Scil SciPost Phys. 14, 039 (2023)

Quenched random mass disorder
in the large N theory of vector bosons

Han Ma

Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

Abstract

We study the critical bosonic O(N) vector model with quenched random mass disorder
in the large N limit. Due to the replicated action which is sometimes not bounded from
below, we avoid the replica trick and adopt a traditional approach to directly compute
the disorder averaged physical observables. At N = oo, we can exactly solve the disor-
dered model. The resulting low energy behavior can be described by two scale invariant
theories, one of which has an intrinsic scale. At finite N, we find that the previously
proposed attractive disordered fixed point at d = 2 continues to exist at d = 2+ € spatial
dimensions. We also studied the system in the 3 < d < 4 spatial dimensions where the
disorder is relevant at the Gaussian fixed point. However, no physical attractive fixed
point is found right below four spatial dimensions. Nevertheless, the stable fixed point
at 2+ e dimensions can still survive at d = 3 where the system has experimental realiza-
tions. Some critical exponents are predicted in order to be checked by future numerics
and experiments.
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1 Introduction

Systems with quenched disorder are of great interest as they are expected to host novel univer-
sal behaviors. In the system of repulsively interacting bosons, even weak disorder would drive
the superfluid-insulator transition to a new universality class, which describes a superfluid-
glass transition [1-6]. This has attracted attention for decades due to its experimental rele-
vance [7-13]. Meanwhile, it remains a challenging theoretical problem because there is still
a lack of field theoretical understanding in the long distance limit, especially for systems in
higher spatial dimensions.

Such a bosonic problem can be formulated as a d + 1 dimensional® effective Euclidean
quantum field theory with random couplings. In general, there can be random fields, random
mass, random chemical potential and random interaction, each of which affects the system
in a different way. Particularly, the bosonic critical theories with quenched mass or poten-
tial disorder have been studied extensively. Many works are done for d = 1 systems using
exact Bosonization techniques [1,14-16]. Higher dimensional systems have been studied nu-
merically [17-23]. Theoretically, besides some general developments [24-26], perturbative
methods are still largely used to shed light on the weak disorder problems.

We study a theory of N-component vector bosons. For each component being a real field,
the system has O(N) symmetry. It is well-known that the clean O(N) vector model has a contin-
uous phase transition at the famous Wilson-Fisher fixed point below three dimensions [27-29].
The limit of N — oo gives a critical theory of generalized free fields. Such large N theories
coupled to a random field are comprehensively discussed [30]. Here, we are particularly in-
terested in mass disorder. As this quenched disorder is a (marginally) relevant perturbation
at d > 2, around the fixed point at N = oo and d = 2, we use the double expansion of 1/N
and € = d — 2 to access a system with finite N and higher spatial dimensions, hopefully € = 1.
Previous works gave the RG flow around this UV fixed point [4] and suggested that at d = 2
there is an attractive disordered fixed point in the IR [5, 6].

'Hereinafter, d stands for spatial dimension and we fix the temporal dimension to be one.
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Figure 1: Schematic fixed point structure at d spatial dimensions is presented as
our main result of this work. A denotes the interaction and W? quantifies the ran-
domness. They span the coupling space of interest. Gray zones represent the non-
perturbative regions which cannot be reached in our study. (a) At d = 2+ ¢, there
is a IR stable fixed point (blue dot labeled by “D") at finite randomness and finite
interaction, together with the Gaussian fixed point (black dot labeled by “G") and
Wilson-Fisher fixed point (red dot labeled by “WF"). As we increase the spatial di-
mension, the disordered fixed point moves rightward as shown by the orange arrow.
(b) At d = 4 — €, the theory flows to the non-perturbative region. Meanwhile, there
exists a stable but unphysical fixed point (blue circle) at negative randomness. (c)
Above four spatial dimensions, the originally unphysical fixed point enters the right
half plane (blue dot labeled by “D"). Its stability is changed. As a result, the Gaussian
fixed point becomes stable under weak disorder.

In this work, we verify that this stable fixed point continues to exist in d = 2 + € spatial
dimensions, as schematically shown in Fig. 1(a). If we go to higher dimensions, the fixed
point structure evolves in the following ways, as presented in Fig. 1. Firstly, as the spatial
dimension exceeds d = 3, the Wilson-Fisher fixed point moves into the lower half plane and
becomes unstable along both directions while the Gaussion fixed point becomes stable against
the interaction. Secondly, the stable disordered fixed point continuously moves towards the
strong disorder regime. It is expected to either enter the non-perturbative regime or annihilate
with another unstable fixed point at critical spatial dimension d., meaning we can no longer
keep track of it. At d =4—e, our calculation finds no physical fixed point at finite randomness
for free bosons (Fig.1(b)). This is also suggested by the unstable replicated action of the
random mass Gaussian theory. However, this perturbative study is failed to predict the RG
flow in the strong disorder regime. It is possible that the interaction becomes relevant at large
randomness even above three spatial dimensions and hence stabilizes the theory. Thirdly, at
d = 4 — €, an unphysical fixed point appears at negative randomness as shown in Fig. 1(b).
It approaches the Gaussian fixed point as the spatial dimension goes up. As d becomes larger
than four, it enters the right half plane and is no longer stable under disorder. As a result, the
Gaussian fixed point becomes stable (Fig. 1(c)). It is worth mentioning that in the deep IR,
the disorder distribution is unlikely to remain Gaussian, as implied in Sec. 6.2. So, besides the
mean and variance, we also need the higher moments of the distribution to characterize the
disordered fixed point. This is beyond our scope and requires non-perturbative methods.

Previous works mentioned above make use of the replica trick. This is a standard way of
doing disorder averaging. It is done by considering n copies of the same system and integrat-
ing over the disordered coupling with respect to its probability measure in the total partition
function. This produces an effective replicated action. One can further study its RG flow and
compute disorder averaged observables. However, the replicated action is not always well-
defined. For example, the O(N) model at d > 3, which will be discussed in the later sections,
does not have a replicated action which is bounded from below. Thus, instead of using the
replica method, we adopt a traditional approach which is used to study the problem of ran-
dom impurity scattering [31-33]. In this way, we compute the correlation functions as a series
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expansion of the random coupling, followed by a truncation at finite order. Then, we can do
the disorder averaging order by order. This would be a good approximation as we suppress
the random coupling by a factor of Jiﬁ throughout the paper. Sec. 2.2 reviews its diagram-
matic representation in detail. Then, based on the general functional formalism in Sec. 2, we
study the critical O(N) vector model with Gaussian random mass disorder in 2 < d < 4 spatial
dimensions in Sec. 3 ~ Sec. 6. It is known that the clean critical point is at the Wilson-Fisher
fixed point when d < 3 and at the Gaussian fixed point when d > 3. Based on the criterion of
the relevant disorder given in Sec. 3, the disorder is found to be relevant at the Wilson-Fisher
fixed point for 2 < d < 3, while the disorder is relevant at the Gaussian fixed point when
3 < d < 4. We proceed to study the N = oo system in Sec. 4, where the system is described
by a theory of generalized free fields. At 3 < d < 4, the disorder is simply decoupled from the
Gaussian theory. At 2 < d < 3, the system flows to a new fixed point where all the anomalous
dimensions of the fundamental and composite operators can be obtained by exactly computing
the correlation functions and then taking the low energy limit. These results have an alter-
native understanding if we introduce an intrinsic scale to the system. Around the d = 2 and
d = 4 fixed points at N = oo, we use the e = d — 2 and € = 4 — d expansions, respectively
in Sec. 5 and Sec. 6, together with 1/N expansion to study the system at finite N and small €.
Furthermore, the 1/N? correction at d = 4 — € is given in App. G. Finally, Sec. 7 summarizes
the results and gives a discussion on the fixed point structure in 2 < d < 4. Appendices A ~ G
contains more detailed calculations.

2 General formalism

In general, we consider a d + 1 dimensional scale invariant theory, such as a conformal field
theory, perturbed by the quenched disorder. Particularly, we deform a clean theory Sy by a
local scaling operator O, . whose random coupling J, is only a function of space coordinate.
In Euclidean spacetime, the deformed partition function is

Z[J] — J ’D¢ e_SO[‘P]_I ddXdTJxOx,r[¢] . (1)

Both Sy and O,  are functionals of fundamental fields ¢, .. The disorder J, is quenched,
meaning that it is infinitely long-range correlated along the time direction. It is drawn from a
distribution P[J] which is fully determined by its moments J,, ...J,, = fDJ P[J]Jy, .. Jy,
or cumulants. We are especially interested in the Gaussian distribution where J, = 0,
JJ = W28 (x — x’) and all higher cumulants of J, are zero. Equivalently, the distribu-
tion is

1 1
P[J]=/T/exp{—wfddxlff}, 2)

where N = (2nW?2)V/? is the normalization factor such that fDJ P[J] =1 and V is the
number of sites in the system. W? is the variance characterizing the width of the Gaussian
distribution, which also quantifies the randomness of the coupling. As a result, the partition
function in Eq. (1), as well as other observables, are functions of the disorder realization.
Ultimately, the quantities of physical interests need disorder averaging.

In the conventional functional formulation, the correlation functions of a particular oper-

. . . . 2 3 .
ator O, ., including O, ; and its composite operators, such as O, _, Ox’ . etc., are encoded in
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the generating functional. For example, a m-point connected correlation function is given by

_ 1 —Sol¢p1—[ dixd©J, O, ,—[ dixd7T t, .0
(Oxpﬁ "'Oxm,fm>3 = ﬁfpd) Oxl,rl "'Oxm,rm e’ [ a0 O] dixde t:0cs =0

L N WY S | I 3)

d txlaTl d txzﬂz d txmﬂm t=0

« . n

It is a functional of random coupling J, as denoted by the subscript “J". The superscript “c" is a
label for the connected correlation function. The generating functional of the connected corre-
lation functions is thus defined as G[J, t] =InZ[J, t]. It is a functional of both external source
ty - and random coupling J,.. Consequently, the key to the disorder-averaged observables is
to compute the disorder-averaged generating functional

E[W{t]:fw P[J] G[J,t]zJDJ P[J] InZ[J,t], 4)

which leads to the disorder averaging of Eq. (3) being

2 o -
e G[W=, t] . 3

Xm>Tm t=0

<Ox1,710x2,72 e Oxm,*rm >5 = (="

at at

X1,T1 X2,T2

Conventionally, the replica trick simplifies the integration of a logarithm in Eq. (4), as reviewed
below in Sec. 2.1. Alternatively, in this paper, we evaluate the disorder averaging in Eq. (4) by
expanding the logarithm as a power series of the random coupling J,. and then do the disorder
averaging term by term. For a theory of generalized free fields, such as large N theories, if
the disorder couples to the fundamental field, the series expansion gives a finite number of
terms. Therefore, the disorder averaging in this case can be done exactly. In contrast, if the
disorder couples to a composite operator of a free theory, or it couples to any operator in an
interacting theory, the expansion leads to an infinite series. A truncation at finite order would
be a good approximation if the distribution of random coupling J,, has small second and higher
moments. For Gaussian distribution, this requires the width of the distribution W2 to be small.
More details will be given in Sec. 2.2.

2.1 Replica method

The replica trick is based on the identity InZ = hmn_>0 . Itgives G[W?2, t] = hmn_>0 [t]_l ,

where

[t]_JDJ P[J] l_[ D¢ ] e a lsa[¢] fddx‘] fdfza 1%x,7 fddXdTZa 1 x‘r XT’ (6)

is the disorder averaged partition function of n-copies of the original system. Superscript a is
a replica index. If P[J] is the Gaussian distribution given in Eq. (2), we can easily integrate
over the random coupling J, and get

Z”[t JH D¢ ] PMEEH ]+W2fdd (IdTZa 1 xr) fddXdTZa 1 s x’r. )

The disorder effect is fully encoded in the second term proportional to W2. This term mixes
operators from different replicas and is non-local along the time direction. Evidently, the effect
of disorder at the clean fixed point is determined by whether this term is relevant or not. As
[x]=—1, [t] =—1, and [O] = A, the scaling of randomness W? given by power counting
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is [W2] =d +2—2A. Then, [W?] > 0 ([W?] < 0) indicates the disorder is (ir)relevant. In
particular, if the disorder couples to the singlet operator with the lowest scaling dimension,
since the critical exponent v is associated with its scaling dimension A as v = ﬁ, the
dimension of the coupling W2 can be reduced to [W?] = %— d. This reproduces the familiar
Harris criterion [34] that the disorder is (ir)relevant if % >d (% < d). Therefore, the replicated
theory gives a standard protocol to tell when the disorder is relevant no matter which operator
the disorder couples to. Naturally, we are able to proceed to study the RG flow of the replicated
theory. Upon Eq. (7), either momentum shell RG or field theoretical RG can be implemented
following the standard procedure.

However, the replica method is valid only if the replicated action is bounded from below.
Otherwise, it will give rise to instability. For example, as we will study in Sec. 6, the disorder
averaging of n-copies of free bosonic theories with random mass, i.e. Sy = f dixdt (2 qu,f)z
and O, ; = ¢32<,¢’ generates a negative quartic term —W? f dixdrdt’ Zab(¢;’f)2(¢fﬁ,)2 in
the effective action. Therefore, the replica approach cannot be used to study this particular
disorder problem.

2.2 Traditional method by random coupling expansion

To avoid the issue caused by the replica trick, in this paper, we take another approach from
the first principle. It was applied to the system of electrons scattered by random impurities
decades ago [31-33]. Before we review the technical details of the method, the criterion for
the relevant disorder is discussed. Without the replica trick, one can still tell if the disorder
is relevant by the similar power counting. Here, the random coupling J, in the partition
function Eq. (1) acquires a dimension [J] = d + 1 — A given [O] = A. This can directly
lead to [W2] = d + 2 — 2A in the probability density function of a Gaussian distribution.
When [W?2] > 0, the Gaussian distribution is broadened under coarse graining, indicating
more randomness is introduced to the system at lower energy scale and thus the disorder is
relevant. When [W?2] < 0, the width of the Gaussian distribution becomes narrower. In the
IR limit, the distribution is asymptotically a §-function, i.e. limy2 o P[J]1=]],6(J,). Asa
result, the disorder averaging effectively imposes the constraint J, = 0 at any site in the space,
which leads to a clean theory in the long distance limit. In short, the disorder is irrelevant.

Instead of disorder averaging the UV action as we do in the replica method, here, we
average the truncated series expansion of the generating functional. Namely,

L
fDJP[J]G[J,t] N > T Ty, GO, 8)

=0

where we keep the first L terms and G\ is the ¢-th coefficient. Later, in the study of the O(N)
model, the random mass is drawn from a Gaussian distribution with zero mean and small
variance suppressed by 1% This gives nonzero m ~ N~% when ¢ is even. Then, the
truncation error in Eq. (8) is of order N -3 which can be ignored in the large N limit.
Diagrammatically, the computation of Eq. (8) including the series expansion and disorder

averaging is represented in Eq. (9) and Eq. (10), successively. Together Eq. (8) with Eq. (3),
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the series expansion gives the m-point connected correlation function as

L
(Oxm'l e Oxm,rm)s = (=" Zf ddyl ... ddye
£=0
G,

0 0
x g“)[t]) Jy o
( d txla'rl d txzﬁz d txm’Tm t=0 )’1 .

1
2, m

L
= Z fddyl...ddyg 3 m—1 . 9
=0 .

m—2

The expression is truncated at the L-th order. There are m external points in each diagram,
denoted by black dots. Each red dot corresponds to a disorder coupling J. The £-th term
contains all possible connected diagrams linking the m external points with £ disorder cou-
plings J,. ...J,, . Then, for the Gaussian distribution, the disorder averaging is implemented
in Eq. (10). Here, pairs of red dots are connected with a dashed line, according to the following
rules.

(o) = W2 or gy =W?2_ 8 | (10)
Only momentum, not frequency, is transferred along the dashed line. Later, we would study
the vector O(N) model based on Eq. (9) and Eq. (10).

Conventional RG transformation can be implemented in the disordered theory. In the
scheme of Wilsonian RG, we assign a hard UV cutoff A to the system. As we integrate out fast
modes with momentum in the shell A — A < k < A followed by a rescaling of spacetime to
restore the UV cutoff, the form of the effective theory stays the same. This coarse graining
induces the flow of couplings. The disordered coupling of O, . thus flows from J, to J,. + 6J,
with 6J, o< §A. This means the random mass now has distribution P’[J + 6J ] instead of orig-
inal P[J]. For an infinitesimal RG step, the evolution of the Gaussian distribution is encoded
in the change of its mean and variance W2. Meanwhile, for a generic interacting theory, other
couplings inevitably become functionals of J,.. This is due to the mixture of UV operators in
which only the singlet couples to the disorder. This is the general picture of how a disordered
theory flows under coarse graining without using the replica trick.

Besides the momentum shell RG, the field theoretical RG can also be formulated for an
arbitrary theory coupled with disorder, with A pushed to infinite. In the general theory in
Eq. (1), one can define the renormalized field as Zg Og,y ;, = O, ; in the real space, where O, -
can be ¢, -, O, ., etc.. Zg is a renormalization constant. Notice the quenched disorder gives
rise to anisotropy in spacetime. We hence need to introduce renormalized time as Z, 7z = 7.
The renormalized randomness is Z,, Wz = W which controls the propability density function
of the Gaussian disorder. Then, in terms of renormalized variables, the generating functional
can be written as

G[CO;J, t] — an D¢R e_SO[eO(e):Zzp d)R;x,‘rR]_ZrZOIddXdTRJxOR;x,TR_ZrZOIddXdTRtx,‘roR;x,'rR
= GR[e; ZTZOJ’ Z,L-Zot], (11)

where e, and e collects all the bare and renormalized couplings in S,. Equivalently,
Ggle;J, t] = G[eo;ZfZ(;lJ,ZT_ 1Zalt]. Then, the disorder averaged generating functional
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becomes

Gleg, W2, t]= J DJ P[W?,J] Gley; J, t]

JDJ P[W2,J]1Ggle;J,Z,Zot]
= Ggle, W2, Z, Zot], (12)

where J, = Z.Z»J, and the Gaussian distribution parameterized by its variance W?2 is rede-
fined as

—#Jddxjf} =(Z.Z0)"P[W2,J]. (13)

R

The new normalization factor is N’ = (Z,Z»)" . In addition, it is easy to find the following
relation among the renormalization constants

2 7252 __
717272 =1. (14)

Then, the renormalized m-point correlation functions are given by

_ 1y 8Ggle, W2, Z. Zot]
B St .St

t=0 X1,T1 "

56[60: Wz) t]
ot .0t

<Ox1,’r1 o Oxm,rm >3 = (="

X1,T1 *° Xm>Tm Xm>Tm

t=0
= Z’anZ(T)n <OR§X1’TR;1 o OR§xm:TR;m >§ : (15)

In the momentum space, Fourier transformation gives Z; ZoOg.k ., = Ok - Besides, we have
the renormalized frequency defined as w = ZT_1 wg. Then, the bare and renormalized correla-
tion functions are related by

m
(Ory,0, - Okp0, )G (Z kz) (Z wz) Z5 Ok, 0, - - Orik, 0, )5
=1 (=1
m m
x 54 (Z kz) 5 (Z ww) . (16)
=1 =1

All the above discussions can also be applied to disconnected correlation functions as well.
They can be viewed as a product of connected correlation functions before disorder averaging.
Consider a disconnected correlation function made up from m connected correlation functions,
the k-th of which has n; operators. Then, disorder averaging gives

n

nm
[ To-, ]_[o )5 = (2 Zo)Sr ]_[0Rx1 )5 go&xmﬂm},);. 17)

i=1 i=1

Diagramically, it is represented by a product of diagrams in Eq. (9). Each of them contains a
fixed number of external points and disorder couplings denoted as red dots. Then, the disorder
averaging connects all the red dots pairwise according to Eq. (10). This transfers momentum
from a connected diagram to another. Thus, in the momentum space, there is one constraint
for momenta while there are m constraints for frequencies in the example of Eq. (17). In terms
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of the renormalized frequencies, different from Eq. (16), the constraints of the frequencies are

written as
ﬁ[a (Zl:wei)]=22"ﬁ[5 (Ze:wmi)], (18)
i=1 (=1 i=1

(=1

where each connected diagram gives a Z,.

As usual, to the leading order of the perturbation, the renormalization constant determines
the anomalous dimension. Particularly, operator O gains an anomalous dimension defined as
Yo = udulnZgy. Since [W2]=d +2—2A, the f3 function of WR2 is given by

By =—ud,Wg = (d +2—20)W2 + vy W2, (19)

where vy, = ud ,uanﬁ,. Similarly, ud,InZ; plays the role of an anomalous dimension of
time. Thus, we can characterize the spacetime anisotropy by the dynamical exponent defined
asz=1—ud,InZ..

3 Relevant disorder effect on the O(N) vector model

From now on, we study the O(N) vector model perturbed by the random mass disorder. In
other words, we introduce a random coupling to the singlet operator with the lowest scaling
dimension. For a d + 1-dimensional system, the UV action in Euclidean spacetime is given by

S=Jddxdr[ (8¢xr)2+ (m +—=J)p2 + —Nqﬁi,T], (20)

1/_ X
where ¢, . isa N component vector of real bosonic fields. Singlet operator c,i)ﬁ =D, P PY
couples to a random coupling J/. a is the O(N) index and we will omit it throughout the pa-
per for simplicity. J; is drawn from a Gaussian distribution P[J'] = ng exp{— 2W2 f ddx(J "}

with zero mean and variance WOZ. The normalization factor is Ny = (27TW02)V/ 2. We suppress
the disorder coupling by a factor of ‘/LN In the action, the quartic term is (ir)relevant at d < 3
(d > 3). Therefore, we will separately discuss the effect of the disorder in d < 3 and d > 3
spatial dimensions.

3.1 d<3

In this case, it is well-known that, the quartic interaction is relevant in the clean system which
drives the RG flow from the UV Gaussian fixed point towards the stable Wilson-Fisher fixed
point when m? = 0. In order to write the fixed point action in the IR, it is convenient to do the
Hubbard-Stratonovich transformation by introducing an auxiliary field o, .. In the presence
of the disorder, we follow the same procedure, which gives

1. N
S:Jddxd’r[ (3¢xr)2+ m2¢2 Elax,7¢iT+4—A[ax’T+l‘/_Jx]]

1 1 1. .
= f dixdr [5(3 (,bxﬂ)2 + Engi)if + —lax’Tgi)iT + lmeO'x’T +

2 —QLJZ]. 21
2 O-X,T X ( )

N
4
In the second equality, we redefine J, xJ Correspondingly, the Gaussian distribution for

J, has width W? = W2/(4A?) and the normahzatlon becomes N = N, /(21)". The last term
is a constant and can be dropped. As the mass is fine tuned to zero, without considering the
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irrelevant term o2 _,

disorder as

we can get the critical action of the Wilson-Fisher fixed point coupled to

zjddxdf[ (3¢XT)2 lO'XT(ﬁ +i\/NJxox,T]. (22)

Here, the random mass disorder is coupled with the singlet field o. The bosonic fields ¢ and
o have engineer dimensions Ay = dz;l and A, = 2. Thus, the relevance of disorder requires
d+2—-2A,>0,ie. d>2.

3.2 d>3

In this case, the quadratic action

s=fddxdr[%(a¢m)2+%(m2+ e ] (23)

JN

is enough to describe the system. By fine tuning m? = 0 in the absence of disorder, we can
approach the Gaussian fixed point where the free field has scaling dimension A, = dz;l. This
means the operator coupled to the disorder has the scaling dimension Ay> = d —1. When
d+2—2A4>>0,ie. d <4, the disorder is relevant.

4 The O(N) vector model at N = oo in 2 < d < 3 spatial dimen-
sions

In this section, we study the N = oo disordered O(N) vector model in Eq. (22) which is
of purely theoretical interest. In this case, the Wilson-Fisher fixed point is described by two
generalized free fields:?> the free bosonic field ¢ and the singlet field o with their scaling
dimensions equal to engineer dimensions. The coupling between them is of order 1/N. Thus,
as N — o0, the two sectors of operators {¢"} and {o"}, made up of ¢, o and their composite
operators respectively, are decoupled. The disorder couples to o and hence leaves the ¢
sector intact. We can then integrate over the ¢ field in Eq. (22). After redefining the field as
Oxr— JLN x,7> the resulting effective action is

1 _ .
SI\\/IVEOO = EJ ddkdw Gal(k, w)o-k,a)o-—k,—co +lf ddkda) J_k5(w)0k,w, (24)
where the propagator of o in the momentum space is G,(k,w) = %(k2 + a)z)% with
ol-2d 7‘1

Cy = W > 0, as computed in Appendix A.

1"( )sin =5—

4.1 Disorder averaged connected correlation functions

Making use of the Feynman rules in Eq.(9) and Eq. (10), we can obtain the diagrammatic
expression of the disordered averaged connected correlation functions, by listing all the con-

2Generalized free field is one of the CFT operators that has scaling dlmensmn A different from that of free
fields, i.e. A ;é . It has non-zero two point function with the form ZA and vanishing higher point functions.

The theory for smgle generalized free field ® has Gaussian type of action S = f dlr (= VZ)A‘* .
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nected diagrams before directly linking the random couplings with dashed lines. In the fol-
lowing, a few expressions are given.

— d?kdw ey ) Heo(T
(O-Xl,Tlo-Xz,T2>3 — evwvwvwwWwwWwe — W Ga(k, CL)) elk (Xl X2)+l(x)(T1 Tz)’ (25)

(02 02 o = 240 w44 o, (26)

2 2 2 [C— ’ \
le,flax2,720x3,T3>J = 8 + 8 i N z + ):" K"’ /\\'Li . (27)

As a generalized free field, the connected higher-point correlation functions of ¢ are all zero.
For composite operators of o, higher-point functions are nonzero and can be obtained in the
same way. With a finite number of external points, there are always a finite number of con-
nected diagrams which contribute to the correlation functions.

Notice disorder doesn’t affect the connected 2-point function of o, .. However, if we com-
pute its disconnected 2-point function, the correction by disorder appears, as denoted below
by G;. Namely,

<O-X1,Tlo-xzﬂ'2>~] = (O-xl;Tl O-Xz,Tz)3 + Gy, (28)
where

2 2 4W? o)
Gy(k,w) = owwwe----- e = —W4[ G, (k,0)] 5(w)=—c—2k 5(w). (29
2

It contains two connected diagrams if we cut the dashed line. In the real space, the disorder
effect is given by

dik dew eics
Gd(X,T)Z W%Gd(k,a))elkﬁ'l T
_ 4w [ dik 1 23-d) gikx — _ W3¢, (30)
g J (2m) |x|6=d”

d
22046 1972 cog2[ £4]T[3— 4 T2 ¢ .. . .
where ¢; = T COIS,[Eiz_S]] B3] gy s independent of temporal separation. Accordingly,

the connected Green’s functions of 0)2( L are
2 2 T 0202 2 4 _ 20,2 2 \—27.,2 48
( X],T1ax2,T2)J =2c5(xy, +77,) 4c1cs W (X7, +77,) (x3,) 2, (31)

2 2 2 \C — 3(y2 2 V=272 2 V=202 2 -2
(xl,rlaxz,rzax3,f3)J—8C3(x12+712) (x73 +773) (x5 + 733)

d—6
— 8c1c§W2 [(xfz + T%Z)_Z(X%B + 7%3)_20(%3)7 + permutations] , (32)

The coefficient ¢5 = —w is negative at
n2T[ 2]

2 < d < 3. These results are reproduced by exact computation in Appendix B or by using the
conventional replica method in Appendix C. These two correlation functions have power law
behavior. Notice at integer dimensions, the disorder doesn’t affect the system due to ¢; = 0
even though it is relevant at d > 2. At fractional dimensions, the correction proportional to
W2 is finite.

It is believed that all the correlation functions obey the power law. We now study if there
is an appropriate scale transformation such that the theory in the IR limit is scale invariant. As

where xij = X —Xj and Tij = T; —Tj.

11
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shown in Eq. (25), the 2-point function of ¢ is the same as in the clean theory. Thus, under
scale transformation x;; — Xx; jef and 7;; — Tl-jez, (Oy,7,0x,,); is invariant if o is a scaling
operator and has scaling dimension A, = 2. Here, { is the change in logarithmic length scale.
It remains positive as we approach to the IR limit. Meanwhile, this transformation of spacetime
makes it evident that the contribution proportional to W2 in Eq. (31) and Eq. (32) dominants
in the long distance limit when d > 2 as long as c¢; # 0. As a result, these correlation functions

are approximately

80 —(d—207 -2 2  \C ~ _ 202 2 \=27..2 1952
ee le,r10x2,fz)J A~ —dc W (xy, +77,) “(x35) 2, (33)

12¢ —(d—2)¢ i 2172[ .2 2 27,2 2 27,2 &0
ee <G?c1,r10§2,720§3,73>§% 8cicsW [(X12+T12) (73 + 773) 7 (x53) 2

+ permutations] . (34)

d(2pt)
. . -A . (2 —
On the left hand side, the scale transformation g2 — e o2 ‘o2 with AU(Z P g de leaves

the 2-point function invariant. When d > 2, Ai(fpt) # A,2 = 2A,. In other words, the

2 acquires an anomalous dimension y 2 = 1 — % which only vanishes at

_ AdBpt)
d = 2. For the 3-point function, the scale transformation of o2 becomes o2 — e B2ty

d(3pt d— d(2
where Aa(zp) = 4—72 + AU(Z 2

composite operator o

. Moreover, we can consider an m-point function of o2,

d(mpo) _ 4

o2 — dm;z. Consequently, the scaling operator

where o2 acquires a scaling dimension A

. e - . . . d(2 d .
o2 acquires an infinite number of distinct scaling dimensions AG(Z p) #+ Aa(zmp 9 with m > 2,

which is impossible in a well-defined scale invariant theory. For other composite operators,
this inconsistency also exists.

Naturally, we would like to fix the scaling dimension of o to be Ai(fpt). Then, in the IR, all
its higher-point functions vanish. In this way, we can get a scale invariant theory where each
composite operator in the clean system acquires a distinct anomalous dimension, as listed in
Tab. 1. This is like a theory of infinitely many generalized free fields but no composite of them.

Table 1: The clean system consists operator o and its composite operators. The latter
has scaling dimension equal to a multiple of the scaling dimension of o, i.e. A,. In
the disordered systems, except the operator o, all other operators gain anomalous
dimensions listed in the third column.

operators | Agean Adirty
o2 | 24, 20, — 432
0-3 SAU BAO' - Zd_gz
d—2
o nAU TLAO. (Tl — 1)7

Alternatively, it is more interesting to introduce an intrinsic scale set by the dimensionful
coupling W2. In other words, under scale transformation, W? is also changed as
w2 — W2e w2t where Ay> = d +2—2A, = d —2. Then, the composite operator o"
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can be assigned a scaling dimension A, . = 2n the same as in the clean theory. This disor-
dered theory with an intrinsic scale is analogous to the theory of fermi surface, where the
fermi momentum plays the role of intrinsic scale. The coarse graining effectively increases
the fermi momentum in the long distance limit. Similarly, in the system we study here, the
disorder strength W2 increases when d > 2 as we approach the IR limit. As will be studied
in Sec. 4.2, normal to the direction of the intrinsic scale, the subdimensional system is scale,
even conformal, invariant. This is the phenomenon of dimension reduction which has been
found and studied extensively in the effective theory of the random field Ising model [35-41].

Although the space and time transform in the same way to preserve the scale invariance
as we discussed above, i.e. the dynamical exponent satisfies z = 1, the behavior of correlation
functions has anisotropy in space and time. For example, the equal time and almost equal
space 2-point correlation functions are

2 d—10
<G)2c1 ogiz 05 A —AcicsWolxyo|T 7, (35)
(05,02 )5~ —4cicsW? |73, Ha®C, (36)

in the long distance limit. In Eq. (36), we set the spatial splitting a very small so that
0 <a=|xp| < |7t2l

4.2 Dimension reduction

As we pointed out, the critical O(N) model in 2 < d < 3 dimensions at N = 0o can be
understood as a theory with an intrinsic scale. In this section, we would like to make it clear in
its effective theory. In order to do this, we introduce fermions into our system and rewrite our
theory. Starting with the free disordered theory in Eq. (24), any disorder averaged observable
can be computed as

(04, z,---Oy O = J DJ Pl (2] J Do (Oy, 7, .- 0y, o] e SNecl¥]

= J Do (Oy, 7, ---0y - JO] e Serliow s}l (37)

where each operator O, . is a functional of the fundamental operator o, .. The disorder
averaged effective action is thus

e Serllons}] — JDJ P[] (Z[J])™ JDGe NZool03]

\ J DYDYDE e Sl €41 (38)

where 1) and v are anti-commuting fields while £ is a commuting field as . Given

zuDt= \J 2n)Vv l_[ G l(k,w) exp (% J dik G, (k, O)JkJ_k) s (39)
k,w
we can get

s;ff[o,g,w,zﬁ]:Jddkdw[ G5k, 0)Ek 0t + Prw Gy (ks NP

1 w?2 _ .
+2G Yk, w)op 04 w]—jfddk(gk,o—lUk,o)(ﬁ—k,o—lG—k,o), (40)
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after integrating out the Gaussian disorder. This effective action can be simplified by defining
new commuting complex fields 7y ., = & , — 10, and @y ., = %(E k. T 10k,), which gives

_ B _ w2
Seff[n: @, ll’, ll’] :J ddkdw Go-l(k: w) [nk,w So—k,—w + wk,ww—k,—w] - 7 f ddk T)k’OTI_k,O . (41)

It can be used to compute any disorder averaged correlation function of operators rewritten in
terms of the 1 and ¢. The disorder only couples to the 7 field at zero frequency w = 0. So we

can integrate out the fields at nonzero frequency. Recall G, (k,w = 0) = %(k2)¥. Without

. 2 . .
loss of generality, we can set % =1 and the effective action becomes

2 d-3 a3 - 1
_S;?f o, 0,9, 91= Jddk[ (k*) 7 Mpop—ro+ (k*)2 'iPk,o’Ll’—k,o—Ele,o’f)—k,o} . (42

This theory can also be obtained using the replica trick as we show in Appendix D and the

physical meaning of these fields is rather obvious in terms of replica fields. Suppose the the-

ory is isotropic, which means the Lagrangian is independent of the directions of momenta.

Then, with fddk = Q4 fkd_ldk where Q; = FZ[Z—U;/ZZ], we can define a new momentum p,, in
d—3

D= d+12—2A dimensions satisfying p? = p,p” = (k,k") 2", such that the original theory can

be viewed as a free theory of fields np = N0 1,52) =Yro0s 1,0; = o and (p; = Proin® = %
dimensions. The effective action is hence in the following familiar form:

Qi)zw:o///‘/_ D 2./, .1 2
Q—daSeff [0, @', 9" ' 1= | d°p| p*n,¢’, + PP’ — np -

- 1
- [ ex[mevnein - Jar]. @
Previous study [37] tells us that this action has a supersymmetry whose transformation is
S¢l =—ae,x, ., &n. =2ae, 0,0, &Y. =0, &Y. =de,(x,n.+23,¢.), (44)

where a is an infinitesimal anticommuting number and €, is an arbitrary vector. Then, we can
define a superfield , = ¢ + 61’ + 61} + 667’ such that the effective action in Eq. (43)
can be written in a rather simple form as

Q -
Se 0@ ]zczéJdgxd9d9(¢x[—vz—23989]¢x), (45)

where the Berezin integral over the Grassmann variable 6 or 0 is defined to be
f doe = fd@@ = 1. The Grassmannian coordinates have integral negative dimensions.

Therefore, this theory describes a free CFT in ® —2 = i . This means the
original d + 1 spacetime dimensional system has the scale invariance in 2A, —1 = 3 sub-
dimensional system. Interestingly, when d = 2, the total spacetime dimension saturates this
requirement. So the disordered system is scale invariant in the IR. While when d > 2, apart
from the scale invariant three dimensional system, there is extra fractional dimension d — 2
left as the dimension of the intrinsic scale. Finally, I would like to briefly comment on what
happens at d = 3. Notice the operator o2 is exactly marginal. So, it should be included in the
action in Eq. (24). Consequently, G;l(k, w) reduces to a constant. Then, the effective action
defined in Eq. (38) by integrating over random coupling J is only a functional of the bosonic
field o. At w = 0, it describes a scale invariant theory in d = 3 dimensions although the whole
system lives in d + 1 = 4 dimensions.
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5 1/N correctionatd =2+¢

In this section, we study the critical O(N) vector model at d = 2+ € and finite N using double
expansion of € and 1/N. The bare action is

1 1
Sp= Ef dixdt (8¢, .)* + EJ dixdr f dx'dt’ o, G (Ix — x|, 1T —T')0 o0
i
+ dixdt oy p2_+i | dixdt J.0p . (46)
2J/N , qu,r J ,

And the Gaussian disorder has a bare distribution P[J] = % exp { — ﬁ f d9xJ f} The prop-

agator of o is G, (k, w) = %[k2 + wz]% in 2 + 1 dimensions. Accordingly, the Feynman rules
can be defined as

¢
_ 1 i 1 —_aw? 2
Gy = vz s ’U—é‘/;ﬁ 5 G, = %[kz + w?]2 , Ed 2 k*6(w) . 47)
— o omve = --
¢

At the order of 1/N, the bare connected correlation functions Gg and Gg acquire correc-

tions as shown in the following.

G = + £ + + (’)(i)

¢ Ly Ly N2
G5 = wwn g A Y
Ls Ls Ls Le
awm e o 1
+ + N\ + ]W . (48)
Ly Lg

The loop diagrams are evaluated in Appendix E. The results are listed in Tab. 2, which are
consistent with [6].

Table 2: Evaluation of the UV divergence of loop diagrams L; ~ Lg at the order of
1/N. u is the renormalization scale. L, and Lg are not divergent.

2
Li(k,©) | 525 i03+0Mus | Lk o) | %1210 — ke

1 ps 1 sw2pt K
Ly(k, w) 3m2N e (k24+w?2)l/2 La(k, ) mN-e (k2+w2)%
. 1 2 € -1
Ls(k, ©) | 2 Sk + 0?77 | Lok, ) | 20 + 0?7
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In total, the bare correlation functions are

1 Li+L
GE(k, w) = L
s )= e o Y e s o
G (k, ) = 16[k? + w217 +256[k> + w?](Ls + Ly + Ls + Lg) . (49)

In terms of the renormalized variables defined as
br=2,'¢, Oop=2,'0, T=Z:Tx, w=wp/Z;, ZyWp=W, (50)

we can obtain the finite renormalized connected correlation functions GdR)(k, wg) =Z;ZZT‘16§ (k, w)

and Gg(k, wg) = Z;ZZT_1 Gg(k, w). The divergence in the bare correlation function can be can-
celed by counterterms, which fixes the renormalization constants to be

W2 128 pf
Z =1——R——, 51
" N m € 1)
1 8 ue
Zy=1+— —, 52
¢ 2(37‘52]\/) € (52)
1 64  512W2\ e
Zy=1+=(— + =. 53
g 2( 3m2N N )e (53)

Then, the anomalous dimensions of ¢ and o operators as well as the dynamical exponent are
determined as

1/ 8
1 64  S512W2
yazuaulnzgzi(—Bn_ZN e ). (55)
W2 128
z=1—ua“1nzf=1+7"—. (56)
T

We can also study the renormalization of the composite operators. At the order of 1/N, the
operator o2 acquires an anomalous dimension twice as that of o. The equality in Eq. (14)
further gives

1064 256W7\1pc
Zy=1+=(— — ——, 57
w 2(37I2 T )N € (57)
which gives the 8 function of the randomness WR2 as

dw? dlnZz2 64W2  256W;

R 2 2 w 2 R R
Pw: dlnu "k R dlnu RT3y N (58)
Besides the unstable clean fixed point at WR2 = 0, there is another fixed point at

w2 .o . . . ..
ez + SS—Q‘N).?’ At this disordered fixed point, there are universal quantities

32

C T 9
€ 32

Z*:1+§+3TE—2N. (60)

More discussion will be given in Sec. 7 on the fixed point structure in the space of randomness
W2
-

3WR2 /N is the small parameter in the perturbative study.
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6 1/N correctionatd =4—¢

6.1 Field theoretical RG

At 3 < d < 4, as analyzed before in Sec. 3.2, we consider the perturbation around the Gaussian
fixed point by disorder, where the disorder couples to the composite operator ¢ with scaling
dimension Ay2 = d — 1. The action in Eq. (23) at m =0

I 2, 1 5 40
S—zfd xdr[(aqﬁx’f) + mequ}T], (61)

defines the Feynman rules as

Jx
.—.G¢(k’ 0)) ¢x T T (i)x T
¢k,w ¢*k —w ’ 1 ' . (62)
2/N

As N — 00, the disorder doesn’t affect the system since it couples with ¢?2 at the order of Jiﬁ
At the order of 1/N, the disorder averaged 2-point function of ¢ is corrected to be

G (k) = (Probpa), = Gotkhe) +
SR S Ui T Sy (63)
k2 +w?  (4n)°N e (k2 + w?)?
In terms of the renormalized variables defined as before
R=Z5'0,  Gg=Zn9°, T=Z.Tr, w=wg/Z;, ZyWr=W, (64

we can then get the finite renormalized correlation function G& = Z - 1772GB. The divergence

¢ ¢ "¢
in the bare correlation function fixes the renormalization constants to be
W2 e
z.=1+—k K
1672N €
w2 ‘u,_e
Z,=1——2=% 65
¢ 3272N € (65)
As a result, the dynamical exponent and the anomalous dimension of ¢ are
2
=1—ud,InZ, =1+ —2—, 66
2 H% g 16m2N (66)
J,InZ WRZ 67
= n =0,
Yo =HouInZy = ooy (67)

respectively. We can also compute the bare disorder averaged disconnected 4-point function
of ¢ defined as

AR v Gg(§+q, %+w’)Gg(§+p, %+w”)Gg(§—q, %—w’)Gg(g—p, %—w”), (68)
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where Ff f is the 4-point vertex. Then, the renormalized 4-point function is given by

GRUPY) — R GR(S +4q, ©R 4 w’)GR(g +p, % + w”)

¢ 499 2 ¢
XGR(E_q ﬁ_w/)GR(E_p OR _ )
#lo 2 A )
k w k w
— 747—8pR ~B[ R "\~B( ™ *R /"
=22, I‘4¢G¢(2+q, 2 +w)G¢(2+p, 5 +ow )
k w k w
B R /\~B R Vi
*Gzme5 )G P g )
_ —2,—4~B(4pt)
=Z.°72,"Gy , (69)
which relates the renormalized and the bare 4-point vertex in the following way
R _ 52,41B
Loy =Z7ZyTpy - (70)

At the tree level, the bare 4-point vertex is W2/N. The 1/N correction is contributed by the
1PI diagram at the order of 1/N?2. To this end, the bare vertex is given by

¢ %_q’%_wl ¢ %_p’%_wu

Tpp = }[ +2 \f----
¢§+q,7+w’ ¢§+p,%+w”

Phigorw Pripoiown
_w? N 2w [ dip 1
N N (2m)? (p2 + w)[(k3 —k; +p)? + w?]
e ]
N 412N €

(71)

2
Wg p°

This determines the renormalization constant to be Z,, =1 — and the 8 function of

8m2N € °
the randomness is
dw? Inz2 Wy
R 2 2 w 2 R
=— =eW2+W, =eWy +——. 72
Pw: dinu R R dlnu R 4n2N (72)
2
At positive €, there is an unphysical attractive fixed point at % = —4n?e. While at negative
2
€, we can find a physical but unstable fixed point at V;/V—R = —4n2e. This fixed point has two

relevant directions including both the disorder and the mass perturbation.
Besides, according to the relation in Eq. (14), one can get the renormalization constant
associated with the composite operator ¢?2 as

w2 u €
Z = Z_lz_l el 1 + R 73
¢ T oW 16m2N € (73)
which finds its anomalous dimension to be
2
_ _ R
‘)’¢2 = M(?H an¢2 = —167'CZN . (74)

Compared to 2y, it has an opposite sign. This indicates that the scaling dimension of the
singlet operator decreases as WR2 becomes larger. It is possible that the interaction term (¢?2)?
becomes relevant if the randomness is strong enough. This would induce extra RG flow to-
wards strong interaction regime above three spatial dimensions. This result is checked by
directly computing the renormalization of the ¢? field, as studied in Appendix F.

18


https://scipost.org
https://scipost.org/SciPostPhys.14.3.039

Scil SciPost Phys. 14, 039 (2023)

6.2 Momentum Shell RG

We can alternatively use the momentum shell RG to find how the randomness W?2 flows under
coarse graining. Let us begin with the action in Eq. (61) again. The bosonic field is scat-
tered by the quenched disorder. This process only transfers the momentum, which mixes the
fast and slow modes. As the integration of the frequency shell doesn’t change the form of
effective action, we thus focus on how the action gets modified after integrating over the mo-
mentum shell. In order to do this, we separate the field ¢ into the fast mode and the slow
mode, i.e. ¢ = ¢~ + ¢=. Then, in the momentum space, we can write done the action as
S =8%+S> +S™X, where

A Ae™ Ae
1 Oda) ddk 1 ddp
— - k2+ 2y 4 < < + g < < , 75
ZJO 27 0 (Zﬁ)d ( w )¢k,w¢—k,—w ‘N o (27’[)‘1 k p(nbk’wqb_p’_w (75)

AO 1 A ddp
k2 2 > > +— el S S > > , (76)
f fw 2n)t [( “Wrot-0® TR | mt o Pre?op
Ao Aet d
dp

Sl’an . > < . 77
fJ L ay ] aertien Z

The renormalization scale is defined as £ = —1n [1 — 5—/\] > 0 where 6 A is the decrease in the

UV cutoff of momentum. In other words, 6 A ~ £A. So larger £ results in a longer length scale
after the integration over fast modes. The UV cutoff of frequency is chosen to be Ay < A. The
disordered coupling J; is independent of frequency and is drawn from the Gaussian distribu-
tion
1

P[J]= G exp ( —
Here, we take a generic form with a nonzero mean value Jy, i.e. J, = J,6%(k). Higher moments
of J; are functions of both J, and W2. A few of them are listed in Appendix G. Nonzero J, can
also be viewed as a mass term in the UV action. To make it clear, we can define a new disorder
coupling J; = J —Jp8%(k). Then, J; obeys the Gaussian distribution with zero mean while

d
there exists an additional mass term ﬁJo %g—;’qbk’w(p_k,_w in the action. We can define

the Feynman rules based on the action S.

1
2W2

J d'k [J = o5 ()] = Jo5%(—K)]) . (78)

kap kap
Floe) G o) ’ ’ (79)
¢< <k,—w 5 k>,w ik,—w 5 ¢<(>)o—i—c <) ¢> o- - - _.¢< .
TN —p,—w k,w Jlﬁ —p,—w
2

After integrating out the fast modes, the effective action at the order of % becomes

—
L[V [ o
2 ), 2mJ, (2m)d

x [ (kK + 0®og,

fk,—w \/—f (2 )d jkp( )¢kw¢fp —w | > (80)

where p and k are both smaller than Ae ™. The second term is represented as a summation of
diagrams

Jk—p Ji—q Jg—p a1 Jai—a2 Japp
H _ ' : + O + O(1/N?). (81)
6= 0—1—0< < et ps T AT ys )
ke w0 P G7(q, ») ¢ o ko @1 Q2 Thme
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As a result, the effective coupling of the singlet operator can be expanded as a power series of
JkZ

1 A gdq
Tl =iep ™ ret 2T )dJk —Jq—pG (g, )
VN o
A
1 dq,dq, y §
+ﬁf/\e[ ij—qqul—quqz_pG (q1,0)G7(qg, ) +..., (82)

which is in general a function of frequency w. Now the distribution of J , is different from the
original Gaussian distribution P[J] in Eq. (78). Up to the order of %, the mean and variance
are corrected to be

1 A dq

Ten@) =T = U5 | Ggmytties

Ji—glq—pG~ (q, @)

1 A ddqlddq2 N i §
Y A ZWJk_qlJ(h_quqz—pG (q1, w)G (qz,w)+(’)(1/N2)’
-

A ad o gd
2 d“q,d°q,
jkl,Pl jkz,Pz - ‘7P1J<1 ‘71’2,k2 = Jkl—Pljkz—Pz N JA . (27-5)2(1
-

X (Jkl—pl‘]kz—qlJql—quqz—pz ~J-p, sz_qqul_QZJQZ_PZ)
X G”(q1,0)G” (g3, ) + O (1/N?). (83)
Provided that the internal momenta q and g, , within the momentum shell are much larger

than the external momenta in the long wavelength limit, the distribution of disorder is
parametrized by the following mean and variance

2 ( )+W2
——n(w
JN
4

2W
jkl,Pl(w)jkz,Pz(w) - jkl’pl(w) jkz;Pz(w) = |:W2 + Tnz(w)i| 5d(k1 + ko —ps _p2)> (85)

Ton(@) = [Jo Jo”f)z(w)]5d(k—P) o 84)

where up to the first order in £ and w?, we have the approximations

Addg o ¢
m(w)=J G (q,w )N@(Az—wz),

Ae—t (2 )d
A d 2
M) = L Gl @y g (1-55), (36)

As A% > w?, the second term in 1,(w) can be ignored. Notice that in Eq. (84), the mean value
of the random coupling is shifted by a function of w. In the limit of low frequency, we are able
to eliminate this w dependence by redefining the frequency. This leads to a new disorder
coupling jkp = Jiplw )— Nw whose mean is independent of w. Consequently, after
integrating a frequency shell w1th thickness 26 A, the effective action in Eq. (80) is modified
to

Age Ae Aet
1 (7 dw L S
Seff = EJ;) %L 2y [(k + 0R)br P 0 \/_J (2n)d Tip ¢kw¢_p_w] (87)

Up to the order of %, we have

ne
= —1 d =1+ ——-.
wr=wexp[(z—1)¢], and z + TorZN (88)
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The quantity z is known as the dynamical exponent, consistent with what we got in Eq. (66)
using field theoretical RG. Then, we want to restore the UV cutoffs by doing rescaling with
w — wge? and k — ke~ This results in an action

A
° dwR [(kZ 2)¢)< ¢<
eff (2 )d wr R;k,w V'R;—k,—w
A

! e
«/_ (2m)d et pe-t qb;;k,w(l);;_p’_w]. (89)

We can find the first term returns to the same form as Eq. (61) if the renormalized fundamental
(d+2+2)
field ¢ is defined as as ¢py,, = € 2 o @ke—t we—=t- This means the field ¢ acquires an

. . 2 .
anomalous dimension y, = 32Wﬁ In the second term, the UV action can be reproduced
if the renormalized disorder coupling is defined as

jé;k,p VA

ke=t,pe~t " (90)

Then, the RG flow of the mean value of the disorder coupling Z’p is described by the 8 function

2 2
%zzjo_ W +Wj0, (oD
dfl 8m2+/N 8m2N
where J, = Jo/A2. Notice it can flow to a nonzero value even though it is set to be zero in
the UV. However, no matter what value it is, we can always fine tune a constant UV mass to
cancel it such that the system remains critical. Besides, one can also define the renormalized
width of the Gaussian distribution as

By =

W4
2 _ 12 .
w2 =w2exp((4—d)e + 4n2N£). (92)
It has the 8 function
awp W
Pwe =g = We t oy - 93)

at d = 4 — e. This equation is the same as Eq. (72). As we described before, the width of the
Gaussian distribution keeps increasing as we go to a larger length scale below d = 4 spatial
dimensions. At the order of 1/N, there is no sign of any physical fixed point. We can compute
higher order corrections of these 8 functions. But still, no fixed point can be reliably obtained
in this perturbative calculation up to 1/N? order, as we discussed in Appendix G.

7 Discussion and conclusion

In this work, we have studied the weak disorder effect on the clean Wilson-Fisher fixed point
and the free Gaussian fixed point. The RG flow driven by the random mass disorder is encoded
in the 3-functions given by Eq. (58) at d = 2+¢€ and given by Eq. (72) or, equivalently, Eq. (93)
atd =4—e. ,

At 2 + € and finite N, there exists an attractive fixed point at % = yez(e+ SthN) At
€ = 0, this is the disordered fixed point at d = 2 found in previous work [6]. Below two
spatial dimensions, there is still an attractive fixed point if N|e| < 3. This is because the 1/N
correction reduces the lower critical dimension. Concretely, at the order of 1/N, the anomalous
dimension of the o operator given by Eq. (55) is negative provided WR2 = 0 in the clean
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system. Thus, the lower critical spatial dimension is corrected to be d’ = 2 — 2Ya|WR2:0 <2
Notice as N — 00, the universal data of this fixed point at finite €, such as the anomalous
dimension 7, cannot be continuously deformed from what we listed in Tab. 1. The reason for
this discontinuity is that the limit of N — oo and the disorder averaged scaling limit do not
commute at € > 0. In order to get the physical behavior, we should take the IR limit first. This
requires the double expansion of € and 1/N, which cannot be obtained by a 1/N expansion
at finite €. The system at N = oo is of pure theoretical interest.

At 4 — ¢, the system is decoupled with disorder at N = oco. At finite but large N, disorder
will drive the system away from the Gaussian fixed point below four spatial dimensions. At
positive €, there is a stable fixed point at negative randomness which can never be reached in
a physical system. This concrete RG calculation actually reproduce the instability encoded in

the replicated action being not bounded from below. If € is negative, there can be a physical
2

fixed point at positive % However, it is unstable. This means, even though weak disorder is
irrelevant at the Gaussian fixed point, a strong enough mass disorder will still be significantly
enhanced in the IR.

There is one interesting possibility that the stable fixed point at 2 + € survives at d = 3 at
finite interaction strength. If this is the case, we expect its universal behavior already encoded
in the critical exponents in Eq. (59) and Eq. (60) as analytical functions of € and 1/N. At
N =2and e =1, we can get 2" = %+% A 2.04 and A, ~ 3.54 which leads to v ~ % = %
at d = 3. This saturates the bound given by the Harris criterion, i.e. vd = 2, which doesn’t
have to be true if we include higher order corrections. This fixed point should describe the
phase transition between a glassy phase and the superfluid phase in a 3+ 1 dimensional inter-
acting bosonic system perturbed by off-diagonal disorder. In the presence of the particle-hole
symmetry, the glassy phase is expected to be an incompressible Mott glass [23]. Thus, we
suggest that this phase transition is continuous. Hopefully the critical exponents predicted
above can be testified in the future numerical and experimental studies. It is possible that
more fixed points exist at larger randomness which renders the situation more complicated.
Sophisticated non-perturbative technique is needed to study the strong disorder regime.

In conclusion, we study the random mass O(N) vector model at 2 < d < 4. At N = 0o, the
disordered theory can be solved exactly. We have two ways to understand its scale invariance
in the IR. Around the fixed point at N = oo and d = 2 as well as the fixed point at N = oo
and d = 4, we can perturbatively obtain the RG flow around the Wilson-Fisher fixed point and
the Gaussian fixed point, respectively at d = 2+ € and 4 — ¢, by using the double expansion of
e and 1/N. The results are shown in Fig. 1. It helps us to postulate the fixed point structure at
d = 3, where the system has experimental realizations. By all means, a concrete study of the
d = 3 system calls for non-perturbative methods. We also hope our study can stimulate more
numerical or experimental study on the bosonic system with random mass disorder, especially
atd =3.
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A G,(k,w)

At the clean Wilson-Fisher fixed point, the system is described by the critical O(N) model in
Eq. (22) with J,, = 0. The ¢ field is only coupled to o at order of ]% So in the large N limit,
the propagator of ¢ is the same as in the free theory, i.e.

Gy(K) = (pxP_k) =

Here K is a short notation for (k, w). Since the propagation of ¢ is driven by its interaction
with ¢, it is thus of order 1/N and is given by

=K 2. (A.1)

- Gy Gy
(O'KO'_K> = GK = = +’___O O . (A.2)
22 (21) di+ip .\ (Q N(a*Pr 1 T
“ N \N (2m)d+1 PZ(K P2 \N ) |2 ] (2r)i+! P2(K —P)2
+....
The integration in each loop can be evaluated as I = éi{%m = ¢,K93 where
9 (d+1)(4ﬂ)25d . .o i i
Cy = O It is positive at 2 < d < 3. Then, the sum of all the diagrams gives
(oxo_x) = %m When d < 3, as K — 0 in the low energy limit, (cx0_g) ~ ZZNK'3 —d

which is independent of UV coupling A. As we make the change o — Jiﬁo in the main context,

we can rewrite the propagator as G, (K) = %K 3=,
B Exact study of the model in Eq.(24)
In this sections, we compute the correlation functions of the theory in Eq.(24) as functions of

the disordered coupling. Given the action in Eq.(24), we can add a source ¢, . coupled to the
generalized free field (GFF) O .- Then, the total action in the real space is

1
S = EJ dixdtd?x'd’ oG (Ix = x|, |t — 'O o +f dixdt (iJ, +ty . )oy ;. (B.1)

It is easy to compute the partition functional Z[J, t ] by integrating over o, which is a functional
of disordered coupling J and source ¢t.

1
Z[J,t]=Zyexp {5 J dixdrdix’'dv’'(iJ, + te)Go(lx = x|, |7 =7 N(iJ + tX/,T,)}, (B.2)

@mv
detG;!

of o, . can be obtained by taking derivative of Z with respect of t followed by setting t = 0.
Here we list the exact results of a few correlation functions.

where Z; = is a constant depending on systems size V. Then, the correlation functions

1 0Z[J,t] )
(o-XO:To)J:_Z[J t] at t_O__lJddXdTJxGU(lx_XO|D|T_TO|)7
’ X0,To T
1 9%z[J,t]
2 _ _ d d
(O-XO,TO)J - Z[J t] Jt2 =0 - d xldfld xszZJ)ClJXz
’ X0,To

X Gy (|x1 = x0l, 171 = To)Gs (x5 — x0l, [ T2 — Tol),
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S B
R A T

Z[J, t]’t:O = Gy (x12,712)

X2,T2 X1,T1

—f ddx3dﬂ:3ddx4d7:4Jx3Jx4Ga(x13,713)G0(x24,rz4),

0 0
o o ¢ = InZ[J,t ‘ =Gy(x19,T12),
( X1,Tq Xz,Tz)J 8tx2,q,—2 atXI’Tl [ ] =0 a( 12 ]2)
1 22 22
2 2 2
(02 o = VA J’ t ’ =21G. .(x ,T
( X1,7T1 Xz,Tz)J Z[J, t] atjzczﬁz athq,Tl [ ] t=0 [ cr( 12 12)]

+Jddx3d73ddx4dT4ddx5dTsddx6d76Jx3Jx4Jx5JX6
X Gg(X13, T13)Go (X145 T14) G (X 25, T25)Go (X26, T26)
— 4G, (x12, le)J ddXsdTsddx4dT4Jx3Jx4Ga(X13: T13)Go (X245 T24),
(0% 0 T, )5 = (0% 0 2 by — (0% 2 0%, )
= 2[G, (x12712)]* — 4G, (x12, le)J ddXsdT?)ddxz;d’U4Jx3Jx4
X Gy (x13, T13)Go(X24, T24) - (B.3)

We use the same notation as in the main text where the subscript “J" denotes the disorder
coupling dependence and the superscript “c" labels the connected correlation functions. These
expressions can be represented by Feynman diagrams given in Eq. (25), Eq. (26) and Eq. (27).
More connected and disconnected correlation functions can be computed in the same way:.

C Replica trick

In this section, we use the replica trick to study the theory of GFF in Eq. (24). Based on the
equality InZ[J] = lim,,_,, %, we can sum over n copies of the original theory and then do
the disorder averaging to get a replicated theory. In order to evaluate the correlation functions,
we can introduce the source t and t’ coupled to o and o2 respectively. The disorder averaged

2-point functions of o and o2 are naturally given by

- ] ]
Or o0t o) =(=1)?| DJ P[J] — ——— InZ[J,t,t’ C.1
(OkwT—k—w)§ =(=1) f [J] 3603t s [ ] o (C.D
1 0 0 — 1
= lim = — 7n[W?23¢t, ¢ =1m = (Cyr 0T —k—es) s
0 11 atk,w at—k,—w [ ] mt=0 o0 1 aa/( a,k,w® o’ ,—k, )
_— 1 0 o — 1
2 2 —1: 2 / 12 2 2

Nt~ PEF I F I LULLE W S SRR

k,w w a,a’

where the replicated action Z"[W?2, ¢t,t'] is

— . 1

Zn = J DJ Do, exp { - ZJ d%dw [Eaa’k,ngl(k, W0y _k—wt iJ_kﬁ(w)oa,k,w} }
a=1

1 n n
X exp { ~ w3 f dk JkJ_k} exp { —f dixdr tar Z; Tauxr —f dixdr t;,r Z O'i’x’f}
a=

a=1
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=JD0‘anp{ [ Jd kdw Z (< gl(k,w)Sa’a/+W25(a>))aa/’_k’_w“

a,a’=1
n n
X eXp { — J dixdt tyr Z Caxt— J dixdt t;ﬁ Z ai’xﬁ} . (C.3)
a=1 a=1

The last equality in Eq. (C.1) and Eq. (C.2) are obtained by explicitly taking the deriva-
tives of the replicated theory. In Eq. (C.3), a is the replica index. We can define
a rnatrix whose row and column indices are replica indices. Its element is given by
L (k,w) = G- 1(k w)0g + W25(w). It is straightforward to find its inverse exactly as

25 k 2A5—d—1
Gt (ks ) = Gy (k)5 g o0 — 1moe kL, Recall that G, (k, @) o< (K + w?) 7. If
we perform the scale transformation by doing the replacements k — ke~ and w — we™¢,

where { is a change in logarithmic length scale, then each matrix element G, ., becomes

Gy(k, w)e@17280)5 — xzn%f;e(zd)ﬁg2:28)%‘1&22]; If d +2—2A < 0, then the order of
two limits n — 0 and { — oo commute. Taking these two limits successively, the second term
contributing G, ,- vanishes. As a result, each replica decouples and the disorder effect is irrel-
evant. While when d + 2—2A > 0, the two limits don’t commute. We need to take n — O first
and then £ — oo in order to get physical results.

Next, we evaluate the correlation functions in Eq. (C.1) and Eq. (C.2). For o, its disorder

averaged 2-point function is

aa’

nW?5(w)[Gy(k, w)]?
1+nW25(w)G,(k, w)

(OkwT—k—w)] = lincl) |:Ga(k: w)— ] = Gy(k,w). (C.4)

For the composite operator, we can get

d4 de
kw0 kol = ’Lr% ; (2m)d+t

a(p:Q)O-a’( P,—Q»
. dipdQ
r111—>0n Z J4(277:)d+1

X (Go(k —p,w—2)6qy —

(og(k—p,0—Q)0 y(—k+p,—w +Q))

W25(w—Q)[Gy(k—p,w—Q)]?
1+nW25(w—0)G,(k—p,w—0)
W25(Q)[G,(p, Q)1 )

x (Go(p: Q)gaa’ -

1+nW25(Q)G,(p, )
dipdQ
=2 WGo(k_p’w_Q)Go'(p;Q)
_aiim [ 49P49Q W25(Q)G,(k—p, @ —D)(G, (0, V)P
n—0 | (2m)d+1 1+nW25(Q)G,(p,)
d 2 _ _ _ 2
+2lim 1 dpdQ W=6(w—Q)[G,(k—p,w—Q)]
n—0 2m)d+1 1+ nW26(w — Q)G (k—p, w —Q)
W25(Q)[Go(p, Q) C.5)
14+nW25(Q)G,(p,Q) " '

The physical results by taking the n — 0 limit first are consistent with the exact results listed
in Eq. (B.3).
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D Dimension reduction

Starting from the replicated theory in Eq. (C.3), we can also derive the supersymmetric effec-
tive action discussed in Sec. 4.2, as studied in Ref. [40,41]. Set t = t’ = 0. We can define
p= %(01+p), n=ol—pand y*=0%—p fora=2,...,n, where p = ,1171(02+---+0”).
While ¢ represents the mean value of replica fields, n and y¢ quantify the replica symmetry
breaking. In terms of these new fields, the replicated theory can be written in the following
way such that in the limit of n — 0, we have Z" — 1. The disorder averaged n-copies of the
partition function is given by

Zn = |n—1|JD<pDnD)(a 5(Zn:xa)

a=2

1 1 _ 1
X exp { —3 f ddkdw[(ﬁp + En)k,ngl(k, @)( + 5k

n

20 —n -1 29—

+ 2 T Gy e )+ = ko]
w2 2—n 2—n

— TJ ddkda)5(w)[ncp + Tn]k,w[n(p + Tn]—k,—w}

=|n—1] J DeDnDy" 5(Zn:xa)exp {—50—n8;—n?s,}, (D.1)
a=2

where the effective action consists

dikdw 1 2 !
So= | gyt Go G @Moftimo + 5 o* ko X ko]
w2 [ di%de 5
2 ) (2m)d+t (@) 0Nk
1 dkdw X 1
155 | amyea Go (k, @) | Yreo Pk = Mo Pk T Z MhoN—k-o
w2 [ dikdw
7 | e 2@ 2ke ko T ke ko),
W2 [ dikde 1
2= 5 | Gy 2@ Phofto = Prolk—o T ZMolk—o)- 2

We can check that lim,,_,, Z" = 1. Therefore, any observable can be expressed as

(Olc]) = rllii%f DyDnDyx* 6 (Z x“) O[y,m, x°] exp{—So}- (D.3)

a=2

Furthermore, in the limit of n — 0, we have equality
1< _
lim 2> 7 oGy (k)1 = ProCy (kO oo, (D.4)
a=2

where v and v are anti-commuting scalar fields. This can be verified by Gaussian integral
over the fields on both sides. Consequently, the effective action becomes
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- dikdew
lim S = WGgl(k, @) Mk, Pk
B} w2 [ d%dw
kool 5 | g 0@Men—k-o- (D-5)

Notice that the disorder only couples to the zero mode of the 7 field. So we can integrate over
all other modes and get the effective action as

2

_ - _ w
[ﬂk,on,(l)SO—k,o + TPk,on,éU’—k,o + 7nk,0n—k,0:| . (D.6)

weo _ [ d%
eff (Zﬂ)d

In an isotropic system, by defining a new momentum p in ® = ﬁ dimensions as what
we do in the main text, we can get a free action in terms of new fields 7); = Nk.0 (p; = ¥k
1/); =10 and 1/3; =10 In the real space, it is

2 _ - 1
2sa0= | x[ e gt ©.7

where we set W2 = % This action is invariant under a transformation
S, =ae,x, ', 6n). =2ae,d,y", oY, =0, 51,5; = ae,(—x,m + 23Mcp;), (D.8)

where a is an infinitesimal anticommuting number and €, is an arbitrary vector. Then, in
terms of a superfield ®, = @) + 0’ + 0y’ — 667’ the effective action in Eq. (D.7) can be
written as

= Q -
Sir [@]= czﬂ—d f d°xd6d0 (&,[—V? —25504]1%,) , (D.9)
D

which is the same as Eq. (45) in the main context.

E Loop corrections

In the main context, there are two types of propagators:

- a.
> . (E.1)
(K + ) (k*)*8(w)

The one on the left transfers both momentum and energy simultaneously while the other one
on the right only transfers momentum. We then compute the four types of subdiagrams below.
The results will be used later.

a a
a p , a B ’ §>’ /3 _____ ' (EZ)
D, D,
Ds D,
The diagrams D; ~ D, are evaluated as following:
Dila, Bk, @] = (k? + ®) P, (E.3)
DZ[a’ﬁ;k: CL)] = (kz)_a_ﬁ(s(w): (E4)
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_ [ d%adn 1 1
Dol Bl )= | (o r s 02y (k= p + (0 — T
_ Tla+p -S4 - pIr[ 4t —a] 1 Es)
(4n) T T[aM[BIT[d +1— B —a] [k2+ w225 '
_ [ dip 1 1
Pale Bk o= | Gy 2 w2y (= pR P
_ Tla+p— 415 —p] [g_ dd K } 1
— (47T)d/21"|:a]1"[%:| 2F1 2 ﬁ5a+/3 2’ 2’ k2 + wz (kz + wz)a‘f'ﬂ—% . (E.6)
Additionally, we can have following useful integrals.
, _ _ ddde p? 1
Dale Pk @)= | Gyt 7 + 2 [(k—p) + (@ — PP
_d Tla+p—932) T2 - BIr[4F —a] 1
2(4m) S ralr[p] Tld+3—a—PB1 [k2+ w2]e+b—5
Mla+p—42] T[4 —pIr[4E —a] k2 )
@) T rlalr(p]  Td+3—a—pl  [k24u2]etp=3" '
Y _ [ d%pdaa Q2 1
Dyl Pk o] ‘J 2r) (2 + 0B [(k—pP? + (0 — O
_ 1 Tla+p—52] 452 — I —a] 1
2(4m)S ralr[p] Tld+3—a=B1 [k2+ @2]etB-5
Mla+p -] T[4 —pIr[42 —a] w? E8)
(4m) T rlar[p] Tld+3—a—PB] [k2+ w2]erh—5 ' '
We can then compute the following diagrams.
hd Ll and LZ

L, ? Ly

These two loops are special cases of D3 and D4. In the € = d — 2 expansion, we still
adopt the propagator of o at d = 2. This gives

2 1 8 1
Li[k,w]=——"=D5[1,—=;k, w] ~ Z(K% + w?)us, E.10
1Lk, w] N 5[ 2 w] 317:2Ne( W)U (E.10)
4W? 128W2 1
Lo[k,w]= D.[1,—1;k, ]~ Z(w? = K)u. E.11
2[ ,(J)] CZN 4[ 5 > ,Cl)] N E(w );U“ ( )

2

d L3 and L4

Ly Ly
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These two loops are computed as

ddpdﬂ Ll[p,ﬂ] 1 8 ‘ue
ol=- Y b1, 1k,
[ (l)] J (27'E)d+1 (pz +QZ)2 (k_p)z_l_(w_g)z STEZN c 3[ , 1 (1)]
3 ].ZN_( +0)B)_1/2 (E.13)
Ly[k, 0] = — dipd Ly[p,Q] 1
417 (27I)d+1 (pz + 02)2 (k—p)2+(w—ﬂ)2
2 ) ,
N 7'cN e (kz+w2)2
e 3-vertex

In order to compute more diagrams, we study the o ¢ ¢ vertices. Simple power counting
tells that these diagrams are UV divergent. For the purpose of this paper, we only need
to evaluate the divergent part. This means we are able to reconnect the external points
to the equivalent internal ones such that the diagrams are made up of only subdiagrams
listed in Eq. (E.2), namely D;.4. This trick of computing divergent part is illustrated
comprehensively in [42].

— One loop corrections

e : . (E.15)
~§-pg-0 ~5-pg-0
Ly
These two loops are expressed as
—i2 dlade’ _2+Q_/2%
Litkpw)= 2 [ T4 - + @S (k16
N3 ) CRI(5—q2 + (5 — )25 +92+(§ + )]
4w? (a4 —q)?
Ly[k,p,,9] = = f 1 _ p-d . . (E1Y)
an: ) @G -2+ (9 -0 G + 92+ (4 +9)2]

Both integrals are divergent in the UV. After reconnecting the external and internal
points, the resulting diagrams are shown below.

k
—=5+p,F+0Q

k,w—

. (E.18)

k w
> "3 TPa T ,
LV—le LV—le
1 2

They respectively have the same divergent parts as the two integrals above, i.e.
Li,~ L‘l’_zd” as € — 0. These two diagrams are given by

div ;2 diqd e’ 1 1
1 CZN2 (2n)d+1(k —p—q2+(2—Q—w)? [q2+(w’)2]%
2 1 k 8 €
= —1 3D3[1 p,_—ﬂ]wl 31“’_’ (E~19)
CZNE 2’ 2 m2N2 €
Lv—dlv i 4Wz f ddq 1 —1 128W* ‘u—e . (E.20)
2 2Nz ) m)? (5 —p— 61)2+(9—Q)2 nN: €
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— Two loop corrections

These two diagrams are expressed as

d?qydew; diq,d 1
Lk p,, Q] =iy | TCELC 0
N2 (2m) @O (-1 +(§ —w1)?
w 1
1 (K — )% + (2 — wy)?]7

X
B +q)2+ (2 +w)? (@a—q1)* + (wy—wy)?

[(5+02)* + (3 + )12

, E.22
(P—q2)* +(Q—wy)? ( )
8w? [ diq;dew; d? 1

Lylk,p,w,Q]=—i 3J = dil Q2d k
3Nz ) @m)(2m)d (5 —q1)2+ (4 — wy)?
x 1 g_QZ)Z
E+q)?+(2+0)2(@—a0)+(F—w)?
k 2 241
5+ + w” |2
[(2 q2) ] (£.23)

X .
(p—q2)* +(Q2—3)?

By reconnecting the external points to the equivalent internal points, we can get
following diagrams with the same divergent parts, i.e. L; , ~ ng‘d” in the limit of
e — 0.

ko= ko= . (E.24)

B
v—div v—div
A L

In the following, we found the divergent parts are both zero.

pr-div_ ;4 [ dqde’ D3[1,0,¢, '] 1 o (B2
3 P INE] (2m)d+1 24 (02 (k—_p—_g)2 2__/2_’(' )
N2 m q w (2 p—q)?+( 5 —Q—w )
Lv—div — _l 8W2 ddqdw/ [1 _1 CL)/] 1
4 T T ani ) (emydtTe T 7 2 ¢ ()2
c;N2 T q w
1

3—P— 92+ (5 —2-w)?
ow?2 1 T[1—4]
"N (am) T[]
2w 1 T — 1131

N3 (4m) 5 T[3IT[—51 5]
= finite. (E.26)

1
J dtdxdy t%(l—t)_% x_%(l—xt)_%
0

sFal{—, =2, ~1h =1, 51,11
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* Lsand Lg

Now we are ready to compute the loop corrections of the o o propagator. It is contributed
by the following two diagrams.

Ls: »M@W<, Lg : >~“W‘ (E27)

Using the result of L?‘zdiv, we can get

dipdQ 1 1
Ls[k,w]:imj LYk, p, w0, Q] -
(2m) G+p2+($+02 (G -p)+(5 -9
8 u° 1 us 1
=———"Dy[1,1;k,0] = ———— E.28
7T2N € 3[ PEp) ;0)] 7T2N 6 ’—k2+a)2, ( )
dipdQ 1 1
L6[k,w]=imj L)k, p, w0, Q] .
(2m) G+p2+($+02 (G -p)P+(5 -9
128W2 pe 16W2pus 1
= B Dy[1, 15k, 0] = £ : (E.29)
nN € N € k2 + w2

There would be a factor of 2 for each diagram coming from both left and right subdia-
grams. Howevey, it is cancelled by the symmetry factor %
* L,and Lg

As shown before, there is no divergent subdiagram. Therefore, these two diagrams are
finite.

F Renormalization of composite operator ¢2 at 4 — e
In this section, we compute the connected 2-point correlation function of the composite op-

erator ¢2. Up to the order of ]l\,, the bare correlation function is contributed by the following
diagrams.

prk,mfﬂ prk,wfﬂ (k, Q) (P —q,w— Q)
ng = + + + O(1/N?). (E1)
Gra Gra (p—k,o—0Q) (¢,9)
Lqg Ly Ly

These diagrams are evaluated as following. Firstly, L, is given by

d=3

Lig=2ND;5[1,1,p,w]=2Ncy[p? + w?] 7 , (E2)
2*(d+1)(4n)¥ 1
where ¢, = e @E0E Atd =4, c; = —135;- Secondly, we can compute Lq; as
2 2
SNW? € W2Nc, u® 2
Ly =—o— " D[2,1,p,0] = —— 25— | [P+ ? )+ ———— | (®3)
(4m)2 € 81 € [p2 + w?]z

At last, the diagram L, is expressed as

31


https://scipost.org
https://scipost.org/SciPostPhys.14.3.039

Scil SciPost Phys. 14, 039 (2023)

Liolp, o] = 4NW? dik diq do 1 1
,w]= —
12LP 2n)d 2n)d 21 K2+ 02 2+ 2
X 1 ! (E4)
(p—k2+(w—22(p—qP+(w—0Q)" '
It contains subdiagram
s g [ 2k 1 L LB (E5)
,W;p—(q,w—145(, = ~ ) .
p,@:p—4q 1 2n)d K2+0% (p—k2+(w—Q)2  8n%e
which finally gives
ue dig do 1 1
Lp[p, w] =4NW? —
12lp. 2] 8m2e | (2m)d2m @2+ Q2 (p—q)? + (w—N)?
W?2N u~ i3
=52 B o + 0 (E6)
Consequently, the bare correlation function is
3 1 w? \W?2u~ 1
GEy=Ly+1Ly+Ly= 2N|:1+(167r2+167'52p2+w2)N - :|cz[p +w?z. (E7)

The divergence is cancelled by the counterterms which can fix the renormalization constant
Z 42 to be

3 WRz‘u_e 1 1 Wz,u
Zoo=1+ RE S5 =14 , E8
¢ 322 N e 2°° 16m2 N e (E8)

which is the same as Eq. (73).

G p function of the randomness up to order 1/N?

The Gaussian distribution in Eq. (78) has higher moments of the disordered coupling as fol-
lows.

T Jk, = W28 (ky + ky) + I35 (k)5 (k) (G.1)
T ik, = W20 [ 6% (kg + k3)89 (k) + 6% (kg + k3)5% (ky) + 5% (kg + kg)5%(ks) ]
+J389 (k)5 (ky)5 (k3), (G.2)
T Tk kT, = W89 (ky + k)52 (ky + kg) + 6% (ky + k3)5% (ks + ky)
+ 69 (ky +k4)5%(ky + k3) ]

F W54 (ks + )8 (k)5 (ky) + 8 (ks + s )5 (k)57 (k)
+ 89 (ky + k)59 (k)5 (ks) + 5 (kg + k)5 (k)5 (Kks)
+ 89 (kg + kg5 ()5 (k3) + 6% (ky + k3)5d(k1)5d(k4)]
+J569(k1)5% (k)54 (k)5 (ky) (G.3)
5
T TiTodigdi, = Wo >0 > 84k )[69(k;, + k)59 (k;, +k;,)
i=1 jo#i
+89(k;, +k;,)8%(k;, + k;,) + 6(k;, +k;, )6 (k;, +k;,)]
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+ W4Jg[5d(k1 + k)59 (k)5 (ks )5 (ks ) + 59 (kq + k3)8%(ky) 5% (ks)59 (ks)
+ 5% (ky +kg)8 (k)59 (k3)5% (k) + 59 (ky + ks)5% (k)5 (k3)5% (k)

+ 6%k, + k3)5d(k1)5d(k4)5d(k5) + 6k, + k4)5d(k1)5d(k3)5d(k5)

+ 5% (ky + ks)8 (y )59 (k)5 (k) + 59 (ks + k)59 (k1)5% (k)57 (ks)

+ 6%(ky + ks)5% (k1) (ka) 5 (k) + 5% (kg + k)5 (k)5 (k)5 (k3) |
+J55% (k)5 (k)5 (k3)5% (k) 5% (ks). (G.4)

Up to the order of 1/N2, the disorder coupling of the singlet operator is

1 A diq

J_,—— —J_J,_
YN Jper CmETEEEE
1[“ diq,dq,

+— ——J
N At (27I)2d 4

1 JA dd‘hddQdeQB
Ae—t

jk,p = G>(q7 Cl))

Jql—quqz—pG>(q1: )G~ (g, ®)

Jql—quqz—quqg—pG>(q1’ w)G” (g2, 0)G” (g3, @)

N3 (2rpd

A
1 ddQlddQdeCI3ddQ4J I g g g
+ﬁ Aot (27.[)4(1 k—q1Yq1—q2" 42—q3 4394 q4—p

X G>(Q1)W)G>(Q2: w)G>(QS: w)G>(CI4, CL)) (GS)

In order to get the distribution of J ,, we can compute the mean and variance as

A

1 dlq —
k—qu—pG>(q: C‘))

=T, —— | —L7J
Tor =2 =75 || @y

A Ld o 4d

1 d qld qs > >

+NJ<A . (27T)2d Jk—quql—quqz—pG (ql:w)G (Q2,CO)
-

1 JA ddQlddQdeQB
Ae—t

> > >
- E (27‘[)3d Jk—qqul—qZqu—q3Jq3—pG (ql; (O)G (qZ’ (.O)G (qB: w)

A
L L ddCIlddQ2ddQ3ddQ4J A A A
N2 Aot (27‘[)4d k—q1Y q91—492" 92—93 43—q4“ q4—p

X G>(Q1, C())G>(q2, w)G>(QS: CL))G>(q4, C())
+0(1/N?), (G-6)

and

g —— bl
17 Ka—P2 /—N Aot (27‘C)d
L ' Al Jeo—pJ

o /N ) et (2m)d ky—p2¥k1—q

_ >
L7k1;P1 jkz,Pz - Jkl Jkl—pl‘]kz—qu—p2 G7(q, w)

Jg—p, G (g, ®)

A gd. ad

1 d’q,d“q, N >

" N J;\ v W‘]kl_qlJql_lekZ_quqZ—pzG (q]_: CO)G (qz, O))
-

A ad o ad
2 d“q,dq,
+ = ——— Ty Ji—a.dg—g.dg.—p, G (q1, 0)G (g, w)
NJAef (271)2‘1 17P1¥ K2—=q1%q1—q2" q2—Pp>2 1 2

A
2 ddQlddQde%J 7
N% Aot (27.5)3(1 k1—q3Yq3—p;
o

sz“ll‘]%—‘h‘](h—l’z
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X G>(q1: CL))G>(q2, G))G>(Q3, C())
A
2 ddQlddQ2ddCI3J NP A A
N% Aot (27.5)361 ki—p1“k2—91Y 41—92Y 42—937 q43—p>
X G>(q1: w)G>(q25 C‘))G>(CI3, CL))
A
2 dlq,dqyd?qsd g,
T2 4d iy
N2 ), (2m)

X G>(q1: w)G>(CI2, C())G>(q3, C())G>(q4, w) + O(l/N%) . (G7)

/S R

—P1 —q1 9179279243 Q3—Q4JQ4—P2

For the external momenta in the long wavelength limit, to the first order of £, we can get

w2 w2, w22 W23

A ) A — + 9 na |64k —p), G.8
— 2w 16W4J 6W4J2
Tp1Tkspr — T x,=[W2+ M= g — | 59k + ks —p1—pa), (G9)
N2 N
where
A
ddq A4—2m€
= G~ (q,0)]" = ) G.10
Nm fAe_l (27r)d[ (¢,0)] = (G.10)

Then, under rescaling of the spacetime, the disordered coupling requires a redefinition as
T = Teete 2. As a result, the mean value and the variance of the Gaussian distribution at
longer length scale becomes 7, = % — % +£B; and W2 — W2 + {2, where

2 72 2 73
_dTy w2 w2g, WeIJy WJ;
By=—2=27— + — , (G.11)
de 8m2y/N 8m2N gp2N3 8m2N2
dw? w4 2wty 3WAZ
= =eW?+ — . G.12
Pwz =g, 4m2N  paNd | 4m2N2? (G.12)

including higher order terms up to the order of 1/N 2 correcting Eq. (91) and Eq. (93). From
these two f functions, we still cannot find any physical stable fixed point. If we keep one
more term in each of them compared with Eq. (91) and Eq. (93), we can find two solutions
satisfying 8 = 0 at

Jo __€ 2 (w2 A2 2
_\/N_ 4+(’)(e ), N - 4nce + O(e?), (G.13)
and
Jy _1 (W2 16m?
N8 + O(e), N - 7 +O(e). (G.14)

The first one is unphysical because it locates at negative W2. While the second one is at positive
W?2. It is at couplings of order one as € — 0. This makes all the higher ordered corrections of
the same order, which signals a breakdown of the perturbation. Thus, the second fixed point
found within this framework is not reliable. Generally speaking, up to the order of 1/N?2, there
is no physical stable fixed point found by the perturbation method.
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