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Abstract

We propose and study theoretically a new mechanism of electron-impurity scattering in
doped seminconductors with large dielectric constant. It is based upon the idea of vector
character of deformations caused in the crystalline lattice by any point defects siting
asymmetrically in the unit cell. In result, local lattice compression due to the elastic
deformations decay as 1/r2 with distance from impurity. Electron scattering (due to
standard deformation potential) on such defects leads to low-temperature mobility µ(n)
scaling with electron density n of the form µ(n)∝ n−2/3 that is close to experimental
observations on a number of relevant materials.
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Figure 1: Schematic visualization of the proposed scattering mechanism. Electrons
scatter on deformation potential induced by local vector impurities. The local vectors
F are oriented randomly for different impurities.

1 Introduction

A number of doped semiconductors is known to demonstrate low-temperature mobility µ(n)
with a nearly power-law dependence on electron density, µ∝ n−β , with the exponent β in
the interval 1

2 < β < 1, see Ref. [1–6] for Strontium Titanate SrTiO3, Ref. [7] for Potassium
Tantalate KTaO3, Ref. [1, 8, 9] for Lead Telluride PbTe and Ref. [14] for mixed-chalcogenide
compound TlBiSSe. Obviously, mobility in the T → 0 should be determined by impurity scat-
tering, but it is not so easy to identify the specific mechanism of this scattering. Indeed, an
obviously existing scattering by screened Coulomb potentials produced by charged impurities
leads [10, 11] to µCoul(n)∝ 1/ ln(n). Another omnipresent type of scattering is provided by
short-range random potentials. They lead to density independent scattering cross sections σ
with mean-free path estimated as l ∝ 1/(nσ). Thus, short-range potentials yield a mobility
scaling as µshort(n) ∝ n−4/3. None of these mechanisms is able to explain the data [1–9].
The common feature of all these doped semiconductors is high dielectric constant of the cor-
responding undoped material, which makes Coulomb scattering by charged impurities very
weak.

In the present manuscript we propose and study a new mechanism of electron scatter-
ing by point defects, which we call vector impurity mechanism. Our key idea follows from
two observations: i) all considered families of semiconductors have crystal lattices with rela-
tively complicated elementary cells, which forces lattice defects (a vacancy or a substitutional
atom) to break down the symmetry of elastic media around it; as a result, such defects act
as a microscopic "force" upon surrounding elastic media. ii) elastic deformations due to a
point-like force Fδ(r) applied to an elastic media lead [13] to lattice deformations u(r) with
slowly decaying compression divu∝ 1/r2. Now, one can employ usual electron-phonon de-
formation potential Hamiltonian of the form Hint ∝ (ψ†ψ)divu to find that it leads to the
impurity transport cross-section νt r(q) ∝ 1/q2, with q being transfered momentum. With
typical q ∼ kF ∼ n1/3, one immediately find mobility µ(n)∝ (nνt r kF )−1 ∝ n−2/3 which is
rather close to the observations [1–9]. Below we provide detailed exposition of our approach,
and apply it first to Strontium Titanate (where some complications arise due to its many-band
structure), and then to KTaO3, PbTe and TlBiSSe.
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2 Elastic deformations due to vector impurities.

Conduction-band electrons in semiconductors interact with lattice distortions via deformation
potential

Ĥimp = Dac

∫

drψ̂†(r)ψ̂(r)divu(r) , (1)

where coupling constant Dac is usually rather large, about few eV. Thus we need to consider
possible sources of lattice distortions leading to non-zero compression u. In the simplest model
of a "void" in isotropic elastic media, the deformations u which arise around it lead to divu= 0,
see [13], Problem 2 for Paragraph 7. Crucial point is to notice that any atomic defect in a
complicated crystal structure will break the symmetry of the lattice in the way that is equivalent
to the presence of some local vector source. In other words, it would be incorrect to consider
Oxygen vacancy in STO just as small spherical defect in elastic media, as it would be possible
in case of vacancy is simple cubic lattice with single atom per unit cell. Oxygen defects in
the lattice of STO are located asymmetrically w.r.t. center of the unit cell. Thus, in terms of
symmetry of elastic deformation, the effect of such a defect is equivalent to the presence of
some frozen in local force F. The problem of elastic deformations in the presence of such a
force was first solved by W.Thomson in 1848; detailed solution is present in Ref. [13], as the
Problem to the Paragraph 8. It reads as follows:

u=
1+ ν

8πE(1− ν)
(3− 4ν)F+ n(nF)

r
. (2)

Here ν and E are the Poisson’s ratio and Young modulus respectively, the magnitude of a
force F = |F| will serve as a fitting parameter for our theory. This force originates from the
anisotropic local distortion of the lattice due to the atomic substitutions. For low enough
doping concentrations these local distortions are independent from each other, and therefore
the magnitude of this force is expected to be concentration independent. Local compression
divu corresponding to deformations (2) is given by

∇u= U Fr
r3

, U = (1+ ν)2

8πE(1− ν)
. (3)

Fig. 1 presents a sketch of electron scattering on a random deformation potential caused by
vector impurities.

3 Collision integral, relaxation time and mobility

Now we use the Hamiltonian (1) with impurity-induced compressions given by Eq. (3) to
calculate electron scattering rates.

We will study electric transport in an electron system using the Boltzmann kinetic equation.
To find the conductivity and the corresponding mobility within linear response theory, we
expand the distribution function as fp ≈ np+δnp. Where, np =

�

exp
�

βξp

�

+ 1
�−1

is the Fermi-
Dirac distribution with β = 1/(kB T ) and Boltzmann constant kB, and ξp = E(p)− EF with the
Fermi energy EF . Since we are concerned with the low-temperature transport we will limit our
discussions for kB T ≪ EF , thus in the leading order approximating the Fermi-Dirac distribution
with a step function. This helps to write the Boltzmann equation in presence of electric field
in the linearized form:

− eEvp

∂ np

�

ξp

�

∂ ξp
= I{δnp} , (4)
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Figure 2: The effective mass m/m0 (vertical) vs electron density in log scale (hori-
zontal). Shown are the experimental values from Shubnikov-de Haas effect [19] (or-
ange squares), from specific heat [24] (green dots), from quantum oscillations [26]
(purple dots). The emerald green line showcases the m(n) dependence we used,
which was obtained using a model of spherical Fermi surface via Eq. (11). The con-
centration dependence of the Fermi energy is shown in the inset, see Ref. [26].

where vp = ∂ ξp/∂ p is the group velocity. The collision integral I{δnp} in the RHS of the above
equation describes the electron scattering at the impurity-induced compressions governed by
the Eq. (3). It is explicitly expressed as follows

I =
2π
ħh

∑

j

∫

p′
|v( j)p′p|

2
�

δnp′ −δnp

�

δ
�

ϵ(p)− ϵ
�

p′
��

, (5)

where we introduced a notation
∫

p′ =
∫ d3p′

(2πħh)3 ,
∑

j for summation over impurities, and v( j)k for

the Fourier transform of the deformation potential from the Eq. (3) induced by the j th impurity:

v( j)k = 4πiG
F( j)k
k2

, G = UDac , (6)

where the newly defined parameter G contains all the material related properties – elastic
parameters and deformation potential. The deviation of the distribution function from the
Fermi distribution is produced by the electric field, thus for an isotropic Fermi surface in the
limit of weak electric field E we can preserve only the first angular harmonics and choose
δnp = Ep ∂ f

∂ εη(ϵ), with the function η(ϵ) being only energy dependent. As a result, the integral
(5) can be evaluated explicitly, as detailed in the appendix, producing:

I = 2π
mG2

ħh2 η(ϵ)
∂ f
∂ ε

∑

imp

Mp

�

F( j)
�

, (7)

Mp (F) = (Ep̂) F2 − 2 (EF) (Fp̂) + 3 (Ep̂) (Fp̂)2 , (8)

with p̂ denoting a unit vector along the momentum p. We emphasize that the above expression
is dependent not only on the relative orientation of momentum p and electric field E, but also
on the relative orientations of p and the vector force F.

In order to sum over the impurities we need to average the expression (8) over the orien-
tation of the vector F. As a result we obtain a final expression for the collision integral in a
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Figure 3: The mobility µ in log scale (vertical) vs electron density in log scale (hor-
izontal). (a) The red circles, blue squares and magenta triangles correspond to the
experimental data for SrTiO3−x extracted from [2–4] respectively, and the green line
represents the theoretical model Eq. (10). The inset focuses on the local exponent
β = −d lnµ/d ln(n), which varies between −0.8 and −1.2, averaging at −0.95; and
the scaling n−0.95 depicted with a dashed blue line. (b) Blue triangles illustrate the
data for PbTe extracted from Ref. [1, 8, 9]. The red line employs our theoretical
model with the effective electron mass found in [29] (see Fig. 4 in the Supplement).
The orange squares and red stars indicate the mobility data for TlBiSSe [1, 14] and
KTaO3 [7]. The green and pink lines represent the theoretical results for electron mo-
bility in these materials, using constant effective masses m= 0.14m0 and m= 0.5m0
respectively.

form I = −δnp/τ with a relaxation time

τ=
3ħh2pF

8π (GF)2 mn
. (9)

The relaxation time is then used to find the electron mobility:

µ=
eτ
m
=

3eħh2pF

8π (GF)2 m2n
. (10)

We see that for a concentration independent effective mass electron mobility scales with con-
centration as µ ∼ n−2/3 as tipped off in the Introduction. However, since the mass enters
squared in the above equation, even a relatively weak n-dependence m(n) can influence the
results considerably.

4 Application to SrTiO3

One of the most interesting materials that our discussions can be applied to is Strontium Ti-
tanate SrTiO3. Being a band insulator it becomes a very dilute 3D metal due to tiny dop-
ing (10−6 − 10−3 conduction electrons per unit cell) and demonstrates a number of unusual
properties [15–17]. They mainly originate form the close proximity of insulating STO to a fer-
roelectric transition, which leads to a giant low-temperature dielectric constant ε0 ≈ 20000.
As a result, Coulomb interaction in STO is strongly suppressed; the accurate consideration
shows that the electron mobility produced by the scattering on Coulomb field is more than
two orders of magnitude greater than the experimental data.

Having an almost spherical Fermi surface when lightly doped, at concentrations higher
than nc1 ∼ 2 ·1018cm−3 SrTiO3 acquires a complicated multiband Fermi surface far from being
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isotropic [19–23]. Anisotropic Fermi surface can potentially produce correlations between
the subsequent scatterings by affecting the scattering direction probability distribution after
each act of scattering. This is indeed the case for scattering on isotropic impurities where light
electrons can contribute to the collision integral more dramatically than heavy ones. However,
according to the Eq. (8) the collision integral depends strongly on the relative orientation of p
and the vector force F, and of E and F. Since these vector forces are oriented randomly, the
exact shape of the Fermi surface does not seem to be relevant and the electron scattering is
effectively averaged out. This enables us to model the electron dynamics with a spherical
Fermi surface with an effective mass introduced phenomenologically as

m=
p2

F

2EF
=
ħh2
�

3π2n
�2/3

2EF
, (11)

with the Fermi energy obtained from the experimental data. Somewhat similar approach is
used in [24]. Fig. 2 summarizes a number of experimental data for the effective mass in the
lowest band of STO, obtained by different kinds of experiments: Shubnikov-de Haas effect,
quantum oscillations and the density of states (DoS) mass found from specific heat measure-
ments. Continuous green line in the same plot shows the dependence m(n)/m0 which we
extracted using the data from Ref. [26] for Fermi energy and Eq. (11), to be used in our fur-
ther calculations.

The above considerations allow us to directly implement the result given by Eq. (10) for the
analysis of experimental data on SrTiO3. Fig. 3a) compares our theoretical results for electron
mobility with the experimental data [2–4]. We used here single fit parameter, the strength of
vector impurity potential F . The results are in a good agreement with the experiment showing
a reasonable overall scaling with deviations not exceeding 10% for n> 5 · 1018 cm−3.

Our approach improperly predicts the mobility behaviour at lowest concentrations where
experimental data demonstrate saturation of µ(n) with further decrease of n below
nc ∼ 5 · 1018 cm−3, which is not described by Eq. (10). It means that another scattering
process should be taken into account to describe this feature. One possible effect could come
from Coulomb interaction which leads to slow logarithmic dependence of µ(n). However it is
easy to check that Coulomb scattering itself would lead to mobility overestimated by 2 orders
of magnitude. Another possible explanation could be electron scattering on domain walls.
These processes can be roughly modeled using a relaxation time defined as τ= l/vF , where l
is the characteristic domain size. In order to fit the experimental data for STO this approach
requires the domain size to be l ∼ 0.5µm, wheres the experiment [37] reveals the domain size
to be an order of magnitude larger. Finally, we would like to mention spatial non-uniformity
of dopant’s concentration as a possible source of µ(n) saturation at lowest n; we leave inves-
tigation of this issue for future research.

Now we need to implement "sanity check" to see how large are the lattice deformations
induced by our vector impurities. Let us evaluate the characteristic displacement u(a) at the
minimal distance from the impurity, using known parameters of STO, like the deformation
potential Dac ≈ 4 eV [27], Young modulus E ≈ 270 GPa and Poisson ratio ν = 0.24 [28]. To
describe the experimental data we used a fit parameter F ≈ 9.1 ·10−9 N. According to Eq. (2),
it corresponds to largest atomic displacement

u(a)
a
≈ 3%, (12)

where a = 0.39 nm is the STO lattice constant. Such a maximal displacement does not seem
to be unreasonable.
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5 Application to other materials

Now we extend our analysis for several other doped semiconductors with high dielectric con-
stants. Namely, we use our approach to describe electron mobility in a wide-gap semiconductor
perovskite Potassium Tantalate KTaO3, Lead Telluride PbTe - narrow gap semicoonductor, and
a zero-gap semiconductor - mixed-chalcogenide compound TlBiSSe; their dielectric constants
are roughly 4500, 1000 and 20 respectively.

Effective electron mass in PbTe depends on the electron density substantially [29], increas-
ing from 0.07m0 at n = 2 · 1017 cm−3 up to 0.5m0 at n = 1020 cm−3. The corresponding data
from Ref. [29] are illustrated in Fig. 4 in the Supplement for convenience. We employed in-
terpolation of these actual experimental data for the calculation of the mobility dependence
µ(n) in PbTe within our theory. Concerning effective masses for KTaO3 and TlBiSSe, we are
not aware of any data for m(n) dependencies, therefore we used the following constant values
for these masses: m= 0.5m0 [7] and m= 0.14m0 [1] respectively.

To calculate mobility µ(n) dependence according to our theoretical formula (10), we need
to use the data for the deformation potential Dac , Young modulus E and Poisson ratio ν, see
Eqs.(6) and (3). For KTaO3 we used E = 215 GPa and ν= 0.24, see Ref. [31,32]. We did not
find data for the KTO deformation potential and thus used, for general orientation, the value
Dac = 4eV known for STO, as these materials are rather similar. For PbTe we used E = 57.5 GPa
and ν= 0.26, see Ref. [33], and deformation potential Dac = 15 eV, see Ref. [34,35].

With the material parameters mentioned above, we are left with just single unknown pa-
rameter F , the magnitude of "vector force" related to impurities in KTO and PbTe. We fit the
values of this parameter to obtain best agreement between our theory and the data, the results
are shown in Fig. 3b). The overall agreement is clearly rather good, supporting the ubiquity
of the proposed mechanism.

Using the values of F equal from the fit, namely F = 2.6 · 10−9 N for KTO and
F = 5.8·10−10 N for PbTe, we estimate the analogues of Eq. (12), the largest relative lattice dis-
placements u(a)/a due to vector impurities. We found u(a)/a ≈ 5.5% for KTO
and u(a)/a ≈ 0.4% for PbTe. In addition, we present in Fig. 3b) the best fit for the µ(n)
dependence in TlBiSSe. In this case we did not found the data for deformation potential and
elastic modulus, thus we used for the fit the whole coefficient in front of n−2/3 dependence.

6 Conclusions

We developed a new theory of electron - impurity scattering in low-electron-density materials
with high dielectric constant. Low electron density makes it possible to vary it in a broad range,
by few orders of magnitude. The observed in many materials dependence of low-temperature
mobility on density, µ(n), could not find any explanation in terms of scattering on Coulomb or
short-range potentials. The notion of vector impurities we propose in this manuscript helps to
elucidate the origin of unusual type of scattering due to slow-decaying deformation potential.

In its simplest form, our theory predicts µ(n) ∝ n−2/3 which is not far from the data
on several low-density materials. Moreover, the account of the density-dependence effective
mass m(n) allows us to obtain theoretical results in a very good agreement with the data.
These results are provided in Fig. 3a) for the case of Oxygen-deficient Strontium Titanate, and
in Fig. 3b) for several other semiconductors: KTaO3, PbTe and TlBiSSe.

Still an open issue for our theory is related to Nb-substituted Strontium Titanate which
demonstrate similar µ(n) dependence at low temperatures: in this case it is not clear why
substitution of Sr atom by Nb produces vector impurity. We leave this problem for future
studies.
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A Collision Integral

Here we present the detailed evaluation of the collision integral, Eq. (5) in the main text. First,
we carry out a Fourier transformation for the potential expressed through the Eq. (6)

vk = 2πG

∫ ∞

0

dr

∫ π

0

F∥ cosθ eikr cosθ sinθdθ = 2πF∥

∫ ∞

0

dr

∫ 1

−1

teikr t d t

= 4πGi
(F,k)

k2
. (A.1)

Let us consider k = 1
ħh

�

p− p′
�

with the z axis oriented along p and for sake of simplicity we
recall that the investigated scattering process conserves energy, thus |p|= |p′|.

vp′p = 4πGiħh

�

F,p− p′
�

|p− p′|2
= 4πGiħh

F∥ (1− cosθ )− Fx sinθ cosφ − Fy sinθ sinφ

2p (1− cosθ )
, (A.2)

here the angles θ ,φ denote the orientation of the vector p′. Since we still have a freedom of
orienting x , y axes, we can Fy = 0:

vp′p =
2πGiħh

p

�

F∥ −
Fx sinθ cosφ
(1− cosθ )

�

. (A.3)

This expression is then plugged into the collision integral, yielding

Iimp = −
2πG2

ħh

�

∂ f
∂ ε
η(ε)
�

∑

imp

∫

�

F∥ −
Fx sinθ cosφ
(1− cosθ )

�2

×
�

E∥ (1− cosθ )− Ex sinθ cosφ − Ey sinθ sinφ
�

·
m sinθ dθ dφ

2πħh
, (A.4)

where we have already carried out the trivial integration of the δ function. The further inte-
gration over the angles leads to the equation (8) from the Main text.

B Effective Electron Mass in PbTe

As discussed in the main text, the effective electron mass in PbTe depends on the electron den-
sity considerably [29]: upon increasing concentration from n= 2·1017 cm−3 to n= 1020 cm−3

the electron mass enhances from 0.07m0 up to 0.5m0. In Fig. 4 we present the experimental
data from Ref. [29] as well as the interpolating function m(n) which we used to evaluate the
mobility.
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Figure 4: The effective mass of electrons as a function of the concentration for
PbTe. The orange squares showcase the experimental data [29], the green line
illustrates our interpolation employed in further calculations and the dashed blue
line approximates tha data with a scaling m/m0 ∼ αn1/3 with α≈ 1.1 · 10−7.
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