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Abstract

We show that a significant quantum gain corresponding to squeezed or over-squeezed
spin states can be obtained in multiparameter estimation by measuring the Hadamard
coefficients of a 1D or 2D signal. The physical platform we consider consists of two-
level atoms in an optical lattice in a squeezed-Mott configuration, or more generally by
correlated spins distributed in spatially separated modes. Our protocol requires the pos-
sibility to locally flip the spins, but relies on collective measurements. We give examples
of applications to scalar or vector field mapping and compressed sensing.
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1 Introduction

Precessing spins, or equivalently quantum systems in a superposition of two energy levels, are
precise atomic sensors, and a regular spatial distribution of two-level atoms in a 1D, 2D or 3D
optical lattice can be used to measure the local values of an extended field. A fundamental
source of noise in such a detector is the quantum projection noise which originates from the
non-commutativity of the three components of the spin 1/2 and which gives an uncertainty
on the direction of the spin whose precession angle one wants to measure.

The idea of this paper is to take advantage of quantum correlations between two-level
atoms in an optical lattice for multiparameter estimation, in particular for extended field mea-
surements. To this end, besides the regular arrangement of the atoms, which offers advantages
for atomic clocks [1, 2] and can be realized by means of optical tweezers or as a result of a
Mott transition in a Bose-Einstein condensate [3], one should create spin correlations among
the atoms. Two possible schemes, that directly yield the spin-squeezed state with one atom
per site, consist in (i) adiabatically raising a lattice in a two-component Bose-Enstein conden-
sate [4, 5] or (ii) entangling fermionic atoms located at the lattice sites via virtual tunneling
processes plus an external laser which imprints a site-dependent phase [6–8]. Similar config-
urations but with more than one spin on each site can be obtained by splitting a spin-squeezed
Bose-Einstein condensate into addressable modes [9, 10], or with atoms in a cavity where
cavity-mediated interactions [11] or non-local quantum non demolition measurements [12]
are used to entangle the modes. Using this last method, squeezing-enhanced distributed quan-
tum sensing with a few modes has been recently experimentally demonstrated [12].

To take advantage of the correlations, instead of measuring the local field with one spin in
each lattice site, we measure, by collective measurements involving all atoms,1 independent
linear combinations of the local fields corresponding to the Hadamard coefficients of the spa-
tial signal discretized on the lattice. The local fields are then deduced by the inverse Hadamard
transformation. For a given number of atoms and number of measurements, we then achieve
a quantum gain, i.e., a reduction of the statistical uncertainty on the measured field distribu-
tion below the standard quantum limit, tracing back to the quantum correlations between the
atoms. Throughout this article, the parameters are encoded in the system via local rotation
generators whose directions are chosen to be the same in all sites (see (3)). In the case of a
magnetic field, this is equivalent to measuring a component of the field in a chosen direction.
The vector case, of a field of unknown direction and modulus, is treated in Sec. 3.2.

Spatially distributed sensors have been theoretically studied in the context of quantum
multiparameter estimation, see for example [13–20] and references therein. Compared to
other multiparameter quantum metrology schemes that have been proposed [17,19], ours has
the advantage that a single collective measurement has to be performed in order to obtain
a given linear combination of the unknown parameters with quantum gain. Indeed, if we

1By collective measurement we mean measurement of one component of the collective spin operator (Ŝm⃗ intro-
duced after equation (3)), which implies that the same spin component is measured for each atom.
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assume that spin flips can be performed locally [21] to select the parameter’s combination,
all measurements in our protocol are collective.2 Collective measurements that are usually
performed in cold atoms experiments have the advantage that they do not need the spatial
resolution that would be required to perform measurements on individual atoms (i.e. local
measurements).

Compared to a "scanning microscope" approach where one moves a sensor formed by an
ensemble of atoms, e.g., a Bose-Einstein condensate, to probe the field locally at each site [22],
our scheme, with N atoms in spatially separated modes, for example in an optical lattice, to
estimate N parameters, gives up from the start a 1/

p
N factor on the standard deviation of the

estimators, but it offers the advantage of using spatially separated atoms, thus without inter-
action. By leaving the atoms in a fixed position rather than physically scanning the trapping
potential, we obtain a spatial resolution given by the wavelength of the optical lattice used
to trap the atoms. Another advantage of our setup is that it naturally allows for "compressed
sensing" by measuring only the first LH < N Hadamard coefficients of the discretized field on
the lattice, as we show in Sec. 4.

In the following, we develop our multiparameter estimation protocol and derive its quan-
tum gain (Sec. 2), we study the reconstruction of a scalar or a vector field in 1D (Sec. 3),
and finally, we combine our method with compressed sensing to reconstruct the field with a
reduced number of measurements (Sec. 4).

2 Quantum enhancement in distributed sensing with collective
measurements and local spin flips

We consider N spins 1/2 distributed in N spatially separated modes for the estimation of N
parameters θ⃗ = (θ1, ...,θN )T each affecting a given mode. We assume that we can manipulate
the spins locally, as we could do for atoms in an optical lattice using a microscope [21], and
perform collective measurements on the set of atoms. The quantum correlations between
the atoms that we aim to exploit are obtained through the collective one-axis-twisting (OAT)
Hamiltonian [23],

ĤOAT = ħhχ

�

∑

k

ŝk,z

�2

, (1)

where ˆ⃗sk = ˆ⃗σk/2, ˆ⃗σk is the vector of the Pauli matrices for the atom in the site k, by evolving for
a time t an initial coherent spin state (CSS) with all the spins polarized along the x direction

|ψ0〉= |x〉⊗N . (2)

2In multiparameter estimation theory, it is often the matter of estimating N parameters by means of repeated
measurements of N observables of the system starting from the same quantum state (the observables can possibly
be measured simultaneously in one realization of the experiment in case they commute). In this framework,
the covariance matrix of the estimators Σ and the quantum Fisher matrix (QFIM) F , which are related by the
multiparameter Cramér-Rao inequality [20], are usually introduced. However, as we show in section B.1, for a
one-axis-twisting squeezed state it is not possible to obtain a quantum gain in the estimation of each parameter
by this strategy. For a given quantum state, only one eigenvalue of F , corresponding to a particular combination
of the parameters shows a quantum advantage when all the others show a disadvantage. To obtain a quantum
advantage in another combination it is necessary to change the state. For the combination that shows a quantum
advantage, our scheme shows that it is sufficient to measure a single observable, which turns out to be a collective
observable.
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The parameters are then encoded on the state |ψt〉 = e−iĤOAT t/ħh|ψ0〉 through the unitary evo-
lution

Û(θ⃗ ) = e−i ˆ⃗Hn⃗·θ⃗ , (3)

generated by the observables ˆ⃗Hn⃗ = (ŝ1,n⃗, ..., ŝN ,n⃗)T with ŝk,n⃗ ≡ n⃗ · ˆ⃗sk, where n⃗ = (0, ny , nz)T

is a unit vector that we consider, without loss of generality, in the plane perpendicular to the
initial spin direction x . We consider an observable Ŝm⃗ that is linear in the components of the
collective spin Ŝm⃗ =

∑N
j=1 ŝ j,m⃗ such that {m⃗, n⃗, e⃗x} form an orthonormal basis. To first order in

all the θk near θk = 0, its average in the state Û(θ⃗ )|ψt〉 reads

〈Û†(θ⃗ )Ŝm⃗Û(θ⃗ )〉 ≈ −i〈[Ŝm⃗, ˆ⃗Hn⃗ · θ⃗]〉= −i
∑

l,k

θk〈[ŝl,m⃗, ŝk,n⃗]〉δlk = 〈ŝ1,x〉
∑

k

θk , (4)

where 〈...〉 denotes the average on the state |ψt〉 and we used the symmetry of the state.
By introducing the linear combination of the parameters Θ ≡

∑

k θk/N , equation (4) can be
written as

〈Û†(θ⃗ )Ŝm⃗Û(θ⃗ )〉 ≈ 〈Ŝx〉Θ . (5)

This shows that a linear observable in the collective spin components is only sensitive, to first
order, to the arithmetic mean Θ of the parameters θk. Using the single-parameter method of
moments, Θ can thus be estimated by comparing the average of µ independent measurements
of a linear collective spin observable S̄µm⃗ with its average value 〈Ŝm⃗〉 obtained theoretically or
from an experimental calibration as a function ofΘ. In the limitµ≫ 1, the method of moments
allows to estimate Θ with an uncertainty (∆Θ)2 = (∆Ŝm⃗)2/(µ|∂Θ〈Ŝm⃗〉|2) where ∂Θ ≡ d/dΘ.
Using the result (5), we obtain [24]

(∆Θ)2 =
1
µ

(∆Ŝm⃗)2

|〈Ŝx〉|2
. (6)

Since the goal is to estimate all the parameters θk (with k = 1, ..., N), N linearly independent
combinations of the θk must be measured. Let us now see how, in addition to the measurement
of the parameter’s average

∑

k θk/N explained above, we can measure other linear combina-
tions of the parameters. As we show in Appendix A, a rotation of the spin k of angle π around
x-axis before encoding the parameter θk followed by a second rotation of angle −π around
the same axis after encoding the parameter, is equivalent to reversing the sign of θk

eiπŝx e−iθ ŝn⃗ e−iπŝx = eiθ ŝn⃗ . (7)

Let us then consider the problem of estimating N parameters θ⃗ = (θ1, ...,θN ) encoded through
the unitary evolution (3), this time applying V̂ = e−i

∑

k αk ŝk,x and V̂ † before and after the
encoding of the parameters, where αk = (1 − εk)π/2 and εk = ±1. Using (7), this can be
represented by the unitary evolution

Û ′ = V̂ †e−i
∑

k θk ŝk,n⃗ V̂ =
∏

k

ei π2 (1−εk)ŝk,x e−iθk ŝk,n⃗ e−i π2 (1−εk)ŝk,x =
∏

k

e−iεkθk ŝk,n⃗ = e−i
∑

k θ
′
k ŝk,n⃗ , (8)

with θ ′k = εkθk, so that (8) describes the encoding of the N parameters θ⃗ ′ = (ε1θ1, ...,εNθN ),

Û ′ = V̂ †Û(θ⃗ )V̂ = Û(θ⃗ ′) = e−i ˆ⃗Hn⃗·θ⃗ ′ . (9)
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Using (9) and reasoning in the same way as to obtain (5), it can be shown that to first order
in the θ ′k in the vicinity of θ ′k = 0, the average of Ŝm⃗ in the state Û ′|ψt〉 varies as

〈Û ′†Ŝm⃗Û ′〉= 〈Ŝx〉
∑

k

εkθk

N
. (10)

This last equation generalizes the result (5) and shows that, using local spin flips and the
single-parameter estimation by the method of moments, the measurement of a collective spin
linear observable allows to estimate the linear combination of the parameters

Θ =
∑

k

εkθk/N , (11)

where εk = ±1 with the same uncertainty (6). Note that the same calibration curve can be
used for the estimation of all combinations of the parameters.

For a system in the initial CSS state, the uncertainty on the estimated combination Θ is lim-
ited by the projection noise given by (∆Θ)2SQL = 1/(µN) (standard quantum limit). In the state
|ψt〉, generated by the OAT dynamics at time t, it can reach a lower value (∆Θ)2 = ξ2/(µN)
where ξ−2 quantifies the quantum gain on the statistical error of the measurement. For a linear
(L) measurement in one component Ŝm⃗ of the collective spin, the quantum gain is limited by
ξ−2

L ≤ ξ
−2
L,best where equality is achieved for an optimal measurement direction m⃗= m⃗L,opt and

a spin squeezed state (SSS) prepared at the optimal time t = tL,best [23,25]. One possibility to
overcome the limit due to the measurement of an observable that is linear in the collective spin
components, is the measurement after interaction (MAI) technique which consists in adding a
second OAT evolution Ûτ = e−iĤOATτ/ħh, with τ = −t, after the encoding of the parameters (9)
and before the measurement of the linear observable Ŝm⃗ where m⃗ is in the yz-plane. This tech-
nique is equivalent to measuring a non-linear observable of the form X̂MAI = e−iχ tŜ2

z Ŝm⃗eiχ tŜ2
z .

It turns out that this measurement is optimal in the whole time range 1/N < χ t < 1/
p

N in
the large N limit [26,27]. Also in this case, to first order in the θ ′k in the vicinity of θ ′k = 0, the
average of the observable X̂MAI in the state Û ′|ψt〉 is

〈Û ′†X̂MAIÛ
′〉 ≈

¬�

1+ i ˆ⃗Hn⃗ · θ⃗ ′
�

e−iχ tŜ2
z Ŝm⃗eiχ tŜ2

z

�

1− i ˆ⃗Hn⃗ · θ⃗ ′
�¶

= −i
¬

[e−iχ tŜ2
z Ŝm⃗eiχ tŜ2

z , Ŝn⃗]
¶∑

k

εkθk

N
, (12)

where we used the symmetry of the state |ψt〉. Equation (12) shows that the MAI technique
allows the estimation of the linear combination Θ =

∑

k εkθk/N . In an estimation protocol
based on the method of moments, the uncertainty on this combination is given by [27]

(∆Θ)2 =
1
µ

N/4

|〈[eiχ tŜ2
z Ŝm⃗e−iχ tŜ2

z , Ŝn⃗]〉|2
. (13)

For a time χ tL,best < χ t ≤ 1/
p

N , the quantum gain associated with (13), with an optimal
choice of n⃗ and m⃗, is larger than the gain associated with a linear measurement ξ−2

MAI > ξ
−2
L,best

[27]. It reaches its maximum value ξ−2
MAI,best at an optimal time χ tMAI,best = 1/

p
N in the

large N limit [28].
Above, we have presented the strategy that measures linear combinations of the form

∑

k εkθk/N , with εk = ±1, of a set of parameters θk with significant quantum gain. We will
now show which combinations should be measured, or which choices for εk, in order to re-
construct the signal θ⃗ . A signal θ⃗ = (θ1, ...,θN )T with N = 2m, where m is an integer, can be
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decomposed in the basis of Walsh orthogonal functions: functions that take only the values ±1
represented in terms of a square matrix of order N called the Hadamard matrix Hm:

θk =
∑

j

[Hm]k jθ̃ j . (14)

The θ̃ j (for j = 1, ..., N) are the Hadamard coefficients associated with the signal θ⃗ , and the ma-
trix Hm, which satisfies the property |[Hm]k j| = 1/

p
N , is defined by recurrence with H0 = 1

and, for m> 0

Hm =
1
p

2

�

Hm−1 Hm−1
Hm−1 −Hm−1

�

. (15)

The jth Hadamard coefficient θ̃ j is written, as a function of θk, as

θ̃ j =
∑

k

[H−1
m ] jkθk . (16)

Comparing this last equation with (11) we see that for a suitable choice of εk = ±1 one obtains
p

NΘ = θ̃ , (17)

such that the combinations measured by our strategy are, up to a factor
p

N , the Hadamard
coefficients of the signal θ⃗ . Once these coefficients are measured independently and with the
same uncertainty, we can deduce the original signal using (14). All the measured parameters
θk thus have the same uncertainty

(∆θk)
2 = (∆θ̃k)

2 = N(∆Θ)2 =
ξ2

µ
∀ k . (18)

Unlike the estimation of a single parameter with the N-atom coherent spin state, the uncer-
tainty (18) on the parameters estimated by our strategy with the CSS state is independent of
the size N of the system. This can be explained by the fact that each parameter θk is locally
encoded on an individual atom. The quantum correlations between atoms generated by the
OAT dynamics allow us to introduce a dependence in the system size N of the uncertainties
(∆θk)2 through the parameter ξ. As we will show in Appendix B, this strategy can also be
understood in the framework of multiparameter estimation theory. The quantum metrological
gain associated with each parameter is then given, as in the single parameter case, by ξ−2.
The dependence of this parameter on N and χ t in the absence and presence of decoherence,
with a linear measurement or by the MAI technique, is studied in detail in Ref. [27]. The
question of the optimality of our strategy and a comparison with the quantum Fisher matrix
in the framework of the theory of multiparameter estimation are presented in the Appendix
B. In the following sections, we give two examples of the application of the method, to the
mapping of a scalar and vectorial one-dimensional field, and to compressed sensing.

3 Mapping of a one-dimensional field: simulation with N = 8

3.1 Scalar field

We give here an illustration of the application of our strategy to the measurement of a scalar
field θ (x) that varies along one direction of space. In our numerical simulation below, we
consider a field of the form

θ (x) = θ0 sin(x) , (19)

6
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that we discretize on N = 8 sites θ⃗ = (θ1, ...,θN ) with θi ≡ θ (x i), each site having as sen-
sor a two-level atom. We assume that the encoding of the θ⃗ parameters is done with the
ˆ⃗Hn⃗ = (ŝ1,n⃗, ..., ŝN ,n⃗)T generators, n⃗ being the optimal direction in the yz-plane, through the
unitary evolution (3). According to our protocol, to estimate the Hadamard coefficient θ̃ j af-
ter an evolution for a time t with the OAT Hamiltonian (1) of the initial CSS state (2), we
apply the unitary evolution

Û ′ = ei
∑

k αk ŝk,x e−i
∑

k θk ŝk,n⃗ e−i
∑

k αk ŝk,x with αk = (1− εk)
π

2
and εk =

p
N[H−1

3 ] jk (20)

and we measure, in the obtained state Û ′|ψt〉, the optimal observable X̂ , which could be
Ŝm⃗ or X̂MAI according to the used measurement protocol. For each θ̃ j with j = 1, ..., N , this
procedure is repeatedµ times. In the numerical simulation, the measurement resultsλ1, ...,λµ,
where λi is one of the eigenvalues of the measured observable, are obtained by sampling the
probability distribution

Pi = |〈λi|Û ′|ψt〉|2 , (21)

where |λi〉 is the eigenstate of X̂ associated with the eigenvalue λi . From these measurement
results, the statistical mean X̄µ =

∑

i λi/µ is calculated. Using the calibration curve Fig. 1(b)
which gives the theoretical mean of 〈X̂ 〉 as a function of Θ (10) or (12), the Hadamard co-
efficient θ̃ j =

p
NΘ is estimated using the value of Θ as the value for which 〈X̂ 〉 = X̄µ. The

statistical variance (∆θ̃ j)2µ
3 is calculated numerically by repeating the procedure for estimat-

ing θ̃ j several times. Thus, all Hadamard coefficients are measured and the parameters θk are
then deduced using (14). The scalar field (19) and its estimation with the initial state CSS,
the squeezed state SSS and the state generated at t = tMAI,best, where the measurement is
performed with the MAI technique, are shown in Fig. 1(a).

3.2 Vector field

Let us now consider the case of a vector field discretized at N = 8 sites as shown in Fig. 1(c),
whose unknown components θ⃗x , θ⃗y , θ⃗z , with θ⃗α = (θα,1, ...,θα,N )T for α= x , y, z, are encoded
on the atoms through the unitary evolution

Û = e−i( ˆ⃗Hx ·θ⃗x+
ˆ⃗H y ·θ⃗y+

ˆ⃗Hz ·θ⃗z) , (22)

which represents a generalization of (3) to encoding three parameters per mode. In multipa-
rameter estimation, the measurement of parameters generated by non-commuting Hamiltoni-
ans is known to be hard, in general, because of the incompatibility of the respective optimal
measurements [16,18,29]. This can be achieved with particular states where the expectation
value of all the generator commutators is zero [18]. Here, we avoid these complications by
estimating the three field components separately one after the other: first the spins are pre-
pared in a polarized state along the x direction and the measurement of the two components
of the field in the yz-plane is performed after the OAT evolution and the application of a state
rotation so as to align the optimal direction n⃗ with the z or y direction to measure θ⃗z or θ⃗y ,
and then the spins are polarized along the y direction to measure θ⃗x . The key point is that for
the measurement of a collective linear spin observable (which excludes the estimation based
on the measurement of the observable X̂MAI), the estimation of one of the field components is

3The index µ is made explicit here to remind that (∆θ̃ j)2µ is the variance of the parameter θ̃ j deduced from µ

measurements.
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Figure 1: Numerical simulation of the estimation of a 1-dimensional field with N = 8
atoms: (a) scalar field. The field (19) with θ0 = 0.02 is represented by the solid line,
and its reconstruction with µ = 103 measurements, for each of the eight Hadamard
coefficients, is represented by the symbols. The estimation is done with the spin
coherent state CSS (green), the spin squeezed state SSS (orange) and the state gen-
erated at the time tMAI,best of the OAT dynamics where the measurement is performed
with the MAI technique (red). The corresponding standard deviations (vertical lines)
are obtained here by repeating 500 times the estimation procedure for each θ̃ j and
they are in good agreement with the theoretical value (18). (b) calibration curves
used with the state CSS (left), the state SSS (middle), and the state generated at
tMAI,best (right). (c) and (d) vector field. The components (23) with θ0 = 0.02 are
represented by the solid lines, and their reconstruction with the state CSS (green)
and the state SSS (orange) for µ = 103 are represented by the symbols. The verti-
cal lines represent the corresponding standard deviations thus obtained by repeating
500 times the procedure of the estimation of each θ̃ j .

not affected by the presence of the other two orthogonal components, as shown in Appendix C.
In Fig. 1(d), we show the results of the estimation of the vectorial field with components

θα(x) = θ0 sin(x +ϕα) , for α= x , y, z and ϕx = 0, ϕy = π/2, ϕz = π . (23)

4 Quantum gain for compressed sensing of a two-dimensional
field (image)

In Sec. 2, we presented a strategy that allows us to measure a scalar signal θ⃗ = (θ1, ...,θN )T

through the direct estimation of the corresponding N Hadamard coefficients. The estimation
of each coefficient requires µ independent measurements. In this section, we will show, on
a concrete example, the effect of compressed sensing, i.e. the effect of measuring only the
first LH < N Hadamard coefficients of a signal of size N , the last N − LH Hadamard coeffi-
cients being taken as zero. This reduces the total number of independent measurements to
be performed from µN to µLH. Let us consider the signal 2D (the Barbara image) of size
N = 512 × 512 shown in Fig. 2 on the left. In the right part of the figure, the signal is re-
constructed with different states of the system of N atoms and for different values of LH. To
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Figure 2: Example compressed sensing with quantum gain: A signal 2D (the Barbara
image) of size N = 512×512 (left) is reconstructed (right) with µ= 10 independent
measurements for each of the first LH ≤ N Hadamard coefficients, the last N−LH co-
efficients being taken zero. The non-zero coefficeints are estimated with the coherent
spin state CSS (top), the squeezed spin state SSS obtained by OAT dynamics (1) in
the absence of decoherence (middle) and in the presence of dephasing decoherence
(25) with γ= 5χ (bottom), for LH = N = 512×512, LH = 128×128,64×64, 32×32,
16× 16 from left to right respectively.

mimic the experimental results, we generate each of the non-zero coefficients for j = 1, ..., LH
by sampling the probability distribution

P(x) =N e
−
(x−θ̃ j )

2

2(∆θ̃ j )2 , (24)

where N is a normalization constant, θ̃ j is the jth Hadamard coefficient of the original image
and∆θ̃ j is the corresponding uncertainty (18) for its estimation with a given quantum state of
the N spins. The first row corresponds to the CSS state (2) for which ξ= 1. In the second row,
the state SSS is used where we have calculated the exact value of ξ, for the considered atom
number. For the last row we have calculated the quantum gain in (18) corresponding to the
(SSS)deph state generated by the OAT evolution (1) in the presence of dephasing processes [27]

∂ ρ̂

∂ t
=

1
iħh
[ĤOAT, ρ̂] + γ

�

Ŝzρ̂Ŝz −
1
2
{Ŝ2

z , ρ̂}
�

, (25)

for γ/χ = 5. Comparing the images obtained by the SSS state with those obtained with the
uncorrelated CSS state, we notice that the gain due to quantum correlations is significant even
with LH = 32×32 (i.e. LH ≈ 3.9×10−3N), and in the presence of decoherence. In Fig. 3, we
show the results of the estimation and compression of a small signal, image of size 32× 32.
Also in this case, the results show a significant gain due to quantum correlations. For the
results in the presence of decoherence we used the analytical formula (9) and Appendix D of
Ref. [27] giving the quantum gain obtained with a OAT state in the presence of a dephasing
process (25). The scaling laws of the quantum gain as a function of N , in the absence and
presence of decoherence, are given in the same reference [27]. A comparison between the
quantum gain achieved in our strategy with the maximum quantum gain given by the largest
eigenvalue of the quantum Fisher information matrix is shown in Fig. 4.
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Figure 3: Example compressed sensing (small image) with quantum gain: A signal
2D (part of the Barbara image) of size N = 32 × 32 (left) is reconstructed (right)
with µ = 10 independent measurements for each of the first LH ≤ N Hadamard
coefficients, the last N − LH coefficients being taken zero. The non-zero coefficeints
are estimated with the state CSS (top), the state SSS in the absence of decoher-
ence (middle) and in the presence of decoherence (25) with γ = χ (bottom), for
LH = N = 32× 32, LH = 16× 16, 8× 8 from left to right respectively.

5 Conclusions

We have proposed a multiparameter estimation method that uses two-level atoms trapped in an
optical lattice, which share internal-state quantum correlations generated by a one-axis twist-
ing collective interaction Hamiltonian. Such a system can be obtained, for example, by adia-
batically raising an optical lattice in an interacting two-component condensate (spin-squeezed
Mott state) [4, 5] or with fermionic atoms in a Mott-configuration in a lattice in the presence
of an external laser which imprints a position-dependent phase to the atoms [6–8]. The atoms
are used to measure the set of values that takes a field at the location of the different sites.
The central idea of our method is that, in order to take advantage of the correlations between
atoms, we measure collective quantities, the Hadamard coefficients of the signal, from which
we deduce the local parameters by inverse Hadamard transformation. Although we consid-
ered the case of one atom per site, our results can be easily generalized to the case of N
non-interacting atoms distributed on M sites with N/M atoms per site. Configurations of this
type can be realized by splitting a previously spin-squeezed Bose-Einstein condensate [9, 10]
or with cold atoms in a cavity, where cavity-mediated interactions [11] or non-local quantum
non demolition measurements [12] are used to entangle the atoms in the different modes.
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A Change of sign of a local parameter by spin flip

In this appendix, we show that a local rotation of angle π around the axis x of a spin followed
by the encoding of a parameter θ by the generator ŝn⃗ where n⃗ is in the yz-plane and another
rotation of angle −π around x , is equivalent to reverse the sign of the encoded parameter θ .
We have

eiπŝx e−iθ ŝn⃗ e−iπŝx =

 

∑

j

(iπ) j

j!
ŝ j

x

!

�

∑

k

(−iθ )k

k!
ŝk
n⃗

��

∑

l

(−iπ)l

l!
ŝl

x

�

, (A.1)

and

∑

k

(−iθ )k

k!
ŝk
n⃗ =

∑

p

(−iθ )2p

(2p)!
ŝ2p
n⃗ +

∑

p

(−iθ )2p+1

(2p+ 1)!
ŝ2p+1
n⃗

=
∑

p

(−1)p
(θ/2)2p

(2p)!
(2ŝn⃗)

2p − 2iŝn⃗

∑

p

(−1)p
(θ/2)2p+1

(2p+ 1)!
(2ŝn⃗)

2p

= cos
�

θ

2

�

1− 2i sin
�

θ

2

�

ŝn⃗ , (A.2)

where we used (2ŝn⃗)2 = σ̂2
n⃗ = 1. Replacing (A.2) in (A.1) and simplifying we find

eiπŝx e−iθ ŝn⃗ e−iπŝx =
�

cos
�

θ

2

�

1− 8i sin
�

θ

2

�

ŝx ŝn⃗ŝx

�

=
�

cos
�

θ

2

�

1+ 2i sin
�

θ

2

�

ŝn⃗

�

= eiθ ŝn⃗ , (A.3)

where we used 8ŝx ŝn⃗ŝx = σ̂x σ̂n⃗σ̂x = −σ̂n⃗ = −2ŝn⃗, which can be demonstrated as follows:

σ̂x σ̂n⃗σ̂x = σ̂n⃗ + σ̂x[σ̂n⃗, σ̂x] = σ̂n⃗ + [σ̂x , σ̂n⃗]σ̂x , (A.4)
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so we deduce

σ̂x σ̂n⃗σ̂x = σ̂n⃗ +
1
2
[σ̂x , [σ̂n⃗, σ̂x]]

= σ̂n⃗ +
1
2
[σ̂x , [(nyσ̂y + nzσ̂z), σ̂x]]

= σ̂n⃗ +
1
2
[σ̂x , ny[σ̂y , σ̂x] + nz[σ̂z , σ̂x]]

= σ̂n⃗ − i
�

ny[σ̂x , σ̂z]− nz[σ̂x , σ̂y]
�

= σ̂n⃗ − 2
�

nyσ̂y + nzσ̂z

�

= −σ̂n⃗ . (A.5)

Equation (A.3) shows that we can change the sign of an encoded parameter θ by a rotation
of angle π around the x axis before encoding θ and another rotation of angle −π around the
same x axis after encoding the parameter.

B Reformulation of our protocol within the method of moments
for multiparameter estimation

B.1 Quantum Fisher information matrix and measurement optimality

In this section we study the optimality of our strategy in the absence and presence of decoher-
ence. For this purpose, we introduce the quantum Fisher information matrix QFIM F which
gives, in a multi-parameter estimation protocol, the limit in precision of the estimation of all
parameters. In particular, N parameters θ⃗ = (θ1, ...,θN )T , encoded on a spin state |ψ〉 via the

generators ˆ⃗H = (Ĥ1, ...., ĤN )T , are estimated from the results of µ independent measurements
of N observables, with the covariance matrix Σ whose elements are Σkl = Cov(θk,θl). The
matrix Σ satisfies the Cramér-Rao inequality

Σ≥
F−1

µ
. (B.1)

The calculation of the quantum Fisher information matrix F thus allows us to evaluate the
quality of the estimation strategy proposed in this paper. In the case of a pure state, such as
the state prepared by the OAT dynamics in absence of noise, the QFIM is given by

Fkl = 4Cov(Ĥk, Ĥl) . (B.2)

For parameters θ⃗ = (θ1, ...,θN )T encoded on a OAT state |ψt〉 via unitary evolution (3), with
Ĥk = ŝk,n⃗, the QFIM elements are given, to first order in all θk close to θk = 0, as a function
of n⃗ by

Fkk = 4(∆ŝk,n⃗)
2 = 1 ∀ k ,

Fkl = 4Cov(ŝ1,n⃗, ŝ2,n⃗) =
4(∆Ŝn⃗)2

N(N − 1)
−

1
N − 1

∀ k, l ̸= k .

By calculating the QFIM spectrum we obtain two different eigenvalues: λmax with multiplicity
g = 1, where the corresponding eigenvector is λmax = (1, ..., 1)T/

p
N , and λmin with multi-

plicity g = N − 1

λmax = 1+ 4(N − 1)Cov(ŝ1,n⃗, ŝ2,n⃗) =
4
N
(∆Ŝn⃗)

2 , (B.3)

λmin = 1− 4Cov(ŝ1,n⃗, ŝ2,n⃗) =
1

N − 1
(N −λmax) . (B.4)
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Figure 4: Metrological gain ξ−2
L on the estimation of each parameter combination

associated with a linear measurement, in the absence (solid orange) and in the pres-
ence of decoherence described by the equation (25) with γ = χ (dashed orange) as
a function of time compared to the optimal gain ξ−2

F associated with the maximum
eigenvalue of the quantum Fisher information matrix (solid green) for N = 103. The
vertical lines represent the optimal squeezing times.

With the direction of rotation n⃗ chosen to maximize λmax, we find λmax ≥ 1 and λmin ≤ 1.
This shows that a state generated by the OAT dynamics can only reduce the variance of the
combination of parameters θ̃ = λ⃗max · θ⃗ with ξ2

F/µ ≤ (∆θ̃ )
2 ≤ 1/µ where ξ2

F = 1/λmax. As
explained in Sec. 2, the estimation of other combinations is possible via the unitary evolution

(9). This is equivalent to applying to ˆ⃗H the unitary transformation J = diag(ε1, ...,εN ) with
εk = ±1. The quantum Fisher information matrix becomes in this case

F ′ = JFJ T , (B.5)

where we used Cov((Jĥ)k, (Jĥ)l) =
∑

i j JkiJl jCov(Ĥi , Ĥ j). As JJ T = J T J = 1, the QFIM spec-

trum is invariant under the transformation (B.5) and the eigenvector λ⃗′max of F ′ associated to
the eigenvalue λmax is given by

λ⃗′max = J λ⃗max . (B.6)

By changing the εk in J we can therefore change the optimal combination θ̃ = (J λ⃗max)·θ⃗ . Thus
we can independently estimate N linear combinations of θ̃ with a significant quantum gain.
To measure the optimality of the strategy of this paper, we compare in Fig. 4. the optimal
gain ξ−2

F , associated with the Fisher information F optimized on n⃗, to the quantum gains
associated to the OAT squeezed states (for linear measurement) in the absence and presence
of decoherence (25).

B.2 Multiparameter method of moments and optimal observable

The problem studied in our work can also be formulated within the framework of multiparam-
eter estimation theory. Here N parameters θ⃗ ′ = (ε1θ1, ...,εNθN )T , with ε j = ±1, are encoded

by the generators ˆ⃗Hn⃗ = (ŝ1,n⃗, ..., ŝN ,n⃗)T on the state |ψt〉 prepared by OAT dynamics for a time
t from CSS state (2) through the unitary evolution (3)

Û(θ⃗ ) = e−i ˆ⃗Hn⃗·θ⃗ ′ . (B.7)
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A change of basis of parameters ϑ⃗ = Pθ⃗ ′, with PPT = PT P = 1, allows to rewrite this last
equation as

Û(ϑ⃗) = e−i ˆ⃗Gn⃗·ϑ⃗ with ˆ⃗Gn⃗ = P ˆ⃗Hn⃗ , (B.8)

that represents the encoding of N parameters ϑ⃗ generated by observables ˆ⃗Gn⃗. For estimating
ϑ⃗, one can use multiparameter method of moments [17]where ϑ⃗ are estimated from the statis-
tical means ⃗̄X (µ) = (X̄ (µ)1 , ..., X̄ (µ)N )

T , results of µ independent measurements of N observables
ˆ⃗X = (X̂1, ..., X̂N )T as the values for which

〈Û†(ϑ⃗)X̂kÛ(ϑ⃗)〉= X̄ (µ)k , k = 1, ..., N . (B.9)

For µ≫ 1, this method allows us to estimate the ϑ⃗ with an estimator covariance matrix

Σ= (µM[|ψt〉,
ˆ⃗Gn⃗, ˆ⃗X ])−1

= (µC[|ψt〉,
ˆ⃗Gn⃗, ˆ⃗X ]T Γ [|ψt〉, ˆ⃗X ]−1C[|ψt〉,

ˆ⃗Gn⃗, ˆ⃗X ])−1 , (B.10)

where we have introduced the commutator matrix C[|ψt〉,
ˆ⃗Gn⃗, ˆ⃗X ]kl = −i〈[X̂k, Ĝl,n⃗]〉 and the

covariance matrix Γ [|ψt〉, ˆ⃗X ] = Cov(X̂k, X̂ l). By choosing the observables ˆ⃗X = ˆ⃗X m⃗ =
p

N P ˆ⃗Hm⃗,
with m⃗ such that {m⃗, n⃗, e⃗x} form an orthonormal basis, the commutator matrix is given by

C[|ψt〉,
ˆ⃗Gn⃗, ˆ⃗X m⃗] =

p
N PC[|ψt〉, ˆ⃗Hn⃗, ˆ⃗Hm⃗]P

T =
p

N〈ŝ1,x〉1 , (B.11)

where we used

C[|ψt〉, ˆ⃗Hn⃗, ˆ⃗Hm⃗]kl = −i〈[ŝk,m⃗, ŝl,n⃗]〉= 〈ŝ1,x〉δkl (B.12)

and the orthogonality of P. Since the commutator matrix is diagonal, the system of equations
(B.9) is decoupled, and the parameter ϑk can be estimated from the results of µ independent
measurements of the observable X̂k with, for µ≫ 1, the uncertainty

(∆ϑk)
2 = Σkk =

1
µ

(∆X̂k)2

N |〈ŝ1,x〉|2
. (B.13)

For a given k (e.g. k = 1), we choose P so that X̂k =
p

N
∑

l Pkl ŝl,m⃗ =
∑

l ŝl,m⃗ = Ŝm⃗, that
is to say Pkl = 1/

p
N for all l. With this choice of P and according to equation (B.13), the

combination of parameters ϑk =
∑

l εlθl/
p

N is estimated with the uncertainty

(∆ϑk)
2 =

1
µ

(∆Ŝm⃗)2

N |〈ŝ1,x〉|2
=
ξ2

L

µ
. (B.14)

This last equation is equivalent to equation (18) in the case of the measurement of a linear
collective spin observable and ϑk is a Hadamard coefficient. Let us now consider the case of a
measurement with the MAI technique, where the OAT evolution Ûτ = e−iχτŜ2

z with τ = −t is

applied to the system before the measurement of the N observables ˆ⃗X m⃗, which is equivalent
to measuring the observables

ˆ⃗XMAI = e−iχ tŜ2
z ˆ⃗X m⃗eiχ tŜ2

z =
p

N P(e−iχ tŜ2
z ŝ1,m⃗eiχ tŜ2

z , ..., e−iχ tŜ2
z ŝN ,m⃗eiχ tŜ2

z )T . (B.15)

The commutator matrix in this case is written as

C
�

|ψt〉,
ˆ⃗Gn⃗, ˆ⃗XMAI

�

=
p

N PC
�

|ψt〉, ˆ⃗Hn⃗, e−iχ tŜ2
z ˆ⃗Hm⃗eiχ tŜ2

z

�

PT , (B.16)
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with

C
�

|ψt〉, ˆ⃗Hn⃗, e−iχ tŜ2
z ˆ⃗Hm⃗eiχ tŜ2

z

�

kl
= −i

¬

[e−iχ tŜ2
z ŝk,m⃗eiχ tŜ2

z , ŝl,n⃗]
¶

= −i
¬

[e−iχ tŜ2
z ŝ1,m⃗eiχ tŜ2

z , ŝ1,n⃗]
¶

δkl

− i
¬

[e−iχ tŜ2
z ŝ1,m⃗eiχ tŜ2

z , ŝ2,n⃗]
¶

(1−δkl) . (B.17)

By looking for the matrix P that diagonalizes C[|ψt〉,
ˆ⃗Gn⃗, ˆ⃗XMAI], we realize that for the k cor-

responding to the maximum eigenvalue

C
�

|ψt〉,
ˆ⃗Gn⃗, ˆ⃗XMAI

�max

kk
= −i

¬

[e−iχ tŜ2
z Ŝm⃗eiχ tŜ2

z , Ŝn⃗]
¶

p
N

, (B.18)

one has Pkl = 1/
p

N for all l. The measurement of:

(X̂MAI)k =
p

N
∑

l

Pkl e
−iχ tŜ2

z ŝl,m⃗eiχ tŜ2
z = e−iχ tŜ2

z Ŝm⃗eiχ tŜ2
z ,

thus allows to estimate the combination of the parameters ϑk =
∑

l Pklεlθl =
∑

l εlθl/
p

N
with the uncertainty

(∆ϑk)
2 =

1
µ

(∆X̂MAI)2

|〈[e−iχ tŜ2
z Ŝm⃗eiχ tŜ2

z , Ŝn⃗]〉|2
=

1
µ

N/4

|〈[e−iχ tŜ2
z Ŝm⃗eiχ tŜ2

z , Ŝn⃗]〉|2
=
ξ2

MAI

µ
, (B.19)

which is exactly the uncertainty (18) in the case of a MAI measurement.

C Sequential measurement of the three components of a vector
field

Here, we show how to estimate the three components θ⃗x , θ⃗y and θ⃗z of a vector field. The
encoding of these components, on the state |ψt〉 after evolution with OAT, is done through the
unitary evolution

Û = e−i
�

θ⃗x · ˆ⃗Hx+θ⃗y · ˆ⃗H y+θ⃗z · ˆ⃗Hz

�

. (C.1)

In the vicinity of θ⃗x = 0⃗, θ⃗y = 0⃗ and θ⃗z = 0⃗, the average of a linear collective spin observable
Ŝr⃗ , with r⃗ = e⃗y or r⃗ = e⃗z , in the state Û |ψt〉 is written as

〈Û†Ŝr⃗ Û〉 ≈ −i〈[Ŝr⃗ , θ⃗x · ˆ⃗Hx + θ⃗y · ˆ⃗H y + θ⃗z · ˆ⃗Hz]〉

= −i

 

∑

k, j

θx ,k〈[ŝr⃗, j , ŝx ,k]〉+
∑

k, j

θy,k〈[ŝr⃗, j , ŝy,k]〉+
∑

k, j

θz,k〈[ŝr⃗, j , ŝz,k]〉

!

= −i

 

∑

k, j

θy,k〈[ŝr⃗, j , ŝy,k]〉+
∑

k, j

θz,k〈[ŝr⃗, j , ŝz,k]〉

!

=

¨

〈Ŝx〉
�∑

k θy,k/N
�

, if r⃗ = e⃗z ,

〈Ŝx〉
�∑

k θz,k/N
�

, if r⃗ = e⃗y
. (C.2)

As the average of the collective spin observable Ŝr⃗ depends only on one component of the
vector field, θ⃗y or θ⃗z according to the choice of r⃗, both components can be estimated separately.
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By rotating the state |ψt〉 in order to polarize all spins along the y direction using the rotation
|ψ′t〉 = e−i(π/2)Ŝz |ψt〉, the average of Ŝz under the evolution (C.1), in the vicinity of θ⃗x = 0⃗,
θ⃗y = 0⃗ and θ⃗z = 0⃗, is given by

〈ψ′t |Û
†Ŝz Û |ψ′t〉 ≈ −i

∑

k, j

θx ,k〈ψ′t |[ŝz, j , ŝx ,k]|ψ′t〉

= 〈ψ′t |Ŝy |ψ′t〉

�

∑

k

θx ,k/N

�

= 〈Ŝx〉

�

∑

k

θx ,k/N

�

. (C.3)

The measurement of Ŝz in this case allows us to estimate the θ⃗x component of the field. Thus,
we measure a vector field.
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