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Abstract

Strongly interacting massive particles are viable dark matter candidates. We consider
a dark Sp(4) gauge theory with N f = 2 fermions in the pseudo-real fundamental repre-
sentation and construct the chiral low-energy effective theory. We determine the flavour
multiplet structure and the chiral Lagrangian, including the Wess-Zumino-Witten term
for mass-degenerate and non-degenerate flavours. We then study the possible charge
assignments under a U(1)′ gauge symmetry, emphasizing on dark state stability, and
provide the full Lagrangian description for Goldstone bosons and vector resonances,
including the Wess-Zumino-Witten term. Finally, we use dedicated lattice simulations
to determine the chiral low-energy effective theory’s validity and low-energy constants.
This work represents a self-consistent study of this non-Abelian theory. It thereby pro-
vides a framework for future phenomenological exploration in connection to the dark
matter problem.

Copyright S. Kulkarni et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 11-03-2022
Accepted 01-12-2022
Published 22-03-2023

Check for
updates

doi:10.21468/SciPostPhys.14.3.044

Contents

1 Introduction 2

2 Symmetry breaking patterns 4
2.1 Lagrangian and global symmetries 4
2.2 Symmetries of the low energy mesonic spectrum 7
2.3 Parity and diquarks 8

3 Chiral Lagrangian for degenerate fermion masses 9
3.1 Low energy effective theory for the Goldstone bosons 9
3.2 The Pseudoscalar Singlet 12
3.3 Chiral Lagrangian including spin-1 states 13
3.4 The WZW action including spin-1 states 15

1

https://scipost.org
https://scipost.org/SciPostPhys.14.3.044
mailto:suchita.kulkarni@uni-graz.at
mailto:axel.maas@uni-graz.at
mailto:sean.mee@uni-graz.at
mailto:marco.nikolic@oeaw.ac.at
mailto:josef.pradler@oeaw.ac.at
mailto:fabian.zierler@uni-graz.at
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.14.3.044&amp;domain=pdf&amp;date_stamp=2023-03-22
https://doi.org/10.21468/SciPostPhys.14.3.044


SciPost Phys. 14, 044 (2023)

4 SIMPs under Abelian gauge symmetries 16
4.1 Charge assignment in the UV 17
4.2 Stability of the flavour diagonal Goldstone 18
4.3 U(1)′ interactions with mesons 19
4.4 Goldstone mass splitting through radiative corrections 20

5 Chiral Lagrangian in presence of small mass splittings in fermion masses 23
5.1 Mass and kinetic terms in the non-degenerate case 23
5.2 WZW Lagrangian in the non-degenerate case 24
5.3 Goldstone mass spectrum through partially conserved currents 25
5.4 The pseudoscalar singlet in the non-degenerate case 26

6 Lattice results on Sp(4)c with N f = 1+ 1 28
6.1 Free parameters of the microscopic Lagrangian 28
6.2 Quark masses and partially conserved axial current 29
6.3 Results: Masses, decay constants and quark masses 31
6.4 Validity of the Chiral Lagrangian 33

7 Conclusions 35

A Sp(2N) groups: Defining properties and generators 37

B Mesonic states and multiplets 39
B.1 States and Sp(4) multiplets 39
B.2 Multiplet structure under SU(2)u × SU(2)d 40

C Feynman rules 42
C.1 Feynman rules for degenerate fermions mu = md 42
C.2 Feynman rules for non-degenerate fermions mu ̸= md 43
C.3 Feynman rules for non-degenerate fermions mu ̸= md with η′ 44

D Lattice setup 45
D.1 Action 45
D.2 Masses 45
D.3 Decay constants 46
D.4 Systematics 47

D.4.1 Finite volume effects 47
D.4.2 Finite spacing effects 47
D.4.3 Lattice asymmetry 49

D.5 Tabulated lattice results 50

References 54

1 Introduction

The absence of concrete, non-gravitational experimental signals for dark matter (DM) neces-
sitates the unbroken exploration of a wide variety of scenarios. Among these are extensions of
the Standard Model (SM) featuring a dark non-Abelian sector in the ultra-violet (UV) regime
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with confinement below some scale Λ in the infra-red (IR) regime. Within these scenarios,
confinement leads to bound states, containing potentially stable particles and opens up a new
class of DM candidates. The stability of bound states in such theories is either ensured by
means of introducing additional symmetries or, more naturally, the result of accidental global
symmetries of the theory. The composite states can then be considered DM candidates and the
viability of the theory can be explored further; for an overview on composite dynamics see [1]
and references therein.

The construction and exploration of associated phenomenology of such theories is however
far from obvious. While the UV Lagrangian is governed by a microscopic theory, the resulting
low-energy Lagrangian in the IR is an effective theory. As such, it has a limited range of
validity, and is parameterized by a number of low-energy constants (LECs) [2, 3]. The range
of validity and the LECs are determined by the underlying theory, and can, e.g., be obtained
from lattice simulations [4,5]. In general, the formulation in the IR depends on the UV details
such as the gauge group, the particle content and the representations of participating fields.
For example, the chiral effective theory in isolation for the mass-degenerate Sp(4) theory,
including a determination of its range of validity and LECs, has been analysed on the lattice
in [6–8].

It is certainly possible that such theories live in isolation from the SM. Indeed, DM can
adjust its abundance in the early Universe free from SM interactions, e.g., by “cannibalizing”
through number-changing 3-to-2 or 4-to-2 processes in the dark sector [9–18]. However, cou-
plings to the SM additionally allow to regulate the dark sector temperature in relation to the
SM one, and, of course, open the door to experimental exploration. In either case, strongly
interacting dark sectors, see, e.g. [11,12,19–47] among many other works, are of high inter-
est in such scenarios as their low energy states are often endowed with sizeable interactions.
Particular interest have received strongly-interacting massive particles (SIMPs) that are the
Goldstone bosons of a dark confining gauge group and where 3-to-2 interactions are enabled
by the Wess-Zumino-Witten(WZW) term [11, 12, 29]. The presence of these 3 → 2 interac-
tions in association with 2 → 2 self-interactions has generated sizeable further activity. For
example, [32] explores Abelian gauged SIMPs within SU(N) theories, [48] demonstrates the
importance of higher order corrections to the chiral Lagrangian for self-scattering in Sp(2N)
theories, [33,35] include dark vector resonances into the SIMP paradigm, while [36,37] have
analysed effects of isospin symmetry breaking (dark quark mass non-degeneracy) for dark
matter phenomenology. In most of these works, however, either a specific subset of the low-
energy effective theory was studied or a SM-like, i. e. SU(N) gauge group and fundamental
fermions, dark sector was considered. In addition, the masses and other parameters of the
theory were varied independently, instead of deriving them from the underlying UV-complete
theory. Only in a few cases contact to the UV theory was made by means of lattice simulations,
see [22,30,31,34,49,50].

It is the purpose of this paper to study one particular example of a confining gauge group
self-consistently, from the UV-complete Lagrangian to the low-energy description in terms of
the chiral Lagrangian. Concretely, we consider a Sp(2N) gauge theory with N f = 2 fermions
in the pseudo-real fundamental representation. We allow for mass non-degeneracy of the two
flavours, study possible gauge assignments under a new dark U(1) symmetry and obtain the
multiplet structure of resulting low energy spectrum of mesons and vector resonances. Im-
portantly, our findings are supported and complemented by lattice simulations. Such unifying
effort is a first of its kind in the study of a non-Abelian dark sector. It provides the grounds
for a comprehensive and systematically controlled and extensible framework for future phe-
nomenological studies of this theory. Sp(2N) theories as we consider in this work have also
been a longstanding topic of interest in the composite Higgs community [1,51–58]. While in
isolation these theories are identical to our case, the main difference is the portal phenomenol-
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ogy to the Standard Model. While in the case of composite Higgs theories, some of the Sp(2N)
quarks transform under the Standard Model gauge group, in our theory, the Sp(4) quarks are
singlets under the Standard Model. This leads to different decay patterns and requirements
on the theory construction compared to those considered in composite Higgs literature. We
also note that in our theory, there is no tree level mixing between Sp(4) spectrum particles
and the SM e.g. composite sigma – SM Higgs mixing.

The paper is organized as follows: in Sec. 2 we introduce the global flavour symmetries and
clarify the quantum numbers and multiplet structure of states in the low-energy description.
In Sec. 3 we systematically develop the chiral Lagrangian and WZW term for the Goldstone
bosons, the pseudoscalar singlet and vector resonances for mass-degenerate quarks. In Sec. 4
we couple this theory to an Abelian gauge field, discuss possible charge assignments, study the
stability of states against decay into gauge bosons, provide the gauged WZW term and com-
ment on the radiatively induced mass splitting from such interactions. In Sec. 5 we allow for
mass non-degeneracy, and determine how the spectrum and interactions change. In Sec. 6 we
extend previous lattice simulations to cover the mass non-degenerate case, providing concrete
results for bound state mass spectra and decay constants; preliminary results on this effort
have been reported in [59]. We infer the range of validity of the chiral effective theory as a
function of the mass splitting, delineating where the theory changes its character to a hierar-
chical “heavy-light” system. In addition, we determine the relevant LEC for the coupling to
the U(1)′ gauge boson from lattice results as a function of the mediator sector. We conclude
in Sec. 7 and compile in four appendices a host of technical details, including pertinent Feyn-
man rules, useful expressions for operators and generators and states, and details of the lattice
simulations including studies of the systematics.

2 Symmetry breaking patterns

2.1 Lagrangian and global symmetries

The construction of the low energy effective theory starts by recognizing the symmetries of
the underlying microscopic theory in the ultraviolet (UV). In this chapter we first discuss the
symmetries of the UV Lagrangian for massless fermions. We then consider spontaneous chiral
symmetry breaking by the fermion condensate and show that this results in the same global
symmetry as an explicit breaking induced by degenerate fermion masses. Finally, we show
the resulting breaking patterns that correspond to non-degenerate fermion masses in the UV
Lagrangian or fermions under different charge assignments when coupled to a U(1) gauge
group.

The UV Lagrangian of a Sp(4)c gauge theory — where the subscript c for “colour” on the
group is used to highlight its gauge nature — with N f = 2 fundamental Dirac fermions u and
d is given by,

LUV = −
1
2

Tr
�

GµνGµν
�

+ ū
�

γµDµ +mu

�

u+ d̄
�

γµDµ +md

�

d , (1)

where spinor, and colour indices are suppressed. We will call u and d (dark) “quarks” in
analogy to QCD, even if they are singlets under the SM gauge group; Dµ = ∂µ + i gAµ is the
non-Abelian covariant derivative with gauge coupling g and associated (dark) “gluon” fields
Aµ = Aa

µτ
a. We denote the generators of Sp(4)c by τa and the generators of a global Sp(4)

group by T a. The generators of Sp(4) are explicitly given in App. A. The Yang-Mills field
strength tensor is given by Gµν = ∂µAν − ∂νAµ + i g

�

Aµ, Aν
�

as usual.
The fermions in (1) are in a pseudo-real representation. Compared to a theory where

fermions are in the complex representation such as in QCD, the global symmetry of the La-

4

https://scipost.org
https://scipost.org/SciPostPhys.14.3.044


SciPost Phys. 14, 044 (2023)

grangian (1) is enlarged to a so-called Pauli-Gürsey symmetry [60, 61]. Following [60], this
can be made explicit, by first introducing the left-handed (L) and right-handed (R) chiral Weyl
components of the Dirac spinors u and d,

u=

�

uL
uR

�

, d =

�

dL
dR

�

. (2)

One may subsequently group the left- and right-handed components,

ψL =

�

uL
dL

�

, ψR =

�

uR
dR

�

. (3)

Using the chiral representation of the Dirac gamma matrices, we may now rewrite the fermionic
kinetic term of the Lagrangian as

Lfermionic = i

�

ψ∗L
ψ∗R

�T �
σ̄µDµ 0

0 σµDµ

��

ψL
ψR

�

. (4)

For this we have introduced the four-component notation σµ = (1, σ⃗) and σ̄ = (1,−σ⃗) where
σ j are the usual Pauli matrices. We may now use the pseudo-reality condition of the colour
group, i.e., the existence of a colour matrix S for which the relation (τa)T = SτaS holds for all
generators τa, as well as the relation σ2σµσ2 = σ̄T

µ and rewrite the fermionic kinetic term as

LUV,f
kin = i

�

ψ∗L
σ2SψR

�T �
σ̄µDµ 0

0 σ̄µDµ

��

ψL
σ2Sψ∗R

�

= iΨ†σ̄µDµΨ . (5)

In the last equality we introduced the notation where Ψ is a vector consisting of the four Weyl
fermions in this theory, which is known as the Nambu-Gorkov formalism,

Ψ ≡
�

ψL

ψ̃R

�

=







uL
dL

σ2Su∗R
σ2Sd∗R






, (6)

from where one may appreciate a global U(4) symmetry of the kinetic term. We observe that
ψ̃R ≡ σ2Sψ∗R transforms under the same representation of this global symmetry as ψL . In
case of massless fermions this is the symmetry of the entire fermionic Lagrangian. The U(4)
symmetry is then broken to SU(4) by the axial anomaly analogously as to in QCD. For a theory
with N f fermions the global flavour symmetry becomes SU(2N f ).

In the massless fermion limit the remaining SU(4) symmetry is subsequently broken spon-
taneously by the chiral condensate 〈ūu + d̄d〉 ̸= 0. This can be seen by rewriting the chiral
condensate in terms of the generalized vector of spinors Ψ as we did for the kinetic term of
the Lagrangian [60],

ūu+ d̄d = −
1
2
ΨTσ2SEΨ + h.c. , (7)

E =

�

0 1N f

−1N f
0

�

. (8)

Here, E is a matrix in flavour space. Under a global SU(4) transformation Ψ → UΨ this
expression transforms as

−
1
2
ΨTσ2SEΨ→−

1
2
ΨT U Tσ2SEUΨ , (9)
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COMPLEX

U(2)× U(2)

SU(2)× SU(2)× U(1)

SU(2)× U(1)

U(1)× U(1)

axial anomaly mu = md = 0

chiral symmetry breaking
and/or explicit breaking

mu = md = 0
mu = md 6= 0

strong isospin breaking mu 6= md

PSEUDOREAL

U(4)

SU(4)

Sp(4)

SU(2)× SU(2)

axial anomalymu = md = 0

chiral symmetry breaking
and/or explicit breaking

mu = md = 0
mu = md 6= 0

mu 6= md strong isospin breaking

Figure 1: Comparison of breaking patterns in a theory with N f = 2 fermions in
pseudo-real (right) and complex (left) representation. In any step, the symmetry for
pseudo-real representations is larger than for complex ones.

The condensate is thus invariant under all SU(4) transformations U which fulfil U T EU = E.
This is exactly the Sp(4) subgroup of the global SU(4). The matrix E is an invariant tensor of
Sp(4) and the flavour space-equivalent of the colour matrix S. By counting the generators of
SU(4) and Sp(4) we thereby obtain 15− 10 = 5 Goldstone bosons in this theory. In turn, for
general N f , the remaining symmetry group after chiral symmetry breaking is Sp(2N f ).

Degenerate UV masses can be introduced by the term m(ūu+ d̄d). They yield an additional,
explicit breaking of the flavour symmetry from SU(4) to Sp(4). For a general non-degenerate
mass term we may write

muūu+md d̄d = −
1
2
ΨTσ2M EΨ + h.c.= −

1
2
ΨTσ2







0 0 mu 0
0 0 0 md
−mu 0 0 0

0 −md 0 0






Ψ + h.c. . (10)

This leaves only the N f = 1, Sp(2) = SU(2) symmetry for each flavour separately,1 and thus a
global Sp(2)× Sp(2) flavour symmetry. The breaking patterns are summarized in Fig. 1. The
mass matrix M = diag(mu, md , mu, md) containing the non-degenerate dark quark masses can
then be read from (10),

M E =







0 0 mu 0
0 0 0 md
−mu 0 0 0

0 −md 0 0






,

where E is given in Eq. (8).
Another source of explicit symmetry breaking are gauge couplings to an external U(1)

vector field Vµ. Depending on the charge assignments of the fermions, this yields distinct

1The actual group is U(2)×U(2), but one U(1) is broken by the axial anomaly, and the other U(1) is just fermion
number conservation. The global symmetry of a theory of N1 fermions of mass mN1

and N2 fermions of mass mN2

is Sp(2N1)×Sp(2N2). See e.g. [62] for a dark matter model with a Sp(4)×Sp(2) symmetry of the fermionic mass
terms.
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explicit symmetry breaking patterns parameterized by a matrix Q in the Weyl flavour space,

Lbreak ∼ VµΨ†Q∂µΨ . (11)

For example, a breaking pattern Sp(4) → SU(2)× U(1) can be realized, assuming that Q is
diagonal. The choices of Q which preserve this nontrivial flavour subgroup are those for which
Q2 ∝ 1. This is incidentally the same condition usually proposed for anomaly cancellation
[35]. We show in what follows that this is no accident, and that the nontrivial remaining
flavour group ensures the anomalous vertex responsible for pion decay to vanish to all orders
(in contrast to SM QCD.) We can also realize a further breakdown to a Sp(4)→ U(1)× U(1),
which has some significant implications for the stability of composite states of the theory,
allowing some of them to decay. An in-depth discussion of this is deferred to Sec. 4.

2.2 Symmetries of the low energy mesonic spectrum

We now turn to the symmetries of the low energy mesonic spectrum for degenerate and non-
degenerate dark quarks. As can be seen in Fig. 1 the flavour symmetry of the Sp(4)c gauge
theory is enlarged compared to a theory with a complex fermion representation such as QCD
due to the pseudo-reality of the fundamental representation of Sp(4). This entails that also the
meson multiplets are enlarged in both the degenerate and non-degenerate case. There are now
five instead of three Goldstone bosons of two flavour QCD. We denote the Goldstone bosons
in this theory by πA,...,E .

The extra states are quark-quark and antiquark-antiquark states. The extra operators cor-
responding to the Goldstone bosons are given by [20,22]

πD = d̄γ5SCūT , (12)

πE = dT SCγ5u . (13)

For convenience, we will call these states “diquark” states. In this case, only diquarks of dif-
fering flavour are possible; other operators of this form vanish identically for spin-0 composite
states. They can occur, however, for other spin states such as J = 1 [8].

The multiplet structure of mesons for mass-degenerate fermions without coupling to any
other symmetry is discussed in [6–8] as well as in studies of SU(2)c , which has the same
flavour symmetry as Sp(4)c , with two fundamental fermions [63]. Besides the 5 Goldstone
bosons there is another pseudoscalar singlet under Sp(4)which is the analogue of theη′meson
of QCD. In turn, the multiplet of the vector mesons is enlarged to a 10-plet (whose states we
call ρF,...,O) which includes the state that sources the analogue of the ω meson of QCD [8].
Due to the structure of Sp(4), mesons are either in a 10-plet, 5-plet or a singlet representation
of the global Sp(4) flavour symmetry [63]. In appendix B.1 we give explicitly the operators
that source the π and ρ mesons.

In case of non-degenerate fermions, the Sp(4) flavour symmetry is broken to
SU(2)u × SU(2)d . It can be shown that the 5-plet splits into a degenerate 4-plet2 and a sin-
glet under SU(2)u × SU(2)d . The 10-plet containing the ρ-mesons decomposes into a 4-plet
of similar structure as the 4-plet of Goldstones and two degenerate triplets under each of the
SU(2)u/d groups, i.e., the remaining 6 states will have identical properties. The 4-plets contain
in both cases the “open-flavour” mesons, i.e., two meson operators of the form ūΓ d – where Γ
is either γ5 for the Goldstones or γµ for the ρ-mesons – and two corresponding diquark states.
In appendix B.2 we state the explicit transformations of the operators under SU(2)u×SU(2)d .

2Note that SU(2)u × SU(2)d ∼ O(4), and thus the 4-plet can be considered to be in the 4-dimensional funda-
mental vector representation of O(4). This 4-plet can be decomposed into its two SU(2) representations explicitly
in a suitable two-dimensional tensor representation [64].
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SU(3)c
mu = md

π+,π−,π0

ρ+,ρ−,ρ0

SU(3)c

mu ̸= md

π+,π−

π0

ρ+,ρ−

ρ0

Sp(4)c
mu = md

πA,...,E

ρF,...,O

Sp(4)c

mu ̸= md

πA,B,D,E

πC

ρG,H,K,M

ρF,I,J,L,N,O

Figure 2: The flavour structure of the meson multiplets for an Sp(4)c gauge theory
with N f = 2, compared to QCD with the same number of quarks. The multiplets of
Sp(4)c are enlarged due to additional diquark states. When the flavour symmetry
is explicitly broken by non-degenerate fermion masses, mu ̸= md , the pseudoscalar
and vector multiplets split further into smaller flavour-multiplets under the flavour
group. The unflavoured πC becomes a singlet.

The six other spin-1 states are given by linear combinations of ūΓu, d̄Γ d and corresponding
diquark operators. They can be written in the eigenbases of the two SU(2)u/d .

Figure 2 groups mesons into degenerate and non-degenerate sets and compares them to
QCD with two degenerate fundamental fermions. In the case of different UV fermion masses
mu ̸= md , πC becomes a singlet under the global flavour symmetry, whereas before it was
part of a multiplet. This has consequences for its viability as a dark matter candidate: it is
no longer protected by a flavour symmetry and, equipped with further interactions, may in
principle decay. Finally, as already alluded to above, coupling the strongly interacting dark
sector to a U(1) gauge symmetry can further break the remaining flavour symmetry and affect
the multiplet structure of the mesons. This will be addressed in Sec. 4.

2.3 Parity and diquarks

Conventionally, the transformation of a Dirac fermion under parity is defined as [65]

P :ψ(x, t)→ γ0ψ(−x, t) . (14)

This implies that parity mixes left-handed and right-handed components. This can be made
explicit by going to the chiral representation of the γ-matrices,

P :
ψL(x, t)→ψR(−x, t) ,
ψR(x, t)→ψL(−x, t) . (15)

This discrete transformation, which we shall refer to as “ordinary parity” leaves the Lagrangian
invariant and is thus a symmetry. However, it is important to note that the global flavour
symmetry mixes left-handed and right-handed components, and such transformation does not
in general commute with the parity transformation law given above. In other words, the
flavour eigenstates are not eigenstates of P. This has the consequence that a diquark Goldstone
state is rather a scalar than a pseudoscalar under P:

πE(x, t) = dT (x, t)SCγ5u(x, t)
P
−→ dT (−x, t)γT

0 SCγ5γ
0u(−x, t)

= dT (−x, t)SCγ5u(−x, t) = +πE(−x, t) . (16)
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Table 1: Parity assignments of the quark-antiquark bound-states and the additional
diquark states. Under ordinary P-parity different parity-eigenstates occur in the
same meson multiplet. Only under D-parity all Goldstones can be classified as pseu-
doscalars and all particles in the ρ-multiplets as vectors. An extension of this table
is given in App. B.1.

J P J D

πA,πB,πC 0− 0−

πD,πE 0+ 0−

ρH ,ρM ,ρN ,ρO 1− 1−

ρF ,ρG ,ρ I , . . . ,ρL 1+ 1−

The reason for it is the occurrence of the charge conjugation matrix C in the diquark states
for which γT

0 Cγ0 = −C holds. Concretely, we find that the multiplet of the Goldstones bosons
consists of 3 pseudoscalar mesons and 2 scalar diquarks and the multiplet containing the ρ is
made up of 4 vectors and 6 axialvectors under P; these states may then change their ordinary
parity under flavour transformations.

We are, however, free to obtain a better definition of parity by combining it with any other
internal symmetry present in our Lagrangian, see e.g. [66]. Introducing an additional phase
in the transformation properties of the spinors (14), we may choose a new parity D that now
commutes with all flavour transformations [63]. It is given by

D :ψ(x, t)→±iPψ(x, t)P−1 = ±iγ0ψ(−x , t) . (17)

The extra phase cancels in all operators of the form ūΓ d but produces an extra minus sign in
the diquark operators. The new parity D is again a symmetry of the Lagrangian introduced
below and all members of a meson multiplet share the same parity assignment under D. In this
way, all Goldstones become pseudoscalars and all members of the ρ-multiplet become vectors
under D; see Tab. 1 for an overview of P- and D-parity of the mesons considered in this work.
For instance, the diquark πE transforms under the parity assignment D as follows,

πE(x, t) = dT (x, t)SCγ5u(x, t)
D
−→ i2dT (−x, t)γT

0 SCγ5γ
0u(−x, t)

= −dT (−x, t)SCγ5u(−x, t) = −πE(−x, t) . (18)

3 Chiral Lagrangian for degenerate fermion masses

In this section, we assume that the two fermion states u, d carry degenerate masses
mu = md = m in the UV. First, we analyse the mass spectrum of Goldstone bosons in iso-
lation from additional, external interactions. Second, we construct the chiral Lagrangian for
vector and axial-vector excitations of the theory.

3.1 Low energy effective theory for the Goldstone bosons

In this section, we recap the construction of the chiral Lagrangian for the (pseudo-Nambu-)
Goldstone bosons (PNGB), the “pions” of the theory. The final results agree with the litera-
ture [11]. Following [60], the effective theory of Goldstone fields can be written as fluctuations
of the orientation of the chiral condensate Σ,

Σ= eiπ/ fπΣ0eiπT / fπ , (19)

9

https://scipost.org
https://scipost.org/SciPostPhys.14.3.044


SciPost Phys. 14, 044 (2023)

which, under the action of U ∈ SU(4), transforms as

Σ→ UΣU T . (20)

Here, fπ is the Goldstone decay constant and Σ0 is the orientation of the chiral condensate.
The latter depends on the remaining symmetry group after spontaneous or explicit symmetry
breaking. The Goldstone bosons are determined by the broken generators of the coset space
SU(2N f )/Sp(2N f ). For our case of interest, with N f = 2 flavours in the pseudo-real represen-
tation of the gauge group Sp(4)c , there are five Goldstone bosons π1,...,5 corresponding to the
broken generators T n (n= 1, ..., 5) of the coset space SU(4)/Sp(4) given by (A.6); the change
of basis to πA,...,E used above is given towards the end of this subsection.

The Goldstone boson matrix takes the form,

π≡
5
∑

n=1

πnT n =
1

2
p

2







π3 π1 − iπ2 0 π5 − iπ4
π1 + iπ2 −π3 −π5 + iπ4 0

0 −π5 − iπ4 π3 π1 + iπ2
π5 + iπ4 0 π1 − iπ2 −π3






. (21)

The effective Lagrangian needs to preserve the reality condition, Lorentz invariance, chiral
symmetry invariance (with vanishing UV masses), as well as parity and charge conjugation
symmetry. This yields3

L=
f 2
π

4
Tr
�

∂µΣ∂
µΣ†

�

−
µ3

2

�

Tr [MΣ] + Tr
�

Σ†M†
��

+ . . . . (22)

Here, µ has mass dimension one and is related to the chiral condensate as 〈ūu+ d̄d〉= µ3Σ0;
the prefactor f 2

π/4 in front of the first term ensures a canonically normalized kinetic term.4

The ellipses stand for contributions, such as, e.g., Tr
�

∂µΣ∂
µΣ†

�2
with prefactors of accordingly

higher mass-dimension.
In order to find the vacuum alignment Σ0, we have to minimize the potential of the chiral

Lagrangian, which in our case amounts to minπ=0

�

Tr
�

MΣ+Σ†M†
��

. The minimum is then
given by Σ0 = E ∈ Sp(4). Expanding the chiral field (19) in the “kinetic” and “mass” terms
of the chiral Lagrangian in terms of Goldstone fields π yields the ordinary kinetic, mass, and
interaction terms of even numbers of the Goldstone bosons,

Lkin = Tr
�

∂µπ∂
µπ
�

−
2

3 f 2
π

Tr
�

π2∂ µπ∂µπ−π∂ µππ∂µπ
�

+O
�

π6

f 4
π

�

=
1
2

5
∑

n=1

∂µπn∂
µπn −

1
12 f 2

π

5
∑

k,n=1

�

πkπk∂µπn∂
µπn −πk∂µπkπn∂

µπn

�

+O
�

π6

f 4
π

�

, (23)

Lmass= −m2
π Tr

�

π2
�

+
m2
π

3 f 2
π

Tr
�

π4
�

+O
�

π6

f 6
π

�

= −
m2
π

2

5
∑

k=1

π2
k +

m2
π

48 f 2
π

� 5
∑

k=1

π2
k

�2

+O
�

π6

f 6
π

�

.

(24)

The universal Goldstone mass is given by m2
π = 2µ3m/ f 2

π . By construction, only interactions
of an even number of Goldstone bosons are present; Tr [πn] = 0 for n odd. We note in passing

3The mass term may be derived by treating M as a spurion field, as the global flavour symmetry should also
be manifest in the effective theory. M has to transform as M → U⋆MU† with U ∈ SU(4) and Ψ → UΨ in order to
ensure full chiral/flavour symmetry in (10), see [60] for more details. This leads to the chiral-invariant mass term
at lowest order in M in (22) respecting the transformation of Σ in (20).

4The prefactor depends on the normalization of the generators as they enter exponential of (19). For instance,
f Ref. [11]
π

= 2 fπ where f Ref. [11]
π

is the decay constant used in [11] and differs from ours by a factor 2.
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that the four-point interactions of same-flavour Goldstone bosons only emerge from the “mass
term” (24).

A five-point interaction is induced by the Wess-Zumino-Witten (WZW) action [67–69]. The
latter is written as an integral over the five-dimensional disc Q5,

SWZW =
−iNc

240π2

∫

Q5

Tr
�

(Σ†dΣ)5
�

=
−iNc

240π2

∫

Q5

Tr

�

�

Σ† ∂Σ

∂ x
d x
�5
�

=
−iNc

240π2

∫

Q5

d xµd xνd xρd xσd xλTr
�

Σ†∂µΣΣ
†∂νΣΣ

†∂ρΣΣ
†∂σΣΣ

†∂λΣ
�

,

(25)

where Nc is the number of colours. Expanding in terms of Goldstone fields and using Stokes’
theorem as well as d xµd xνd xρd xσ = d x4εµνρσ makes the five-point interaction evident in
the Lagrangian density,

LWZW =
2Nc

15π2 f 5
π

εµνρσ Tr
�

π∂µπ∂νπ∂ρπ∂σπ
�

+O
�

π6/ f 6
π

�

(26)

=
2Nc

15π2 f 5
π

εµνρσπi∂µπ j∂νπk∂ρπl∂σπn Tr
�

T i T j T kT l T n
�

+O
�

π6/ f 6
π

�

=
Nc

10
p

2π2 f 5
π

εµνρσ
�

π1∂µπ2∂νπ3∂ρπ4∂σπ5 −π2∂µπ1∂νπ3∂ρπ4∂σπ5π3∂µπ1∂νπ2∂ρπ4∂σπ5

+ π4∂µπ1∂νπ2∂ρπ5∂σπ3 +π5∂µπ1∂νπ2∂ρπ3∂σπ4

�

+O
�

π6/ f 6
π

�

. (27)

As can be seen in the final form, the WZW term yields purely flavour off-diagonal interactions.
Moreover, the WZW conserves both P-parity and D-parity, since spatial derivatives change sign
under these parity transformations.

The full chiral Lagrangian is then given by the sum of kinetic, mass, and WZW terms,

L= Lkin +Lmass +LWZW . (28)

We point out that four-point and five-point interactions between Goldstone bosons remain
present in the massless limit M → 0. The Feynman rules are given in the Appendix C. We
note that the expressions here are connected to the basis in section 2 labelled by capital Latin
letters A, B, . . . , as











πA

πB

πC

πD

πE











=
1
p

2











1 i 0 0 0
1 −i 0 0 0
0 0

p
2 0 0

0 0 0 i 1
0 0 0 −i 1











·











π1
π2
π3
π4
π5











. (29)

This defines πA = πB† and πD = πE†, and is useful once U(1) charges are assigned in section
4. The generators of the new basis are given in (A.18).5 Also, in Sec. 5 we describe the con-
sequences of introducing a mass splitting between the fermions in the UV. It leads to different
couplings among the Goldstone bosons and to a splitting of the low-energy mass spectrum.

5A similar relation is used in QCD with two flavours u, d where it relates the Goldstone bosons defined through
the Pauli matrices of the flavour symmetry σi by πi = Ψ̄γ5σiΨ (i = 1, 2,3) with Ψ = (u, d)T to the commonly used
pions π± = Ψ̄γ5σ

±Ψ and π0 = Ψ̄γ5σ
0Ψ as





π+

π−

π0



=
1
p

2





1 i 0
1 −i 0
0 0

p
2



 ·





π1

π2

π3



 (QCD) . (30)
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There, we shall see that one Goldstone occupies the lightest mass state, which can be identi-
fied with the state π3 = πC , making its special role evident. Explicitly, the expanded chiral
Lagrangian in the new basis reads

L=∂µπA∂ µπB +
1
2
∂µπ

C∂ µπC + ∂µπ
D∂ µπE −m2

π

�

πAπB +
1
2
πCπC +πDπE

�

+
m2
π

12 f 2
π

�

πAπB +
1
2
πCπC +πDπE

�2

−
1

12 f 2
π

�

4
�

πAπB +
1
2
π2

C +π
DπE

��

∂µπ
A∂ µπB +

1
2
∂µπ

C∂ µπC + ∂µπ
D∂ µπE

�

−
�

πA∂ µπB +πB∂ µπA+πC∂ µπC +πD∂ µπE +πE∂ µπD
�2
�

.

+
16Nc

5
p

2π2 f 5
π

εµνρσ
�

2
�

πA∂µπ
B −πB∂µπ

A
�

∂νπ
C∂ρπ

D∂σπ
E

+ 2
�

πD∂µπ
E −πE∂µπ

D
�

∂νπ
C∂ρπ

A∂σπ
B +πC∂µπ

A∂νπ
B∂ρπ

D∂σπ
E

�

+O
�

π6
�

,

(31)

where we used the relations

1
2

5
∑

n=1

π2
n =π

AπB +
1
2
π2

C +π
DπE ,

1
2

5
∑

n=1

∂µπn∂
µπn =∂µπ

A∂ µπB +
1
2
∂µπ

C∂ µπC + ∂µπ
D∂ µπE ,

5
∑

n=1

πn∂µπn =π
A∂ µπB +πB∂ µπA+πC∂ µπC +πD∂ µπE +πE∂ µπD,

4
p

2
3

Tr
�

π∂µπ∂νπ∂ρπ∂σπ
�

=2
�

πA∂µπ
B −πB∂µπ

A
�

∂νπ
C∂ρπ

D∂σπ
E

+ 2
�

πD∂µπ
E −πE∂µπ

D
�

∂νπ
C∂ρπ

A∂σπ
B

+πC∂µπ
A∂νπ

B∂ρπ
D∂σπ

E .

(32)

3.2 The Pseudoscalar Singlet

Our theory, like in QCD, contains an iso-singlet state η′. The state is associated with the
U(1)A subgroup of an extended flavour symmetry U(4) = SU(4) × U(1)A. This symmetry
is broken anomalously at the quantum level, just as in the SM. However, unlike for the SM
η′, by construction this state receives no contribution from a heavier flavour like the strange
quark, and so it can be close in mass to the Goldstone bosons outside the chiral limit. We
can compare this state to the η′ of QCD, with the distinction that there is just one η state
in this theory, rather than a doublet which mixes and yields the η and η′. This meson is
especially interesting as it can mix with the remaining singlet Goldstone boson π3 once the
flavour symmetry is broken down to SU(2)u×SU(2)d . Also, depending on the mass hierarchy
of the theory, it can be unstable, but potentially long-lived, which would have interesting
implications for phenomenology.

We account for η′ in the chiral Lagrangian by including the generator T0 = 1
2
p

2
14×4. We

remark that while this state may be close in mass to the Goldstones, it is not identifiable as a
Goldstone and thus can differ in mass from the Goldstones even for degenerate quark masses.
We encode this into our low-energy theory by assigning η′ a different decay constant from that
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of the Goldstones and by explicitly breaking the U(1)A symmetry through an additional mass

term
∆m2

η′

2Nc

�

fπ
4 ln

� detΣ
detΣ†

�

�2
= −

∆m2
η′

2 η′
2. The η′ is then included in our chiral Lagrangian by

performing an extra rotation on the vacuum6

Σ= exp

�

2iη′T0

fη′

�

exp
�

2iπ
fπ

�

E . (33)

The various interactions involving the η′ can then be calculated from the relevant terms in the
chiral Lagrangian. We find,

L= Lπkin +Lπmass +LπWZW +
1
2
∂µη
′∂ µη′ −

m2
π +∆m2

η′

2
η′

2 +
m2
π

48 f 2
π

η′
4 +

m2
π

8 f 2
π

η′
2

5
∑

k=1

π2
k +O

�

π6
�

, (34)

where Lπkin+Lπmass+LπWZW is the Lagrangian for the Goldstone bosonsπ given in Eqs. (23), (24)

and (26). Here, we used the redefinition η′→
fη′
fπ
η′ in order to ensure that the kinetic term for

η′ is canonically normalized. We hence find, that the decay constants of η′ and the Goldstone
fields are equal in the leading order of the chiral Lagrangian.7 In the limit ∆mη′ → 0, the
pseudoscalar singlet η′ and the Goldstones πn have the same mass mπ = 2µ3m/ f 2

π at the
lowest order in the chiral Lagrangian, since Tr[πn] = Tr[η′πn] = Tr[η′2πn] = Tr[η′3πn] = 0
for n odd and n ≤ 3. For ∆mη′ ̸= 0, η′ remains massive even in the chiral limit. Interactions
with ∂µη

′ are absent and four-point interactions with η′ are only generated by the mass term
of the chiral Lagrangian.

In the mass degenerate case, the WZW term involving only pions and η′ vanishes due to
anti-symmetry of epsilon tensor and flavour structure of the coset space where the pions live.
The phenomenology of such η′ has been explored in the context of Sp(4) composite Higgs
theories [53, 57]. We once again stress that the phenomenology in our case will be different,
for example the η′ in our theory can not decay to SM particles at tree level. Any decay to SM
final state will be mediated by the portal between SM and Sp(4) gauge group.

3.3 Chiral Lagrangian including spin-1 states

In order to include the lightest vector and axial-vector states of the theory, we can use the
concept of hidden local symmetry from QCD [71], as has already been done in [7]. Here, the
spin-1 mesons are introduced as dynamical objects by describing them as the gauge bosons
of a spontaneously broken local symmetry. We stress that this is an effective treatment and
that the spin-1 states are not fundamental gauge fields and that the local symmetry is purely
auxiliary.

To this end, we take a second copy of the SU(4) flavour symmetry and “gauge it.” This
introduces 15 vector bosons, corresponding to the gauged SU(4). The symmetry is broken
in the low-energy regime, and in addition to the five PNGBs πaT a, we have fifteen (exact)
PNGB σbT b. The latter are “eaten” by the vector bosons, providing them with the longitudinal
degrees of freedom required for the massive vector fields,

ρµ =
15
∑

a=1

ρa
µT a . (35)

6Under the axial group U(1)A we haveψR/L → e±iαψR/L and the chiral field transforms asΣ→ e−2iαΣ. Upon con-
finement, the flavour symmetry U(4) breaks spontaneously to Sp(4)×U(1)A. The Goldstone bosons including theη′

live in the coset space U(4)/(Sp(4)× U(1)A). The determinant of the chiral field is then detΣ= exp
�

2
p

2iη′

fη′

�

̸= 1.
7This is not overly surprising, as in the large Nc-limit the U(1)A anomaly vanishes, fη′ = fπ(1+O(1/Nc)) [70],

and η′ can be considered as an additional Goldstone boson in line with the construction of the chiral field in
Eq. (33).
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The ρa
µ decompose into a lighter ten-plet and a heavier quintuplet, corresponding to the un-

broken/broken generators of SU(4), respectively. These can be identified with the ordinary
vector and axial-vector multiplets in QCD, see Fig. 2. Explicitly ρµ is given by

ρµ =
1

2
p

2







ρ3 ρ1 − iρ2 0 ρ5 − iρ4

ρ1 + iρ2 −ρ3 −ρ5 + iρ4 0
0 −ρ5 − iρ4 ρ3 ρ1 + iρ2

ρ5 + iρ4 0 ρ1 − iρ2 −ρ3







µ

+ 1

2
p

2









ρ14 +ρ15 ρ13 − iρ8 p
2ρ10 − i(ρ6 +ρ9) ρ11 − iρ7

ρ13 + iρ8 ρ15 −ρ14 ρ11 − iρ7 p
2ρ12 − i(ρ6 −ρ9)p

2ρ10 + i(ρ6 +ρ9) ρ11 + iρ7 −(ρ14 +ρ15) −(ρ13 + iρ8)
ρ11 + iρ7 p

2ρ12 + i(ρ6 −ρ9) −(ρ13 − iρ8) −(ρ15 −ρ14)









µ

,

(36)

with the first line defining the matrix describing the lightest axial-vector states under D-parity,
and the second line being the vector states under D. We may then complement our chiral
Lagrangian by adding the kinetic and mass terms for the spin-1 states,

Lρ = −
1
2

Tr
�

ρµνρ
µν
�

+
1
2

m2
ρ Tr

�

ρµρ
µ
�

, (37)

with ρµν = ∂µρν−∂νρµ−i gρ
�

ρµ,ρν
�

being the non-Abelian field strength tensor. The ρ mass
can be expressed in terms of low-energy constants (LECs) of the full SU(4)×SU(4) theory [8].
We retain here mρ as a free parameter, but it will be ultimately fixed by the ultraviolet theory,
see section 6. By inspection of the ρ matrix in the generator basis (36), we can identify the
QCD-like spin-1 states. Transformations between these two bases are given in Appendix A, see
in particular equation (A.17)

The interactions between the Goldstone bosons and spin-1 states may be obtained by in-
troduction of a “covariant derivative”,

DµΣ= ∂µΣ+ i gρ
�

ρµΣ+Σρ
T
µ

�

, (38)

where gρ is the phenomenological coupling between spin-1 meson states and the Goldstones.
In practice, coupling the axial-vectors in this way results in non-diagonal kinetic terms when
we promote our derivatives to covariant ones in the leading order chiral Lagrangian. Coupling
both vectors and axial-vectors in this way ensures that axial vector states are always higher
in mass than the vector states. To make this explicit, we follow [72] and expand our kinetic
term to quadratic order in the fields. The kinetic terms for Goldstone and axial-vector fields
are non-diagonal:

Lkin =
1
2

Tr
�

∂µπ−
1
p

2
fπgρaµ

�2

, (39)

where aµ =
∑5

k=1ρ
k
µT k is the matrix describing the five axial-vector states, defined in (36).

The action is diagonalized by the field re-definitions

aµ→ ãµ +
gρ
p

2m2
ρ

f̃π∂µπ̃, π→ Z−1π̃, fπ→ Z−1 f̃π ,

Z2 =
�

1− g2
ρ f̃ 2
π/2m2

ρ

�

≈
�

1+ g2
ρ f̃ 2
π/2m2

ρ

�−1
,

(40)

where the tilde superscript is reserved for the physical basis, and can be dropped once the
action contains only physical states. This splits the vector and axial-vector states in terms of
their masses, with the axial-vector mass now related by

m2
a = m2

ρ/Z2 . (41)
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The exact value of Z , and therefore the relative mass of the axial-vectors, now depends on the
low-energy constants gρ, fπ and mρ. The value of gρ is often estimated by the Kawarabayashi-

Suzuki-Riazuddin-Fayyazuddin (KSRF) relation [73, 74] 2g2
ρππ ≈

m2
ρ

f 2
π

, which implies that

Z2 ≈ 1
2 . This value of Z ensures that axial-vector states are heavier than vector states by

a factor of ∼
p

2. The KSRF relation has been tested on the lattice for Sp(4)c gauge theory
with quenched fundamental fermions, with the discrepancy between lattice and theoretical
values being ∼ 10% [8]. We can conclude that the axial-vector states should always be signifi-
cantly heavier than the vectors. In what follows, we will usually neglect these states, assuming
them to be decoupled.

We stress, however, that the applicability of KSRF in symplectic theories is not yet a settled
issue. Studies on SU(2) gauge theories have found that the relation overestimates the value
of the ρππ coupling by > 20% [75]. We reference it here only to provide a rough estimate on
mass splitting between vector and axial-vector states.

3.4 The WZW action including spin-1 states

In this section we show how to include the spin-1 composite states in the “anomalous” dark
sector interactions induced by the WZW action. In the spirit of the construction above, it is
clear that the action (25) alone is not “gauge-invariant” and additional terms must be added
to restore invariance; they may be obtained iteratively by the Noether method.

To proceed, we use the Hidden Local Symmetry framework, and following [72, 76], we
first define the fields8

L ≡ dΣΣ†, R≡ Σ†dΣ , (42)

with dΣ= d xµ∂µΣ, in terms of which the WZW action may be rewritten in the compact form,

ΓWZW = C

∫

Q5

Tr (L)5 = C

∫

Q5

Tr (R)5 , (43)

with C the prefactor of the integral in (25). We recall that the chiral field transforms as
Σ → UΣU T with U ∈ Sp(4). Restricting our focus to the lighter spin-1 ten-plet, infinitesi-
mally, U is given by 1+ iG + . . . with G = GaT a, a = 6, . . . , 15 an element of the Lie algebra;
the generators are given in App. A. The infinitesimal transformation is then

Σ→ Σ+ i
�

GΣ+ΣGT
�

+ . . . , (44)

i.e., the infinitesimal variation in Σ under Sp(4) is given by δΣ= i
�

GΣ+ΣGT
�

. The ensuing
variation of WZW action is then given by

δΓWZW = 5Ci

∫

Q5

Tr
�

dGL4 + dGT R4
�

= −5Ci

∫

M4

Tr
�

dGL3 − dGT R3
�

. (45)

In the second equality we have used the property of the exact forms d L − L2 = d L3 − L4 = 0,
dR+R2 = dR3+R4 = 0, and applied Stokes’ theorem. Now we introduce the 1-formρ=ρµd xµ,
and use the leading order expression for the variation inρ, δρ ≈ dG, to find the first correction
the WZW action,

Γ
(1)
WZW = ΓWZW + 5Cigρ

∫

M4

Tr
�

ρL3 −ρT R3
�

. (46)

8Unlike in QCD [72] field L(R) does not transform as a nonet under the left(right)-handed part of the chiral
symmetry. Our considered theory possesses an enlarged flavour symmetry, and we consider only the two-flavour
case. We use this notation only to save space, and for some consistency with the literature.
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This process can be repeated to iteratively build the full expression for the gauged WZW ac-
tion. We simply find the variation in this first correction under local Sp(4) and determine the
appropriate counterterm whose variation in ρ will cancel it. We now present the particular
form of the gauged action for Sp(4)c gauge theory:

ΓWZW(Σ,ρ) = Γ (0)WZW + 5Cigρ

∫

M4

Tr
�

ρL3 −ρT R3
�

+
5
2

C g2
ρ

∫

M4

Tr
�

ρLρL −ρT RρT R
�

+ 5C g2
ρ

∫

M4

Tr
�

dρdΣρTΣ† − dρT dΣ†ρΣ
�

− 5Cig3
ρ

∫

M4

Tr
�

ρ3 L −
�

ρT
�3

R+ρΣρTΣ†ρL −ρTΣ†ρΣρT R
�

− 5C g4
ρ

∫

M4

Tr
�

ρ3ΣρTΣ† −
�

ρT
�3
Σ†ρΣ

�

,

(47)

with L and R given by (42). It should be noted that the previous expression is not just valid
for working out interactions involving composite vector states. It is valid for any symmetry
with the transformation law (44). This means that gauging the full SU(4) flavour symmetry,
rather that just the Sp(4) subgroup, allows us to characterize the interactions involving also
the axial-vector quintuplet. We stress that the gauged expression for the WZW action allows
studying number changing interactions that include vector states. If the kinematic conditions
are favourable, i.e., if vectors and scalars are close in mass, this will affect the SIMP mechanism
for DM freeze-out [33]. We also note that the explicit construction of WZW including the rho
mesons has allowed us to realize that two of the remaining ρ mesons are unstable due to
the AVV anomaly. Thus, not all (off-diagonal) ρ mesons of the theory are stable as claimed
in [29]. The generic expressions for the WZW term for SU(2N f )/Sp(2N f ) breaking have been
previously presented in [77] and for general coset space they are presented in [78]. It should
be noted that the use of Hidden Local Symmetry (HLS) has allowed us to use gauge invariance,
thus fixing all free parameters of the Lagrangian shown in Eq. 47. The HLS formalism in
general holds for a complex representation of SU(N) gauge group. We expect it to be valid
also in our theory, however no explicit lattice tests exist.

4 SIMPs under Abelian gauge symmetries

Eventually, we want to couple the non-Abelian dark sector to the SM. A simple, but by no means
the only option is to gauge (part of) the theory under a new Abelian dark gauge group U(1)′.9

The new (massive) vector Vµ may then kinetically mix with SM hypercharge. Denoting the
respective field strengths by Vµν and Bµν, the interaction is given by,

Lint =
ϵ

2 cosθW
BµνVµν , (48)

where θW is the SM weak angle. The consequences and phenomenology of this “vector portal”
have been studied in great detail; see [80–82] and references therein. For example, after elec-
troweak symmetry breaking and when the Vµ-mass is well below the electroweak scale, (48)

9See e.g. [79], where a Sp(2N) gauge theory with 2Nf Weyl fermions is coupled to the SM through an axion-like
mediator. We also note in passing that the vector portal induces at loop-level also a Higgs-portal coupling. Since
we only consider leading-order effects, this loop-suppressed contribution is left for future work. Note that any
explicit Higgs portal coupling will be at least a dimension-five operator, due to the fermionic nature of our dark
quarks, and thus will be suppressed as well, and is hence likewise postponed.
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Table 2: Possible charge assignments, their associated symmetry breaking patterns,
and ensuing multiplet structure. When πC is a singlet, it is not protected by the
flavour symmetry and can in principle decay.

Charge Assignment Q Breaking Pattern Multiplet Structure

diag(+a,−a,−a,+a) Sp(4)→ SU(2)× U(1)





πC

πD

πE



,

�

πA

πB

�

diag(+a,+a,−a,−a) Sp(4)→ SU(2)× U(1)





πC

πA

πB



,

�

πD

πE

�

diag(+a,+b,−a,−b) , a ̸= b Sp(4)→ U(1)× U(1) (πC),

�

πA

πB

�

,

�

πD

πE

�







0 0 a 0
0 0 0 ±a
a 0 0 0
0 ±a 0 0






Sp(4)→ SU(2)× U(1)





πC

πA,B

πE,D



,

�

πD,E

πB,A

�

other off-diagonal assignments Sp(4)→ U(1)× U(1) (πC),

�

πA

πE

�

,

�

πB

πD

�

or similar

induces “photon-like” interactions with SM fermions f , εq f f̄ γµ f Vµ where q f is the electric
charge of f . The new vector is then commonly referred to as “dark photon.” For the purpose
of this work, our principal interest lies in exploring the various options of coupling Vµ to the
non-Abelian dark sector. The study of its phenomenological consequences is left for future
work.

4.1 Charge assignment in the UV

In what follows, we explore the possible charge assignments of the Dirac flavours under U(1)′.
We summarize the findings in Tab. 2. Since the Weyl basis is used to make the global sym-
metries of the theory manifest, we may also look at the transformation properties of the Weyl
spinors under U(1)′. The “vector” Ψ which collects the Weyl spinors of our theory is related
to the Dirac fields through (6). Fixing the charges of our Dirac fields is therefore sufficient in
fixing the charge assignment in the basis of Weyl spinors.

Under a local U(1)′ transformation with gauge parameter α(x), the components ofΨ trans-
form as

Ψ ia→ exp
�

iα(x)Qi j

�

Ψ ja ≃ Ψ ia + iα(x)Qi jΨ
ja , (49)

with i, j flavour indices and a denoting the colour index of each component of Ψ. The in-
troduction of the covariant derivative then renders the theory invariant under U(1)′ gauge
transformations,

∂µΨ
ia→ DµΨ

ia = ∂µΨ
ia + ieDVµQi jΨ

ja . (50)

Qi j is a symmetric matrix in flavour space containing the U(1)′ charges of our Weyl flavours;
eD is the U(1)′ gauge coupling and the gauge field transforms as Vµ→ Vµ + 1

eD
α(x)Vµ.

To begin with, let us restrict ourselves to the particular case of diagonal charge prescrip-
tions. To obtain vector-like couplings, the definition of Ψ in (6) implies that the first (second)
and third (fourth) components must have opposite charge. Now for any vector-like charge
assignment in Dirac flavour space (a, b), the charge matrix for the Weyl spinors is then given
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by
Q= diag(+a,+b,−a,−b) (vector-like assignment) . (51)

Gauging the theory under U(1)′may provide a source of explicit global symmetry breaking.
To understand this, we study how the gauge interaction term in the Lagrangian,

L ⊃ −eDVµ
�

�

Ψ i
�†

aσ
µQi jΨ

ja
�

, (52)

transforms under the remaining flavour symmetry Sp(4) as

Ψ ia→ Vi jΨ
ja =

�

1+ iθN T N
i j + . . .

�

Ψ ja , (53)

with i, j flavour indices. Here, N = F, . . . , O, correspond to the Sp(4) subgroup of the SU(4)
flavour symmetry, as given by (A.18). Only the variation under this subgroup is relevant since
the global SU(4) is already broken.

The variation in the Lagrangian density is found to be

δL= ieDVµ
�

(Ψ)†σµθ
N
�

Q, T N
�

Ψ
�

, (54)

This expression is general and not specific to a particular choice of U(1)′ charges. We see that
the remaining flavour symmetry is spanned by those generators T N of Sp(4) that commute
with Q.

Making use of this expression allows us to identify the unbroken symmetries for any par-
ticular charge assignments. The distinct choices are outlined in table 2. We find that two diag-
onal assignments preserve an SU(2)×U(1) subgroup of the flavour symmetry, while all others
maximally break it to U(1) × U(1). In what follows, we show that these flavour-conserving
interactions lead to anomaly-free couplings between Goldstone bosons and the dark photon.

We now turn our attention to the possibility of off-diagonal couplings, i.e., allowing charge
assignments Qi j , i ̸= j in (50). Thereby, the various Weyl flavours may couple differently to
the U(1)′ field, allowing, for example, flavour changing processes. Since (54) is valid for
any symmetric Q, we can also see how these flavour changing assignments affect the global
symmetries of the theory. We see similarities with the diagonal prescriptions; again exactly two
assignments preserve a SU(2)× U(1) symmetry, while all others maximally break the flavour
symmetry to U(1)× U(1). We note that from the definition of Ψ (6), it can be seen that the
flavour-conserving assignments are those which couple the left- and right-handed components
of the same Dirac spinors u and d. While two of the charge assignments shown in Tab. 2 are
the same as those identified in [11], we also identify the existence of the flavour changing
currents.

4.2 Stability of the flavour diagonal Goldstone

In the DM context, the question of the stability of the Goldstone bosons is of course of crucial
importance phenomenologically. In particular, the stability of the flavour diagonal Goldstone,
πC , is important to understand. As is the case for the SM QCD neutral pion, a coupling to an ex-
ternal mediator (dark photon) can destabilize the particle. In order to establish the stability of
particles under a particular charge assignment, it is sufficient to determine the representations
in which the particles transform under the remaining flavour symmetry. In particular, when
all Goldstones transform in a non-trivial representation of the preserved symmetry, they are
protected from decay. The multiplet structure of Goldstones under various charge assignments
are given in Tab. 2.

For all assignments discussed in the previous section which maximally break Sp(4) flavour
to U(1) × U(1), all off-diagonal Goldstones acquire a net U(1)′ charge. Since the diagonal
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Goldstone state remains uncharged, it splits from the others and is made a flavour singlet. As
a result, it can decay. The symmetry-preserving assignments are a different story, however.
When the symmetry is instead broken as Sp(4) → SU(2) × U(1), then only a pair of Gold-
stones from πA,B,D,E acquire equal and opposite U(1)′ charges. The remaining PNGBs form an
uncharged triplet which transforms in the adjoint of the remaining SU(2) flavour symmetry.

We remind the reader that our discussion of global symmetries thus far has assumed that
the theory contains two degenerate Dirac flavours. In the presence of mass-splitting between
the dark quarks, flavour symmetry is already broken to SU(2)×SU(2) and the πC is always a
singlet, although accidentally stable in the isolated Sp(4)c sector. Once we couple it to the dark
photon, it is expected to become unstable, as it is not protected by any symmetry. Care then
must be taken in ensuring that such theories, when entertained as DM scenarios, can be made
consistent with constraints from the astrophysics and cosmology; we leave such exploration
for future work.

Finally, we comment on the stability of the iso-singlet pseudoscalar, the η′. This particle is
always a flavour singlet. This ensures no charge assignment protects its decay. As soon as the
hidden sector is coupled to U(1)′ the η′ will be destabilized, and decays through tree level
processes mediated by pairs of dark photons, like the corresponding η′ does in QCD.

4.3 U(1)′ interactions with mesons

We now turn our attention to the interactions in the dark sector with the U(1)′ field. To
see how the light mesonic states interact with the associated gauge field, we must examine
the transformation properties of the vacuum under the U(1)′ symmetry. Under U ∈ U(1)′,
Σ transforms as

Σ→ UΣU T ∼ Σ+ iα′(x)
�

QΣ+ΣQT
�

, (55)

with α′ parameterizing the local U(1)′ transformation. From this we can determine that the
covariant derivative acting on Σ,

DµΣ= ∂µΣ+ ieDVµ(QΣ+ΣQT ) , (56)

In the following Q is taken to be diagonal and U = U T . As discussed in the previous section,
the presence of this coupling breaks the global flavour symmetry to some subgroup of Sp(4).
A subset of the PNGBs become charged under U(1)′ and couple directly to the dark photon.

The specifics of the interactions of the dark photon with the pion fields depend on the
charge prescription Q. An interesting aspect of this theory is that through different choices
of charge assignment, we can selectively couple the vector to different pairs of off-diagonal
pions. For example, for the previously mentioned (+1,−1,−1,+1) prescription, we couple
only to the πA,B states with interactions of the form

LV−π = −2ieDVµ
�

πA∂µπ
B −πB∂µπ

A
�

+ e2
DVµVµπAπB . (57)

For a (+1,+1,−1,−1) charge prescription, we couple only to the other pair of Goldstones πD,E

with the same type of interaction seen above. This property distinguishes the theory from two-
flavour QCD. Here, even nontrivial charge assignments can preserve stability of all Goldstones.
A pair of states carry U(1)′ charge, while the remaining states form a flavour triplet. The above
interaction Lagrangian sources two distinct interactions, a three point interaction from the first
term, and four point interaction from the second. Both of these interactions must be taken into
account to obtain gauge invariant results. The explicit Feynman rules are provided in Appendix
C.1.
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In addition to the Goldstone mesons, the spin-1 mesonic states interact with Vµ. Gauge
invariance of our action is preserved through the inclusion of the term

LV−ρ = −
eD

gρ
Vµν Tr (Qρµν) . (58)

Performing a global flavour transformation of the vector multiplet (transforming in the ad-
joint representation of the flavour symmetry), we verify that LV−ρ respects all symmetries not
already explicitly broken by gauging the theory.

Again, the question of charge prescription is of central importance. The trace in (58) picks
out only the flavour diagonal vector mesons, but, in addition, specific charge prescriptions will
induce mixing among different flavour-diagonal vector mesons. For Sp(4)c at hand, there are
two flavour diagonal vector mesons, ρN ,O. The first (second) charge assignment in Table (2)
couples only to ρN (ρO). This implies that one of these states is stable against decays into
the SM, while the other is unstable for both of these assignments. This fact also highlights an
interesting difference between Sp(4) gauge theory and standard QCD: since the Goldstones
of the former theory do not transform in the same representation as the vectors under flavour,
they are not protected by the same symmetry. The flavour-diagonal ρ can decay while the
flavour-diagonal Goldstone boson remains stable.

Decays of Goldstone bosons occur through processes mediated by pairs of dark photons.
The relevant π − V − V vertex is sourced by the gauged WZW action. Following the same
process described in subsection 3.4, the anomalous interactions involving the dark photon can
be computed by gauging the WZW term under the U(1)′ symmetry. The complete expression
is

Γ V
WZW = 5Ci

∫

M4

eDV TrQ
�

L3 − R3
�

−10C

∫

M4

e2
DV dV TrQ2 (L + R) ,

(59)

with dV = ∂µV d xµ. For example, the term in the second line leads to the following interaction

Lint ⊃
40iCe2

D

f 2
π

ϵµναβVµ∂ νVα Tr
�

Q2∂ βπ
�

. (60)

Since all the generators of SU(4)/Sp(4) are traceless, it is clear that the condition Q2∝ 1 is
sufficient for this vertex to vanish for all Goldstone bosons. The two flavour-conserving charge
assignments given in table 2 satisfy precisely this condition. Since these charge assignments
ensure that all Goldstones transform nontrivially under flavour, this cancellation holds to all
orders, and this anomalous vertex is not generated by higher order chiral terms. This is not
generically the case for other gauge theories. For fermions in complex representations, the
anomaly cancellation conditionQ2∝ 1, cancels this vertex only at leading order. Higher order
terms facilitate this interaction [35] and so allow Goldstones to decay, highlighting another
key difference between pseudo-real and complex representations.

4.4 Goldstone mass splitting through radiative corrections

In the presence of explicit symmetry breaking due to U(1)′ charges, the masses of our charged
Goldstones are renormalized. This can be incorporated into the theory through the inclusion
of an explicit term of the form

LV -split = κTr
�

QΣQΣ†
�

, (61)
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π π

V

π π

V

π π

Vρ

Figure 3: Diagrams contributing to the Goldstone mass-splitting due to U(1)′ gauge
interactions. Curly lines denote U(1)′ gauge propagators, solid lines ρ meson propa-
gators. Empty dots signify vertices which sum over bare couplings of the Goldstones
to Vµ, as well as contributions from mixing with the ρ mesons. The crossed dot in-
dicates oscillation between Vµ and ρ.

where κ is the associated LEC, describing the induced mass splitting due to the gauge inter-
actions. For all charge prescriptions which preserve πC stability (with Q2∝ 1), Goldstones
charged under U(1)′ acquire a correction to their masses which takes the form

∆m2
π =

2κe2
D

f 2
π

. (62)

Any overall rescaling of the charge matrix can be absorbed into the definition of eD. For
other charge prescriptions, corrections for a given Goldstone can be acquired by multiplying
the above by a factor of Q2

π/(2eD)2, with Qπ the U(1)′ charge associated with the particle in
question. With the full chiral theory, this mass splitting can be estimated through resonance
contributions to the self-energy of the Goldstones, under the assumption of vector meson dom-
inance [83].

Assuming that axial vectors are heavy enough as to be decoupled, the three diagrams of
figure 3 need to be computed. Using the interactions discussed in previous sections, we may
evaluate the mass corrections at leading order in m2

π. We compute the diagrams in figure 3
with the external Goldstone lines on-shell and assume vector meson dominance [83], wherein
the form factors of the Goldstone bosons are dominated by the spin-1 multiplet at low energies.
The leading order expression is obtained by neglecting the terms proportional to the on-shell
momentum squared. Expressed as a loop integral, the correction takes the form

∆m2
π = 6e2

Dm4
ρ

∫

d4q
(2π)4

1
�

q2 −m2
V

�

�

q2 −m2
ρ

�2 , (63)

with the left-hand side of the equation denoting the self-energy of the Goldstone evaluated
on-shell. Such a treatment done entirely in terms of the low energy degrees of freedom of
the theory hence allows us to estimate the Goldstone mass splitting. Equation (63) can be
evaluated to determine the leading correction to the charged Goldstone masses, which takes
the compact form

∆m2
π =

6e2
D

(2π)2
m4
ρ

m2
V −m2

ρ

log

�

m2
V

m2
ρ

�

. (64)

This result is exact in the chiral limit, and is independent of the hierarchy between V and ρ.
The expression is continuous even at the crossover point mV = mρ. Comparison with (62) lets
us finally give an estimate of κ, expressed as a dimensionless ratio, at leading order

κ

m4
ρ

≈
3

4π2

f 2
π/m

2
ρ

m2
V/m

2
ρ − 1

log

�

m2
V

m2
ρ

�

. (65)
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U(1)′ breaking parameter κ against dark photon mass mV

Sp(4)c : mρ/fπ = 7.37(15)
Sp(4)c : mρ/fπ = 8.08(32)
QCD : mρ/fπ = 8.34(2)

Figure 4: The low energy constant κ parameterizing the explicit symmetry breaking
due to the U(1)′ interaction in units of m4

ρ as a function of mV/mρ according to
(65). The ratio of the dark vector meson mass to the dark Goldstone decay constant
mρ/ fπ has been constrained through the lattice results of [6]. We quote the results
for two limiting cases: First, for the lattice simulation with the heaviest fermions
for which leading-order chiral perturbation theory is expected to hold. This corre-
sponds to mρ/ fπ = 7.37(15). Secondly, for the extrapolation to the chiral limit,
where mρ/ fπ = 8.08(32) was found. We conclude that this relation shows only a
very weak dependence on the dark quark masses. In addition, we plot (65) for the
experimental value of Standard Model QCD.

Here, two different hadronic quantities of the strongly interacting theory enter: the mass of
the vector mesons mρ and the decay constant of the (pseudo-)Goldstone bosons fπ. They are,
however, not independent LECs and their ratio is constrained from lattice data [6]. Hence,
once the underlying theory is fixed, κ only depends on mV and one ratio of dark hadronic
observables; see also section 6.1 for a discussion of the free parameters of the UV complete
theory.

Close to the chiral limit, i.e., in a regime where mρ/mπ > 1.4, mρ/ fπ > 7 always holds [6].
The heaviest fermions for which the theory was sufficiently close to chirality resulted in
mρ/ fπ = 7.37(13). An extrapolation to the chiral limit yielded mρ/ fπ = 8.08(32).

In Fig. 4 we plot
�

κ/m4
ρ

�

as a function of mV/mρ for the two aforementioned ratios of
mρ/ fπ as well as the experimental value from SM QCD. We see that the underlying gauge the-
ory strongly constrains (65). Even for different gauge groups the results are very similar [84].
Therefore, the quantities fπ and mρ and even their ratio can, in general, not be considered as
free, independent parameters. Fig. 4 also illustrates the potential for fine radiative mass split-
tings, independent of the splitting between Dirac flavours. mV and eD remain independently
variable parameters, allowing a wide range of mass corrections to be obtained depending on
what phenomenology is of interest. We also note that the expected behaviour of κ as a split-
ting between V and ρ occurs is reflected in Fig. 4, with radiative corrections diminishing as
mV becomes large.
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5 Chiral Lagrangian in presence of small mass splittings in fermion
masses

In this section, we study the consequences for non-degenerate fermion masses in the UV,
mu ̸= md . Whereas this is the case for any two flavours in QCD, for the SU(4)c case of in-
terest here, the low-energy effective theory in the presence of a fundamental mass-splitting
has not yet been studied. As mentioned in Sec. 2.1, the global flavour symmetry group SU(4)
breaks explicitly to Sp(2)u×Sp(2)d for mu ̸= md in the two flavours u= (uL , ũR) , d = (dL , d̃R).
We may restrict ourselves to positive mass splittings ∆mdu = md −mu ≥ 0; the opposite case
is simply achieved by a relabelling of the fields u→ d and d → u as nothing else distinguishes
them. The remaining symmetry Sp(2)u × Sp(2)d invites us to switch to another basis where
the generators are (anti-)block-diagonal given by (A.12). We denote the generators in this
basis as T̃ a. The mass matrix can then be expressed as a sum of block-diagonal forms,

M = Mu +Md = mu

�

iσ2 0
0 0

�

+md

�

0 0
0 iσ2

�

= 2i
�

mu T̃2
u +md T̃2

d

�

, (66)

where Mu, Md are mass matrices of the respective flavours and T̃2
u , T̃2

d are generators of
Sp(2)u × Sp(2)d .

5.1 Mass and kinetic terms in the non-degenerate case

When mass splittings are taken into account, the low energy decay constants as well as vacuum
condensates will generally be modified, or, better, carry a flavour-dependence. Our choice of
decay constants and vacuum condensates that enter the construction of the chiral Lagrangian
is motivated by the lattice results of Sec. 6. Concretely, we make the following replacement
when considering split u and d quark masses,

fπ
mu ̸=md−−−−→

¨

fπ for π1,2,4,5

fπ3
for π3

, µ3 mu ̸=md−−−−→

¨

µ3
u =

1
2〈u

Tσ2SE2u〉
µ3

d =
1
2〈d

Tσ2SE2d〉
, (67)

where E2 = iσ2 is a matrix in flavour space. The chiral condensate changes to

〈qiq j〉=







0 µ3
u 0 0

−µ3
u 0 0 0

0 0 0 µ3
d

0 0 −µ3
d 0






= µ3

u

�

E2 0

0
µ3

d
µ3

u
E2

�

= µ3
u

�

Σ
deg.
0 +∆Σ0

�

i j
= µ3

u (Σ0)i j , (68)

where Σdeg.
0 = Ẽ is the vacuum alignment for mu = md ; for concreteness we have chosen to

pull out a factor of µ3
u which shall serve as overall normalization. Switching to the (anti-)

block-diagonal basis given in (A.12) and denoting the change of Σ0 in presence of different
chiral condensates as ∆Σ0 we arrive at,

∆Σ0 =

�

0 0

0
µ3

d−µ
3
u

µ3
u

E2

�

. (69)

For the chiral Lagrangian for non-degenerate fermion masses in a generalization of (22) we
may take the ansatz,

L= Lkin +Lmass =
f 2
π

4
Tr
�

∂µΣ∂
µΣ†

�

−
1
2
µ3

u (Tr [MΣ] + h.c.) . (70)
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The chiral field is now parameterized as follows,

Σ= exp





i
fπ

∑

k=1,2,4,5

πk T̃ k +
i

fπ3

π3 T̃3



Σ0 exp





i
fπ3

π3 T̃3 +
i
fπ

∑

k=1,2,4,5

πk

�

T̃ k
�T



 . (71)

In order to obtain canonical kinetic terms, a rescaling of the fields is necessary,

πk→
2µ3

u

µ3
u +µ

3
d

πk (k ̸= 3), π3→
fπ3

fπ

p
2µ3

u
q

µ6
u +µ

6
d

π3 . (72)

In terms of the rescaled fields according to (72) and the chiral field (71) expanding (70)
we may write the Lagrangian in terms of its mass-degenerate form Ldeg.

kin +L
deg.
mass plus additional

terms that will vanish once the mass-degenerate limit mu = md is taken,

L= Ldeg.
kin +Ldeg.

mass +
m2
π −m2

π3

2
π2

3

+
1

12 f 2
π

�

µ6
d + 2µ3

uµ
3
d − 3µ6

d

�

(µ3
d +µ

3
u)2

5
∑

k,n=1

�

πkπk∂µπn∂
µπn −πk∂µπkπn∂

µπn

�

+
1

8 f 2
π

µ6
u(µ

3
d −µ

3
u)

2

(µ3
d +µ

3
u)2(µ

6
d +µ

6
u)

5
∑

k=1
k ̸=3

�

∂µπ3πk −π3∂µπk

�

(∂ µπ3πk −π3∂
µπk)

−
1

6 f 2
π

µ6
u(µ

3
d −µ

3
u)

2

(µ3
d +µ

3
u)2(µ

6
d +µ

6
u)

5
∑

k=1
k ̸=3
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(73)
Here, Ldeg.

kin ,Ldeg.
mass are found in (23) and (24) with fπ as on the R.H.S. of (67) and mπ defined

through

m2
π ≡ m2

π1,2,4,5
=

2µ6
u(mu +md)

f 2
π (µ3

u +µ
3
d)

, m2
π3
=

2µ6
u(muµ

3
u +mdµ

3
d)

f 2
π (µ6

u +µ
6
d)

. (74)

As can be seen, whereas π1,2,4,5 remain degenerate, π3 is now split from the other states.
In other words, π1,2,4,5 form a multiplet and π3 transforms as a singlet under the symmetry
SU(2)u × SU(2)d . It should be noted, that such mass-difference only appears for µd ̸= µu
and the introduction of different chiral condensates was necessary to induce such splitting.
Similarly to QCD, in leading order in the chiral expansion, the Goldstone masses do not depend
on the difference in decay constants fπ ̸= fπ3

. Of course, once mu = md , the Goldstone
spectrum becomes degenerate and the global flavour symmetry Sp(4) is restored.

5.2 WZW Lagrangian in the non-degenerate case

Next, we consider the WZW term for the PNGBs for non-degenerate fermion masses. Due to
the correction factor in Σ0 in (68) also the five point interaction is modified. In its compact
form, the WZW term may now be written as,

LWZW = −
Nc

240π2 f 5
π

ϵµνρσTr
�

AΣ∂µAΣ∂νAΣ∂ρAΣ∂σAΣ ,
�

, (75)
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where AΣ := Σ0A= (EA+∆Σ0A), A :=
�

π̂Σ0 +Σ0π̂
T
�

and

π̂ :=
2µ3

u
�

µ3
u +µ

3
d

�

∑

k=1,2,4,5

πk T̃ k +

p
2µ3

u
q

�

µ6
u +µ

6
d

�

π3 T̃3 .

Here, π has already been used in its rescaled form according to (72). Expanding the La-
grangian as usual, we find that the effects due to non-degeneracy yield a modified pre-factor
multiplied onto the Lagrangian that is equivalent to the degenerate case Ldeg.

WZW with fπ as on
the R.H.S. of (67) ,

LWZW =
µ6

d

q

µ6
u +µ

6
dp

2µ9
u

Ldeg.
WZW . (76)

The prefactor is larger (smaller) than unity for µu < µd (µu > µd .) The total Lagrangian
including the WZW interaction is then given by the sum of (73) and (75).

5.3 Goldstone mass spectrum through partially conserved currents

We may also obtain the mass difference of the pseudo-Goldstones from the chiral Lagrangian
(70) by means of current algebra instead of direct computation. We switch again to basis of
generators given in Eq. (A.12), but all following quantities are also valid in the basis (A.6),
replacing T̃ a by T a. Recall that under a SU(4) transformation, the chiral field infinitesimally
transforms as

Σ→ UΣU T ≃ Σ+ iθa

�

T̃ aΣ+Σ
�

T̃ a
�T�

. (77)

Before we derive the Goldstone masses, for completeness, we begin in the massless theory and
establish some basic facts. The Noether currents associated with the SU(4) flavour symmetry
read

Jµa
�

�

M=0 = i
f 2
π

2
Tr
�

∂ µΣ†
�

T̃ aΣ+Σ
�

T̃ a
�T��≡











i
f 2
π

2 Tr
�

T̃ a
�

Σ,∂ µΣ†
	�

a = 1, 3,5

i
f 2
π

2 Tr
�

T̃ a
�

Σ,∂ µΣ†
��

a = 2,4
0 a = 6, . . . , 15 .

(78)

Hence, the currents are non-vanishing for generators associated with the Goldstone bosons.
Under ordinary parity P (see Eq. (14)), the currents associated with a = 1, 3,5 and a = 2, 4
are axial-vector and vector-currents, respectively: PJµ1,3,5|M=0( x⃗ , t) = −Jµ1,3,5|M=0(− x⃗ , t) and
PJµ2,4|M=0( x⃗ , t) = Jµ2,4|M=0(− x⃗ , t). However, under the generalized parity D, all Goldstone
bosons are pseudoscalars and the currents associated with a = 1, . . . , 5 are indeed axial-vector
currents, DJµa |M=0( x⃗ , t) = −Jµa |M=0(− x⃗ , t). To leading order we have,

Jµa |M=0 ≃ fπ∂
µπa, a = 1, ..., 5 . (79)

As is evident, in the massless theory, these currents are conserved, ∂µ Jµa
�

�

M=0 = 0, implying
the masslessness of the Goldstone bosons. We now turn to the massive theory, M ̸= 0, and
establish the mass spectrum. To this end, we first note that the change of the Lagrangian upon
the SU(4) transformation in (77) reads,

L→ L−
iµ3

u

2
θa

¦

Tr
�

T̃ a
�

ΣM −M†Σ†
��

+ Tr
�

�

T̃ a
�T �

MΣ−Σ†M†
�

�©

. (80)
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From the general definition of the Noether current Jµa , one may use the above expression to
identify the non-conserved currents for the generators associated with the Goldstone bosons,

∂µJµa =
iµ3

u

2

¦

Tr
�

T̃ a
�

ΣM −M†Σ†
��

+ Tr
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�
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Tr
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	��
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T̃ a
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= T̃ a, a = 1,3, 5

Tr
�

T̃ a
�

[Σ, M]−
�

M†,Σ†
���
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�

T̃ a
�T
= −T̃ a, a = 2,4

0 for a = 6, . . . , 15 .

(81)

We may now use the method of partially conserved axial currents which posits,

∂µJµa |0〉 ≃ m2
πa

fπa
|πa(p)〉 , (82)

and compare the masses on the right-hand-side with the ones obtained by the direct evaluation
of the traces in (81). Accounting for the rescaling in (72), we obtain

∂µJµk |0〉 ≃
2µ6

u(mu +md)

fπ(µ3
u +µ

3
d)
|πk(p)〉 , k = 1,2, 4,5 ,

∂µJµ3 |0〉 ≃
2µ6

u(muµ
3
u +mdµ

3
d)

fπ(µ6
u +µ

6
d)

|π3(p)〉 .

∂µJµn |0〉= 0, n= 6, . . . , 15 ,

(83)

The comparison with (82) shows that we recover the masses previously found in (74).

5.4 The pseudoscalar singlet in the non-degenerate case

Finally, we work out the role of η′ in the non-degenerate fermion mass case. For this, we again
perform an extra rotation on the chiral field in Eq. (71),

Σ → exp

�

2i
fη′
η′T0

�

Σ . (84)

Then, the kinetic term in the chiral Lagrangian up to fourth order in the fields is given by

Lkin =
1
2

∑

k ̸=3

∂µπk∂
µπk +

1
2

�

∂µπ3 ∂µη
′�K

�

∂ µπ3
∂ µη′

�

+O(π4) , (85)

where we have used the redefinition of the fields following (72) and, additionally rescaled η′

as,

η′→
fη′

fπ

p
2µ3

u
q

µ6
u +µ

6
d

η′ . (86)

As can be seen, in the non-degenerate case, a kinetic mixing between π3 and η′ is induced by
the off-diagonal elements of K ,

K =





1 (µ6
u−µ

6
d)

2(µ6
u+µ

6
d)

(µ6
u−µ

6
d)

2(µ6
u+µ

6
d)

1



 . (87)

We put the kinetic term into canonical form in terms of the diagonal fields,
�

π̂3
η̂′

�

= S1/2OT
kin

�

π3
η′

�

, (88)
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where Okin is the orthogonal matrix, that diagonalizes K (mixing angleπ/4) and S is composed
of the eigenvalues of K in the diagonal, fulfilling S = OT

kinKOkin. The matrix S is given by

S =
1

2(µ6
d +µ

6
u)

�

3µ6
d +µ

6
u 0

0 µ6
d + 3µ6

u

�

. (89)

In the new basis Eq. (88), the kinetic terms are then diagonal and canonically normalized.
We now turn to the mass term in the chiral Lagrangian after rescaling of the fields (72)

and (86),

Lmass = 2(muµ
3
u +mdµ

3
d)−

µ6
u(mu +md)

f 2
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�
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d
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∑
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, (90)

where the squared mass matrix of π3 and η′ takes the form

M2
π3η′
=
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f 2
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2
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. (91)

We see that in addition to kinetic mixing there is also a mass mixing. We recall that ∆m2
η′ was

introduced as an explicit breaking of the U(1)A symmetry. Switching to the new basis (88),
the mass term is then diagonalized by the transformation,

�

π̃3
η̃′

�

= OT
mass

�

π̂3
η̂′

�

, Omass =

�

cosθmass sinθmass
− sinθmass cosθmass

�

, (92)

with the mixing angle θmass given by

tan2θmass =
f 2
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where x± :=
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d
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(mdµ
3
d
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��

. For ∆mη′ = 0, the squared mass

matrix is automatically diagonal (θmass = 0) after diagonalization of the kinetic term. Likewise,
in the mass-degenerate case, no kinetic- and mass-mixing is induced even for ∆mη′ ̸= 0. The
total Lagrangian in the new basis is given by,
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(94)

with masses
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(95)
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As expected, the pseudoscalar η′ has a larger mass than π3 and remains massive even in the
chiral limit for ∆mη′ ̸= 0. The Goldstone and η′ spectrum become degenerate for ∆mη′ = 0,
once mu = md ,µu = µd . For ∆mη′ = 0 the masses reduce to

m2
π3
=

8µ9
umu

f 2
π

�

µ6
d + 3µ6

u

� , m2
η′ =

8µ6
uµ

3
d md

f 2
π

�

3µ6
d +µ

6
u

� . (96)

In Sec. 3.2 we showed that at leading order η′ does not appear in the WZW term in the
case of degenerate fermion masses. In case of non-degenerate fermion masses, the iso-singlet
η′ enters the WZW interaction through the mixing effects between η′ and π3. In the basis in
which kinetic and mass terms are diagonal, we obtain,

LWZW =
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d

�
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u +µ

6
d

�

p
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u




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6
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Ldeg.,η̃′

WZW



 , (97)

Here, Ldeg.,π̃
WZW is given in (76) where π3 is replaced by π̃3 and Ldeg.,η̃′

WZW takes the same form as

Ldeg.,π
WZW in (76) with π3 being replaced by η̃′.

6 Lattice results on Sp(4)c with N f = 1+ 1

6.1 Free parameters of the microscopic Lagrangian

The chiral Lagrangian has several low-energy constants that cannot be obtained from the ef-
fective theory itself. These can be determined from the underlying UV-complete theory. As
the UV theory is strongly interacting, this requires a non-perturbative method, for which we
choose lattice here. This allows us to follow standard procedure for the task at hand [4]. Any
potential influence of gauging under U(1)′ as discussed above is expected to be small, and can
thus be accounted for by using perturbation theory a posteriori. A similar situation arises in
the SM weak interactions of mesons, where the same approximation also holds very well [85].

In the following, we thus consider the strongly interacting Sp(4)c gauge theory with two
fundamental Dirac fermions in isolation. The mass degenerate case was already studied in [6]
and pioneering studies in Sp(4)c Yang-Mills theory and the quenched theory have been carried
out in [7,86,87]. Since we use the Sp(4)c branch of the HiRep code [88] developed in [6,7]
for the simulations, we use the same technical framework. We briefly repeat the pertinent
details in App. D.

The theory has three free parameters, the gauge coupling g and the two bare fermion
masses mu and md . In the context of lattice calculations, it is convenient to express the gauge
coupling as β = 8/g2. Note that both the coupling and the fermion masses are the unrenor-
malized bare parameters and thus unphysical.

In the continuum theory, the overall scale would be set by one of the dimensionful pa-
rameters, but in a lattice calculation it is convenient to use instead the finite lattice spacing a.
Masses are then measured as a multiple of the inverse lattice spacing a−1 and we report here
the dimensionless products am in the following. Only once some dimensionful quantity is
fixed, e.g., by experimental input, explicit units become possible. Fixing the scale, and thus
the lattice spacing, implies that also one of the bare lattice parameters is fixed. It is con-
venient to choose the gauge coupling for this fixing of the scale, leaving two dimensionless
quark masses to uniquely characterize the physics. These two free parameters can be used to
fix two observable quantities, e. g. properties of the dark hadrons such as masses or scattering
cross-sections. All other results are then fixed.
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Since a tractable way of deriving these quantities from observations requires a treatment
using the effective field theory, we can only see a posteriori which input parameters of the
microscopic theory (if any) provide viable Dark Matter candidates. In addition, we need to
ensure that the effective theory is a sufficiently controlled approximation to the underlying UV
theory. This will be done by comparing predictions of the EFT to first-principles results from
the lattice.

Remaining agnostic about the values of the two fundamental dark quark masses, we study
different combinations of them. We always start from degenerate dark quark masses, and we
then incrementally increase one of them, breaking the flavour symmetry from Sp(4) down to
SU(2)u×SU(2)d explicitly. For small breaking and sufficiently light quarks, Sp(4) should still
be an approximate symmetry and we expect to see 5 relatively (compared to the other meson
masses) light pseudo-Goldstone states of which 4 will remain degenerate. For larger breaking
this will at some point no longer be the case and the system is expected to resemble a heavy-
light system. For one extremely heavy dark quark we expect to see the pattern [34, 60] of a
corresponding one-flavour theory for the lightest states. Since we vary the value of one of the
bare quark masses to study a one-dimensional subspace of the three-dimensional parameter
space and we already leave an overall scale undetermined we only have to fix one remaining
bare quark mass through a suitable observable. Once this is done all other lattice observables
are predictions

In Fig. 5 we depict the previously outlined workflow. We emphasize that all bare input
parameters are unrenormalized and thus unphysical (this includes the bare quark masses).10

We fix the remaining bare quark mass (which remains unchanged when we break the
flavour symmetry) through the ratio of the vector meson masses to (one of) the pseudo-
Goldstones mρ/mπ at degeneracy. In the chiral limit, the Goldstone modes become massless
and the ratio diverges, mρ/mπ→∞. In the limit of extremely heavy quarks all meson masses
are dominated by the mass of the valence quarks and the ratio approaches unity, mρ/mπ→ 1.
Thus, the larger this ratio becomes the closer we are to the chiral limit. In the Standard Model
the experimental value of this is mρ/mπ ≈ 5.5− 5.7 and for the pseudo-Goldstone bosons of
a three-flavour theory the K and η mesons, they are mρ/mK ≈ 1.5 and mρ/mη ≈ 1.4.

In this work we have studied ensembles where this ratio in the mass degenerate limits11

are mρ/mπ ≈ 1.15,1.25 and 1.4. These values are slightly smaller than those suggested
by existing phenomenological investigations of such theories as dark matter candidates [35].
Eventually, we also want to study ensembles with mρ/mπ > 1.4. However, they come at a
significantly increased computational cost and we defer this to future work. We conclude,
that our quark masses relate to the intrinsic scale of our theory similarly as the QCD strange
quark mass relates to the QCD scale as the mass ratio is similar. Note that in all cases the
aforementioned ratio is smaller than 2 and the ρ at rest cannot decay into two Goldstone
bosons.

6.2 Quark masses and partially conserved axial current

In the previous section we discussed how to choose the unrenormalized bare quark masses
for our lattice simulations. We stressed that these input masses are unrenormalized and thus
regulator-dependent and unphysical. An obvious question is, therefore, if there is a way of
calculating a "physical" quark mass. This is however not possible. Due to confinement there
is no notion of a physical quark mass since no physical quark has ever been observed in ex-
periment. Any definition of a quark mass is scheme-dependent and necessarily not unique. In

10More precisely, the lattice spacing acts as an ultraviolet cutoff Λ = a−1, and the bare parameters are the ones
at the cutoff. Thus, in the formal continuum limit of a→ 0, they will be either zero or infinite.

11For the degenerate case, if possible, we give results from [6], since these have been obtained on larger lattices
with better statistics in comparison to ours. This will be indicated where necessary.

29

https://scipost.org
https://scipost.org/SciPostPhys.14.3.044


SciPost Phys. 14, 044 (2023)

pick physical target quantities (e.g. mρ/mπ)
that characterize the parameter space of interest

start with arbitrary unrenormalized,
unphysical lattice input β,mu,md

run lattice simulation

perform analysis and obtain physical
quantities such as hadron properties

are
the target
quantities

(e.g. mρ/mπ)
obtained?

done

use results to
obtained improved
values of β,mu,md

all other observables are lattice predictions!

yes

no

Figure 5: Workflow for choosing suitable input parameters mu, md and β . These
input parameters are unrenormalized and thus unphysical. They are chosen such
that a set of observables has a prescribed value (in our case the ratio mρ/mπ). All
other observables are then predictions from the lattice. Note that we do not fix the
overall scale of our observables in our analysis.

the context of Standard Model QCD several ways of a defining a quark mass are being actively
used. See for example the current PDG review [89] for a detailed discussion of quark masses
in the SM.12

The scheme-dependence of any quark mass implies that quark masses are comparable only
in the same scheme at the same scale µ. This implies that we need to determine the renor-
malization constants of the bare quark masses mu and md in order to obtain the renormalized
quark masses m(r)u and m(r)d . Our discretization of the fermion fields on the lattice makes this
even more challenging: The Wilson discretization of fermions breaks chiral symmetry explic-
itly on the lattice and results in both a multiplicative and additive renormalization of the bare
quark mass as long as the lattice is finite, i.e. a > 0 [4].

We can, however, instead define a quark mass based on the partially conserved axial
current (PCAC) equation from (82) which relates the axial current to the pion field and
the axial Ward identity (AWI) which connects the axial current to the renormalized quark
mass m(r). We can restrict ourselves to the AWI for the πA pseudo-Goldstone which reads
∂µJµA = (m

(r)
u +m(r)d )d̄γ5u. This entails that we can also define an unrenormalized quark mass

through correlation functions CΓ (t) of the unrenormalized axial currents ūγ0γ5d and ūγ5d

12In fact, beyond perturbation theory the situation is even worse, and it is not settled if a concept like a quark
mass can be defined in a confining theory at all. Especially, the quark propagator has not necessarily a suitable
pole structure, see e. g. [90] for a discussion.
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(see e.g. [91] for a detailed discussion and other equivalent definitions),

mPCAC = lim
t→∞

1
2

∂t Cγ0γ5,γ5
(t)

Cγ5
(t)

= lim
t→∞

1
2

∂t

∫

d3 x⃗〈(ū( x⃗ , t)γ0γ5d( x⃗ , t))† ū(0)γ5d(0)〉
∫

d3 x⃗〈(ū( x⃗ , t)γ5d( x⃗ , t))† ū(0)γ5d(0)〉
. (98)

At large times t the ratio of the two correlation functions in eq. (98) tends to a constant
which we identify as the PCAC-mass. In the mass-non-degenerate case this expression gives
the average mass of up-type quarks and down-type quarks. In our setup we try to keep one
of the quark masses fixed. This then allows us to determine the fixed mass directly in the
degenerate calculations and deduce the other mass in the non-degenerate case.13 The PCAC-
mass is related to the renormalized (average) mass by a multiplicative factor

m(r) =
ZA

ZP
mPCAC , (99)

and is therefore an unrenormalized quantity. In order to obtain the renormalized mass the
factor ZA/ZP needs to be determined and a scheme to be chosen. This is however quite involved
and in addition a matching to other commonly used renormalization scheme is needed in order
for this mass to be used in perturbative calculations (see e.g. [85]). We therefore skip this
calculation in this work and point out that the renormalization factors cancel if we consider
ratios of PCAC-masses such as mPCAC

u /mPCAC
d since only multiplicative renormalization occurs.

Note that the PCAC relation is closely linked to chiral perturbation theory and the Gell-
Mann-Oakes-Renner (GMOR) relation in particular - see section 5.3. Calculating the PCAC
masses and the chiral condensate and comparing this to the GMOR relation cannot be consid-
ered to be a truly independent and quantitative test of chiral perturbation theory. We can still
use it, however, as a qualitative test by examining the dependence of square of the Goldstone
masses on the PCAC-masses and comparing the results to the expected linear behaviour. This
can be found (although with a differently defined unrenormalized quark mass) in [6]. In this
work we are primarily interested in the effects of strong isospin breaking. We will take the
relation at mass-degeneracy for granted and using (74) we determine the (unrenormalized)
chiral condensates. We will see that at a sufficiently large strong isospin breaking this will
no longer be possible which might suggest that at this amount of strong isospin breaking the
chiral Lagrangian at this order is not an adequate description of the Goldstone dynamics of
the underlying theory. This is done in section 6.4.

6.3 Results: Masses, decay constants and quark masses

We have calculated the masses and decay constants of both the Goldstones and the vector
mesons as well as the previously outlined unrenormalized PCAC masses. The lattice setup and
the lattice action as well as the techniques used for extracting the masses and decay constants
from the lattice can be found in appendix D. A detailed study of lattice systematics is given in
appendix D.4. Here we present the results which we expect to give a suitable approximation
of the continuum theory.

The masses for the ensembles with varying mρ/mπ at degeneracy are shown in Fig. 6. We
see that, both for the Goldstone and vector mesons, the flavour-neutral states are the lighter
states once strong isospin breaking is introduced. This makes the πC the lightest state in the
theory. The remaining 4 Goldstones are heavier and remain degenerate. At some point the
6 lighter vector mesons—among them the ρN —become even lighter than the heavier pseu-
doscalars.

13In principle, there is the possibility that changing one parameter can affect the other. We do not see any sign
of this, but it would require further investigations to settle beyond doubt.
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Figure 6: Masses and decay constants of the pseudo-Goldstone mesons and the vector
mesons for different non-degenerate fermion masses against the ratio of the unrenor-
malized PCAC masses. One fermion mass is kept fixed while the other is incremen-
tally increased. Therefore, all meson masses increase with larger fermionic mass
difference. The unflavoured pseudo-Goldstone is the lightest particle in the spec-
trum of the isolated theory. For a larger mass difference between the fermions the
unflavoured vector mesons get lighter than the flavoured pseudo-Goldstones. At this
point the EFT based solely on would-be-Goldstones is certainly no longer adequate.

A similar pattern is observed for the decay constants of those dark mesons shown. The un-
flavoured decay constants are smaller than their flavoured counterparts. This is seen for both
the Goldstone and the vector mesons. Furthermore, the unflavoured vector decay constant
shows a maximum at intermediate values of the dark quark mass splitting.

Note that we observe more effects of the finite lattice extent for the lightest ensembles with
mρ/mπ ≈ 1.25 at degeneracy and in addition we see finite lattice spacing effects for heavy
mesons for both mρ/mπ ≈ 1.4 and 1.15 at degeneracy. We again refer to appendix D.4 for a
discussion of lattice systematics.
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We conclude that for large mass splittings the system more closely resembles a heavy-light
system where the unflavoured mesons are the lightest hadronic states. At some point the
mass of the second dark quark is so heavy that it decouples and the low-energy part of this
theory is effectively a N f = 1 theory which contains three vector mesons and one (massive)
pseudoscalar [34]. In this case the theory develops a hierarchy of scales.

6.4 Validity of the Chiral Lagrangian

The chiral theory of Secs. 3 to 5 is based on the dynamics of the lightest hadronic states,
which in this case are the pseudo-Goldstone bosons π. In the chiral limit, i.e., in the limit of
massless dark fermions, the flavour symmetry is broken only spontaneously and theπ’s become
massless themselves. Close to the chiral limit for degenerate quarks the GMOR relation gives
the dependence of the product of Goldstone masses on the renormalized quark masses m(r)q

and the chiral condensate (µ3)(r)

( fπmπ)
2 = 2m(r)(µ3)(r). (100)

It can be seen that the square of the pseudo-Goldstone mass depends linearly on the average
renormalized quark mass and in the chiral limit the equation is trivially fulfilled. As pointed
out in section 6.2 the renormalized quark mass and the condensate are scheme-dependent.
However, their product is scheme-independent since the involved renormalization constants
cancel. Since we forwent a determination of the renormalization constants due to the techni-
cally involved nature of such a calculation we use the unrenormalized PCAC mass mPCAC and
define the chiral condensate through GMOR. This entails that also the condensate is then un-
renormalized and regulator-dependent. We therefore drop the superscript (r) in the following.
For non-degenerate quarks GMOR is given by equation (74). For convenience, we rewrite is
as

GMORπA(mu, md ,µu,µd) = (mπA fπA)2 −
2µ6

u(mu +md)

µ3
u +µ

3
d

= 0 ,

GMORπC (mu, md ,µu,µd) = (mπC fπC )2 −
2µ6

u(muµ
3
u +mdµ

3
d)

µ6
u +µ

6
d

= 0 . (101)

We have seen that for sufficiently large UV mass difference in the dark fermions, the mass
hierarchy in the mesonic spectrum changes qualitatively: the multiplet of vector mesons con-
taining the ρN becomes lighter than the multiplet of flavoured pseudoscalars containing the
πA. The set of π’s are then no longer the lightest hadronic states and an inclusion of the rel-
evant vector states becomes necessary. This provides an upper limit on the amount of strong
isospin breaking.

Using the aforementioned GMOR relations we can set an even stronger bound on the
amount of strong isospin breaking. The validity of the GMOR relation was already studied
for degenerate fermions in [6]. It was found that dependence of the square of the pseudo-
Goldstone mass on a (differently defined) unrenormalized quark mass is linear for ensembles
with mρ/mπ > 1.4, and thus chiral effective theory can be expected to work adequately latest
from there on. Due to the increased computational cost of non-degenerate fermions we do not
have results on ensembles that fulfil mρ/mπ≫ 1.4. Nevertheless, we can perform consistency
tests on the GMOR relations in (101) around the threshold mρ/mπ ≈ 1.4, see table 3 below.
We use the fact that in our simulations one bare quark mass has been kept fixed and proceed
as follows:

At degenerate fermion masses we take the degenerate GMOR relation (100) for granted
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Table 3: The point at which a change in the meson mass hierarchy occurs and the
point at which the non-degenerate GMOR relation breaks down at one-sigma signif-
icance. In general, this breakdown sets a stronger bound. Note that with increased
statistics the breakdown of the non-degenerate GMOR can occur at even smaller
PCAC-mass-ratios.

β
�mρ

mπ

�

deg

�

mu
md

�

where mρN = mπA

�

mu
md

�

where non-deg. GMOR breaks down

6.9 1.144(5) 2.8(3) 3.0(2)
6.9 1.25(1) 4.4(4) 1.5(1)
6.9 1.46(4) 8(1) 1.8(5)
7.05 1.16(1) 2.7(3) 2.2(2)
7.05 1.29(2) 4.7(5) 1.7(2)
7.05 1.46(4) 6.8(8) 1.7(2)
7.2 1.17(1) 2.7(4) 4(1)
7.2 1.26(2) 4.4(7) 1.7(4)
7.2 1.37(4) 6(2) 4(2)

and use it to determine the fixed chiral condensate (µ3
u)

PCAC from the fixed quark mass mPCAC
u .14

Since these quantities are regulator-dependent we only compare results at the same value of
the (bare) inverse gauge coupling β .15 This determines three out of the four quantities that
enter the non-degenerate GMOR relations in (101). We can then use both equations in (101)
to determine (µ3

d)
PCAC. If the non-degenerate GMOR relation holds we expect the functions

GMORπA,C (mu, md ,µu, x) to have common roots at x = µPCAC
d . Using our lattice data we find

for ratios starting at md/mu ≳ 1.5 that GMORπA and GMORπC cease to have a common root.
We exemplify this in Fig. 7 for specific ensembles GMORπA,C (mu, md ,µu, x) as a function of x .
It can be seen that at larger quark-mass-ratios the functions do not share a common root. In
particular GMORπC no longer has root in this region of x .

We interpret this as a sign that at this point the description provided by the leading order
chiral Lagrangian that lead to (101) no longer captures the underlying theory. This sets another
upper bound on the validity of the non-degenerate GMOR relation. We might therefore hope
that as long as these functions have a common root, all pseudo-Goldstone are still the lightest
mesons in the spectrum and the degenerate GMOR relation holds true and the leading order
Lagrangian might be an adequate description of strong isospin breaking in this theory at fixed
mρ/mπ ≳ 1.4 at degeneracy. The tabulated upper limits can be found in table 3. Note that
this is only an upper bound.

There are two reasons why the non-degenerate GMOR relation can break down: 1) The
quark-mass-difference is too large in order for the system to be treated at leading order. In this
case the next step would be to investigate this chiral Lagrangian at next-to-leading order in
strong isospin breaking. 2) The average pseudo-Goldstone masses are in general too large to
reliably use GMOR at leading order even close to the mass-degenerate limit. If this is the case
we can either go to next-to-leading order in chiral perturbation theory or study the system for
even lighter pseudo-Goldstones (at significantly increased computational cost).

In any case, we have shown that for small isospin breaking the non-degenerate GMOR
relations do not break down immediately even for significantly heavier quarks than those used
in the chiral extrapolation of [6] and also in the case of the (mρ/mπ)deg ≈ 1.4 ensemble. It will

14From [6] we know that the dependence of the squared Goldstone mass on the quark mass only becomes linear
for mρ/mπ ≳ 1.4. However, this approach allows us to test whether the explicit introduction of isospin breaking
effects cause a breakdown.

15In principle the regulator depends also on the bare quark masses. Experience has shown that these effects are
subleading compared to the effect of β .
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Figure 7: GMORπA,C (mu, md ,µu, x) as a function of x for an inverse gauge coupling
of β = 6.9 and values of mρ/mπ ≈ 1.24 and mρ/mπ ≈ 1.46 at degeneracy. If the
non-degenerate GMOR relation holds the condensate µd is given by the common root
of the two functions. For small isospin breaking a common root exists. Starting at
around md/mu ≈ 1.5 in both cases a tension develops. At around md/mu ≈ 1.7 for
the heavier ensemble and at around md/mu ≈ 2 for the lighter ensemble the non-
existence of a common root is more than one-sigma significant.

be therefore already worthwhile to study this UV complete theory and the chiral Lagrangian
at leading order in this region of parameter space.

7 Conclusions

Summarizing, within this work we have laid the foundation for understanding strongly- in-
teracting dark matter based on QCD-like symplectic gauge theories. To this end, we have
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constructed all possible symmetries for the non-degenerate underlying theory, including the
case when gauged under a new U(1)′ symmetry. This yields symmetry-based constraints on
absolutely stable and unstable light states.

We have constructed the chiral low-energy effective theory of the bound states, the dark
hadrons, of this theory. In this process we extended previous results, see e. g. [1,7,11,29,33,
48,60,77,78,92], to include simultaneously processes mediated by the WZW term, mass-split
spectra, and couplings to an Abelian gauge messenger. We fully elaborated the leading-order
structure, including the Feynman rules. This comprehensive construction integrates many
elements, which have been available separately in the literature, in one common framework.
It therefore provides a ready-to-use effective theory to search for this type of DM at colliders
and in direct detection experiments, and understand how it can fulfil astrophysical constraints.
Especially, this theory can be straightforwardly extended to any QCD-like theory with a pseudo-
real gauge group with two fundamental dark quarks. It will therefore serve as a versatile
framework for future investigations.

The particular strength of our formulation is that it has been developed in parallel with
a lattice implementation of the same theory, ensuring a coherent language and conventions.
This is decisive, as effective low-energy theories require limits of validity. In the degenerate
case, previous lattice results [6, 7] gave already the condition mρ/mπ ≳ 1.4. We extended
this to the mass non-degenerate case, yielding the additional requirement that the PCAC dark
quark masses, as defined in section 6.2, may not be split by more than a factor of 1.5 at the
validity edge. We also showed how the theory at larger mass splittings is crossing over into a
heavy-light system. While this requires a new low-energy effective theory, these results open
interesting possibilities for strongly-interacting dark matter with split hierarchies and stable
dark matter particles at different scales.

Finally, in section 4.4 we used the lattice results to determine the relevant LEC when cou-
pling to the SM through a vector mediator. This shows how non-perturbative results can be
used to reduce the number of free parameters when searching for DM by implementing con-
straints from the ultraviolet completion. This integration between effective theory and lattice
simulations reduces substantially the number of free parameters in a pure effective theory
approach, which is our ultimate aim. As figure 4 shows, the systematic comparison between
different ultraviolet theories in this way yields very general constraints, making our approach
predictive.

Summing up, we have created both a more comprehensive blueprint for how to construct
viable low-energy theories for strongly-interacting dark matter and we have provided a partic-
ular implementation for an ultraviolet completion with a Sp(4) QCD-like theory, in the spirit
of e.g. [22, 30, 31, 93]. This can now be exploited to perform phenomenological calculations
with a much higher degree of systematic control than previously possible. The latter can
furthermore be systematically extended by going to higher orders with simultaneous lattice
calculations of further LECs, just like in ordinary QCD.
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A Sp(2N) groups: Defining properties and generators

In this section, we provide a general description of the symplectic group Sp(2N). We suppress
the colour and flavour indices, since all properties of the group are equivalent in the colour and
flavour space and label the generators as T a. We note, however, that all relations quoted here
also apply to the colour group Sp(4)c and its generators τa. The fundamental representation of
any Sp(2N) group is pseudo-real. The representation is isomorphic to its complex conjugate
representation. This can be seen from the defining property of the Sp(2N) group: it is the
subgroup of SU(2N) that leaves

E =

�

0 1N
−1N 0

�

, (A.1)

invariant. It consists of all SU(2N) transformations that fulfil U∗ = EU E†. In the context of
colour groups we will denote the invariant tensor as S to make the context unambiguous. For
the invariant tensor E the following relations hold:

E† = E−1 = ET = −E, E2 = −12N . (A.2)

On the level of the generators T a using U = exp (iαaT a) this is equivalent to

T a∗ = −ET aE† . (A.3)

For completeness, we point out that not every representation of a Sp(2N) group is pseudo-real
but also real representations exist, such as the adjoint and antisymmetric representations, see
e.g. [8]. However, complex representations of Sp(2N) do not exist. The group SU(4) has 15
generators and the subgroup Sp(4) has 10 generators. From (A.3) follows the relation

ET a + (T a)T E = 0 for a = 6, ..., 15 , (A.4)

for the generators of the Sp(4) subgroup while the other 5 generators satisfy

ET a − (T a)T E = 0 for a = 1, ..., 5 . (A.5)

The generators with normalization Tr{T aT b}= 1
2δ

ab are given by [94]

T1 = 1
2
p

2







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






, T2 = 1

2
p

2







0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0






, T3 = 1

2
p

2







1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1






,

T4 = 1
2
p

2







0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0






, T5 = 1

2
p

2







0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0






, T6 = 1

2
p

2







0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0






,

T7 = 1
2
p

2







0 0 0 −i
0 0 −i 0
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i 0 0 0






, T8 = 1

2
p

2






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0 0 0 −i
0 0 i 0






, T9 = 1

2
p

2







0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0






,

T10 = 1
2







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0






, T11 = 1

2
p

2







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






, T12 = 1

2






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




,

T13 = 1
2
p

2






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




, T14 = 1

2
p

2






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0 0 −1 0
0 0 0 1






, T15 = 1

2
p

2







1 0 0 0
0 1 0 0
0 0 −1 0
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




.

(A.6)
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The totally antisymmetric structure constants f a,b,c of the SU(4) group are defined as
�

T a, T b
�

= i f abc T c , (A.7)

and all non-zero structure constants are given by

f 1,2,14 = f 2,3,13 = f 2,4,6 = f 3,5,7 = − f 1,3,8 = − f 1,5,9 = − f 3,4,11 = − f 4,5,15 =
1
p

2
, (A.8)

f 1,4,10 = f 2,5,10 = f 2,5,12 = − f 1,4,12 =
1
2

, (A.9)

In section 2 we found that two non-degenerate fermion masses break the global symmetry
down to SU(2)u×SU(2)d . This group has 6 generators, that are combinations of the generators
of Sp(4)

T1
u = T10, T2

u =
1
p

2
(T6 + T9), T3

u =
1
p

2
(T14 + T15) , (A.10)

T1
d = T12, T2

d =
1
p

2
(T6 − T9), T3

d =
1
p

2
(T15 − T14) . (A.11)

Occasionally it is convenient to use another basis of the generators than the one in (A.6).
A different basis of SU(4) and Sp(4) algebras is obtained by exchanging the second row with
the third row and the second column with the third column. In this form, all generators are
either block-diagonal or anti-block-diagonal where the different blocks are either the identity
matrix 1 or one of the Pauli matrices σi ,

T̃1 =
1

2
p

2

�

0 12
12 0

�

, T̃2 =
1

2
p

2

�

0 −iσ3
iσ3 0

�

, T̃3 =
1

2
p

2

�

12 0
0 −12

�

,

T̃4 =
1

2
p

2

�

0 −iσ1
iσ1 0

�

, T̃5 =
1

2
p

2

�

0 iσ2
−iσ2 0

�

, T̃6 =
1

2
p

2

�

σ2 0
0 σ2

�

,

T̃7 =
1

2
p

2

�

0 σ2
σ2 0

�

, T̃8 =
1

2
p

2

�

0 −i12
i12 0

�

, T̃9 =
1

2
p

2

�

σ2 0
0 −σ2

�

,

T̃10 =
1
2

�

σ1 0
0 0

�

, T̃11 =
1

2
p

2

�

0 σ1
σ1 0

�

, T̃12 =
1
2

�

0 0
0 σ1

�

,

T̃13 =
1

2
p

2

�

0 σ3
σ3 0

�

, T̃14 =
1

2
p

2

�

σ3 0
0 −σ3

�

, T̃15 =
1

2
p

2

�

σ3 0
0 σ3

�

. (A.12)

Then, the symplectic matrix E is written as

Ẽ =

�

iσ2 0
0 iσ2

�

. (A.13)

In this basis, all SU(2)u×SU(2)d generators and thus transformations are fully block-diagonal:

T̃1
u = T̃10 =

1
2

�

σ1 0
0 0

�

, T̃1
d = T̃12 =

1
2

�

0 0
0 σ1

�

,

T̃2
u =

(T̃6 + T̃9)
p

2
=

1
2

�

σ2 0
0 0

�

, T̃2
d =

(T̃6 − T̃9)
p

2
=

1
2

�

0 0
0 σ2

�

, (A.14)

T̃3
u =

(T̃14 + T̃15)
p

2
=

1
2

�

σ3 0
0 0

�

, T̃3
d =

(T̃15 − T̃14)
p

2
=

1
2

�

0 0
0 σ3

�

.
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Another useful basis can be obtained by considering the matrix of the Goldstone bosons in
(21) as well as the matrices of the spin-1 states in (36). In (29) we have rewritten the Gold-
stone bosons such that in every matrix element only one Goldstone field appears. Then, the
Goldstone matrix takes the form

π=
∑

i=1,...,5

πaT a =
∑

N=A,...,E

πN T N =
1
2







πC πB 0 πE

πA −πC −πE 0
0 −πD πC πA

πD 0 πB −πC






, (A.15)

which implicitly defines the generators T N with N = A, B, C , D, E. In QCD this leads to the
usual pion charge eigenstates π± and π0 as shown in (30). We can extend that to the spin-1
states and by that define a new basis for the generators. It is was shown that the spin-1 states
ρ14 and ρ15 correspond to the ρ0 and ω meson of QCD [8]. Therefore, we define the other
T N by specifying the J D = 1− matrix

ρ(J
D=1−) =

∑

a=6,...,15

ρaT a =
∑

N=F,...,O

ρN T N (A.16)

=
1
2











1p
2

�

ρO +ρN
�

ρM −ρJ −ρK

ρH 1p
2

�

ρO −ρN
�

−ρK −ρL

ρF ρG − 1p
2

�

ρO +ρN
�

−ρH

ρG ρ I −ρM − 1p
2

�

ρO −ρN
�











. (A.17)

All off-diagonal elements contain only one vector field and the states corresponding to the ρ0

and ω of QCD appear on the diagonal. The generators in this basis are given by

TA =
1
p

2

�

T1 − iT2
�

, T B =
1
p

2

�

T1 + iT2
�

, T C = T3 (A.18)

T D =
1
p

2

�

T5 − iT4
�

, T E =
1
p

2

�

T5 + iT4
�

, T F =
1
p

2

�p
2T10 − i

�

T6 + T9
��

,

T G =
1
p

2

�

T11 − iT7
�

, T H =
1
p

2

�

T13 − iT8
�

, T I =
1
p

2

�p
2T12 − i

�

T6 − T9
��

,

T J =
1
p

2

�

−
p

2T10 − i
�

T6 + T9
��

, T K =
−1
p

2

�

T11 + iT7
�

, T L =
1
p

2

�

−
p

2T12 − i
�

T6 − T9
��

,

T M =
1
p

2

�

T13 + iT8
�

, T N = T14 , TO = T15 .

Analogously, we can define the axial-vector matrix, i.e., the J D = 1+ mesons, as

ρ(J
D=1+) =

∑

a=1,...,5

ρaT a =
∑

N=A,...,E

aN T N =
1
2







aC aB 0 aE

aA −aC −aE 0
0 −aD aC aA

aD 0 aB −aC






, (A.19)

where we have given them a different name aN in the T N basis in order to emphasize the
different parity compared to the ρN states. Similar relations like (29) can then be obtained
from (A.18) for the vector and axial-vector matrix.

B Mesonic states and multiplets

B.1 States and Sp(4) multiplets

The meson spin-0 and spin-1 fermion bilinears have already been constructed in [8]. They
have the same structure as those appearing in a N f = 1 theory [34]. For completeness we give
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in table 4 here the operators that source the J D = 0−, 1+ and 1− multiplets of Sp(4), i.e. the
pseudoscalars, axial-vectors and vectors constructed from the generators in the basis of (A.6)
and (A.18), respectively. The other spin-0 and spin-1 states are the scalar 5-plet as well as the
scalar flavour singlet.

B.2 Multiplet structure under SU(2)u × SU(2)d
Because SU(2) exponentials are easily calculated analytically, we may provide a general ex-
pression for SU(2)d×SU(2)u transformations. In the basis given by (A.12), the transformation
is in block diagonal form

V =







a −b∗ 0 0
b a∗ 0 0
0 0 e −c∗

0 0 c e∗






, (B.1)

where the diagonal matrix blocks are elements of SU(2). We denote the complex coefficients
of the individual SU(2) by (a, b) and (e, c); they fulfil |a|2 + |b|2 = 1 and |c|2 + |e|2 = 1,
respectively.It is convenient to rewrite the Dirac spinors in terms of their left- and right-handed
projections

PR/Lu= uR/L , (B.2)

PR/Ld = dR/L , (B.3)

PR/L = (1± γ5)/2 . (B.4)

Under a SU(2)d × SU(2)u transformation the components of Ψ transform as Ψ → VΨ, or,
explicitly,







uL
ũR
dL

d̃R






=







uL
−SCūT

R
dL
−SCd̄T

R






→









auL − b∗ũR
buL + a∗ũR

edL − c∗d̃R

cdL + e∗d̃R









. (B.5)

For completeness we give the following useful relations for the colour matrix S as well as
the charge conjugation operator in Minkowski space and the spinors ũR and d̃R:

C† = C−1 = C T = −C , C2 = −1, CγµC−1 = −γT
µ , (B.6)

(SC)† = (SC)−1 = (SC)T = SC , (SC)2 = 1, SCγµSC = −γT
µ , (B.7)

qR = SC ¯̃qT
R , qT

R = ¯̃qRSC , (B.8)

q̄R = −q̃T
R SC , q̄T

R = −SCq̃R . (B.9)

The scalar ūd and vectors ūγµd transform under SU(2)d × SU(2)u as

ūd = ūLdR + ūRdL → a∗c∗
�

ūLSCd̄T
L + ūRSCd̄T

R

�

− be
�

uT
L SCdL + uT

R SCdR

�

+ a∗e (ūLdR + ūRdL)− bc∗
�

uT
L d̄T

R + uT
R d̄T

L

�

= a∗c∗
�

ūSC d̄T
�

− be
�

uT SCd
�

+ a∗e (ūd) + bc∗
�

d̄u
�

, (B.10)

ūγµd = ūLγµdL + ūRγµdR→ a∗e
�

ūLγµdL + ūRγµdR

�

+ bc∗
�

uT
Lγ

T
µ d̄T

L + uT
Rγ

T
µ d̄T

R

�

+ a∗c∗
�

ūLγµSCd̄T
R + ūRγµSCd̄T

L

�

+ be
�

uT
Lγ

T
µSCdR + uT

Rγ
T
µSCdL

�

= a∗e
�

ūγµd
�

− bc∗
�

d̄γµu
�

+ a∗c∗
�

ūγµSCd̄T
�

− be
�

uT SCγµd
�

.
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Table 4: Fermion bilinears of the J D = 0−, 1± meson multiplets constructed from the
generators in the basis of (A.6) (left) and (A.18) (right) respectively. In addition we
give the J P quantum numbers.

ΨT SCγ5T nEΨ + Ψ̄ET nSCγ5Ψ̄
T ΨT SC T Nγ5EΨ + Ψ̄ET N SCγ5Ψ̄

T J P J D

π1
1p
2

�

ūγ5d + d̄γ5u
�

πA ūγ5d 0− 0−

π2
ip
2

�

d̄γ5u− ūγ5d
�

πB d̄γ5u 0− 0−

π3
1p
2

�

ūγ5u− d̄γ5d
�

πC 1p
2

�

ūγ5u− d̄γ5d
�

0− 0−

π4
ip
2

�

d̄γ5SCūT − dT SCγ5u
�

πD d̄γ5SCūT 0+ 0−

π5
1p
2

�

d̄γ5SCūT + dT SCγ5u
�

πE dT SCγ5u 0+ 0−

ΨT SCγ5T0EΨ + Ψ̄ET0SCγ5Ψ̄
T ΨT SCγ5T0EΨ + Ψ̄ET0SCγ5Ψ̄

T J P J D

η′ 1p
2

�

ūγ5u+ d̄γ5d
�

η′ 1p
2

�

ūγ5u+ d̄γ5d
�

0− 0−

2 Ψ̄T nγµγ5Ψ 2Ψ̄T Nγµγ5Ψ J P J D

ρ1
1p
2

�

ūγµγ5d + d̄γµγ5u
�

aA d̄γµγ5u 1+ 1+

ρ2
ip
2

�

d̄γµγ5u− ūγµγ5d
�

aB ūγµγ5d 1+ 1+

ρ3
1p
2

�

ūγµγ5u− d̄γµγ5d
�

aC 1p
2

�

ūγµγ5u− d̄γµγ5d
�

1+ 1+

ρ4
ip
2

�

d̄SCγµγ5ūT − dT SCγµγ5u
�

aD dT SCγµγ5u 1− 1+

ρ5
1p
2

�

d̄SCγµγ5ūT + dT SCγµγ5u
�

aE d̄γµγ5SCūT 1− 1+

2Ψ̄T nγµΨ 2Ψ̄T NγµΨ J P J D

ρ6
ip
2

�

ūγµSC PL ūT + uT SCγµPLu ρF uT SCγµPLu 1+ 1−

+d̄γµSC PL d̄T + dT SCγµPLd
�

ρ7
ip
2

�

ūγµSCd̄T + uT SCγµd
�

ρG uT SCγµd 1+ 1−

ρ8
ip
2

�

−ūγµd + d̄γµu
�

ρH d̄γµu 1− 1−

ρ9
ip
2

�

ūγµSC PL ūT + uT SCγµPLu ρ I dT SCγµPLd 1+ 1−

−d̄γµSC PL d̄T − dT SCγµPLd
�

ρ10 uT SCγµPLu− ūγµSC PL ūT ρJ ūγµSC PL ūT 1+ 1−

ρ11
1p
2

�

−ūγµSCd̄T + uT SCγµd
�

ρK ūγµSCd̄T 1+ 1−

ρ12 dT SCγµPLd − d̄γµSC PL d̄T ρL d̄γµSC PL d̄T 1+ 1−

ρ13
1p
2

�

ūγµd + d̄γµu
�

ρM ūγµd 1− 1−

ρ14
1p
2

�

ūγµu− d̄γµd
�

ρN 1p
2

�

ūγµu− d̄γµd
�

1− 1−

ρ15
1p
2

�

ūγµu+ d̄γµd
�

ρO 1p
2

�

ūγµu+ d̄γµd
�

1− 1−

Here, we use the property
�

φT Γχ
�T
= −χT Γ Tφ for Grassmann variables φ,χ. The pseu-

doscalars and axial-vectors transform similarly since the only difference is the gamma matrix
γ5.

ūγ5d = ūLdR − ūRdL

→ a∗c∗
�

ūSCγ5d̄T
�

− be
�

uT SCγ5d
�

+ a∗e (ūγ5d) + bc∗
�

d̄γ5u
�

, (B.11)

ūγµγ5d = ūRγµdR − ūLγµdL

→ a∗e
�

ūγµγ5d
�

− bc∗
�

d̄γµγ5u
�

+ a∗c∗
�

ūγµγ5SCd̄T
�

− be
�

uT SCγµγ5d
�

, (B.12)

From this we conclude that these states form a quadruplet under SU(2)d × SU(2)u. The re-
maining pseudo-scalars and scalars transform as singlets. The associated operators have the
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form ūΓu± d̄Γ d. The individual SU(2)d,u only change one of the terms, so it is sufficient to
look at the transformation property of, say, ūΓu,

ūu= ūLuR + ūRuL → ūLuR + ūRuL = ūu ,

ūγ5u= ūLuR − ūRuL → ūLuR + ūRuL = ūγ5u ,

ūγµu= ūLγµuL + ūRγµuR→
�

|a|2 − |b|2
� �

ūγµu
�

+ 2a∗b∗
�

ūγµSC PL ūT
�

− 2ab
�

uT SCγµPLu
�

,

ūγµγ5u= ūRγµuR − ūLγµuL → ūγµγ5u .
(B.13)

Similar expressions for d̄Γ d are obtained by replacing u→ d, a→ e and b→ c.

C Feynman rules

In section C.1 we provide a subset of Feynman rules which are used in this work for Gold-
stone bosons and the iso-singlet state η′ in presence and isolation from additional, external
interactions for degenerate fermions mu = md . Additionally, we show some Feynman rules
for axial- and vector states ρµ coupled to Goldstone bosons. In section C.2 the Feynman rules
are given for non-degenerate fermions mu ̸= md . All momenta are taken as ingoing, with the
Mandelstam variables being defined as

s = (p1 + p2)
2 = (k1 + k2)

2 , (C.1)

t = (p1 + k1)
2 = (p2 + k2)

2 , (C.2)

u= (p1 + k2)
2 = (p2 + k1)

2 , (C.3)

where p1 + p2 + k1 + k2 = 0.

C.1 Feynman rules for degenerate fermions mu = md

pπa

=
1

p2
πa
−m2

π

, (C.4)

pη′
=

1

p2
η′
−m2

π −∆m2
η′

, (C.5)

k1

p2

k2
p1

πc

πb πd

πa

=
1

2 f 2
π

�

δabδcd(s−m2
π) +δ

acδbd(t −m2
π) +δ

adδcb(u−m2
π)
�

,

(C.6)

k1

k2

p1

p2

p3

πd

πe

πa

πb

πc

=

Nc

10
p

2π2 f 5
π

ϵµνρσ
�

(p2 − p1)µ p3νk1ρk2σ+

+ p1µp2ν

�

k1ρk2σ + k2ρp3σ + p3ρk1σ

�

�

(a ̸= b ̸= c ̸= d ̸= e)

, (C.7)
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k1

p2

k2
p1

η′

πk η′

π3

=
m2
π

2 f 2
π

, (C.8)

k1

p2

k2
p1

η′

η′ η′

η′

=
m2
π

2 f 2
π

, (C.9)

p1

p2

πa

πb

V µ = 2ieD Tr
�

Q
�

T a, T b
��

(p1 − p2)
µ , (C.10)

πa

πb

V µ

V ν

= 4e2
D Tr

�

Q2
�

T aT b + T bT a
�

− 2T aQT bQ
�

ηµν , (C.11)

p1

p2

πa

πb

ρcµ= i gρ f abc(p1 − p2)
µ , (C.12)

πa

πb

ρcµ

ρdν

=

2g2
ρππ Tr(T aT bT c T d + T bT aT c T d + T aT bT d T c

+ T bT aT d T c − 2T aT c T bT d

− 2T aT d T bT c)ηµν .

(C.13)

C.2 Feynman rules for non-degenerate fermions mu ̸= md

pπa

=
1

p2
πa
−m2

π

, (C.14)

k1

p2

k2
p1

πc

πb πd

πa

=

2µ6
u

f 2
π

�

µ3
u +µ

3
d

�2

�

δabδcd(s−m2
π) +δ

acδbd(t −m2
π)

+δadδcb(u−m2
π)
�

, a, b, c, d ̸= 3

(C.15)

k1

p2

k2
p1

πk

π3 πk

π3

=
µ6

u

��

3s− 2m2
π3

�

�

µ3
u +µ

3
d

�2
+ 4

�

s− 2m2
π

�

µ3
uµ

3
d

�

4 f 2
π

�

µ3
u +µ

3
d

�2 �
µ6

u +µ
6
d

�

, (k ̸= 3) (C.16)
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k1

p2

k2
p1

π3

πk πk

π3

=
µ6

u

��

3t − 2m2
π3

�

�

µ3
u +µ

3
d

�2
+ 4

�

t − 2m2
π

�

µ3
uµ

3
d

�

4 f 2
π

�

µ3
u +µ

3
d

�2 �
µ6

u +µ
6
d

�

, (k ̸= 3) (C.17)

k1

p2

k2
p1

πk

πk π3

π3

=
µ6

u

��

3u− 2m2
π3

�

�

µ3
u +µ

3
d

�2
+ 4

�

u− 2m2
π

�

µ3
uµ

3
d

�

4 f 2
π

�

µ3
u +µ

3
d

�2 �
µ6

u +µ
6
d

�

, (k ̸= 3)

(C.18)

k1

p2

k2
p1

π3

π3 π3

π3

=
µ6

um2
π3

f 2
π

�

µ6
u +µ

6
d

� , (C.19)

k1

k2

p1

p2

p3

πd

πe

πa

πb

πc

=

Ncµ
6
d

q

µ6
u +µ

6
d

20π2 f 5
πµ

9
u
ϵµνρσ×

×
�

(p2 − p1)µ p3νk1ρk2σ + p1µp2ν

�

k1ρk2σ

+k2ρp3σ + p3ρk1σ

�

�

, (a ̸= b ̸= c ̸= d ̸= e) .

(C.20)

C.3 Feynman rules for non-degenerate fermions mu ̸= md with η′

pπa

=
1

p2
π3
−m2

π3

, (C.21)

pη′
=

1

p2
η′
−m2

η′

, (C.22)

k1

k2

p1

p2

p3

πd

πe

πa

πb

πc

=

Ncµ
6
d

q

µ6
u +µ

6
d

20π2 f 5
πµ

9
u

 

cosθmass
q

3µ6
d +µ

6
u

−
sinθmass
q

µ6
d + 3µ6

u

!

ϵµνρσ×

×
�

(p2 − p1)µ p3νk1ρk2σ + p1µp2ν

�

k1ρk2σ + k2ρp3σ + p3ρk1σ

�

�

(a ̸= b ̸= c ̸= d ̸= e) ,

(C.23)
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k1

k2

p1

p2

p3

πd

η′

πa

πb

πc

=

Ncµ
6
d

q

µ6
u +µ

6
d

20π2 f 5
πµ

9
u

 

cosθmass
q

µ6
d + 3µ6

u

−
sinθmass
q

3µ6
d +µ

6
u

!

ϵµνρσ×

×
�

(p2 − p1)µ p3νk1ρk2σ + p1µp2ν

�

k1ρk2σ + k2ρp3σ + p3ρk1σ

�

�

(a ̸= b ̸= c ̸= d ̸= 3) .

(C.24)

D Lattice setup

D.1 Action

The HiRep code [88] is based on the Wilson gauge action

Sg[U] = β
∑

x

∑

µ<ν

�

1−
1
4

Re tr Uµν(x)
�

, (D.1)

for the gauge sector, where Uµν is the plaquette at lattice site x . For the fermionic part it uses
unimproved Wilson fermions for both types of dark quarks,

SF [U ,ψu,ψd , ψ̄u, ψ̄d] =
∑

f=u,d

a4
∑

x ,y

ψ̄ f (x)Df (x |y)ψ f (m) , (D.2)

Df (x |y) =
�

m f +
4
a

�

−
1

2a

∑

µ

�

(1− γµ)Uµ(x)δy,x+µ̂ + (1+ γµ)U
†
µ(x − µ̂)δy,x−µ̂

�

. (D.3)

This implies that chiral symmetry is explicitly broken at any finite lattice spacing, and is only
recovered in the continuum limit. Furthermore, this entails an additive quark mass renor-
malization. Both effects are well-known, and can be controlled by analyzing the systematic
effects, as is done below in appendix D.4. We simulated three different values of the inverse
coupling β ≥ 6.9, each of which avoids the unphysical Aoki phase that was found to exist for
this theory [7]. Since we are using two distinct fermions the Wilson-Dirac determinant is not
necessarily positive definite and in principle a sign problem can arise. Within our parameter
range, we did not encounter any indications of a non-positive definite determinant.

D.2 Masses

We extract the masses of the mesons by determining the exponential decay of the correlation
function of a suitable interpolator O f

Γ (x , y) where x and y are sites on the lattice. For the
flavoured and unflavoured mesons we choose

Oūd
Γ (x , y) = ū(x)Γ d(y) , (D.4)

O0
Γ (x , y) = ū(x)Γu(y)− d̄(x)Γ d(y) . (D.5)

We only study the masses and decay constants of the mesons since they are identical to the
corresponding diquark states [22]. We denote x = ( x⃗ , t) and define a general correlator on a
lattice of spatial extent L as

CΓ1Γ2(t x − t y , p⃗) =
1
L3

∑

x⃗ y⃗

e−i p⃗( x⃗− y⃗)〈OΓ1( x⃗ , t x)O
†
Γ2
( y⃗ , t y)〉 . (D.6)
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From this the meson masses can be obtained by first setting Γ1 = Γ2 = Γ and projecting to zero
momentum and studying the limit at large time separation.

lim
t→∞

CΓ Γ (t, p⃗ = 0) = lim
t→∞

∑

n

1
2mn
〈0|OΓ Γ |n〉〈n|O

†
Γ Γ |0〉e

−imn·t (D.7)

=
1

2mΓ
|〈0|OΓ Γ |ΓGS〉|2e−imΓ ·t . (D.8)

At large t only the contribution of the lightest state for the quantum numbers of O f
Γ , |ΓGS〉

survives. The mass of this state can be then extracted, by performing a fit of the lattice data.
In the present case the signal-to-noise ratio is very good, and the effective mass shows well-
defined plateaus, thus providing for reliable fit results.

The unflavoured mesons sourced by operators of the form (D.4) obtain so-called discon-
nected contributions which usually suffer from bad statistics. They are however suppressed
by both the fermion masses and vanish in the limit of mu −md → 0 and we therefore neglect
the disconnected contributions. For operators of the form

OΓ (x , y) = ū(x)Γu(y) + d̄(x)Γ d(y) , (D.9)

which source e.g. the η′ and ω mesons in QCD this is no longer the case. We do not consider
operators of this form in this work.

D.3 Decay constants

We define the decay constant as in [6] by the matrix elements involving the pseudoscalar |PS〉
and vector meson |V 〉 ground states

〈0|O f
γ5γµ
|PS〉= f f

PS pµ , (D.10)

〈0|O f
γµ
|V 〉= f f

V mVεµ . (D.11)

In this convention the decay constant of the π in QCD is approximately 93 MeV.
Here εµ is the polarisation vector for which εµpµ = 0 and ε∗µε

µ = 1 hold. In the rest frame
the pseudoscalar matrix element is then

〈0|O f
γ5γ0
|PS〉= f f

PSmPS . (D.12)

Inserting this expression into the corresponding correlators at large times gives

C f
Γ1=Γ2=γ5γ0

(t) =
mPS

2

�

f f
PS

�2
exp (−mPS · t) , (D.13)

C f
Γ1=Γ2=γµ

(t) =
mV

2

�

f f
V

�2
exp (−mV · t) . (D.14)

Alternatively, the mixed correlator with Γ1 = γ5γ0 and Γ2 = γ5 can be used for the pseu-
doscalars [6]. From this we can extract the bare decay constants which need to be renor-
malized. For that we follow the prescription from [6] for determining the renormalization
constants defined as

f ren,f
PS = ZA f f

PS , (D.15)

f ren,f
V = ZV f f

V . (D.16)
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D.4 Systematics

D.4.1 Finite volume effects

The finite volume of the 4-dimensional Euclidean space introduces artefacts in the lattice re-
sults. We can obtain an estimate of the infinite volume masses by fitting the results obtain at
different spatial extents L of the lattice to the known analytic form of the L-dependence of the
masses. For that we use the same approach as in [6] and fit the function

mmeson(L) = minf.
meson

�

1+ A
exp(−minf

Goldstone · L)

(minf
Goldstone · L)(3/2)

�

, (D.17)

in the almost mass-degenerate limit, since there the quark masses are the lightest in our setup
and therefore the finite volume effects are the largest. We consider A as a free fitting parameter.
In figures 8 and 9 we show the infinite volume extrapolation for nearly-degenerate, moderately
light ensembles at β = 6.9 and 7.2 and for a nearly-degenerate ensemble with light fermions
at β = 7.2. Only in the latter ensembles finite volume effects become apparent and generally
the deviation from the infinite volume extrapolation stays below 10%.
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Figure 8: Finite volume extrapolation for the Goldstone mass in the almost mass-
degenerate limit. It can be seen that the infinite volume mass and the mass on the
largest lattices considered agree within errors. Only in the lightest ensembles on the
finest lattices studied here the finite volume effects become apparent. Even in this
case the deviation from the infinite volume extrapolation stays below 10%.

D.4.2 Finite spacing effects

Apart from the possible systematic errors introduced by the finite volume of the lattice, the
finite distance a between two adjacent lattice points is another source of systematic errors.
The physical distance a is, however, not an input parameter of simulation. In order to study
the systematic effects of a we need to choose input parameters so that the results represent
the same physics at different values of a. Finding these lines of constant physics in our three-
dimensional parameter space is in general not straightforward.

In SU(3)c gauge theory with fermions it has been found that a depends strongly on the
value of the inverse coupling β and only weakly on the masses of the fermions m f [5]. As an
first test we have chosen values of the dark fermion masses at the point of degeneracy such
that at different values of β the ration of the pseudo-Goldstones and the vector mesons is
reproduced. We then again increment one of the fermion masses. If the assumption of negli-
gible effects of the fermion masses on a is correct, then the corresponding ratios of Goldstone
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Figure 9: Finite volume extrapolation for the vector meson mass in the almost mass-
degenerate limit. The vector meson masses show the same behaviour as the Gold-
stone bosons.

to vector masses should be the same for all values of β since we move then along lines of
constant physics in parameter space. Along these lines of constant physics we can then study
finite spacing effects of the other observables that do not depend on the lattice spacing, e.g.
ratios.
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(β = 7.05)
(β = 7.2)

Figure 10: In order to study the effects of the finite lattice spacing we define the lines
through parameter space with m(ρN )/m(πC) as the lines of constant physics. Here
we plot this ratio against the mass of the lightest pseudo-Goldstone in units of its
decay constant. We see that the curves at different β do not coincide. However, the
deviations are only at around 10% and for the two finer lattices they almost coincide.

In figure 10 we plot the ratio of the lightest vector meson’s mass to the lightest pseudo-
Goldstone’s mass m(ρN )/m(πC) against the lightest pseudo-Goldstone mass in units of its
decay constant. We are not moving exactly along a line of constant physics. However, we
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find that the deviations do not significantly exceed 10%. Since this plot involves both the
masses and decay constants we plot the masses and decay constants separately in figures 11
and 12 against the masses of the flavoured vector mesons — both in units of the pseudo-
Goldstone mass at degeneracy. We find that at different β the masses agree within errors and
we only see deviations from that behaviour most notably at β = 7.2 for large flavoured fermion
masses of m(ρM )/mdeg

π > 2. For the decay constants in Fig. 12 the deviations are significantly
larger and already pronounced at lower masses. For the pseudo-Goldstones the deviations are
approximately 10% whereas for the vector mesons they are at around 20%.
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Figure 11: Masses of the pseudo-Goldstones (upper) and vector mesons (lower) for
different values of the inverse coupling β in units of the pseudo-Goldstone mass
degeneracy. The results at different β agree within errors except for the β = 7.2
ensembles with one relatively heavy fermion. From this we conclude that there the
finite spacing effects for the meson masses are small.
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Figure 12: Decay constants of the pseudo-Goldstones (upper) and vector mesons
(lower) for different values of the inverse coupling β in units of the pseudo-Goldstone
mass degeneracy. The results at different β show stronger deviations than the meson
masses even at very light fermion masses. For the pseudo-Goldstones the deviations
are approximately 10% or smaller whereas for the vector mesons they can be as large
as 20%.

D.4.3 Lattice asymmetry

In our analysis we extract the masses and decay constants from the behaviour of correlation
functions at large Euclidean time t. For convenience we therefore perform simulations on
lattices with larger temporal extent than spatial extent, i.e. a lattice of dimensions L3 × T
with T > L. This allows us to calculate the correlation functions at large t while avoiding
significantly increased computation time. We have studied the effects of finite L in section
D.4.1.
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It is, however, still possible, that this introduces systematic error. Here we try to assess
whether this has an effect on our results. For this we compare meson masses on symmetric
lattices of size L4 to the masses we have obtained for asymmetric lattices. On the symmetric
lattices our time extent is substantially smaller and we expect even at the largest Euclidean
times to see effects of contamination by states with higher energies. We therefore take the
second lightest state into account and extract the mass from the effective mass of the correlator
defined as

meff

�

t +
1
2

�

=
COM
(t)

COM
(t + 1)

. (D.18)

This allows us to extract the masses from a three-parameter fit while simultaneously minimiz-
ing the effects of contamination of higher states. This comes at the cost of larger errors, since
the effective mass defined this way discards some information because it as a local quantity
around Euclidean time

�

t + 1
2

�

. As can be seen in table 5 we don’t observe any systematic
effects from the use of asymmetric lattice within the errors reported.

Table 5: Comparison of meson masses extracted from both symmetric and asymmet-
ric lattices for an inverse coupling of β = 6.9. The other two input parameters are m0

1
and m0

2 - the unrenormalized bare quark masses. They agree very well within errors
and we conclude that there are no relevant systematic effects due to the asymmetric
lattices used throughout this work.

(−am0
1,−am0

2) am(πA)(24× 123) am(πA)(124) am(πC)(24× 123) am(πC)(124)

(0.90,0.70) 0.993(7) 0.994(15) 0.83(1) 0.85(4)
(0.90,0.75) 0.917(14) 0.92(2) 0.80(2) 0.81(5)
(0.90,0.80) 0.826(11) 0.83(5) 0.76(2) 0.77(7)
(0.90,0.85) 0.712(15) 0.7(2) 0.69(2) 0.7(2)
(0.90,0.90) 0.56(4) 0.58(9) 0.56(4) 0.58(9)

(−am0
1,−am0

2) am(ρM )(24× 123) am(ρM )(124) am(ρN )(24× 123) am(ρN )(124)

(0.90,0.70) 1.070(9) 1.071(15) 0.951(14) 0.97(3)
(0.90,0.75) 1.001(14) 1.00(2) 0.92(2) 0.94(3)
(0.90,0.80) 0.921(15) 0.93(3) 0.88(2) 0.90(3)
(0.90,0.85) 0.82(2) 0.82(4) 0.81(2) 0.82(4)
(0.90,0.90) 0.70(2) 0.72(4) 0.70(2) 0.72(4

D.5 Tabulated lattice results
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