2wxη

∂

∂xη
,

ξP1 = xπ2
∂

∂xλ
+wxπ1

∂

∂xδ
− xη

∂

∂xπ2
,

ξP2 = −xπ1
∂

∂xλ
+wxπ2

∂

∂xδ
+ xη

∂

∂xπ1
,

ξH = 2wxη
∂

∂xδ
.

(98)

One can check that ξ : g → X (g∗) given by X 7→ ξX is a Lie algebra antihomomorphism, as
expected.

6.4.2 Coadjoint orbits for w = 0

Let us set w = 0. The coadjoint action on the coordinates (xλ, xδ, xπ1 , xπ2 , xη) is then given by

xλ 7→ xλ + (p1 sin θ− p2 cos θ)xπ1 + (p1 cos θ+ p2 sin θ)xπ2 − 1
2(p

2
1 + p2

2)xη ,

xδ 7→ xδ ,

xπ1 7→ cos θxπ1 − sin θxπ2 + p2xη ,

xπ2 7→ cos θxπ2 + sin θxπ1 − p1xη ,

xη 7→ xη .

(99)

We must distinguish between two cases, depending on whether or not xη, which is inert,
vanishes.

1. If xη = 0, the orbit is either

(a) a two-dimensional cylinder in the affine 3-plane defined by giving a constant value
to xδ and setting xη to zero, if at least one of xπ1 and xπ2 is nonzero; or

(b) a point with coordinates (xλ, xδ, 0, 0, 0) if xπ1 = xπ2 = 0.

2. If xη ̸= 0, we have a two-dimensional surface in the affine 3-plane with constant
(xδ, xη ̸= 0), which is obtained as the graph xλ = f(xπ1 , xπ2) of a function in the
(xπ1 , xπ2)-plane and hence diffeomorphic to R2.
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6.4.3 Coadjoint orbits for w = 1

Now let’s consider w = 1. The coadjoint action on the coordinates is now

xλ 7→ xλ + (p1 sin θ− p2 cos θ)e−σxπ1 + (p1 cos θ+ p2 sin θ)e−σxπ2 − 1
2(p

2
1 + p2

2)e
−2σxη ,

xδ 7→ xδ + (p1 cos θ+ p2 sin θ)e−σxπ1 + (p2 cos θ− p1 sin θ)e−σxπ2 + (2h− p1p2)e
−2σxη ,

xπ1 7→ e−σ cos θxπ1 − e−σ sin θxπ2 + p2e
−2σxη ,

xπ1 7→ e−σ sin θxπ1 + e−σ cos θxπ2 − p1e
−2σxη , (100)

xη 7→ e−2σxη .

We must again distinguish between two cases:

1. if xη = 0, the orbits are either

(a) points with coordinates (xλ, xδ, 0, 0, 0), if (xπ1 , xπ2) = (0, 0); or

(b) if (xπ1 , xπ2) ̸= (0, 0), the orbit is four-dimensional and consists of the 4-plane
xη = 0 with the 2-plane with additional equations xπ1 = xπ2 = 0 removed. So
diffeomorphic to R4 \ R2 ∼= R2 × (R2 \ {(0, 0)}).

2. if xη ̸= 0, the orbit is a four-dimensional hypersurface given by the graph of a function of
the four coordinates (xλ, xδ, xπ1 , xπ2).

7 Conclusion

This work provides the first systematic classification of Lifshitz algebras, spacetimes and particles.
We also provide a full classification of aristotelian spacetimes with scalar charge, in particular
ones with exotic spacetime symmetries. The Lifshitz algebras are summarised in Table 1 and the
respective spacetimes fall into three classes: (d+ 2)-dimensional Lifshitz spacetimes (Table 2)
where the dilatations provide an additional holographic direction and the (d+ 1)-dimensional
Lifshitz–Weyl spacetimes (Table 3) and (d + 1)-dimensional aristotelian spacetimes with a
scalar charge (Table 4). It is interesting to note that a2, az ̸=0

3 and a±5 give rise to each of the
above discussed spacetimes and can therefore be interpreted from various different angles. We
refer to Section 2 for a summary of our results and end with a few remarks.

Beyond the standard Lifshitz symmetries Our classification was motivated by the standard
Lifshitz symmetries and it is reassuring that we indeed recover them as spacetimes L3z

and LW2z. Beyond this case let us highlight the pairs based on a2 (L2 and LW1) and
its curved generalisation a±5 (L5 and LW3±) both of which exist in generic dimension.
It might well be that these spaces have played a rôle in the literature, if so we are
unfortunately unaware of it.

Exotic spacetime symmetries Exotic spacetime symmetries, similar to the ones discussed in
Section 2 have recently played a rôle in relation to fractons (see, e.g., [44–46] for reviews
and [47–50] for earlier related work on polynomial shift symmetries). In the case of
fractons the underlying geometry is also aristotelian [51,52] and there is also an action
of the spacetime symmetry on the charges. There has been a systematic study of exotic
symmetries of this type [53], however the symmetries we discuss here are a generalisation
of the multipole algebras [53]. We also allow for nontrivial commutation relations
between the temporal, rather than just the spatial, translations and the underlying
aristotelian geometry is not necessarily restricted to be flat. It is this generalisation that
leads to the novel classification of exotic symmetries of Table 4. Another consequence
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of our classification is that there are no aristotelian spacetimes with one scalar charge
and nonzero [Q,P] commutator, like for the more conventional multipole algebras. With
regard to [53] we have kept the full rotational symmetry, which is an assumption that
might be dropped and would lead to a more general classification.

Exotic aristotelian theories with scalar charge By showing that these symmetries exist and
can be consistently realised we have provided the first nontrivial step for the construction
of exotic aristotelian theories with scalar charge. However, to further clarify their physical
relevance and the relation to fracton-like theories it would be interesting to construct
field theories that realise these symmetries (e.g., following [54]).

Generalisation In this work the spacetimes have no boost symmetry so a natural generalisation
is to add an additional vector to our classification. This leads for example to Bargmann
spacetimes and will be discussed in a future work [55].

The case of aristotelian geometries with one vector charge and no additional scalar has
already been worked out in [30], the interpretation as exotic charges had however not
been appreciated at that point.

Unitary irreducible representations Upon quantisation one expects that coadjoint orbits lead
to unitary irreducible representations. In this sense our classification of the coadjoint
orbits of the Lifshitz groups lays the foundation for such an endeavour and it might be
interesting to understand if and in which sense these representations can be understood
as quantum Lifshitz particles.
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A Coadjoint orbits of the two-dimensional nonabelian Lie group

The connected (and simply-connected) Lie group G whose Lie algebra g = ⟨D,H⟩ with bracket
[D,H] = H is isomorphic to the matrix group

G =

{(
a b

0 1

)∣∣∣∣a,b ∈ R, a > 0
}

, (101)

with Lie algebra

g =

{(
x y

0 0

)∣∣∣∣x,y ∈ R
}

. (102)
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We introduce the (non-invariant) inner product ⟨−,−⟩ on g by

⟨X, Y⟩ = trXTY . (103)

This inner product defines a musical (vector space) isomorphism ♭ : g → g∗. If X♭ ∈ g∗ and
g ∈ G we define the coadjoint action by

(Ad∗
g X

♭)(Y) = X♭(Adg−1 Y) = trXTg−1Yg = trgXTg−1Y . (104)

Explicitly, if

XT =

(
α 0
β 0

)
, (105)

then under the coadjoint action of g =

(
a b

0 1

)
,

α 7→ α+ ba−1β and β 7→ βa−1 . (106)

Therefore the orbit of (α,β) = (α, 0) is a point, whereas the orbit of (α,β > 0) is the half-plane
β > 0 and that of (α,β < 0) is the half-plane β < 0.

B Coadjoint orbits of the Heisenberg group

The Heisenberg groupN is the three-dimensional Lie group of strictly upper triangular unipotent
3 × 3 matrices

N =


1 a c

0 1 b

0 0 1

∣∣∣∣∣∣a,b, c ∈ R

 , (107)

with Lie algebra

n =


0 x z

0 0 y

0 0 0

∣∣∣∣∣∣x,y, z ∈ R

 . (108)

It is straightforward to work out the adjoint action of N on n: if g =

1 a c

0 1 b

0 0 1

,

Adg

0 x z

0 0 y

0 0 0

 =

0 x z+ ay− bx

0 0 y

0 0 0

 . (109)

We can identify n∗ with n as vector spaces under the musical isomorphism of the non-invariant
inner product ⟨−,−⟩ on h given by ⟨X, Y⟩ = trXTY. Then under the same element g as before,
the coadjoint action is given by

Ad∗
g

0 α γ

0 0 β

0 0 0

 =

0 α+ bγ γ

0 0 β− aγ

0 0 0

 . (110)

Therefore there are two kinds of coadjoint orbits:

• the orbits of (α,β,γ) = (α,β, 0), which are points; and

• the orbits of (α,β,γ ̸= 0), which are the affine (hyper)planes {(α,β,γ)|α,β ∈ R}.
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C Coadjoint orbits of SO(n)

In this appendix we describe in some more detail the adjoint orbits of SO(n).
Let Λ ∈ so(n). Since Λ is skew-symmetric, iΛ is a hermitian endomorphism of Cn and

thus has real eigenvalues. This means Λ has purely imaginary eigenvalues and since Λ is real,
they are either zero or else come in complex conjugate pairs (iλ,−iλ). Let λ ̸= 0 and Eiλ ⊂ Cn
be the eigenspace of Λ with eigenvalue iλ. If v ∈ Eiλ, its complex conjugate v̄ ∈ E−iλ. Write
v = x+ iy, where x,y ∈ Rn. Then Λx = −λy and Λy = λx. If iλ has multiplicity m, then we
can choose a unitary basis v1, . . . , vm for Eiλ and writing vj = xi + iyj, we have that on the
span of x1, . . . , xm,y1, . . . ,ym, the matrix representing Λ takes the form of m blocks of 2 × 2
matrices of the form

λJ :=

(
0 −λ

λ 0

)
. (111)

In this way, we find that there is a basis for Rn relative to which Λ has matrix
0

λ1Jm1

. . .
λkJmk

 , (112)

where m0 = dim kerΛ is the size of the first block, mj is the multiplicity of iλj and Jm is a
2m× 2m matrix consisting of m blocks of 2 × 2 matrices which are either

J =

(
0 −1
1 0

)
or − J =

(
0 1
−1 0

)
. (113)

It is clear that the transformation taking Λ to the above matrix is orthogonal, but perhaps not
special orthogonal. Indeed, the matrices ±J are related by an orientation reversing transform-
ation of the plane, and hence since we are only allowed to conjugate by SO(n), we cannot
simply make all blocks be J, say. This problem only arises for n even, since if n is odd, then
Λ has kernel and we can indeed use the freedom to multiply one of the basis elements in the
kernel by −1 to ensure that the orthogonal matrix which conjugates Λ to a normal form where
all 2 × 2 blocks are of the form J, has determinant 1.

As an example, let us list the possible coadjoint orbits of SO(4):

• If Λ = 0, we get a point-like orbit with stabiliser SO(4).

• If dim kerΛ = 2, then we can bring Λ to the form
0 0 0 0
0 0 0 0
0 0 0 −λ

0 0 λ 0

 , (114)

for some real λ ̸= 0. We can arrange for λ > 0 without loss of generality, since, e.g.,
1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

 ∈ SO(4) , (115)

and conjugating by that matrix changes λ to −λ. The stabiliser in this case is
S(O(2)× U(1)).
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• If dim kerΛ = 0, we have two possibilities:

– if the eigenvalue λ has multiplicity 2, then we have two kinds of orbits corresponding
to (

λJ 0
0 λJ

)
or

(
λJ 0
0 −λJ

)
. (116)

Those two matrices are conjugate in O(4), but not in SO(4). The stabiliser of these
coadjoint orbits is U(2) ⊂ SO(4).

– if the two eigenvalues λ1, λ2 are different, then we can assume without loss of
generality that λ1 ⩽ λ2, and we can bring Λ to one of the following two matrices(

λ1J 0
0 ±λ2J

)
. (117)

The stabiliser in this case is S(U(1)× U(1)).

Alternatively, we can argue as follows. Given any Λ ∈ so(n), it is conjugate under SO(n) to
a matrix in a Cartan subalgebra, say:

0 λ1

−λ1 0
0 λ2

−λ2 0
. . .

0


, (118)

where the λi are not necessarily distinct. This still leaves the action of the Weyl group. If
n = 2ℓ + 1 is odd, then the Weyl group is {±1}ℓ ⋊ Sℓ: the symmetric group Sℓ acts by per-
muting the λi and {±1}ℓ acts by changing the signs of the λi. We can therefore arrange them
so that 0 ⩽ λ1 ⩽ λ2 ⩽ · · · ⩽ λℓ. If n = 2ℓ is even, then the Weyl group is the index-2
subgroup of {±1}ℓ ⋊ Sℓ consisting of an even number of sign changes, equivalently, it is the
subgroup Kℓ ⋊ Sℓ, where Kℓ is the kernel of the group homomorphism {±1}ℓ → {±1} sending
(σ1, . . . ,σℓ) 7→ σ1 . . .σℓ.

In the case of SO(4) we can bring any Λ ∈ so(4) to
0 λ1

−λ1 0
0 λ2

−λ2 0

 , (119)

and the Weyl group is the Klein Vierergruppe acting on (λ1, λ2) by permuting them
(λ1, λ2) 7→ (λ2, λ1) or changing both their signs (λ1, λ2) 7→ (−λ1,−λ2). The moduli space
of coadjoint orbits is then the wedge −λ2 ⩽ λ1 ⩽ λ2, which is illustrated in Figure 2. The
generic stabiliser is S(U(1)× U(1)). If λ1 = 0, but λ2 ̸= 0, then the stabiliser is S(O(2)× U(1)).
If λ1 = ±λ2 ̸= 0, then the stabiliser is enhanced to U(2), and if λ1 = λ2 = 0, it is all of SO(4).

D Coadjoint orbits of the Lorentz group

In this appendix we describe the coadjoint orbits of the (proper, orthochronous) Lorentz group;
that is, the identity component SO(n, 1)0 of the (n+ 1)-dimensional Lorentz group, for n ⩾ 2.
Since for those values of n, so(n, 1) is semisimple, the musical isomorphisms associated to
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λ1

λ2

λ 1
=
λ 2

λ
1 =

−
λ
2

Figure 2: Moduli space of coadjoint orbits of SO(4).

the Killing form, which are so(n, 1)-equivariant, set up an equivalence between the adjoint
and coadjoint representations and hence between the adjoint and coadjoint orbits under the
identity component SO(n, 1)0.

As explained, for example, in a different context in [56, Section 2], every Λ ∈ so(p,q) can
be brought to a normal form under the adjoint action of SO(p,q). In that normal form, Λ is
block diagonal where the relevant elementary blocks for (p,q) = (n, 1) are given in Table 8,
together with their signature (p,q). To obtain the normal forms for Λ ∈ so(n, 1), we need to
build all block diagonal matrices of signature (n, 1) using the elementary blocks and then check
whether there is a further identification of the parameters under the adjoint action.

Table 8: Elementary blocks for lorentzian signature. The parameters φ,β are nonzero
real numbers, but depending on n, we may restrict their sign.

Signature (p,q) Block in so(p,q)

(1, 0) [0]

(0, 1) [0]

(2, 0)

[
0 φ

−φ 0

]

(1, 1)

[
0 β

β 0

]

(2, 1)

0 1 0

1 0 ±1

0 ∓1 0


For example, if n = 2, then we can build a block-diagonal matrix of signature (2, 1) from

elementary blocks as follows:

• (0, 1)⊕ (1, 0)⊕ (1, 0)

• (0, 1)⊕ (2, 0)

• (1, 1)⊕ (1, 0)

• (2, 1)
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This results in the following normal forms for matrices in so(2, 1):0 0 0
0 0 0
0 0 0

 ,

0 1 0
1 0 ±1
0 ±1 0

 ,

0 0 0
0 0 φ

0 −φ 0

 ,

0 β 0
β 0 0
0 0 0

 . (120)

The two irreducible blocks cannot be related under the identity component SO(2, 1)0, and
neither can the sign of φ be changed. However, there is a proper orthochronous Lorentz
transformation which changes the sign of β in the last block, so that we can actually take β > 0.
Because the Killing form for so(2, 1) has signature (2, 1), the coadjoint orbits of SO(2, 1)0

coincide with the orbits in a three-dimensional lorentzian vector (V,η) space under the proper
orthochronous Lorentz transformations: namely,

• the origin, corresponding to the zero matrix;

• the future and past deleted lightcones η(v, v) = 0, corresponding to the matrices0 1 0
1 0 ±1
0 ±1 0

;

• the upper and lower sheets of the two-sheeted hyperboloids η(v, v) = −φ2, corresponding

to the matrices

0 0 0
0 0 φ

0 −φ 0

 for ±φ > 0; and

• the one-sheeted hyperboloid η(v, v) = β2, corresponding to the matrices

0 β 0
β 0 0
0 0 0

,

for β > 0.

This of course is completely elementary and is the lorentzian analogue of the decomposition of
three-dimensional euclidean space under the group of rotations into the origin and the spheres
of radius r for r > 0.

To illustrate further, let us now consider n = 3 and discuss the coadjoint orbits of SO(3, 1)0.
Using the elementary blocks in Table 8, we can build a block diagonal matrix of signature (3, 1)
as follows:

• (0, 1)⊕ (1, 0)⊕ (1, 0)⊕ (1, 0)

• (2, 1)⊕ (1, 0)

• (1, 1)⊕ (2, 0)

• (1, 1)⊕ (1, 0)⊕ (1, 0)

• (0, 1)⊕ (1, 0)⊕ (2, 0)

This results in the following normal forms for matrices in so(3, 1):
0 1 0 0
1 0 ±1 0
0 ∓1 0 0
0 0 0 0

 ,


0 β 0 0
β 0 0 0
0 0 0 φ

0 0 −φ 0

 ,


0 β 0 0
β 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 φ

0 0 −φ 0

 , (121)

in addition to the zero matrix. Now conjugation with SO(3, 1)0 relates the versions of the first
matrix with the different signs, so we need only consider one of them. Similarly, in the last two
normal forms, we need only keep β > 0 and φ > 0. In the second normal form, conjugation
changes the signs of β and φ simultaneously, hence we can take β > 0 and φ nonzero but
otherwise unconstrained.
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