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Abstract

We study the current large deviations for a lattice model of interacting active particles
displaying a motility-induced phase separation (MIPS). To do this, we first derive the ex-
act fluctuating hydrodynamics of the model in the large system limit. On top of the usual
Gaussian noise terms the theory also presents Poissonian noise terms, that we fully ac-
count for. We find a dynamical phase transition between flat density profiles and sharply
phase-separated traveling waves, and we derive the associated phase diagram together
with the large deviation function for all phases, including the one displaying MIPS. We
show how the results can be obtained using methods similar to those of equilibrium
phase separation, in spite of the nonequilibrium nature of the problem.
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1 Introduction

The modeling of active matter has attracted a lot of attention in recent years [1–15]. This
is due to the many novel phenomena exhibited by active systems that are not seen in equi-
librium. The macroscopic description of active systems is based, in many cases, on noiseless
phenomenological field theories, mean-field approximations or gradient expansions [16–25].
Noise is typically added in as Gaussian contributions, with limited control. Understanding
the nature of noise in a more rigorous way is becoming important with the growing interest
in fluctuations in active systems [26–38]. Recently, an active lattice gas model with an exact
hydrodynamic description has been introduced in Refs. [39, 40]. While the model presents a
diffusive scaling, it reproduces characteristic features of scalar active systems, namely, motility-
induced phase separation (MIPS) [41,42]. Interestingly, this phase transition already appears
in one dimension.

In a previous work [43], we derived the fluctuating hydrodynamics of this model in the
regime of small typical Gaussian fluctuations. This enabled us to find the static and dynamical
correlation functions of the model in the homogeneous phase. In particular, close to the critical
point, we showed that the scaling exponents belong to the Ising mean-field universality class.

It is also of interest to understand large fluctuations in such models beyond the typi-
cal regime which is captured by small Gaussian fluctuations. These are captured by large-
deviation theory and have been studied extensively in non-equilibrium systems (see for in-
stance Refs. [44–47]). Much work has focused on models which admit a diffusive scaling
between space and time coordinates when taking the large system size limit [48, 49]. In this
limit the noise is small, and in many cases both typical and atypical fluctuations are Gaus-
sian. Then the fluctuations are fully described by the Macroscopic Fluctuation Theory (MFT)
(see [50] for a review). This framework allows one to successfully describe the distribution
of several observables of interest, such as the density profile or the time-integrated current
flowing through the system [45,51–53]. One of the most interesting features exhibited by the
fluctuations are dynamical phase transitions, which occur when the large-deviation function
is singular [52,54–61]

However, systems in which particles not only diffuse by jumps but also undergo reactions
evade a Gaussian MFT description, as is was found in equilibrium [62] or driven [63] models.
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Although the scalings in such systems are still diffusive, one has to take into account the Pois-
sonian nature of the noise if one wants to fully describe their fluctuations. The active model
we are interested in falls in that class: it consists of left- and right-moving particles which jump
but also tumble. The latter is represented by a reaction where one type of particle transforms
into the other.

In this paper, we derive a non-Gaussian MFT that fully encompasses the Poissonian noise,
extending our previous work on small Gaussian fluctuations [43]. We then apply this extended
MFT framework to study the distribution of the time-integrated current flowing through the
system. These were studied previously analytically only for non interacting particles [35] or
numerically in the interacting case [27].

We find that current fluctuations in the active lattice gas model exhibits a dynamical phase
transition (DPT) and we explain how it can be derived using techniques very similar to those
used in equilibrium phase transitions. The DPT occurs between a homogeneous profile and a
sharply phase separated travelling wave. We also study in detail how this transition connects
to the zero current phase diagram which exhibits MIPS. To do this we account for finite system
lengths.

The structure of the paper is as follows: the model and its hydrodynamics are described
in Sec. 2. The fluctuating hydrodynamics (beyond the Gaussian regime) is derived in Sec. 3.
In Sec. 4, we obtain the corresponding MFT of the active lattice gas and use it to study the
current large deviations. The dynamical phase transition presented by the system is studied in
Sec. 5. Sec. 6 establishes the relation between the MIPS and the DPT. We conclude in Sec. 7.
Technical steps of our derivations are gathered in appendices.

2 The active lattice gas model and its hydrodynamics

The active lattice gas model, introduced in Ref. [39], is defined on a one-dimensional pe-
riodic lattice with L sites. Each site i can be in either one of three states: occupied by a
+ particle, occupied by a − particle, or empty. The dynamics is defined through the following
rates (see Fig. 1):

(i) A pair of neighboring sites exchange their states (if different) with rate D0.

(ii) A + (−) particle hops using self-propulsion to the right (left) neighboring site with rate
λ/L, provided that the target site is empty.

(iii) A + (−) particle tumbles into a − (+) particle with rate γ/L2.

The scaling of the rates with L ensures that in the hydrodynamic limit (L ≫ 1), all processes
occur on diffusive time scales. Indeed, the time it takes for particles to travel across L sites,
either through diffusive motion or using self-propulsion, scales as L2 which is also the time
scale for tumbling events.

The hydrodynamic equations of the model are obtained by defining the coarse-grained
particle density fields

ρ±(x , t) =
1

2Lδ

∑

|i−Lx |<Lδ
σ±i , (1)

with σ+i = 1 (σ−i = 1) if site i is occupied by a + (−) particle and σ+i = 0 (σ−i = 0) otherwise.
The exponent 0 < δ < 1 defines a mesoscopic length, Lδ, that scales sub-linearly with the
system size. In what follows it is useful to use the rescalings t → γt/L2 and x = ℓs i/L, where
ℓ−1

s ≡
p

D0/γ is the typical distance traveled by a particle using only diffusive steps until it
tumbles. Note that x ∈ [0,ℓs] so that ℓs plays the role of system length for the macroscopic
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Figure 1: Schematic representation of the microscopic dynamics of the active lattice
gas model. Particles self-propel with rate λ/L to vacant sites and tumble at rate γ/L2.
They also perform diffusive swap with an occupied or vacant neighbor at equal rate
D0.

coordinate x . In Refs. [39,43] it was shown that the density fields defined in Eq. (1) obey the
fluctuating hydrodynamic equations

∂tρ+ = −∂x J+ − K , ∂tρ− = −∂x J− + K . (2)

Here J+ and J− are conservative density fluxes that arise due to the diffusion and self-
propulsion. Their deterministic components are given by the expressions

J̄+ = −∂xρ+ + Peρ+(1−ρ) , J̄− = −∂xρ− − Peρ−(1−ρ) , (3)

where ρ(x , t) = ρ+(x , t) + ρ−(x , t) is the total density of particles and Pe = λ/
p

γD0 is the
Péclet number, which compares the persistence length λ/γ to the diffusive one ℓ−1

s . The non-
conservative term K arises from tumbling. It is the local rate at which + particles tumble into
−, minus the rate of the opposite reaction. Its deterministic component is given by

K̄ = ρ+ −ρ− . (4)

For our purposes, it is more convenient to use the density and polarization fields,

ρ(x , t) = ρ+ +ρ− , m(x , t) = ρ+ −ρ− , (5)

respectively, which follow the dynamics

∂tρ = −∂x Jρ ,

∂t m = −∂x Jm − 2K , (6)

where the density and polarization fluxes are defined as Jρ ≡ J+ + J− and Jm ≡ J+ − J−.
Correspondingly, the deterministic components of the conservative fluxes and tumbling rate
in these variables are given by

J̄ρ = −∂xρ + Pe m (1−ρ) , J̄m = −∂x m+ Peρ (1−ρ) , K̄ = m . (7)

In the L→∞ limit, the fluctuations are suppressed and Eq. (6) reduces to its deterministic
hydrodynamics form given by Jρ, Jm, and K replaced by their average values given in Eq. (7).
In this limit, the hydrodynamics predicts that the system relaxes to a steady state given by the
stationary solutions of Eq. (6).

In Ref. [39], it was shown that for large enough Pe and mean densityρ0 = ℓ−1
s

∫ ℓs

0 ρ(x , t)d x ,
the equations allow for non-homogeneous stationary solutions corresponding to motility-
induced phase-separation (MIPS). These solutions consist of coexisting high- and low-density
phases separated by sharp domain walls, with the ratio between the system size and domain
wall width controlled by ℓs. In the ℓs ≫ 1 asymptotics, the densities in the phase-separated
state are independent of the mean density ρ0. They can be found using an effective common
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tangent construction, see refs. [20,21]. The resulting phase diagram, obtained in Ref. [39], is
shown in Fig. 2. It shares similarities with equilibrium phase separation, despite the very dif-
ferent origin of the two phenomena [42]. The figure also shows the spinodal line, determined
by the equation 2− Pe2(1−ρ0)(2ρ0− 1) = 0, beyond which the homogeneous state becomes
linearly unstable. The contact point of the MIPS line and the spinodal line defines the MIPS
critical point (ρc , Pec) = (3/4,4).

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0
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ρ
0

Homogeneous

Metastable

Unstable

Figure 2: The phase diagram of the model. The binodal is denoted by a solid black
line and the spinodal by a dashed line. They meet at (ρ0, Pe) = (3/4, 4) which marks
the critical point (red circle). In a MIPS state, the high- and low-density coexisting
phases lay on the binodal.

3 Fluctuating Hydrodynamics

For systems with finite L, the fluctuations cannot be neglected anymore and the full statistics
of Jρ, Jm, and K has to be taken into account.

On general grounds the fluctuations scale as L−1/2 at large L. In Ref. [43], we exploited
an exact mapping to the well studied ABC lattice gas model [64–66] to derive an expression
for typical small Gaussian fluctuations. Using these we were able to characterize the critical
behavior of the model exactly, finding that it belongs to the mean-field Ising universality class
both for static and dynamic properties.

In this paper, we extend the above results to account for arbitrary large macroscopic fluc-
tuations, beyond the Gaussian small-fluctuations regime. As we show, the fluctuations of the
conserved fluxes Jρ around J̄ρ and Jm around J̄m are described by Gaussian noise terms even
for large fluctuations. This is the standard case in related lattice gases which are in local equi-
librium [67]. The reason is that the fluxes are averaged over fast diffusive exchanges with a
rate D0 that does not scale with L [68]. In contrast, the large fluctuations of K around K̄ are
not Gaussian. They come from slow local tumbling events which follow Poisson statistics. The
technical steps of the derivation of these results are presented in Appendix A.

The joint statistics of fluxes and tumbling rate fluctuations provide a complete statistical
description of macroscopic fluctuations in the active lattice gas model, which is the first main
result of this paper. It is given in terms of the probability path measure, P, of observing a history
of the fields ρ(x , t), m(x , t), Jρ,m(x , t), K(x , t) which, at large L, follows the large-deviation
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form

− ln P
�

ρ, m, Jρ,m, K
�

≃ Lℓ−1
s ŜL
�

ρ, m, Jρ,m, K
�

,

ŜL
�

ρ, m, Jρ,m, K
�

=

∫ T

0

d t

∫ ℓs

0

d x (LJ +LK) . (8)

Here LJ accounts for the statistics of the fluxes and is given by the quadratic form

LJ =
1
2

�

Jρ − J̄ρ
Jm − J̄m

�T

C−1

�

Jρ − J̄ρ
Jm − J̄m

�

, (9)

with the correlation matrix C given by

C=

�

σρ σρ,m
σρ,m σm

�

, (10)

with entries

σρ = 2ρ (1−ρ) , σm = 2
�

ρ −m2
�

, σρ,m = 2m (1−ρ) .

The LK term in the action, accounting for the Poisson tumble statistics is given by:

LK = ρ −
Æ

K2 + (ρ2 −m2) + K ln

�p

K2 + (ρ2 −m2) + K
(ρ +m)

�

. (11)

The action above is presented in its Lagrangian form. As usual in MFT, the fields ρ(x , t),
m(x , t) and the currents Jρ,m(x , t), K(x , t) are imposed, in the path measure, to satisfy con-
servation equations given by Eqs. (6). We now turn to use these expressions to derive the LDF
for the total integrated current flowing in the system using the macroscopic fluctuation theory.

4 Macroscopic Fluctuation Theory

The total integrated current flowing through the system in a time interval T is given by

Q =

∫ ℓs

0

d x

∫ T

0

d t Jρ . (12)

At long times T ≫ 1 and for large number of sites L ≫ 1, the distribution of Q takes the
large-deviation form

− ln P(Q)≃ LT I(q) , (13)

where
q =

Q
Tℓs

, (14)

is a rescaled integrated current. As the system is reflection symmetric we have I(q) = I(−q).
For simplicity we will consider from now on only q > 0. To find the rate function I(q), we first
determine the scaled cumulant generating function (SCGF)

ψ(Λ) =
1

LT
ln〈eΛLTq〉 . (15)

Similar to equilibrium thermodynamics, following Varadhan’s lemma [46], the rate function I
is related to the SCGF by a Legendre–Fenchel transform,

I(q) = sup
Λ
[Λq−Ψ(Λ)] . (16)

6

https://scipost.org
https://scipost.org/SciPostPhys.14.3.045


SciPost Phys. 14, 045 (2023)

The SCGF can be expressed via a path-integral formulation :

eLTΨ(Λ) =

∫

DρDmDJρDJmDK eLℓ−1
s (ΛQ−ŜL)δ(ρ̇ + ∂x Jρ)δ(ṁ+ ∂x Jm + 2K) . (17)

The delta functions ensure that the dynamical equations (6) are satisfied at each point of
space and time. In the large-L limit, Ψ(Λ) can be evaluated using saddle-point asymptotics:
Ψ(Λ) = − 1

ℓs T minρ,m,p̂ρ ,pm
Stot. Using standard techniques this translates to minimizing an

action given by

Stot =

∫ ℓs

0

d x

∫ T

0

d t

¨

ρ̇ p̂ρ + ṁpm −
1
2

�

∂x p̂ρ +Λ
∂x pm

�T

C

�

∂x p̂ρ +Λ
∂x pm

�

− J̄ρ(∂x p̂ρ +Λ)

− J̄m∂x pm

�

+

∫ ℓs

0

d x

∫ T

0

d t
�

−2ρ sinh2 pm +m sinh 2pm

�

, (18)

that we derive in Appendix B. Here p̂ρ and pm are auxiliary fields, periodic in the spatial
direction, introduced by writing the delta-function constraints in (17) using a Fourier repre-
sentation. Introducing pρ ≡ p̂ρ +Λx the action takes the form

Stot =

∫ ℓs

0

d x

∫ T

0

d t
¦

ρ̇pρ + ṁpm −H[ρ, m, pρ, pm]−Λxρ̇
©

, (19)

with the Hamiltonian density

H[ρ, m, pρ, pm] =
1
2

�

∂x pρ
∂x pm

�T

C

�

∂x pρ
∂x pm

�

+ J̄ρ∂x pρ + J̄m∂x pm + 2ρ sinh2 pm −m sinh 2pm . (20)

Note that pρ has a jump discontinuity of size Λℓs at x = ℓs on the ring geometry studied
here: pρ(ℓs) = pρ(0) +Λℓs.

The optimal trajectories which minimize the action are solutions of the Hamiltonian MFT
equations

∂tρ =
δH
δpρ

= −∂x

�

σρ∂x pρ +σρ,m∂x pm + J̄ρ
�

, (21)

∂t pρ = −
δH
δρ
= −∂ 2

x pρ − (1− 2ρ)(∂x pρ)
2 + 2m∂x pρ∂x pm

−(∂x pm)
2 + Pe m∂x pρ − Pe(1− 2ρ)∂x pm − 2sinh2 pm ,

∂t m =
δH
δpm

= −∂x

�

J̄m +σm∂x pm +σρ,m∂x pρ
�

+ 2(ρ sinh 2pm −m cosh 2pm) ,

∂t pm = −
δH
δm
= −∂ 2

x pm + 2m(∂x pm)
2 − 2(1−ρ)∂x pρ∂x pm − Pe(1−ρ)∂x pρ + sinh2pm .

Their solutions inserted in the action Eq. (19) give Ψ(Λ) = −Stot/(ℓsT).
Note that in the limit of T ≫ 1 the initial and final boundary conditions on the different

fields do not play an important role, except for fixing the total particles mass ρ0 (however, for
an exception see [69]).

With the above formalism we now turn to solve the MFT equations. As a starting point we
will consider a system in the homogeneous phase, i.e., away from MIPS. We comment about
the extension to the MIPS state in the discussion Sec. 7.
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4.1 Constant-profile solutions

The simplest solutions of the MFT equations obey the additivity principle [70] so that ρ and
m are time independent, except for short time intervals around t = 0 and t = T , and the
same holds for ∂x pρ and ∂x pm. The structure of the MFT equations implies that pm is time
independent but that pρ has a contribution growing linearly in time as vt (see [71] for a
similar problem). Assuming, in addition, translational invariance we find

ρ = ρ0 , v = Λ , m=
ρ0CΛ
p

1+ (CΛ)2
, pm =

1
2

arcsinh (CΛ) , (22)

with C = Pe (1−ρ0). The resulting SCGF given by Eq. (17), that corresponds to the homoge-
neous solution ΨH(Λ) is then

ΨH(Λ) = ρ0(1−ρ0)Λ
2 −ρ0

�

1−
p

1+ C2Λ2
�

. (23)

Performing the Legendre–Fenchel transform (16) we find

IH(ρ0, q) = qΛ−Ψ(Λ) = ρ0(1−ρ0)Λ
2 +ρ0

�

1−
1

p
1+ C2Λ2

�

, (24)

with Λ(ρ0, q) given by the inverse of

q = ∂Λψ(Λ) = 2ρ0(1−ρ0)Λ+
ρ0C2Λ
p

1+ C2Λ2
. (25)

Note that for Pe= 0 we obtain

IH(q,ρ0, Pe= 0) =
q2

4ρ0 (1−ρ0)
, (26)

which coincides with the integrated current rate function of the simple symmetric exclusion
process [45].1 Indeed, in this case the self-propulsion of both types of particles is set to zero
and the two models coincide.

As we now show, a non-zero self-propulsion (Pe ̸= 0) induces a dynamical phase transition.
Indeed, the space-time constant solution (22) loses linear stability in a parameter regime that
we identify. Linear instability can signal the onset of a second order dynamical phase transition,
see, e.g. [60]. Nevertheless, as we find, the phase diagram here involves a first order transition.

As we now show, the full phase diagram, including first order transitions, can be derived
by establishing an analogy with equilibrium phase separating systems with conserved order
parameters.

5 Dynamical phase transitions

We now turn to show that the current large deviation function I exhibits dynamical phase
transitions as a function of q,ρ0, Pe. The analysis in this section focuses on the ℓs → ∞
asymptotics, where we recall that ℓs =

p

γ/D0 plays the role of the system length for the
macroscopic coordinate x ∈ [0,ℓs]. In the ℓs→∞ limit, the system exhibits MIPS with sharp

1In fact, to make the comparison with the SSEP complete, one has to reinstate the variable rescaling x → x/ℓs

and t → t/γ. This also results in a rescaling of the fluxes that enter in the un-scaled version of (6) and also enter in
the definition (12). Taking all of these into account, one verifies the coincidence of the integrated current statistics
of the two models.
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domain walls whose width becomes independent of ℓs. The finite-ℓs effects are studied in
Sec. 6.

As we show, the signature of the DPT is the emergence of space- and time-dependent
optimal profiles. To obtain these, one has to address the non-linear spatial and temporal
minimization problem specified by Eqs. (21). As we now argue, the analysis in the ℓs →∞
limit simplifies considerably. In this case, gradient terms in the action functional Eq. (18)
can be neglected to leading order. This can be seen by noting that long-wavelength spatial
modulations contribute as O(ℓ−1

s ) to the action via gradient terms, which is much smaller than
the O(ℓs) coming from the contribution of the bulk terms. Moreover, sharp domain walls with
finite extension also have a subextensive O(1) contribution to the action. This negligible cost
of gradient terms in the ℓs→∞ limit is reminiscent of the negligible interface tension terms in
the free-energy functional of equilibrium phase-separating systems. In addition, as we show in
Appendix C, optimal histories are either flat or given by sharply phase-separated profiles that
travel at a constant velocity V . As such, the time derivative terms present in Eq. (18) can also
be neglected; for the flat profile, the derivative terms are zero, and for the phase-separated
profile, the contribution to the time derivative terms only arises from the localized boundaries
which scale as O(1) and can therefore be ignored.

All in all, the above implies that ideas very similar to those used in equilibrium phase
separating systems can be used to analyze the phase diagram. In particular, optimal solutions
can be found by minimizing a “free energy” functional for these fields, which is controlled by
a bulk term given by the homogeneous rate function IH (24)

I ≃ ℓ−1
s min
ρ,Jρ

∫ T

0

d t

∫ ℓs

0

d x IH

�

ρ(x , t), Jρ(x , t)
�

, (27)

subject to the constraints of the total mass conservation and the conditioning on the space-time
averaged current (12)

ρ0 =
1
ℓs

∫ ℓs

0

d x ρ(x , t) , q =
1
ℓs

∫ ℓs

0

d x Jρ(x , t) . (28)

Both ρ and Jρ are spatially conserved by virtue of the integral constraints (28). The explicit
derivation of the minimization problem (27) and (28) is presented in Appendix C. The terms
omitted from the expression (27) are surface tension terms which, as explained above, have a
sub-leading contribution.

In analogy with equilibrium phase separation, whenever the bulk rate function IH (24)
becomes locally non-convex, the homogeneous solution (22) must lose linear stability. In the
next section we derive the associated spinodal, that is shown to coincide with an explicit linear
stability analysis of the full action (18) against spatial and temporal variations. Next, we turn
to study the analogue of the binodal and the related first-order transition which corresponds
to the loss of global convexity of IH (occurring when IH differs from its convex hull). The rate
function I (27) is then given by the convex hull of IH .

5.1 Linear stability

The function IH(ρ0, q) (24) is a convex function of q. Therefore, the linear instabilities can be
identified by checking when the determinant of the Hessian becomes negative,

∂ 2 IH

∂ ρ2
0

∂ 2 IH

∂ q2
−
�

∂ 2 IH

∂ ρ0∂ q

�2

< 0 . (29)
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which can be expressed using the parametric representation, Eq. (24), and the differenti-
ation rules

∂

∂ ρ0

�

�

�

�

q
=

∂

∂ ρ0

�

�

�

�

Λ

+
∂Λ

∂ ρ0

�

�

�

�

q

∂

∂Λ

�

�

�

�

ρ0

=
∂

∂ ρ0

�

�

�

�

Λ

−

∂ q
∂ ρ0

�

�

�

Λ

∂ q
∂Λ

�

�

�

ρ0

∂

∂Λ

�

�

�

�

ρ0

,

∂

∂ q

�

�

�

�

ρ0

=
∂Λ

∂ q

�

�

�

�

ρ0

∂

∂Λ

�

�

�

�

ρ0

=
1

∂ q
∂Λ

�

�

�

ρ0

∂

∂Λ

�

�

�

�

ρ0

. (30)

Employing these, we find that the region where the Hessian determinant vanishes is given by
the solution of h0 = 0 with

h0 = Λ2
�

BC2 Pe(4C − B Pe)

+ 2A(1+ C2Λ2)
�

4(1+ C2Λ2)2 +
p

1+ C2Λ2(4C Pe−B Pe2+4C3 PeΛ2)
�©

(31)

+ Λ24BC2
�

C3Λ2 Pe+(1+ C2Λ2)3/2
�

,

where Λ(q,ρ0, Pe) is given by Eq. (25), A = 2ρ0 (1−ρ0), B = 2ρ0, and C = Pe (1−ρ0). A
non-trivial solution to (31), with Λ ̸= 0, emerges only for Pe> Pe∗ =

p
2. The region of linear-

instability grows with increasing Pe spreading from the point (ρ0 = 1, q = 0) of the phase
space, as shown in Figs. 3 and 4. The saddle-point solutions are linearly unstable in the purple
region.

0 0.5 1
0

0.5

1

ρ0

q

Pe=1.5
Locally non-convex

0 0.5 1
0

0.5

1

ρ0

Pe=2
Locally non-convex

0 0.5 1
0

0.5

1

ρ0

Pe=3.5
Locally non-convex

Figure 3: The emergence of local non-convexity of IH when increasing
Pe > Pe∗ =

p
2. The boundary of this region, marked by a purple line is given by

the implicit relation h0 = 0 with h0 given in (31) together with (25).

A complementary derivation of this result is obtained by computing the second variation
of the action functional Eq. (19) with respect to space and time dependent field variations at
finite ℓs and then taking the limit ℓs →∞. This calculation is given in Appendix D where we
show explicitly that Eq. (31) is recovered (thus fully justifying the equilibrium-like analysis we
put forward in this Section). The methodology used also allows us to explore the dynamical
phase transitions for finite ℓs, see Sec. 6.

As in equilibrium phase separation, the linear stability analysis alone does not allow one
to obtain the optimal profile. The latter is determined by a global stability analysis. As we
show below this allows us to identify a binodal for the transition. As in equilibrium, the linear
stability analysis then identifies the spinodal which plays a role in determining the transient
nucleation towards the final binodal decomposition, see e.g. [61] for related analysis. The
study of such phenomenon is beyond the scope of the current study and would be an interesting
subject for future investigations.
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0

0.01
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Figure 4: (A) The rate function IH(ρ0, q) showing non-convexity and a pinch singu-
larity at (ρ0 = 1, q = 0). (B) The difference between the rate function IH and its
convex hull I . The orange line is the boundary of the region of global non-convexity,
given by (33). (C) The phase diagram for local and global non-convexity for IH . Lo-
cal non-convexity is denoted by a dashed purple curve, given by the implicit relation
h0 = 0 with h0 given in (31) together with (25). Global non-convexity is marked by
the orange curve and is given by the implicit relation (33). At large ℓs these regions
define local and global instability regions of the constant solution respectively (22).
(Lower panels) Emergence of non convexity in IH at increasing Pe >

p
2. An ex-

ample of a cross section for IH , marked by a green line in panel (C) and given by
q = (1 − ρ0)/2. The dashed blue line is the convex hull construction. The orange
and purple points corresponds to the intersection with the local and global convexity
curves that are shown in panel (C).

5.2 Global stability

In Fig. 4 (A) and (B) we plot IH and the difference between IH and its convex hull as a function
of q and ρ0 for Pe = 3.5. One can identify a curved surface with a concave region, which is
reminiscent of a first-order phase transition in equilibrium systems. In the large-ℓs limit in
which the domain wall contributions are negligible, one can then obtain the rate function by
constructing the convex hull of IH .

Interestingly, numerically we find that the convex hull always consists of tie lines between
(ρ0 = 1, q = 0) and other points on the IH surface, e.g., the points on the orange line in
Fig. 4(C). This is supported by the fact that IH has a singularity at (ρ0 = 1, q = 0). Indeed, IH
presents global minima along the entire line q = 0, and diverges as approaching ρ0 = 1. This
results in a pinch-point singularity IH ∼ q2/(1− ρ0). The convex hull then needs to be con-
structed by drawing tie lines that pass through (ρ0 = 1, q = 0) and extend beyond the linearly
unstable region. Denoting the density and the current in the low and high density phases by
(ρl , ql) and (ρh, qh) respectively, then when coexistence occurs, the high density phase always
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satisfies ρh = 1 and qh = 0.

With this in mind, we are left with finding the location of the curve (ρl , ql) in the (ρ0, q)
plane which defines the location of the low density phase. As explained above, it is found by
demanding that a tie line emanating from the point (ρh = 1, qh = 0) is tangent to IH at the
low density point (ρl , ql):

�

IH + (1−ρ)
∂ IH

∂ ρ
− q
∂ IH

∂ q

�

(ρl ,ql )
= 0 . (32)

Using the differentiation rules (30) one then arrives at the relation:

h1(Λ,ρ0; Pe)≡ 1−
p

1+ C2Λ2 +Λ2(1−ρ0)
2(
p

1+ C2Λ2 + Pe C) = 0 , (33)

which together with the relation (25) defines the “binodal” curve for dynamical phase separa-
tion in an implicit form. The result for Pe= 3.5 is shown in Fig. 4(C). Interestingly, the result
implies that at large ℓs this transition starts at a vanishingly small value of q. The sub-leading
interface tension cost in (27) shifts the critical value away from zero. As we detail in Sec.6, its
scaling is given by q = O(ℓ−1/2

s ).
Note that for a given average density ρ0, and total current q, the optimal configuration

is phase-separated with the density and the current in each phase given by the geometric
construction in the (ρ0, q) plane that is shown in Fig. 5. See also the lower panels of Fig. 4. The
point (ρl , ql) is found by identifying a straight line between (ρh = 1, qh = 0) and the binodal
line (33) which passes through the point of interest (ρ0, q). This implies, for example, that for
a given density ρ0, upon increasing the value of the current q towards ql(ρ0), the portion of
the low density phase ρl becomes larger, until it spans the entire system at q = ql(ρ0).

Finally, we now show that when coexistence occurs, it is in the form of a traveling wave.
To see this, we consider the interface between the high density phase with (ρ0 = 1, q = 0) and
the low density one with (ρl , ql). A balance of fluxes implies that the domain wall between
the two phases must propagate with a velocity

V = −
Jl

1−ρl
= −

q
1−ρ0

, (34)

where Jl is the current in the low density phase. The second equality arises using Jl fl = q
with fl the fraction of the low density phase so that flρl + (1− fl) = ρ0. A snapshot of this
dynamics is illustrated in Fig. 5(B): A band ofa high-density phaseρh = 1 propagates through
the system in a direction opposite to the current in the low-density phase, as seen from the
expression (34) of its velocity.

This sums up our findings for the rate function (13). For points in parameter space that
are inside the homogeneous phase, see Fig. 5, it is given by I = IH , with the homogeneous
rate function IH given by (24). For points inside the traveling band phase it is given by

I =
1−ρ0

1−ρl
IH(ρl , ql) , (35)

with ρl(ρ0, q), ql(ρ0, q) given by the geometric construction involving the “binodal” (33). It
has a jump in its second derivative at the point of intersection with the curve given by Eq. (33).
These results are shown in Fig. 6.
Notice that finite-ℓs corrections leave the immediate neighborhood of q = 0 protected from the
dynamical phase transition. These corrections will be discussed in detail in the next section.
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ρh,qh
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Homogeneous

A
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0
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(x
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q≃0.37
ρ0=0.9

m,Jρ>0 m,Jρ=0

V<0
B

Figure 5: (A) The phase diagram for current fluctuations q at Pe = 3.5. The orange
curve marks the boundary between the traveling band phase and a homogeneous
phase at ℓs→∞. It is given in a parametric form by Eqs. (33) and (25). The dashed
line denotes the convex hull construction between the high density phase which is
always at close packing (ρ0 = 1, q = 0), and the low density phase. It is given by
the intersection of this line with the orange curve denoting the edge of the traveling
band phase. (B) An instance of the traveling band solution that corresponds to the
geometrical construction illustrated in panel (A). As discussed in Sec. 6, the sharp
interface is smoothed at finite ℓs.

6 Finite-ℓs corrections and relation to the MIPS criticality

Since both MIPS, which occurs at q = 0, and the travelling wave phase that we studied above
exhibit phase separation, it is interesting to compare their phase diagrams and see how the
transitions relate to each other. As we now show, this requires one to go beyond the analysis
considered above and study the sub-leading finite-ℓs corrections. We also comment on the
values of the cumulants in this limit at the end of the Section.

6.1 A primer: comparing MIPS and the DPT in the limit ℓ−1
s → 0

Fig. 7 shows the phase diagrams of the two transitions in the limit of ℓ−1
s → 0. The binodal

for the DPT is plotted in orange in the q → 0 limit, obtained from Eq. (33) using a small-Λ
expansion. This leads to the expression

ρl,1 =
1
2
+

1
Pe2 +O(q2) , (36)

for the low density phase while the high density phase has a density ρh = 1. A similar small-Λ
expansion of Eq. (31) shows that the spinodal at q → 0, plotted as a purple dashed line on
Fig. 7, is given by

ρl,2 =
2
3

�

1+
1

Pe2

�

+O(q2) . (37)

A naive comparison with the phase diagram of MIPS (whose spinodal and binodal are shown
as dashed and solid black lines respectively in Fig. 7) seems to suggest that the two transitions
are not related. As we now show, this is in fact not the case. The link between MIPS and the
DPT is revealed by studying finite-ℓs corrections to the rate function.
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q

B

Figure 6: The rate function I(q) of Eq. (13) at ρ0 = 0.9 and ℓ−1
s → 0. Panel (B)

is a closeup of the region marked in panel (A) by a dashed rectangle. The continu-
ous black line represents the rate function I(q) while the dashed purple curve is the
sub-optimal rate function that corresponds to a homogeneous profile (24). I is con-
structed from the convex hull of IH in the parameter space (ρ0, q), see main text. The
rate function has a jump in its second derivative at the orange point where these two
rate functions are tangent. This point corresponds to the boundary of the traveling
band phase denoted by the orange curve in Fig. 5 (A).

6.2 Relating the DPT at small q to the MIPS at q = 0 through finite-ℓs corrections

We start by summarizing the results before turning to their derivation. To do this, we consider
finite-ℓs corrections in the different regions of the phase diagram Fig. 7.

First, we note that outside the binodal (denoted by an orange line) there is no transi-
tion. Thus, as q is increased from 0, the system remains homogeneous and there are no
finite-ℓs corrections. Inside the orange binodal in the ℓ−1

s → 0 limit, the system transitions
to a sharply separated traveling wave at a finite q (with two bulk densities dictated by the
binodal). Accounting for a finite ℓs shows that such a state emerges only when q becomes of
the order qs ∼ ℓ−1/2

s . This is a result of the finite cost of the domain walls in the system. In
other words, at finite ℓs, there is a boundary layer q ∼ ℓ−1/2

s separating the q = 0 behavior
(which display MIPS) from the DPT. In fact, by considering more closely the boundary layer
we find two regions:

Region I – inside the spinodal (ρl,2 < ρ0 < 1 and Pe >
p

2) [which encloses the MIPS critical
point (ρ0 = 3/4,Pe= 4)].
In this region in the ℓ−1

s → 0 limit the homogeneous state is linearly unstable for any q > 0.
This is not longer true for large but finite ℓs, where we find that the linear instability occurs
at a finite threshold qc,2, that scales as qc,2 ∼ ℓ−1

s . When q > qc,2, the systems exhibits a
smooth spatial modulation which becomes more pronounced until a sharply-phase-separated
state emerges at q ∼ ℓ−1/2

s (and the bulk densities of the profile are given to leading order
by the orange binodal). Hence, the system first undergoes a linear instability into a smoothly
modulated state and then crosses over to a sharply separated state over a range which scales
as O(ℓ−1/2).
Region II – between the binodal and the spinodal (ρl,1 < ρ0 < ρl,2 and Pe >

p
2). Here

the system is linearly stable for any value of ℓs. Then one has a discontinuous transition
at qc,1 ∼ ℓ−1

s into a traveling wave solution whose domain walls become sharper with increas-
ing q as in region I.

Interestingly, at the critical point of the MIPS transition (ρ0 = 3/4, Pe = 4) both the DPT
and the MIPS are initiated by a linear instability. This implies that the critical current qc,2 of
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I

Figure 7: The phase diagrams of the DPT and of MIPS. The MIPS binodal is shown as
a black solid line and the corresponding spinodal as a dashed black line. The binodal
for dynamical phase transition at q = O(ℓ−1/2

s ), which is given by Eq. (36), is plotted
in orange. The dashed purple line is the corresponding spinodal, Eq. (37). Their
extension in the MIPS phase is denoted by dotted lines.

the DPT vanishes at this point.
In sum, the MIPS transition, and the dynamical phase transition are separated by a finite

layer at q > 0 everywhere in phase space, except at the MIPS critical point where the two
transitions merge. This is presented in Fig. 8 and Fig. 9. We now provide a derivation of these
results.

0 0.5 1
0

0.75

1.5

ρ0

q

Linearly unstable at ℓs-1=0.02

Globally unstable at ℓs-1=0+
Linearly unstable at ℓs-1=0+
A

ρl,2 1
0

0.05

ρ0

B

qc,2

Figure 8: A comparison of the phase diagrams of the DPT in the infinite system-size
limit (ℓ−1

s = 0) and at finite ℓs, at Pe = 3.9 . The region marked by a dashed box
in panel (A) is shown in panel (B). As in Fig. 4 (C), the regions of linear and global
instability for ℓ−1

s → 0 are shown in purple and orange. The numerically obtained
region of linear instability for a small but finite value ℓ−1

s = 0.02 is delimited by
a black curve. The dashed blue line in panel (B) is the analytical expression (38)
which is valid at first order for small ℓ−1

s , and is in good agreement with the previous
numerical results. These curves illustrate the boundary layer described in the main
text.

6.2.1 The scalings of qs and qc,1

To evaluate the scalings of these current values, we study the effect of the sub-leading surface
tension terms that were omitted in Eq. (27). Consider first a sharply phase separated state.
Then, as explained at the beginning of Sec.5, the contribution of interface terms to the rate
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Figure 9: The critical current qc,2, given by Eq. (38), for three Pe values. Panel (A)
shows how the critical current (38) vanish at the MIPS critical density ρ0 = 3/4 upon
approaching the MIPS critical point Pe = 4. (B) The same as (A) but presented in
the (ρ0, Pe, q) space. The critical current threshold, Eq. (38), vanishes at the MIPS
critical point which is marked by the red dot. The black and dashed black lines are
the MIPS binodal and spinodal respectively. The orange and purple curves are the
boundaries of the globally and linearly unstable regions at ℓ−1

s → 0 which are given
by Eqs. (36) and (37), respectively.

function (27), evaluated over a sharply phase separated solution, scales as O(ℓ−1
s ). Comparing

this to the gain in the bulk term in the expression (27), which scale as q2 for small q, we find
that a sharply separated state only emerges when q becomes of the order of qs ∼ ℓ−1/2

s .
Next, consider the transition into a smoothly modulated traveling wave state with a finite

amplitude. In this case, the interface cost scales as O(ℓ−2
s ). Correspondingly, the threshold

value scales as qc,1 ∼ ℓ−1
s . In the large ℓs limit, we therefore expect that the transition into

a smoothly modulated profiles precedes the emergence of sharply phase separated traveling
wave solutions everywhere in phase space.

6.2.2 Critical current qc,2 in region I

The finite critical value qc,2 can be obtained exactly for any ℓs, from a stability analysis of the
action (19) to small space-and-time dependent fluctuations. As detailed in Appendix E, one
finds

qc,2 = πℓ
−1
s

Æ

(2+ C D)2 (A+ρ0C2)
Æ

Pe2 (3ρ0 − 2)− 2
+O(ℓ−2

s ) , (38)

with A(ρ0) = 2ρ0(1−ρ0), C(ρ0, Pe) = Pe(1−ρ0) and D(ρ0, Pe) = Pe(1−2ρ0). The expression
under the square root in the denominator is positive in the linearly unstable region ρ0 > ρl,2,
see Eq. (37). Importantly, the scaling qc,2 ∼ ℓ−1

s guarantees that linear instability occurs before
the transition into the sharply separated state in this region (which occurs at q ∼ ℓ−1/2

s ).
These results are presented in Fig. 8 and Fig. 9. Notice that, as argued above, qc,2 vanishes

at the MIPS critical point (ρ0 = 2/3,Pe = 4), given by 2 + C D = 0. Indeed, from Eq. (38),
qc,2 is proportional to |2 + C D|; however, qc,2 > 0 everywhere inside the region enclosed by
the MIPS spinodal 2+ C D < 0. The reason is that the linear instability into MIPS (at q = 0) is
distinct from the transition into a traveling wave (at q > 0). They only coincide at the MIPS
critical point. Interestingly, the distinction between the transitions can be seen in the spec-
trum of the linearized problem. The MIPS linear instability describes an exponential growth
of spatial modulations towards a state which is phase separated and stationary. Therefore,
the corresponding excitation frequency ω that describe this linear instability is imaginary. In
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contrast, the linear instability associated with the dynamical phase transition is characterized
by the emergence of traveling waves. Therefore, its associated excitation frequency ω is real.

It is only at the MIPS critical point that the excitation frequencies of both instabilities vanish
and the two transitions merge.

6.3 Remarks on the current cumulants and finite-ℓs effects

As usual in large-deviation theory, the rate function I(q) is related to the cumulants of the
current through derivatives of I at q = 0 [46]. Notice that, in the ℓs→∞ limit, the curvature
at q = 0 of the rate function I differs from that of IH , the rate function for a homogeneous
profile (shown in Fig. 6), since I is the convex envelope of IH . However, at large but finite ℓs,
as we have seen in the previous paragraph, the rate function exhibits a small boundary layer
around q = 0, in which it is equal to IH . This means that the cumulants of the current are in
fact obtained from the set of derivatives of IH(q) at q = 0. The presence of a DPT in the rate
function of the current is in some cases associated to an anomalous scaling of the finite-size
corrections to the rate function (see e.g. [57] for the cumulants of the current in the weakly
asymmetric simple exclusion process (WASEP)). This is an interesting open question which
remains to be addressed for this problem.

In fact we can draw a parallel between the large deviations of the current in our problem
and in the (asymmetric) exclusion processes: in the periodic WASEP, a DPT for the current large
deviation is observed between a homogeneous phase and an heterogeneous-profile phase, with
smooth interfaces [55]. As the asymmetry is increased, the interfaces become sharper and a
DPT point occurs closer to the average current, making the current distribution more singular.
In the very large asymmetry limit, one recovers the TASEP (totally asymmetric simple exclusion
process). When doing so, the dynamical scaling switches from diffusive to KPZ [54] and the
nature of the fluctuations change considerably. In our case, in the presence of phase separation,
the domains are separated by sharp walls only in the large-ℓs limit, and the location of the DPT
becomes closer to the average current which occurs at q = 0 in the same limit – the situation
therefore is quite similar, except that the dynamical scaling remains diffusive all along the
limiting process. This is also what allows one to safely determine the current cumulants in
this limit, although the system presents sharp walls.

7 Summary and discussion

In this work we have derived the exact fluctuating hydrodynamics for the active lattice gas
model of Ref. [39]. This is the first such derivation for a system of interacting active particles.
We note here that the active lattice gas model differs from standard active matter models. In
contrast to more standard models, the tumbling rate is rescaled by L−2, see Sec. 2. As a result,
the polarization enters as a slow field in the coarse-grained hydrodynamics. Still, this model
shares many similarities with the more standard active matter models, most notably MIPS.

Building on the fluctuating hydrodynamics, we have extended the classical MFT framework
to the active lattice gas model and employed it to study the integrated current fluctuations. We
provide a full mapping of the current fluctuations phase diagram where, notably, we identify
a dynamical phase transition. The MFT problem could be tackled analytically despite the fact
that it is significantly more involved compared to the standard Gaussian noise case. Here
we find Poissonian noise and the hydrodynamics involve two scalar fields rather than one.
Nevertheless, the analysis can be carried out analytically using ℓ−1

s as a small parameter.
For the unbiased system, this small parameter controls the ratio of the domain wall width

in the MIPS phase to the system size. As we have shown, the same small parameter sets a
vanishing probability cost for gradient terms in the MFT action. This enables us to establish an
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analogy between the MFT action and the free energy of equilibrium phase separating systems.
A non-convexity of the bulk term of the ‘free energy’ can then be associated with a dynamical
phase transition into a traveling wave phase separated state. We find that this transition occurs
at vanishingly small O(ℓ−1

s ) current fluctuations. Interestingly, the dynamical phase transition
of the biased system and the MIPS of the unbiased system are shown to coincide at the MIPS
critical point where both of these are initiated through a linear instability. This link is exposed
by accounting for finite-ℓs corrections to the MFT problem.

Our results were derived assuming that the unbiased system is homogeneous. Neverthe-
less, we anticipate that to leading order at small ℓ−1

s , the results will hold also in the MIPS
phase. In particular, the minimization determined by the procedure described above which
allows for the biased system to be phase separated.

It is interesting to use the formalism developed above to study other large-deviation func-
tions. In particular, there has been recent interest in entropy production rates in active systems
(even at the absence of any external drive either at the bulk or at the boundaries). The study
of entropy production for this active lattice gas is the subject of a future publication [72].

From a broader perspective, it could be interesting to investigate other models presenting
a diffusive scaling but non-Gaussian fluctuations coming from processes other than the specific
case of tumbling events we have studied here (for instance from chemical reactions or non-
Gaussian sources of noise).
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A Deriving the large deviation function

A.1 Contributions from conserved fluxes

Flux fluctuations are given by the Gaussian noise terms Jρ − J̄ρ = ηρ/
Æ

Lℓ−1
s and

Jm − J̄m = ηm/
Æ

Lℓ−1
s

2 with the covariances

〈ηρ(x , t)ηρ(x
′, t ′)〉 = σρ δ(x − x ′)δ(t − t ′) , (A.1)

〈ηm(x , t)ηm(x
′, t ′)〉 = σmδ(x − x ′)δ(t − t ′) ,

〈ηρ(x , t)ηm(x
′, t ′)〉 = σρ,mδ(x − x ′)δ(t − t ′) ,

given by

σρ = 2ρ (1−ρ) , σm = 2
�

ρ −m2
�

, σρ,m = 2m (1−ρ) .

These have been derived in Ref. [43] using a mapping to the ABC model [64–66]. Importantly,
as shown in Ref. [66], these also capture non-typical fluctuations of O (1).

2Notice the factor ℓ−1
s in the noise amplitude, as compared to Ref. [43]. It follows from the rescaling of space

and time that we employ throughout this work, see the definition bellow Eq. (1).
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A.2 Contributions from tumbling events

The Gaussian approximation to the tumbling probability was derived in Ref. [43]. Here we go
beyond this approximation by accounting for the underlying Poisson process.

To account for the probability of tumbles we note that these are transmutation reactions
between two particle species. Such processes were treated in Ref. [62,63,68]. One finds that
the probability P(K+) to observe K+ flips of + particles into − particles in a space interval∆x
and time interval ∆t follows a large deviation principle

− ln P
�

K+ = K+Lℓ−1
s ∆t∆
�

≃ Lℓ−1
s ∆x∆tψρ+(K+) , (A.2)

with the expected large-deviation function of a Poisson process:

ψρ+

�

K+
�

= K+ log
�

K+
ρ+

�

− K+ +ρ+ . (A.3)

Here ρ+ is the density of + particles in the mesoscopic interval [x , x +∆x]. Similarly, the
probability P(K−) to observe K− flips of − particles into + particles in a space interval∆x and
time interval ∆t follows a similar large deviation principle with

ψρ− (K−) = K− log
�

K−
ρ−

�

− K− +ρ− . (A.4)

Here ρ− is the density of + particles in the mesoscopic interval [x , x +∆x].
The total change in the number of − particles in a mesoscopic interval, due to tumbling

reactions is then given by the differenceK =K+−K−. Following the contraction principle [46],
the probability of this variable is described by the large deviation function

− ln P
�

K = K Lℓ−1
s ∆t∆x
�

≃ Lℓ−1
s ∆x∆tLK

�

K
�

, (A.5)

where LK is found by minimizing the combined probability cost of the previous two processes
under the constraint of a given total tumbling rate

LK = inf
K+

�

ψρ+ (K+) +ψρ− (K+ − K)
�

= ρ −
Æ

K2 + (ρ2 −m2) + K ln

�p

K2 + (ρ2 −m2) + K
(ρ +m)

�

. (A.6)

A.3 Joint large deviation function

The above results can be combined into a single large deviation function as the conserved
dynamics of the fluxes are uncorrelated with the tumbling dynamics. The microscopic rates
for tumble events are much slower than the hopping dynamics. In particular, this allows one,
despite the presence of tumbling events, to use a local equilibrium conditions for the hopping
rates. In sum, this means that the total action is written as a sum of the (Gaussian) flux action
and the tumbling action LK , as announced in Eq. (8).

Notice that, as expected, the quadratic expansion LK(K)≃ (K −m)2 /2ρ close to the min-
imum the joint large-deviation function exactly matches the Gaussian noise term derived in
Ref. [43].

B Deriving the MFT equations

In this Appendix, we derive the action (18) starting from the path integral (17). To do so
we use the Martin–Siggia–Rose–Janssen–de-Dominicis formalism [50,73–75]. The generating
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function then takes the form

eLTΨ(Λ) =

∫

DρDmDJρDJm DK D p̂ρDpm×

e−Lℓ−1
s

¦

ŜL−
∫ ℓs

0 d x
∫ T

0 d t[ΛJρ−p̂ρ(ρ̇+∂x Jρ)−pm(ṁ+∂x Jm+2K)]
©

.

(B.1)

with two auxiliary response fields p̂ρ(x , t) and pm(x , t) arising from representing the δ func-
tions in Eq. (17) using a Fourier transform. To obtain the MFT equations we then use a saddle-
point evaluation at large L. Minimizing with respect to K one arrives at the optimal value

K = m cosh 2pm −ρ sinh 2pm . (B.2)

Next, minimizing with respect to the flux fields Jρ and Jm yields

�

Jρ − J̄ρ
Jm − J̄m.

�

= C

�

∂x p̂ρ +Λ
∂x pm

�

. (B.3)

Finally, using the expressions (B.2) and (B.3), one arrives at the announced action (18).
Notice that since the fields ρ, m, Jρ, Jm, K are continuous, they obey periodic boundary

conditions on the ring geometry as do the fields p̂ρ and pm. As stated in Sec. 4, the boundary
conditions in time for the optimal fields become irrelevant in the large-T limit.

C Establishing an equilibrium analogue

In this Appendix we show how the rate function I(q) of Eq. (13) can be found, to leading
order at large ℓs, by the minimization problem (27) subjected to the constraints (28). It is
more convenient to start from the Lagrangian formulation (8), rather then the Hamiltonian
one (19). From Eqs. (8) and (13), we have

I(q) =
1
ℓsT

min
ρ,m,Jρ ,Jm,K

∫ ℓs

0

d x

∫ T

0

d t (LJ +LK) , (C.1)

subject to the integrated current constraint (12), and the dynamical constraints (6). In con-
trast to the Hamiltonian formulation (19), these constrains are not built into the Lagrangian
minimization and have to be enforced explicitly.

At large times, if the additivity principle is verified, optimal solutions are time independent
and we have shown in Sec. 4.1 that this leads to homogeneous density and polarization optimal
profiles, with a corresponding rate function IH given by Eq. (24). When the additivity principle
is broken, it happens in general with optimal profiles taking the form of traveling waves that
propagate at a constant velocity. This is the form that we assume now. Furthermore, in the
large-ℓs asymptotics, the width of the walls is O(1): it does not scale with the system size ℓs.
As discussed in the main text, the contribution of the domain walls to the action is then sub-
extensive. We now explain how, for such profiles, the rate function I(q) can still be obtained
from the homogeneous one IH with the adequate constraints – in a picture analogous to what
happens in equilibrium phase separation.

The minimization in (C.1) becomes time-independent for the optimal traveling profiles
�

ρ, m, Jρ, Jm, K
	

(which depend only on x):

I(q) =
1
ℓs

min
{ρ,m,Jρ ,Jm,K}

∫ ℓs

0

d x (LJ +LK) . (C.2)
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The time dependency is also eliminated from the current constraint (12)

q =
1
ℓs

∫ ℓs

0

d x Jρ(x) . (C.3)

We next consider the dynamical constraints (6). The first one implies that the total mass is
conserved, which we now assume implicitly:

ρ0 =
1
ℓs

∫ ℓs

0

d x ρ(x) . (C.4)

Also, it implies that the traveling wave solution moves at a constant speed

V =
Jh − Jl

ρh −ρl
, (C.5)

where Jh,l and ρh,l are the high and low density values for the flux and total density. The
second constraint in Eq. (6), ∂t m = −∂x Jm − 2K , implies that optimal tumbling rate vanishes
in the bulk phases

K = 0 . (C.6)

We are thus left with the four field minimization

I(q) =
1
ℓs

min
{ρ,m,Jρ ,Jm}

∫ ℓs

0

d x L , (C.7)

L =

¨

1
2

�

Jρ − Pe m(1−ρ)
Jm − Peρ(1−ρ)

�T

C−1

�

Jρ − Pe m(1−ρ)
Jm − Peρ(1−ρ)

�

+ρ −
Æ

ρ2 −m2

«

, (C.8)

subject to the integrated current constraint (C.3), which can be imposed via a scalar Lagrange
multiplier Λ.

In (C.8) we have omitted negligible gradient terms, but one has to be cautious because
this implies that the Euler–Lagrange equations become algebraic and only admit constant
value solutions. To retain possible non-homogeneous optimal solutions one introduces a space-
dependent Lagrange multiplier Λ̃(x) enforcing Jρ(x) to be equal to a profile J̃ρ(x). One arrives
at

I(q) =
1
ℓs

min
{ρ,m,Jρ ,Jm,Λ̃,J̃ρ ,Λ}

¨

∫ ℓs

0

d x
�

L+ Λ̃(x)
�

J̃ρ(x)− Jρ(x)
�

+Λ
�

J̃ρ(x)− q
�

�

«

, (C.9)

where again ρ, m, Jρ, Jm, Λ̃, J̃ρ depend on x while Λ is constant. Omitting the dependencies
on x for simplicity and minimizing with respect to the flux fields we find

�

Jρ − Pe m(1−ρ)
Jm − Peρ(1−ρ)

�

= C

�

Λ̃

0

�

. (C.10)

Replacing these into (C.9) and minimizing with respect to m then gives

m=
ρ Pe(1−ρ)Λ̃
Æ

1+ (Pe(1−ρ)Λ̃)2
, (C.11)

which is the same expression as was obtained for the homogeneous solutions in Eq. (22), but
with Λ replaced by space-dependent field Λ̃. Minimizing with respect to Λ̃ yields the equation

J̃ρ = 2ρ(1−ρ)Λ̃+
ρ Pe2(1−ρ)2Λ̃
Æ

1+ Pe2(1−ρ)2Λ̃2
, (C.12)
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which is again, a space-dependent version of Eq. (25). Last, minimizing with respect to Λ
merely gives the constraint

q =
1
ℓs

∫ ℓs

0

d x J̃ρ . (C.13)

Gathering the previous results into Eq. (C.8), we arrive at

I =
1
ℓs

min
ρ(x),J̃ρ(x)

∫ ℓs

0

d x
§

ρ(1−ρ)Λ̃2 +ρ
�

1−
�

1+ Pe2(1−ρ)2Λ̃2
�−1/2�
ª

, (C.14)

where Λ̃ is given implicitly by the algebraic relation (C.12), and J̃ρ satisfies (C.13). Comparing
Eqs. (C.14) and (C.12) with (24) and (25), we conclude that

I =
1
ℓs

min
ρ(x),J̃ρ(x)

∫ ℓs

0

d x IH

�

ρ(x), J̃ρ(x)
�

, (C.15)

subject to the constraint (C.13) (and the total mass constraint (C.4) which was assumed all
along). Changing the dummy variable J̃ρ(x) to Jρ(x) we finally arrive at Eqs. (27) and (28)
which concludes our proof.

D Action second variation analyses and its relation to local con-
cavity of IH

We expand the action to second order in path variations around the homogeneous solu-
tions (22). To do so, we define the variation fields δρ, δm, δpρ, and δpm through3

ρ = ρ0 +δρ , pρ = Λx + iδpρ ,

m=
ρ0CΛ
p

1+ (CΛ)2
+δm , pm =

1
2

arcsinh (CΛ) + iδpm , (D.1)

and the Fourier transforms

δ f (x , t) =
∑

n,m

,δ f n,mei(kn x+ωm t) , kn = 2πn/ℓs , ωm = 2πm/T , (D.2)

where δX is the variation of the field X and n and m are integers. After expansion, the
quadratic variation term of the action Eq. (19), which we denote by δS2, takes the form

δS2 = ℓsT
∑

n,m

V T
−n,−mB(n, m)Vn,m , (D.3)

with the matrix

B(n, m;Λ,ρ0, Pe) = (D.4)














Λ2 ωm
2 +

DknΛ
Pe −

knBCΛPe

4
p

1+(CΛ)2
+i

k2
n
2

PeΛ
2

kn
2

�

D− BCΛ2p
1+(CΛ)2

�

−iCΛ

−ωm
2 −

DknΛ
Pe +

knBCΛPe

4
p

1+(CΛ)2
+i

k2
n
2

Ak2
n

2 − knC
2

BC2k2
nΛ

2 Pe
p

1+(CΛ)2

PeΛ
2

knC
2 0 ωm

2 +
knCΛ

Pe +i
k2
n
2 +i
p

1+(CΛ)2

− kn
2

�

D− BCΛ2p
1+(CΛ)2

�

−iCΛ
BC2k2

nΛ

2 Pe
p

1+(CΛ)2
−ωm

2 −
knCΛ

Pe +i
k2
n
2 +i
p

1+(CΛ)2 k2
n

�

B
2−

B2(CΛ)2

4(1+(CΛ)2)

�

+ Bp
1+(CΛ)2















,

3Note that the conjugate momentum variations are imaginary since the field is imaginary. It only takes a real
value at the saddle point, see e.g. Ref. [61] and also Appendix B.
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where A= 2ρ0 (1−ρ0), B = 2ρ0, C = Pe (1−ρ0), D = Pe (1− 2ρ0), and

Vn,m =









δρn,m

δpn,m
ρ

δmn,m

δpn,m
m









. (D.5)

The homogeneous solution becomes unstable when one of the eigenvalues of the matrix B
becomes negative for some mode n, m. To find the region in parameter space (ρ0,Λ) where
this happens we first note that by direct inspection of the eigenvalues of B, and similar to
related problems [60,61], the most unstable mode is n= 1. This is expect as the larger values
of n have a larger cost in the action due to spatial modulations.

For this mode we find that for any unstable point in the parameter space (ρ0,Λ), there
exists a set of unstable frequencies ωm. In the large T limit, the frequency can be treated as
a continuous variable ω and the set of unstable frequencies become an interval. This interval
shrinks to a point at the boundary of the unstable region. The boundary of the unstable region
can then be identified by solving the equations

Det[B] (ω; n= 1,Λ,ρ0, Pe,ℓs) = 0 ; ∂ωDet[B] (ω; n= 1,Λ,ρ0, Pe,ℓs) = 0 . (D.6)

The first equation ensures that there are eigenvalues whose value is zero, while the second
equation ensures that there is only one such eigenvalue.4 The two equations (D.6) can be cast
into a single implicit algebraic relation between Λ and ρ0 for given values of Pe and ℓs which
we write as:

h2(Λ,ρ0; Pe,ℓs) = 0 . (D.7)

Using Eq. (25) this relation then defines a curve in the parameter space (ρ0, q) which encloses
the linearly unstable region. This curve is plotted as a black line in Fig. 8 for ℓ−1

s = 0.02 and
Pe = 3.9. The figure also shows, as a purple line, the limiting curve that is approached as
ℓs→∞.

As stated in the main text, the curve defined Eq. (D.7), which describes the local instability,
must coincides with the curve Eq. (31), which describes local non-convexity. That is

lim
ℓs→∞

h2(Λ,ρ0; Pe,ℓs) = h0(Λ,ρ0; Pe) . (D.8)

This can be shown explicitly by expanding h2 at large ℓs, assuming a travelling wave form for
the unstable mode, and taking the limit ℓs →∞. Since the derivation is rather lengthy but
straightforward, we omit it from the text.

E Deriving the critical threshold qc,2 Eq. (38)

The curve qc,2, given by Eq. (38) serves as a finite-ℓs correction to the limit (D.8). To account
for it we must retain the next order expansion to the determinant keeping terms of O(ℓ−4

s ). In
addition, being interested only the region near q = 0, we use the scaling Λ= O(ℓ−1

s ). This also
implies the same scaling for the wave velocity V =ωk1 = O(ℓ−1

s ). Using these and expanding
up to O(ℓ−4

s ) we now arrive at the explicit expression

Λ2 = (2π)2ℓ−2
s

(2+ C D)2

(2A+ BC2)(BPe2 − 4− 4PeC)
, (E.1)

4We find numerically that for each point in parameter space there is only a single interval of frequencies where
the determinant drops bellow zero.
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with A, B, C and D defined in Eq. (D.4). Finally, expanding Eq. (25), we find

Λ(q) =
2q

2A+ BC2
+O(q3) , (E.2)

which, used into Eq. (E.1), yields Eq. (38).
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