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Abstract

Quantum Chemistry and Physics have been pinpointed as killer applications for quan-
tum computers, and quantum algorithms have been designed to solve the Schrödinger
equation with the wavefunction formalism. It is yet limited to small systems, as their
size is dictated by the number of qubits available. Computations on large systems rely
mainly on mean-field-type approaches such as density functional theory, for which no
quantum advantage has been envisioned so far. In this work, we question this a pri-
ori by proposing a counter-intuitive mapping from the non-interacting to an auxiliary
interacting Hamiltonian that may provide the desired advantage.
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1 Introduction

Quantum computers have shown promises to solve specific problems that are currently in-
tractable on classical computers, but they are still in their infancy to solve problems of in-
dustrial interest faster than classical computers [1, 2]. One of the nearest-term application
of quantum computers is quantum chemistry (see Refs. [3–7] and references therein), where
the focus is on wavefunction theory (WFT) that targets a numerically exact solution of the
electronic structure problem. While quantum phase estimation (QPE) algorithms are in prin-
ciple capable of solving the problem in its entirety [8–12], the required circuit-depth precludes
their application in the noisy intermediate-scale quantum (NISQ) era [13]. More efficient algo-
rithms have therefore been developed such as the quantum stochastic drift protocol [14], or the
direct simulation of the Hamiltonian using linear combination of unitaries and the qubitization
formalism [15–18]. More adapted to the NISQ era, several variational quantum algorithms
(hybrid quantum-classical) have been specifically designed to prepare ground states [19–23]
and, more recently, excited states [24–26], and to calculate atomic forces and molecular prop-
erties [27–30].

However, despite the exponential speed-up announced by quantum computers, it remains
unclear when practical quantum advantage will really be met in practice, and expecting any
high impact applications in a near future is difficult [31–34]. Indeed, the applications of quan-
tum algorithms for quantum chemistry remain limited in terms of size of affordable systems,
as the size of the system dictates the number of required qubits. Even though the number of
qubits on quantum devices is expected to increase rapidly, stable machines able to tackle real
quantum chemistry systems are not expected in the next few years. Within noisy quantum
computers of the NISQ era, a high precision outcome is illusive and the quest for chemical
precision remains a long journey for relevant applications of high societal and industrial im-
pact.

Currently, classical computations on large systems from chemistry, condensed matter
physic, and even biology, rely mainly on density functional theory (DFT) [35, 36], for which
no quantum advantage is a priori expected as it only scales cubically with respect to the sys-
tem size. Instead, recent works focus on the challenging construction of accurate exchange-
correlation (XC) density functionals – for which the precise determination is QMA-hard [37] –
using matrix product states, machine learning and quantum computers [38–43]. Solving the
Kohn–Sham potential inversion problem where the density of the time-evolved many-body sys-
tem is measured on a quantum computer has also been investigated [44–46]. Other interesting
works have generalized the Hohenberg–Kohn and Runge–Gross theorems of DFT and its time-
dependent version, respectively, to qubit Hamiltonians, thus opening the possibility to approx-
imate many-body observables in quantum computing as single-qubit quantitities functionals
of the density [47, 48]. But none of the aforementioned works aim to solve the Kohn–Sham
(KS) non-interacting problem on a quantum computer. Only few attempts have been done
to perform mean-field approximations on quantum computers, such as Hartree–Fock with the
experimental milestone on a 12 qubits platform [49], or the calculation of the one-particle
density matrix on quantum annealers [50]. In both cases, no pratical quantum advantage has
been envisioned. Hence, DFT remains applied on classical computers, although sometimes
combined with WFT on quantum computers by using embedding strategies [6,51,52].

In this work, we investigate the benefit of using digital quantum computers to scale up
mean-field-type methods such as DFT. A possible quantum advantage is discussed in terms
of a counter-intuitive mapping between the KS Hamiltonian and an auxiliary interacting one,
expressed in the computational basis, as opposed to what has been done for decades. With
such new encoding, mean-field type Hamiltonians can, in some ideal cases, be solved with
an exponential speed-up on quantum computers, in analogy with interacting Hamiltonians.
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Besides, DFT has its own level of approximations that leads to errors of orders of magnitudes
higher than chemical accuracy. As such, one can accept errors that are of the order of the
DFT approximations instead of chemical accuracy, and less efforts in applying quantum error
correction codes and error mitigation techniques should be required. Hence, the noise of quan-
tum computers is expected to play a less significant impact on the outcome of the calculation.
This is a key observation that could bring DFT to center stage as the nearest-term application
of quantum computers for molecular, material and biological science.

2 A quantum algorithm for Density Functional Theory

The undeniable success of DFT relies on the transformation of the complex many-body quan-
tum electronic problem into an effective and electronic density-dependent one-body prob-
lem [35,36]. More precisely, the ground-state energy and ground-state electronic density of a
given complex system can be obtained exactly by solving the KS equation [36]:

�

T̂ + v̂KS[n]
� �

�ΦKS
�

= EKS
�

�ΦKS
�

, (1)

where T̂ is the kinetic energy operator,
�

�ΦKS
�

is a single Slater determinant and

v̂KS[n] = v̂ext + v̂H[n] + v̂xc[n] , (2)

is the density-dependent KS potential operator. It contains the external potential vext(r⃗),
i.e. the ion-electron interaction, the trivial Hartree potential vH[n](r⃗) and finally the so-called
exchange and correlation (XC) potential vxc[n](r⃗). The latter contains all non-trivial contri-
butions arising from the electron-electron interaction.
The KS equation (1) is complemented by the self-consistent condition to obtain the electronic
density

n(r⃗) =
Nocc
∑

k=1

〈r⃗|ϕk〉〈ϕk|r⃗〉 , (3)

where {ϕk(r⃗)} are the KS orbitals in
�

�ΦKS
�

, Nocc denotes the number of occupied spin-orbitals
and r⃗ the position vector. The electronic density is then used to compute a new KS potential, so
that Eqs. (1) and (3) are self-consistently and iteratively solved until convergence is reached.
Providing the exact XC functional leads to equivalent electronic density between the non-
interacting auxiliary KS system and the ground state of the physical system n0,
i.e. nΦ

KS
(r⃗) = n0(r⃗). The exact ground-state energy of the physical system is also recovered as

follows [36]:

E0 = EKS+ EHxc[n
ΦKS
]−
∫

vHxc[nΦ
KS
](r⃗)nΦ

KS
(r⃗)dr⃗ ,

(4)

where EKS =
∑Nocc

k=1 ϵk and ϵk denotes the k-th KS orbital energy. Despite plenty of different
flavors of approximations, the exact XC functional is in general not known thus leading to
subsequent density- and functional-driven errors [53].

2.1 From Kohn–Sham to auxiliary interacting Hamiltonian mapping

The key challenge under any quantum algorithm is to encode the problem in a comprehensive
language for the quantum computer. In the context of WFT, the encoding of an interacting
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system described in a basis set of N spin-orbitals generally requires a quantum computer with
N qubits (for instance using the Jordan–Wigner (JW) [54] or Bravyi–Kitaev [55] transforma-
tions). It implies a one-to-one correspondence between the state of the qubits and the occu-
pation of the spin-orbitals. More precisely, a qubit in state |0〉 (respectively |1〉) is interpreted
as an empty (respectively occupied) spin-orbital. Hence, each of the 2N bitstrings generated
by the N qubits corresponds to a given electronic configuration (Slater determinant) in the
entire Fock space. Although the Hilbert space of interest of a given electronic structure prob-
lem is usually much smaller than the entire Fock space – i.e., considering a fixed number of
electron and spin number – this encoding proves itself very efficient for an interacting system.
However, it seems counter-productive for a non-interacting system which can be described
by a single Slater determinant. In practice, the non-interacting Hamiltonian is expressed in
the mono-particle basis of dimension N for which diagonalization typically scales as O(N3),
instead of the many-body basis that is infamous for its exponential scaling.

Considering the non-interacting KS Hamiltonian (1) described in finite basis-set {χi(r⃗)}
composed of N spin-orbitals, it reads in second quantization:

ĥKS =
N
∑

i=1, j=1

hKS
i j

�

ĉ†
i ĉ j + h.c.
�

, (5)

where ĉ†
i (ĉi) refers to the creation (annihilation) operator of an electron in the spin-orbital

χi(r⃗), respectively. hKS
i j contains both the kinetic contributions and the KS potential. In the fol-

lowing we propose a transformation to solve this problem with only M =O(log2 N) qubits by
mapping ĥKS of dimension N×N onto a M -qubit system in the spirit of the Harrow–Hassidim–
Lloyd algorithm, although the problems to solve are completely different [56]. In complete
analogy with the usual encoding of an interacting problem onto a quantum computer, this M -
qubit system can be interpreted as an auxiliary system of M pseudo spin-orbitals. This means
that each state of the computational basis denoted by {|I〉 = |ηI

M , . . . ,ηI
1〉} corresponds to a

configuration where each pseudo spin-orbital µ is either empty (ηI
µ = 0) or occupied (ηI

µ = 1).

This leads to a direct mapping between the non-interacting Hamiltonian ĥKS to an auxiliary
interacting Hamiltonian Ĥaux,

ĥKS→ Ĥaux =
2M−1
∑

I=0,J=0

Haux
I J |I〉〈J | , (6)

where I and J are the integers corresponding to the binary strings |I〉 and |J〉 such that
Haux

I J = h(I+1)(J+1). In other words, each spin-orbital of the KS computational basis-set |χi〉
is associated to a binary string |I〉 of the Fock-space of Haux, i.e. a configuration of the auxil-
iary interacting problem. Note that this mapping is actually arbitrary and that one can map
any computational basis state to any orbital. Hence, depending on the architecture of the
quantum device, one mapping could be more appropriate than another to reduce the circuit
complexity and mitigate the effect of noise.

Let us now introduce the JW transformation for qubit-based-excitation creation (annihila-
tion) operators b̂†

µ (b̂µ) in the auxiliary orbital µ, for 1≤ µ≤ M ,

b̂µ = I⊗µ−1 ⊗ S− ⊗ I⊗M−µ , with S− =
1
2
(X + iY ) , (7)

b̂†
µ = I⊗µ−1 ⊗ S+ ⊗ I⊗M−µ , with S+ =

1
2
(X − iY ) , (8)

where X , Y and Z are the usual Pauli matrices and I is the identity matrix. Interestingly, the
creation and annihilation operators of our fictitious interacting system do not have to fulfil
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Figure 1: Computational cost to extract the ground-state energy for full configuration
interaction (FCI) and DFT, with or without the use of quantum computers. Q-FCI and
Q-DFT refer to the analog of FCI and DFT on quantum computers, respectively.

anticommutation rules, in contrast to the original system composed of fermions. Hence, the
JW transformation leads to local operations without the usual large string of Z Pauli matrices,
which leads to non-local operations. Note that other transformations such as Bravyi–Kitaev
could also be used [55]. The projector in Eq. (6) can be written in terms of these qubit-based
excitation operators as follows:

|I〉〈J |=
M
∏

µ=1

�

b̂µ b̂†
µ

�(1−ηI
µ)(1−η

J
µ) �b̂µ
�(1−ηI

µ)η
J
µ
�

b̂†
µ

�ηI
µ(1−η

J
µ)
�

b̂†
µ b̂µ
�ηI
µη

J
µ . (9)

The Hamiltonian in Eq. (6) is now written as a linear combination of Pauli strings, which ex-
pectation values can be measured on a quantum computer. As readily seen in Eqs. (3) and (4),
the occupied KS orbitals and associated energies are required to compute the electronic density
and the ground-state energy, respectively. At each iteration of the KS self-consistent procedure,
they are solutions of the Schrödinger equation

Ĥaux |ϕk〉= ϵk |ϕk〉 , (10)

for which quantum computers are originally hoped to provide an exponential speed-up com-
pared to classical computers.

In Fig. 1, we represent the possible improvement in computational cost by using the KSDFT
formalism together with quantum computers. The full configuration interaction (FCI) method
– equivalent to exact diagonalization – scales exponentially with respect to the system size, and
an exponential speed-up is given by the KSDFT formalism or by employing quantum computers
(Q-FCI). If KSDFT can also benefit from quantum computers (Q-DFT), one could scale up the
whole range of applications of quantum chemistry. Note that each method in Fig. 1 is in
principle exact, although approximate functionals are used in practice in DFT.

2.2 Kohn–Sham self-consistent conditions on a quantum device

Given the KS equation mapped onto an auxiliary interacting Hamiltonian in Eq. (10), we
propose to use a NISQ-adapted variational quantum eigensolver (VQE) [19,20] to efficiently
extract the occupied KS orbitals energies on quantum computers. Because in our context, one
has to solve Eq. (10) for the first Nocc lowest-energy states, we naturally turn to the ensemble
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extension of VQE (ensemble-VQE) [25, 26]. Within ensemble-VQE, we consider an ensemble
of Nocc states,

|ϕk(θ )〉= Û(θ ) |φk〉 , 1≤ k ≤ Nocc , (11)

where {|φk〉} is an orthonormal basis issued from the computational basis and simple to pre-
pare. Û(θ ) is usually referred to the circuit ansatz, i.e. a unitary transformation composed of
θ -parametrized quantum gates. The set of parameters θ are classicaly optimized by minimiz-
ing the ensemble energy,

Eens =min
θ

¨Nocc
∑

k=1

wk 〈ϕk(θ )| Ĥaux |ϕk(θ )〉

«

. (12)

Considering w1 > . . .> wk > . . .> wNocc
, it results that the optimized states are by construction

approaching the KS orbitals, |ϕk(θ ∗)〉 ≃ |ϕk〉 [25] (up to the error of the classical optimizer
and the expressibility of the ansatz), where θ ∗ are the minimizing parameters in Eq. (12). The
first energy term in the right-hand side of Eq. (4) then reads

EKS ≈ EKS(θ ∗) =
Nocc
∑

k=1

〈ϕk(θ
∗)| Ĥaux |ϕk(θ

∗)〉 . (13)

Note that in contrast to the usual WFT problems studied within VQE, the auxiliary many-body
problem described in this paper is not physical anymore, and no constraints on the spin or
the number of particles have to be considered. In other words, the entire space spanned by
the M qubits corresponds to the space spanned by the N = 2M KS orbitals. Consequently, a
hardware efficient ansatz can be used for Û(θ ) instead of physically motivated ansatz such as
the unitary coupled cluster ansatz which requires very deep circuits.

At this stage it is important to highlight that we have a direct access to the occupation
number of orbitals in the computational basis. Indeed, repeated measurements of the state
|ϕk〉 =
∑

I ϕk(I) |I〉 give access to |ϕk(I)|2, the probability to measure |I〉, and thus to the
computational basis orbitals occupations

nI =
Nocc
∑

k=1

|ϕk(I)|2 . (14)

Within the lattice version of DFT, known as Site-Occupation Functional Theory (SOFT) [57,
58], the orbital dependent XC potential vxc[n], that only depends on orbital occupations
n= {n1, . . . , nI , . . . , nN}, is then straightforwardly accessible to loop the KS protocol.

Going back to standard DFT, the knowledge of the computational basis-set occupation
numbers is not sufficient to access the real-space electronic density in Eq. (3). Indeed, inserting
closure relations in Eq. (3) leads to

n(r⃗) =
N
∑

i=1, j=1

Nocc
∑

k=1

〈r⃗|χi〉〈χi|ϕk〉〈ϕk|χ j〉〈χ j|r⃗〉

=
N
∑

i=1, j=1

〈r⃗|χi〉〈χ j|r⃗〉
Nocc
∑

k=1

ϕk(I)ϕk(J) , (15)

where we recall that the original KS computational basis set {|χi〉} is orthonormal and is trans-
lated to quantum computers by the mapping |χi〉 → |I〉. Hence, inferring the real-space density
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Figure 2: Flowchart of the quantum algorithm analog of FCI (Q-FCI) and DFT (Q-
DFT) for N = 16 spin-orbitals, using variational quantum algorithms as solvers. The
ground-state VQE and ensemble-VQE are used in Q-FCI and Q-DFT, respectively.

requires the ability to extract the product between different amplitudes ϕk(I) and ϕk(J). In-
terestingly, this product can be estimated directly by repeated measurements of the operator

Γ̂ aux
I J = |I〉 〈J |+ |J〉 〈I | , (16)

after transforming Γ̂ aux
I J into a linear combination of Pauli strings for instance, as follows

〈Γ̂ aux
I J 〉ϕk(θ ) = 2Re (ϕk(I)ϕk(J)) . (17)

Note that non-relativistic quantum chemistry has real algebra and real-algebra ansatz can be
used to ensure that orbital coefficients remain real, so that the extraction of the imaginary part
is not needed. Also, most of the expectation values of Pauli strings required to estimate each
element in Eq. (17) are already measured when performing the ensemble-VQE in Eq. (12).
The flowchart of the Q-DFT algorithm is depicted in Fig. 2.

3 Results and Discussions

3.1 Methods

After the transformation of the non-interacting Hamiltonian into the auxiliary interacting one
[see Eqs. (6) and (9)], we classically simulate the ensemble-VQE algorithm [25,26] using the
Qiskit package [59] and a state-vector simulation (without noise). The hardware efficient
ansatz, the R y ansatz, is used for Û(θ ) in Eq. (11), and is given by [60]

Û(θ ) =
M
∏

m=1

R y,m(θ
0
my
)

NL
∏

n=1

ÛENT
n (θ n) , (18)
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q0 : RY (θ0) • RY (θ3) • RY (θ6) • RY (θ9) • RY (θ12)

q1 : RY (θ1) • RY (θ4) • RY (θ7) • RY (θ10) • RY (θ13)

q2 : RY (θ2) RY (θ5) RY (θ8) RY (θ11) RY (θ14)

Figure 3: Illustration of the R y hardware efficient ansatz of Eqs. (18) and (19) with
NL = 4.

for a number of layers NL and a number of qubits M . The entanglement unitary blocks read

ÛENT
n (θ n) =

M−1
∏

m=1

CNOTm(m+1)

M
∏

m=1

R y,m(θ
n
m) . (19)

As a proof a concept, we study the one-dimensional Hubbard model with 8 sites and Ne = 4
electrons, and one chain of 8 hydrogens in the minimal STO-3G basis (i.e., Ne = 8 electrons
in 8 spatial-orbitals), using SOFT and regular DFT, respectively. Their implementation on
quantum computers is denoted as Q-SOFT and Q-DFT, respectively. As our algorithm is de-
signed for an orthonormal basis set, we used the Löwdin symmetric orthonormalization of
the atomic orbitals to get a basis of orthonormal atomic orbitals. In principle, this step will
be circumvented by using already orthonormal basis sets such as plane waves or Daubechies
wavelets [61, 62]. They usually require much more basis functions but this is not a problem
for Q-DFT as they are mapped on only log2(N) qubits. Note that both systems are composed
of 16 spin-orbitals and they should in principle be described by 16 qubits with the Jordan–
Wigner transformation. As they are closed-shell systems and that no relativistic effects are
considered, we can actually select only one specific block of the KS Hamiltonian, i.e., either
the spin-α or spin-β block of N = 8 spin-orbitals, such that the number of qubits required by
our quantum algorithm is equal to M = log2(8) = 3 only. To solve the first Nocc = Ne/2 states
(corresponding to the first KS occupied orbitals), we use the ensemble-VQE solver for an en-
semble of Nocc states, with ensemble weights defined as wk = (1+Nocc−k)/(Nocc(Nocc+1)/2)
such that wk+1 < wk and

∑Nocc
k=1 wk = 1. The initial states in Eq. (11) are taken to be the first

states in the computational basis, i.e. {|φk〉} = {|000〉 , |001〉} for the Hubbard model, and
{|φk〉}= {|000〉 , |001〉 , |010〉 , |011〉} for the hydrogen chain.

The R y ansatz with NL = 4 layers is used, thus leading to M(NL + 1) = 15 ansatz-
parameters, as illustrated in Fig. 3. For the noiseless state-vector simulation, these parameters
are optimized classically with the L-BFGS-B optimizer, whereas the simultaneous perturbation
stochastic approximation (SPSA) optimizer with a maximum of 5000 iterations is used when
sampling noise is considered. Sampling noise is simulated by drawing samples from a multi-
nomial distribution of the states. We considered three distributions with a total number of
shots per energy evaluation of 106, 105 and 104 shots, which are equally shared between the
number of Pauli strings composing the KS Hamiltonian (9 for the Hubbard model and 20 for
the hydrogen chain), such that the actual number of shots per Pauli is around one order of
magnitude below the total number of shots. In practice, sampling noise doesn’t allow to have
the same convergence criteria for the self-consistent KS equations than in noiseless state-vector
simulations. Hence, the convergence was stopped manually by considering a maximum num-
ber of 20 iterations for the outer KS self-consistent loop. Finally, the Bethe ansatz local density
approximation (BALDA) is used to model the Hxc potential and Hxc energy functional for the
Hubbard model [63], and the local spin density functional SVWN for the hydrogen chain.

8

https://scipost.org
https://scipost.org/SciPostPhys.14.3.055


SciPost Phys. 14, 055 (2023)

−6

−5

E
n

er
gy

/
t

FCI

SOFT

Q-SOFT

106 shots

105 shots

104 shots

0 2 4 6 8 10
U/t

10−4

10−3

10−2

10−1

∆
E
/t

Chem. accuracy

XC error

106 shots

105 shots

104 shots

Figure 4: Top panel: Ground-state energy of the inhomogeneous one-dimensional
Hubbard model as a function of the interaction strength U/t, in units of t. Bottom
panel: Absolute error between Q-SOFT and SOFT energies when sampling noise is
considered. They are compared to the chemical accuracy and the XC-error.

3.2 Solving the Kohn–Sham self-consistent equations

Starting with the one-dimensional inhomogeneous Hubbard model, the Hamiltonian reads

Ĥ = −t
N
∑

i=1

∑

σ

�

ĉ†
iσ ĉ(i+1)σ + ĉ†

(i+1)σ ĉiσ

�

+ U
N
∑

i=1

n̂i↑n̂i↓ +
N
∑

i=1

vi n̂i ,

(20)

where n̂i = n̂i↑ + n̂i↓ is the occupation number operator, with n̂iσ = ĉ†
iσ ĉiσ, and t and U are

the hopping integral and the on-site electron-electron interaction, respectively. The external
potential is taken as vi = (i − 1)/10 and antiperiodic boundary conditions (ĉ(N+1)σ = −ĉ1σ)
are used.

The total ground-state energy calculated from Eq. (4) is shown on the top panel of Fig. 4,
using noiseless state-vector simulation (denoted by Q-SOFT) and simulations with sampling
noise. As readily seen in Fig. 4, the noiseless state-vector simulation is on top of the SOFT
energy, with an error inferior to 10−5 units of t, thus demonstrating the capability of the R y
ansatz to capture the orbital energies and occupation numbers with sufficient accuracy. Adding
sampling noise doesn’t have a significant impact for 106 and 105 shots, as the resulting ground-
state energies doesn’t deviate much from the noiseless Q-SOFT energy. However, considering
104 shots only leads to non-negligible errors.

Let us turn to the quantum simulation of regular DFT of the H8 linear chain. On the top
panel of Fig. 5, we compare the ground-state energies obtained by the noiseless Q-DFT sim-
ulation with the ones obtained by regular DFT (on classical computer) and FCI, performed
with Psi4 [64] in the same basis. As for the Hubbard model, the noiseless Q-DFT simulation
using the L-BFGS-B optimizer is in excellent agreement with DFT, with an error of about 10−4

hartree, meaning that the R y ansatz with 4 layers is also sufficient in this case. In constrast
to Q-SOFT where only the orbital occupation have to be evaluated [see Eq. (14)], one has to
compute the real-space electronic density given by Eq. (3) by evaluating the expectation value
in Eq. (17). In the case of H8, it requires the estimation of the expectation value of 36 Pauli
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Figure 5: Top panel: Ground-state energy of the H8 linear chain as a function of the
interatomic distance, in hartree. Bottom panel: Absolute error between Q-DFT and
DFT energies when sampling noise is considered. They are compared to the chemical
accuracy and the XC error.

strings (among which 20 are already required to evaluate the KS orbital energies). Globally,
a good agreement is also obtained even with sampling noise, except for few interatomic dis-
tances. As these distances are not the same when considering different number of shots, it
means that the error is not tied to the system itself but comes from other sources: the stochas-
tic optimization of the ensemble-VQE by SPSA together with the fact that the KS self-consistent
equations are not strictly converged. This could be potentially fixed by considering more KS
iterations and by averaging the last ten or twenty iterations, as commonly done with SPSA.

Let us now turn to the bottom panels of Figs. 4 and 5, featuring the absolute error be-
tween the quantum simulations and the classical reference, in comparison to the chemical
accuracy and the XC error (comprising the density-driven and functional-driven error). Until
now, quantum computers have been promised to help solving the many-body problem with
chemical accuracy (1.6 milliHartree). This goal is extremely challenging, to the point that
quantum supremacy for chemistry might only be attainable in several decades. On the other
hand, DFT is itself subject to approximations coming from the XC functional. Hence, the ac-
curacy that Q-SOFT and Q-DFT have to reach is bounded by this XC error. Note also that the
bigger the system is, the larger the error between the DFT and FCI total energy will be. As
seen by the logarithmic scale on the top panel of Fig. 4, the absolute error between Q-SOFT
with sampling noise and SOFT is in between 10−1 and 10−2 units of t for 105 shots, and in
between 10−2 and 10−3 units of t for 106 shots. In comparison, the XC error is higher than
10−1 units of t everywhere except at U = 0 for which the BALDA is exact in the thermody-
namic limit, and the sampling noise error with 104 shots is generally just slightly below. This
XC error allows to bypass the burden of reaching chemical accuracy, such that Q-SOFT appears
much more achievable with noisy devices than quantum algorithms for wavefunction theory.
The same analysis can be drawn for H8, on the top panel of Fig. 5, except that there is no
significant difference between the simulations with sampling noise when different number of
shots is considered, though considering 104 shots only seems to deteriorate the results slightly.
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3.3 Discussion on the numerical efficiency

The validity and applicability of the concept being proven, the “numerical” efficiency and po-
tential computational gain should be discussed.

In SOFT, the convergence of the self-consistent KS equations requires the calculation of the
orbital occupations [Eq. (14)], while regular DFT requires the real-space density [Eq. (15)].
Both necessitate the evaluation of product of amplitudes ϕk(I)ϕk(J) (I = J for the orbital
occupations) obtained by measuring the elements of the density matrix operator [see Eq. (17)].
The number of elements scales exponentially with the number of qubits and quadratically
with the number of orbitals of the original system. As there are Nocc∝ Ne states, the overall
scaling to measure the orbital occupations is O(2M Ne) = O(NNe), and O(N2Ne) for the real-
space density and the orbital energies. Owing the sparse nature of the KS Hamiltonian [65],
this estimation represents a largely overestimated bound, as most of the ϕk(I)ϕk(J) elements
are equal to zero. Note also that there might be more efficient representations than a linear
combination of Pauli string in terms of number of terms in the Hamiltonian, using for instance
partition strategies [20,66].

In addition, one has to consider the number of measurements and the number of iterations
performed in VQE. As shown in Ref. [67], the number of measurements to achieve a given ac-
curacy ε in estimating the energy scales with the square of the one-norm of the Hamiltonian.
For the electronic many-body problem, the one-norm typically scales in between O(N2) and
O(N3), but several techniques can be used to reduce this scaling close to O(N) such as dou-
ble factorization [32], tensor hypercontraction [68], n-representability constraints [69], and
rotations of the orbital basis [70]. Turning to the KS Hamiltonian – or the auxiliary Hamilto-
nian in Eq. (6) – the number of interacting pseudo-orbitals is only log2(N), and we expect its
one-norm to scale sublinearly with N . A more detailed study of the one-norm of the Q-DFT
Hamiltonian for large systems would be required to confirm our assumption, and is left for
future work.

Turning to the number of iterations, it has been shown that optimizing the circuit param-
eters in any variational quantum algorithm is NP-hard [71], such that we should not expect
any advantage in using ensemble-VQE as a solver. However, in practice with an approximate
ansatz and a finite maximal number of iterations, we can reach approximate states and orbital
energies with sufficient accuracy for the method to be valuable, in analogy with VQE applied
to the many-body ground-state problem. In Q-DFT, chemical accuracy is not always desired
and an error of around one-order of magnitude below the XC error is acceptable. Still, using
other non-variational solvers such as the quantum phase estimation and the iterative phase
estimation algorithm is currently under investigation.

Although these scalings question a practical quantum advantage for SOFT or regular DFT,
they are still below the classical upper-bound of O(N3), and all the measurements of all the
terms to compute the expectation values are completely independent from each other and
straightforwardly parallelisable on multiple quantum computers. Within this strong assump-
tion, these operations could be omitted in the estimation of the complexity, and the limiting
step to implement SOFT and DFT on a quantum computer would be dictated by the gate
complexity. Alternatively, the O(4M ) = O(N2) expectation values can actually be approxi-
mated with only pol y(M) = pol y(log2(N))measurements of our prepared states {|ϕk〉} using
shadow tomography [72].

Let us now focus on the gate complexity, that is related to the number of orbitals and
the ansatz operator in the ensemble-VQE simulation. Considering a system of M interacting
orbitals, the different variants of the unitary coupled-cluster ansatz (truncated to single and
double excitations) would typically scale as O(M4). Instead, hardware efficient ansatz are
sufficient to treat our auxiliary interacting system, which features shallower circuit at the ex-
pense of more variational parameters given to the classical optimizer. The R y ansatz features
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NL(M − 1) two-qubit gates, thus leading to a gate complexity that scales as O(M2), assum-
ing that the number of layers NL grows linearly with M (checking this assumption is left for
future work). Therefore, the gate complexity required to diagonalize the KS Hamiltonian on
quantum computers is about O(M2) = O(log2(N)

2) using hardware efficient ansatz within
ensemble-VQE. In comparison with the O(N3) upper bound on classical computers, a substan-
tial speed-up can yet be envisioned.

As mentioned at the beginning of the section, self-consistency requires the orbital occupa-
tions [Eq. (14)]within SOFT, while for regular DFT the real-space density [see Eq. (15)] needs
to be reconstructed on the classical computer, which required O(N2Ne) operations. Hence,
SOFT appears optimal when applied to quantum computers, however it remains mainly ap-
plied to lattice Hamiltonians and model systems, even though recent promising works aim
to extend it to real quantum chemistry problems [73, 74]. Nevertheless, a quantum advan-
tage can still be envisioned as the determination of the KS orbitals and energies scales as
O(M2) = O(log2(N)

2) instead of the classical upper bound of O(N3) (assuming quantum
computer parallelization). It should also be noted that in quantum chemistry, a polynomial
speed-up in the computational cost is already considered as a significant improvement [34].
All together, Q-DFT could potentially lead to an advantage over DFT on a classical computer.

Finally, in this paper we focused on the advantage of solving the KS self-consistent equa-
tions. In some cases, the rate determining-step is actually the construction of the KS Hamilto-
nian itself, and more specifically the electron repulsion integrals to form the Coulomb matrix.
There has been numerous studies to reduce the computational cost of this construction (see
Ref. [75] and references therein). For large molecules, diagonalization remains the major
obstacle for DFT calculations [75].

4 Conclusions

In this work, we show that mean-field-type approaches such as DFT are also expected to ben-
efit from the advance of quantum technologies, opening the door for quantum simulations of
systems having millions of orbitals. As a proof of concept, we simulated the one dimensional
Hubbard model with a quantum algorithm implementation of site occupation functional the-
ory, the lattice version of DFT, for which an exponential speed-up can be envisioned, assuming
that parallel quantum computing is accessible or using shadow tomography [72]. Then, the
quantum analog of regular DFT was successfully applied to a hydrogen chain. Though an ex-
ponential speed-up is not expected due to the reconstruction of the real-space density, solving
the KS self-consistent equation on a quantum device might still lead to a quantum advantage.
Moreover, a significant advantage of performing DFT on quantum computer compared to WFT
is the level of accuracy that one needs to achieve. Because, WFT targets chemical accuracy,
a practical quantum advantage for WFT and quantum chemistry in the NISQ era is currently
surrounded by skepticism [34]. However, DFT has its own level of approximations coming
from the approximate XC functional. This error being orders of magnitude larger than chem-
ical accuracy – except in cases with significant error cancellation in the estimation of energy
differences – we can expect DFT on quantum computers to be much more resilient to noise
than WFT and to be the nearest-term application of quantum computer for not only quantum
chemistry, but also condensed-matter physic and even biology.
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