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Abstract

The past decade’s discovery of topological excitations in nanoscale ferroelectrics has
turned the prevailing view that the polar ground state in these materials is uniform. How-
ever, the systematic understanding of the topological polar structures in ferroelectrics is
still on track. Here we study stable vortex-like textures of polarization in the nanocylin-
ders of ferroelectric PbTiO3, arising due to the competition of the elastic and electrostatic
interactions. Using the phase-field numerical modeling and analytical calculations, we
show that the orientation of the vortex core with respect to the cylinder axis is tuned by
the geometrical parameters and temperature of the system.
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1 Introduction

The seminal discovery of vortex matter in nanostructured ferroelectrics has crucially changed
our understanding of polarization behavior in these materials [1–3], ranking ferroelectrics
among the family of noble topological materials, such as superconductors, magnets, and topo-
logical insulators. However, the intrinsic mechanism of vortex polarization swirling in ferro-
electrics is unique and originates from the peculiar harnessing of the electrostatics and confine-
ment effects. More specifically, it is based on the tendency of the polarization of the system,
P, to avoid the creation of the depolarization charges, ρ = −divP, which induce the energet-
ically unfavorable depolarization electric field [4]. Hence, the polarization structuring with
divP = 0 is the principal topological constraint in ferroelectrics [5,6]. Vortices are the repre-
sentative example of such formations, most commonly observed in ferroelectrics [7–12].

Figure 1: Formation of vortex states in a ferroelectric cylinder. (a) A uniform
c-phase with polarization P (blue arrow) is stable in a cylinder of height h and ra-
dius R with short-circuit electroded edges. The surface depolarization charges (gray
symbols) are screened by the electrode’s free charges (red symbols). (b) In a free-
standing ferroelectric cylinder without electrodes, the depolarization charges at the
edges produce the depolarization electric field (red arrows) that finally destabilizes
the uniform polarization distribution. (c) An elongated cylinder hosts the stable a-
vortex state with the core line (shown in green) oriented along the a- (or b-) axis.
This state is alternatively visualized as a polarization flux-closure domain structure
with 180◦ and 90◦ domain walls. (d) In a disc-shaped cylinder, the vortex core has
the c-axis orientation. The polarization distribution can be also seen as four domains
with polarization flux closure, separated by the 90◦ domain walls. The orientation
of axes is shown at the bottom right corner.

The objective of this paper is to give an insight into the emergence of vortices in nanocylin-
ders of ferroelectric oxides with cubic crystal symmetry. We study lead titanate perovskite,
PbTiO3 (PTO) as an exemplary system. The basic idea of the polarization vortices formation
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is sketched in Fig. 1. The uniformly polarized along the cylinder axis state (c-phase) occurs in
a cylinder with short-circuited edges, see Fig. 1a. The depolarization charges created in the
points of polarization termination at the cylinder edges are screened by metallic free charges
of the electrodes, hence no depolarization effects arise. However, when the electrodes are
removed (Fig. 1b), the unscreened depolarization charges generate the depolarization field,
which affects the polarization distribution. Then, the polarization swirls into divergenceless
vortex states of either a- (b-) (for elongated cylinders) or c- (for disc-shaped cylinders) orien-
tation of the vortex axis, shown in Fig. 1c and Fig. 1d respectively. Alternatively, these states
can be viewed as flux-closure domain structures with 180◦ and 90◦ domain walls (DWs).

The basic vortex states were discovered in several cylindrical ferroelectrics. The c-vortex
states in cylinders, first suggested in [9] as competitive divergenceless states, were studied in
the ferroelectric BaTiO3 prolate cylinders, constrained by the non-ferroelectric polymer matrix
[13] and also in presence of the flexoelectric effect [14] using the phase-field approach. They
were also simulated in strained PbZr0.5Ti0.5O3 nanodiscs [15] and in PTO nanocylinders [16]
using the atomistic approach. Here we give the detailed study of different vortex phases in
free-standing nanocylinders of PTO and reconstruct the phase diagram of the system as a
function of the geometrical parameters of cylinders, their radius, R and height, h, and of the
temperature, T . We reveal the role and delicate balance of the elastic and electrostatic energy
contributions in the vortex phase formation and demonstrate that a rich variety of vortex
structures is possible within each type of the vortex axis orientation.

Although the emergence of polarization topological structures was cogently demonstrated
in nanostructured ferroelectrics [1–3], and the technology nodes of modern ferroelectric-
based nanoelectronics are scaled down to the appropriate size of tens of nanometers [17],
exploration of topological excitations in ferroelectrics remains an appealing task. Our findings
establish a platform for tailoring the vortex structures in nanocylinders to use them as essen-
tial components of nanodevices. The discovered multitude of the vortex (meta)stable states
allows for the implementation of ferroelectric multi-valued logic [18–21] and neuromorphic
elements [22]. Another impact is related to the design of polarization textures in the long
ferroelectric nanotubes, nanorods, and nanowires with well-established fabrication technol-
ogy [23–25]. The obtained nanostructuring of the polarization and depolarization fields in
the ferroelectric nanowires can be used for engineering the bias-free tips in the AFM/PFM
techniques.

2 Model

We model the free energy density functional in terms of the polarization components Pi , elastic
strains uij, and electrostatic potential ϕ as:

Fu =
�

ai(T )P
2
i + au

i j P
2
i P2

j + ai jkP2
i P2

j P2
k

�

i≤ j≤k
+

1
2

Gi jkl(∂i Pj)(∂kPl)

−qi jklui j PkPl +
1
2

ci jklui jukl + (∂iϕ) Pi −
1
2
ϵ0ϵb (∇ϕ)

2 , (1)

where the sum is taken over the circularly permutated indices {i, j, k, l} = {1, 2,3}. The
first term in square brackets stands for the Ginzburg-Landau (GL) energy written as in [19],
where a1 = α1(T − Tc), Tc is the transition temperature to the ferroelectric state, and the
4th-order zero-strain coefficients au

i j are calculated by the Legendre transformation from the
stress-free coefficients aσi j [26], as described in [27]. The second term in (1) with coefficients
Gi jkl corresponds to the gradient energy. The last terms represent the elastic and electro-
static energies, with ci jkl being the elastic stiffness tensor and qi jkl the electrostrictive tensor;
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ϵ0 = 8.85 × 10−12 C V−1m−1 is the vacuum permittivity and ϵb ≃ 10 is the background di-
electric constant of the non-polar ions. The numerical values of coefficients for PTO, used in
calculations, are given in Appendix A.1.

For analytical calculations, we use a simplified isotropic version of (1) without the 6th-order
terms,

Fu
iso = a1(T )P

2 + āu
11P4 + Ḡrot2P− q̄12uii Pj Pj − q̄44ui j Pi Pj +

1
2

c̄12u2
ii + c̄44u2

i j , (2)

in which the averaged coefficients (denoted with the overbar) are selected to match the prin-
cipal bulk properties of PTO and calculated by the tensor averaging of functional (1), see Ap-
pendix A.2 for details. We consider only the depolarization charge-free configurations with
divP = 0, resulting in the vanishing electrostatic contribution to the functional (2). Then,
the polarization is scaled in units of the uniform polarization of the stress-free bulk sample,

P0 =
�

|a1|/2āσ11

�1/2 ≃ 0.7 C m−2, and the characteristic length scale is defined by the coher-

ence length, ξ0 =
�

Ḡ/α1Tc

�1/2 ≃ 1 nm.

3 Phase diagram

The resulting phase diagram of vortex states in cylinders of different heights, h, and radii, R,
is shown in Fig. 2. The exemplary polarization textures of these states are sketched on the left
and on the bottom of the diagram. As it was mentioned in the Introduction, the competition
occurs between the c-oriented uniformly-polarized state and vortex states of the different,
a-or c-, orientation of the core. The analytically estimated separation line between these two
states is shown in blue in the phase diagram in Fig. 2 and discussed in Section 4.

In the uniformly polarized state, the topological requirement divP= 0 cannot be satisfied.
The depolarization charges necessarily arise at the surface of the sample, in particular at the
cylinder edges, where the polarization field terminates. The corresponding depolarization
fields distort the uniformity of polarization at the edges, hence such state, depicted as state C
in Fig. 2, occurs only in very long cylinders with h ≳ 500 nm. The c-phase region in such a
nanowire becomes shorter as the radius increases. However, further investigation of bigger
cylinders does not reveal any new states while being computationally demanding.

The depolarization field is zero or vanishingly small in the divergenceless a- and c-oriented
vortex states with flux-closure polarization texture that emerge in a vast range of cylinder
geometries. The realization of the particular state depends on the delicate energy balance of
the ferroelectric and elastic contributions, provided by the functional (1). States I, II, and III
in Fig. 2, which arise in elongated cylinders with h≳ R, correspond to the a-vortex states with
vertically-stretched, twisted, and horizontally-stretched vortex core, respectively. States IV, V,
and VI, which appear in disc-shaped cylinders with h < R, correspond to the c-vortex states
with twisted, non-deformed, and deformed vortex core. The multivortex state VII contains
both c- and a-type vortices.

In the next section, we proceed with the discussion of the stability conditions of different
topological states in PbTiO3 cylinders on a quantitative level.

4 Discussion

4.1 Uniform c-phase

We consider first the formation of the uniform state (c-phase) in a short-circuited cylinder with
the polarization vector directed along the cylinder axis, see Fig. 1a. In this case, the surface
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Figure 2: Vortex states and phase diagram of a ferroelectric cylinder. State C
corresponds to the uniform c-phase, occurring in the middle part of very long cylin-
ders with h≳ 500 nm and terminated by the nonuniform polarization texture at the
edges (only the top part is shown). States I-III are the a-vortex states and IV-VI are
the c-vortex states. The multivortex state VII hosts both c- and a-type vortices. The
orientation and magnitude of polarization are visualized by arrows and colour scale
and also, for twisted states II and IV, by the internal streamlines. The phase diagram
depicts the stability regions of vortex states I-VII (highlighted by different colours) in
R-h coordinates. The roman numbers indicate the type of the stable states. The cir-
cled numbers correspond to the exemplary states shown around the phase diagram.
The solid blue curve shows the separation line between the c- and a-vortex regions
calculated theoretically based on vortex energies.

depolarization charges are screened by the electrode charges. Note that, in general, electrodes
may significantly affect the polarization distribution. For instance, oxide electrodes with much
larger screening length lead to the incomplete screening of depolarization fields and influence
the domain structure [28]. However, in this study we restrict our discussion to the ideal case
of metallic electrodes. Thus, the energy of the system, E0 = πR2h F0, contains only the GL
energy density of the stress-free uniform state, F0 ≈ −0.075 × 109 Jm−3, calculated from (1).

In a free-standing cylinder without electrodes, the total energy,

Eu = πR2h F0 + 2Eœ , (3)

includes also the terminal energy of two edges, 2Eœ, arising due to the emergent depolariza-
tion field. As discussed in the previous section, it modifies the polarization distribution at the
cylinder edges and forms the state of type C (Fig. 2), in which the multiple domains corre-
sponding to a- or c-vortices appear on approaching the cylinder edges. The huge value of Eœ
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can be surmounted by the negative energy of the uniform ferroelectric state, remaining in the
middle region of the samples only for very long cylinders with h ≳ 500 nm. Interestingly, the
observed perturbed polarization texture at cylinder edges possesses the spontaneously broken
chirality, the effect that was thought to occur due to the flexoelectric contribution [14].

Further, we consider the vortex states with a- (or b-) and with c- oriented axes that form
to reduce the depolarization energy in the cylinders of moderate and short heights.

4.2 a-vortices

The a-vortex state, arising in an elongated cylinder with h ≫ R (Fig. 1c), is significantly de-
formed. In the bulk of the cylinder, the polarization texture forms a vertical 180◦ DW of thick-
ness ∼ ξ0, having alternative “up” and “down” orientations on both sides of the wall. The DW,
hence the vortex core aligns with a- or b- crystal axis, which are energetically equivalent (for
definiteness, we refer to a-vortex state). The creation of the DW requires additional energy
that scales proportionally to the DW area as Rh and can be estimated as ξ0Rh F1a. The factor
F1a > 0 stands for the effective energy density stored in the vertical DW and also accounts for
the numerical coefficients related to the DW geometry.

Close to the cylinder edges, the a-vortex polarization lines make the U-turn with the forma-
tion of two horizontal b-oriented domains at the top and bottom of the cylinder. These domains
are separated from the vertical c-domains by the 90◦ DWs, departing from the termination of
the 180◦ DW. The effective area of these DWs is proportional to the cylinder cross-section area,
πR2, and their thickness is proportional to ξ0. Hence, the terminal energy acquires the form
Eæ ≃ πR2ξ0 Fæ, where factor Fæ describes the effective density of the energy stored in the
terminal region. Normally, Eæ is smaller than Eœ because the former does not contain any
significant depolarization electrostatic contribution.

We estimate the total energy of the a-vortex in the elongated cylinder as:

Ea = πR2h Fa + ξ0Rh F1a + 2πR2ξ0 Fæ , (4)

where Fa < 0 is the energy density within the bulk of c- and b-domains. It is slightly smaller
than |F0| in its absolute value because of the residual long-range elastic contribution produced
by the polarization inhomogeneities in the DWs and the vortex core. The second and the third
terms correspond to the DW and terminal energies, as described above. The fit of the phase-
field simulation results for PTO cylinders (see Appendix A.3) gives the following numerical
values of the parameters in Eq. (4): Fa ≈ −0.07 × 109 Jm−3, F1a ≈ 0.50 × 109 Jm−3, and
Fæ ≈ 0.29 × 109 Jm−3.

The solid blue line in Fig. 3a shows the numerical solution for the polarization z-component
distribution in perpendicular to the DW direction for the cylinder with R = 10 nm and
h = 50 nm. The dotted blue line presents the DW profile P(r) = P0 tanh

�

r/
p

2ξ0

�

obtained
analytically within the isotropic model (2), which matches well the numerical result.

When cylinders become shorter, approaching h ∼ 2R, the vortex structure appears to be
more distinct. In the cylinder with R = 10 nm and h = 22 nm, the polarization demonstrates
the non-monotonic dependence (solid red line in Fig. 3a), different from that for the flat DW.
On further cylinder shortening, at heights h comparable to R, the elastic stretching of the
a-vortex core changes its orientation from vertical to a horizontal one, passing through the
intermediate state with a twisted DW, see states I, II, and III in Fig. 2. Finally, at even smaller
h, the vortex core changes its orientation from a- to c-direction.

4.3 c-vortices

The c-vortex states IV, V, and VI (Fig. 2), which form in disc-shaped cylinders with h≲ R, have
different structures. We consider first the vortex state V , arising at small R ≃ 6-10 nm and

6

https://scipost.org
https://scipost.org/SciPostPhys.14.3.056


SciPost Phys. 14, 056 (2023)

Figure 3: Polarization distribution in a- and c-vortices. (a) Distribution of z-
component of polarization, Pz , in the cylinder with the DW formed by a-vortex,
in the perpendicular to the DW direction. The solid blue and solid red lines cor-
respond to the results of simulation for cylinders of R = 10 with h = 50 nm and
h = 22 nm. The dotted blue line depicts the analytical dependence for the planar
DW, Pz = P0 tanh

�

r/
p

2ξ0

�

. (b) Radial distribution of the polarization magnitude in
a c-vortex in the cylinder with R = 10 nm and h = 6 nm. The dark red and orange
solid lines present the result of numerical simulations for the PTO model in x- and
xy- directions with the minimal and maximal polarization overshoots, respectively.
The red dotted line depicts the analytical approximation given by Eq. (5).

h ≃ 6 nm, which is the most symmetrical one. The shown in Fig. 3b radial distribution of
polarization magnitude, P(r), in different anisotropy directions demonstrates several remark-
able features, coming from the long-range elastic interaction. After an initial increase from
zero in the core-singular region, the dependence P(r) passes through the maximum and then
slowly decreases far from the core with no saturation at r →∞. This overshooting effect (also
observed for a-vortices with h ∼ 2R, Fig. 3a), is clearly seen in the 3D visualization plot with
some anisotropy features (state V in Fig. 2). It was also obtained in atomistic simulations [16].

To gain an insight into such peculiar behaviour, we consider the model isotropic situa-
tion described by functional (2), assuming that a vortex has axial symmetry with the in-plane
distributed polarization, presented in cylindrical coordinates (ρ,θ , z) as P= P(r)θ̂ . The chal-
lenge in the calculation of the vortex properties is that the non-uniformly rotating polarization
creates non-local elastic deformations that, in turn, affect the polarization itself. The self-
consistent solution of this problem, given in Appendix A.2, presents the radial distribution of
the polarization magnitude outside the vortex core as a series expansion over ξ0/R≪ 1:

P(r) = P0

�

γ0

�

R
r

�

1−µ
2

− γ2
ξ2

0

R2

�

R
r

�

µ+3
2

�

, µ2 = 1−
q̄44

4c̄44

4q̄12 c̄44 + q̄44

�

c̄12 + 2c̄44

�

2āu
11

�

c̄12 + c̄44

�

− q̄2
12

. (5)

Remarkably, the dependence P(r) has an exponential non-analytic form, unusual for the
vortex-type systems in which the order parameter saturates far from the core. The first term
in (5) corresponds to the long-range elastic contribution, and the second one describes the
contribution of the gradient energy on approaching the vortex core region. The exponent-
generating factor, µ, is the function of the material parameters. In our isotropic model,
µ ≈ 0.67, which ensures the decrease in the magnitude of both terms at large r. The di-
mensionless coefficients γ0 and γ2 are also expressed through the material parameters, as
described in Appendix A.2. In our case they are estimated as γ0 ≈ 0.79, γ2 ≈ 0.27. The given
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by Eq. (5) analytical dependence is presented in Fig. 3b by the red dotted curve. It correctly re-
produces the main features of the numerical simulations: the non-monotonic dependence P(r)
and overshooting effect resulting from competition of elastic and gradient energy terms. The
quantitative difference is associated with some ambiguity in selection of coefficients in func-
tional (2), see Appendix A.2. Note, however, that although the range of parameters 0< µ < 1
and γ0,γ2 > 0 we use is the most typical for oxide ferroelectrics, these constraints are not
general, and other distinctive regimes may potentially occur.

With increasing disc size, the c-vortex patterns appear to be more complex than those ob-
served in the cylinders with R ≃ 6-10 nm and h ≃ 6 nm. In particular, for R ≃ 10-14 nm at
the same thickness, the vortex structure becomes deformed (state VI). The vortex-core region
acquires the form of 180◦ DW, whereas the circular curvature of polarization lines concen-
trates inside the four 90◦ DWs, forming the rectangular flux-closure structure of polarization
domains. For thicker discs, on approaching the transition to the a-vortex state at h ∼ R, the
flat 180◦ DW, stemming from the deformed vortex core, becomes screwed. It acquires the
structure of a two-blade propeller with 90◦ twist of the blades, see state IV in Fig. 2. At larger
radii, R≳ 14 nm, and h≃ 6-12 nm, the system becomes unstable to the fragmentation on more
vortices (state VII), predicted in [9]. The instability results from elastic strains, provided by
the non-local contribution of the vortex core, see Eq. (5). The elastic tension produced by the
central vortex becomes screened by the new oppositely winding vortices that enter from the
disc side and create the multidomain state.

We present the energy of the c-vortex using the functional form similar to Eq. (4), namely:

Ec = πR2h Fc + ξ0Rh F1c , (6)

where the first negative term, scaled as the disc cross-sectional area, corresponds to the bulk
energy of the system with energy density Fc < 0. The absolute value of this parameter, |Fc|,
is usually smaller than that for the uniform state |F0|, and even than |Fa|, due to the signif-
icant elastic contribution. It results from the bulk stresses produced by matching the flux-
closure 90◦ domains as well as by the long-range elastic energy of the deformed vortex core.
The second term in (6), scaled as the disc radius, corresponds to the energy stored in the
DWs. It is described by the effective energy density of DWs, F1c > 0, which also accounts
for the geometrical parameters of DWs. The fit of the phase-field simulation results for PTO
discs (see Appendix A.3) gives the following numerical values of the parameters in Eq. (6):
Fc ≈ −0.053× 109 Jm−3 and F1c ≈ 0.78× 109 Jm−3. Notably, the vortex core deformations
and even fragmentation of the system to the multivortex state do not significantly impact the
extracted from the fitting parameters in Eq. (6) since the energies of all c-vortex states are very
close to each other.

4.4 a- to c-vortex transition

Rotation of the vortex core axis from a- to c-direction upon the cylinder height decreasing
occurs when h becomes comparable to R. To estimate the critical geometrical parameters,
we compare the a- and c-vortex energies, plotted in Fig. 4 as a function of h by the black
dots. The families of the red and blue lines correspond to the fits of the numerical data for the
c- and a- vortices given by relations (4) and (6), respectively. Further details on the calculation
of the energies are given in Appendix A.3.

The corresponding transition line, depicted in the R-h phase diagram (Fig. 2) by the solid
blue curve, is given by the relation Ea(h, R) = Ec(h, R). This line approximates the transition
from a- to c-vortex states, illustrated by the warm and cool colours in the phase diagram in
Fig. 2, as observed in the simulations. The slight shift of the blue line with respect to exper-
imental transition is due to the more complex structure of the vortex cores in the transition
region, compared to the analytical model.
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Figure 4: Energies of the vortex states. Black points correspond to the numerical
data obtained from the phase-field simulations. Red and blue lines correspond to the
best-fit results for the c- and a-vortices in cylinders with different R.

4.5 Evolution with temperature

Our simulations show that the c-vortex phase emerges on cooling from the paraelectric state in
cylinders at a critical temperature Tcc . This temperature is lower than the bulk PTO transition
temperature Tc = 752 K and depends on the cylinder radius, but not on its height. However,
for cylinders with h ≳ R the a-vortex phase becomes stable (i.e. possesses the smaller energy
than the c-vortex phase) at temperature T ∗ca < Tcc . The exemplary temperature-height phase
diagram illustrating the corresponding sequence of transitions is shown in Fig. 5a for the cylin-
der of radius R= 12 nm. The temperature dependence of the average polarization amplitude,
P(T ), is shown in Fig. 5b for the cylinder of the same radius and different heights h = 6 nm,
h = 14 nm, h = 18 nm, and h = 26 nm. The discontinuities in the P(T ) dependencies cor-
respond to the c- to a- vortex transition on heating. It takes place at superheating transition
temperature, T+ca, shown in Fig. 5a by the dotted blue line. Note that on cooling, the c-vortex
phase does not transit to the a-vortex phase, staying in the metastable state, albeit their energy
balance becomes positive below T ∗ca.

To describe the temperature-driven c- to a-vortex state transition, we linearize GL equa-
tions, obtained from the isotropic functional (2) in the vicinity of the transition to the para-
electric state, neglecting the elastic terms (that are of order ∼ P3) and taking into account the
divergenceless structure of the polarization field:

a1(T )P= Ḡ∇2P , divP= 0 . (7)

Eq. (7) is solved with free boundary conditions (n∇)P = 0 and with the constraint of zero
depolarization charge at the surface, (nP) = 0, where n is a unit vector normal to the boundary.

Next, we compare the obtained instability temperatures of transition from the paraelectric
phase to c- and a-vortex states, see Appendix A.4. The linearized solutions for the polarization
distribution, written in the cylindrical coordinates (r,θ , z) for the competing a-vortex and
c-vortex phases, and the reduction of corresponding critical temperatures Tcc and Tca with
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Figure 5: Temperature-dependent properties of vortex states. (a) The T -h dia-
gram of vortex states emerging in cylinders with R = 12 nm. The transition from
the paraelectric to the c-vortex state (lower cylinder) occurs at temperature Tcc ,
shown by the solid red line. This state remains stable down to the room temper-
ature for cylinders with h ≲ 15 nm. For longer cylinders the a-vortex state becomes
more stable below thermodynamic critical temperature T ∗ca shown by the solid blue
line. The dotted blue line, T+ca, shows the critical temperature at which the a- to
c-vortex transition occurs on heating. The auxiliary dashed blue line, Tca, demon-
strates the paraelectric-to-a-vortex virtual instability of the linearized GL equation,
that is the precursor of the observed a- to c-vortex transition. (b) Temperature de-
pendence of the average polarization magnitude for cylinders with different heights
and R= 12 nm. The jumps of polarization close to the transition temperature (mag-
nified at the bottom left corner) correspond to the a- to c-vortex state transition on
heating at temperatures T+ca.

respect to Tc are given by:

c-vortex: Pc = Cc(Tcc − T )1/2 J1

�

λ1
r
R

�

θ̂ , Tcc = Tc

�

1−λ2
1

ξ2
0

R2

�

,

a-vortex: Pa = Ca(Tca − T )1/2 J1

�

λ1
r
R

�

cosθ ẑ , Tca = Tc

�

1−λ2
1

ξ2
0

R2
− 2κa

ξ0

h

�

. (8)

Here, J1 is the first-order Bessel function, λ1 = 1.8412 is the first zero of the derivative ∂x J1(x),
and coefficients Cc and Ca are found by solving the nonlinear equations. The last term in Tca
is included to account for the additional electrostatic energy and disturbance of the order
parameter at the cylinder edges due to the emergence of the depolarization field. Such effect
is absent in the case of c-vortex. Importantly, this electrostatics-driven contribution (scaled as
ξ0, with material-dependent dimensionless coupling parameter κa) reduces Tca with respect
to Tcc , always stabilizing the c-vortex state just below the transition from the paraelectric
phase. The emergence of the c-vortex before the a-vortex state either renormalizes the a-
vortex transition temperature to T ∗ca < Tca or completely pushes it out, as shown in Fig. 5a. In
the first case, occurring at h≳ R, we observe the a-vortex state at room temperature, whereas
in the second scenario, for h≲ R, the c-vortex state persists until the room temperature.
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5 Conclusion

In the current work, we performed the complete study of the topological polarization states
confined in free-standing cylindrical nanoparticles or nanorods of PTO for the extended range
of geometry parameters and temperatures. Having revealed a large variety of swirling polar-
ization textures, we demonstrate that, on the topological level, they can be all classified as vor-
tex states with differently oriented vortex axes. Some of these textures are similar to domains
and vortices, obtained by phase-field simulations for long cylinders and nanowires of BaTiO3
embedded in the external media [13] and with the account of the flexoelectric effect [14]. They
are also similar to the topological structures observed by atomic-level simulations in nanopar-
ticles of PTO [16] at the smaller scale of 4-10 nm, although some quantitative differences take
place, presumably due to the interface effects. The diversity of vortex manifestations highlights
the universality of the topological structures in confined ferroelectrics. However, a more de-
tailed investigation of the multi-scale matching of the Ginzburg-Landau phase-field modeling
and atomic-level simulations and comparison with experiment is required to identify the scale
at which the discrete atomic structure and the influence of the surface effects, for instance, the
surface tension, become significant.

On a more general perspective, topological classification of the divergenceless fields in
confined geometries, introduced by Arnold in relation to studies on incompressible liquid
streams [29], suggests that globally the system splits into the cells of elementary topological
excitations of either of two types – conventional 2D vortices and more elaborated 3D knotted
structures, Hopfions, in which the polarization lines escape in the third dimension from the
singular core. Both vortices [1–3] and Hopfions [30] have been discovered in nanostructured
ferroelectrics, in particular, in confined geometries of thin films, superlattices, nanodots, and
nanoparticles.

Note, however, that although the appearance of the vortex states in the cylinder complies
with the Arnold theorem, we did not observe the emergence of the Hopfion state in our simu-
lations. This happens due to the strong anisotropy of PTO and is in line with other simulations
in this material [16, 31]. While the discussed geometric configuration allows Hopfion states,
anisotropic contribution makes them energetically unfavourable. In this respect, it would be
interesting to investigate the polarization textures in nanocylinders of the less anisotropic ma-
terial, PbxZr1−xTiO3, usually hosting Hopfions in spherical nanoparticles [30]. This study is
currently in progress.
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A Supplementary Information

A.1 Computational techniques

Numerical calculations were performed by using the phase-field method, implemented on the
FEniCS computing platform [32]. The nonlinear part of relaxation differential equations is
coming from the variation of the free energy functional (1) with respect to the polarization P:

−γ
∂ P
∂ t
=
δFu

δP
. (A.1)

Electrostatic potential ϕ and elastic strains ui j are obtained as the result of the solution of the
linear equations:

ϵ0ϵb∇2ϕ = ∂iPi , (A.2)

cijkl∂jukl − qijkl∂jPkPl = 0 . (A.3)

The parameter γ determines the time scale for computations. Its value is irrelevant for the
calculation of the static structures and is taken equal to 1 ns.

Discretization of computational space into tetrahedrons was performed with 3D mesh gen-
erator gmsh [33], see Fig. 6. The yellow cylinder represents the volume of ferroelectric, Ωc .
The full surface of Ωc , denoted as ∂Ωc , includes top, bottom, and side surfaces. The ferroelec-
tric cylinder is embedded in the vacuum cylindrical volume Ωm with surface ∂Ωm. In Fig. 6
a half of this volume is shown in transparent emerald. To accelerate the computations, the
density of the finite element grid was set to decrease from ∂Ωc to ∂Ωm. We apply the Dirichlet
boundary condition ϕ = 0 at ∂Ωm, while other boundary conditions are free.

Figure 6: Finite element mesh of a ferroelectric cylinder with the surrounding
medium. The yellow cylinder corresponds to ferroelectric volume Ωc with surface
∂Ωc . The transparent emerald half-cylinder represents a part of the surrounding
medium volume Ωm with the surface ∂Ωm.
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For numerical calculations we used the standard coefficients for PTO [26, 34]
a1 = 3.8 × 105(T − 752 K)C−2m2N , aσ11 = −0.73 × 108C−4m6N , aσ12 = 7.5 × 108C−4m6N ,
a111 = 0.26 × 109C−6m10N , a112 = 0.61 × 109C−6m10N , a123 = −3.7 × 109C−6m10N ,
G1111 = 2.77 × 10−10C−2m4N , G1122 = 0, G1212 = 1.38 × 10−10C−2m4N ,
q1111 = 15.54 × 109C−2m2N , q1122 = −2.06 × 109C−2m2N , q1212 = 3.75 × 109C−2m2N ,
c1111 = 174.6× 109m−2N , c1122 = 79.36× 109m−2N , c1212 = 111.1× 109m−2N . The coeffi-
cients au

11 and au
12 are calculated from aσ12 and aσ12 using the procedure described in [27].

The variable time BDF2 stepper [35] was used to approximate the time derivative on the
left hand side of functional variation (A.1). We chose random distribution of P vector compo-
nents with average amplitude ∼ 10−6 C m−2 in Ωc at the first time step of simulation to model
the relaxation from initial paraelectric phase. Solution of nonlinear equations coming from free
energy functional (A.1) variation with respect to P is performed with the Newton based non-
linear solver with line search and generalized minimal residual method with restart [36, 37].
Linear systems that come from discretization of Poisson (A.2) and elasticity (A.3) equations
were solved separately using a generalized minimal residual method with restart.

A.2 Structure of an isotropic vortex

To reproduce analytically the features of the polarization distribution in a strain-coupled ax-
isymmetric vortex state, we employ a simplified isotropic form of the free energy functional (2),
in which the effective electrostrictive, q̄i j , and elastic, c̄i j , coefficients are obtained by isotropiza-
tion of the corresponding tensors, that for the general 4-th rank tensor Ti jkl in cubic crystal
reads as [38, 39] T̄i jkl = αδi jδkl + β

�

δikδ jl +δilδ jk

�

with α = 1
5 (T1111 + 4T1122 − 2T1212)

and β = 1
5 (T1111 − T1122 + 3T1212). Then, the corresponding coefficients in functional (2) are

c̄12 = c̄1122 = 54.0×109 m−2N, c̄44 = c̄1212 = 85.7×109 m−2N, q̄12 = q̄1122 = 1.15× 109C−2m2N ,
and q̄44 = 2q̄1212 = 8.87 × 109 C−2m2N. In addition, the sixth-order polarization terms were
neglected in the GL part of the functional and the averaged coefficients were expressed through
the PTO coefficients in (1) in a way to preserve the principal characteristics of the material.
We take āu

11 = 0.41× 109 C−4m6 and a1(T ) as in (1) to have the same critical temperature,

Tc = 752 K, and polarization magnitude P0 =
�

|a1|/2āσ11

�1/2 ≃ 0.7 C m−2 at room tempera-

ture; here, āσ11 = āu
11 −

c̄12q̄2
44+c̄44(q̄12+q̄44)2+2c̄44q̄2

12

2c̄44(3c̄12+2c̄44)
. The gradient energy in PTO with coefficients

from [34] has already an isotropic form, hence we take Ḡ = G1212 = 1.38× 10−10 C−2m4N.
We derive now the structure of the axisymetric vortex in frame of the isotropic model.

In the cylindrical coordinates (r,θ , z), the functional (2) with the axisymmetric polarization
distribution, P (r) = (0, P, 0), corresponding to the c-vortex, is written as:

Fu
iso = a1P2 + āu

11P4 + Ḡ
�

(∂r P)2 + (P/r)2
�

− q̄12P2 (ur r + uθθ + uzz)− q̄44P2uθθ

+
1
2

c̄12 (ur r + uθθ + uzz)
2 + c̄44

�

u2
r r + u2

θθ + u2
zz

�

,

where the strain tensor components are ur r = ∂rur , uθθ = ur/r, uzz = ∂zuz .
The variation of the energy functional with respect to variables P, ur , uz provides three

equations:

Ḡ
�

∇2
r P − P/r2
�

= a1P + 2āu
11P3 − q̄12P (∂rur + ur/r + uzz)− q̄44Pur/r , (A.4)

�

c̄12 + 2c̄44

� �

∇2
r ur − ur/r

2
�

= −q̄44P2/r + q̄12∂r

�

P2
�

− c̄12∂ruzz ,
�

c̄12 + 2c̄44

�

uzz = q̄12P2 − c̄12 (∂rur + ur/r) ;

and two boundary conditions:

(∂r P)r=R = 0 ,
�

c̄12 (∂rur + ur/r + uzz) + 2c̄44ur r − q̄12P2
�

r=R = 0 .
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Here, ∇2
r = ∂

2
r + r−1∂r .

To solve approximately equations (A.4), we consider first the long-range asymptotic be-
haviour of polarization (at scales larger than ξ0), assuming Ḡ = 0. The corresponding solution
for the polarization, eP(r), is obtained as:

eP2 = eP2
0

� r
R

�µ−1
, µ2 = 1−

q̄44

4c̄44

4q̄12 c̄44 + q̄44

�

c̄12 + 2c̄44

�

2āu
11

�

c̄12 + c̄44

�

− q̄2
12

, (A.5)

where the constant eP0 is found from the boundary conditions:

eP2
0 = −

a1

2āu
11 − q̄12

q̄12(2µ+1)+q̄44
c̄12(2µ+1)+2µc̄44

2 (µ+ 1) q̄12 c̄44 + q̄44

�

c̄12 + 2c̄44

�

4q̄12 c̄44 + q̄44

�

c̄12 + 2c̄44

�

3c̄12 + 2c̄44

(2µ+ 1) c̄12 + 2µc̄44
.

The numerical values of the constants are estimated as µ = 0.67 and eP0 = 0.56 Cm−2. Note
that the natural boundary condition (∂r P)r=R = 0 is fulfilled in the long-range approximation
since the polarization derivative at r = R scales as ∼ ξ0/R thus approaching zero.

Now, we calculate P(r) from equations (A.4) more exactly in the next order in ξ0/R. Pre-
senting P(r) as

P(r) = eP(r) + p(r) , (A.6)

we obtain

p = eP0

p
π

2

�

1
2
− ν
�

Γ

�

1
2
− ν
��

β

2

�ν−1 �

Iν

�

β
� r

R

�1/ν�

− L−ν

�

β
� r

R

�1/ν��

,

where Iν (x) and Lν (x) are the modified Bessel and modified Struve functions of order ν,
respectively, Γ (x) is the gamma function, and the following notations are used: ν= 2/ (µ+ 1),
β = νeP0

Æ

−a∗11/a1 R/ξ0, and a∗11 = āu
11 − q̄2

12/
�

2c̄12 + 4c̄44

�

.
The asymptotic expansion of the special functions Iν (x) and Lν (x) [40,41] gives the long-

range approximation (5) of the total solution (A.6) with coefficients

γ0 =
eP0

P0
, γ2 = −

a1

2a∗11

(3−µ) (µ+ 1)

8eP0P0

.

Close to the vortex core, the polarization linearly depends on the distance as

P∝ eP0

p
π

2

�1
2 − ν
�

Γ
�1

2 − ν
�

νΓ (ν)

�

β

2

�2ν−1 r
R

.

The comparison of the given by the Eq. (A.6) analytical dependence P(r) (dotted red line)
with results of the numerical simulations (solid red line) is shown in Fig. 7a for the cylinder
with R= 10 nm and h= 6 nm. The result captures the functional behaviour of polarization in
a strain-coupled c-vortex state and matches well the simulation results in the whole interval
of r, including the core.

The long-range asymptotic solution for the elastic tensor components obtained from
(A.4) has the following form:

eur r = C1µ
�

2āu
11

�

c̄12 + 2c̄44

�

− q̄2
12

�

eP2 + C2a1

�

c̄12 + 2c̄44

�

,

euθθ = C1

�

2āu
11

�

c̄12 + 2c̄44

�

− q̄2
12

�

eP2 + C2a1

�

c̄12 + 2c̄44

�

, (A.7)

euzz = C1

�

(µ+ 1)
�

q̄2
12 − 2c̄12āu

11

�

+ q̄44q̄12

�

eP2 − 2C2a1 c̄12 ,

in which eP2 is given by Eq.(A.5), C−1
1 = 2 (µ+ 1) q̄12 c̄44 + q̄44

�

c̄12 + 2c̄44

�

and
C−1

2 = 4c̄44q̄12 + q̄44

�

c̄12 + 2c̄44

�

. Fig. 7b demonstrates good agreement between the numeri-
cally and analytically calculated dependencies ur r(r) and uzz(r) outside the vortex core.
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Figure 7: Isotropic model for c-vortex. (a) Radial distribution of polarization in
c-vortex in the cylinder with R = 10 nm and h = 6 nm. The solid red line presents
the result of numerical simulation, the red dotted line corresponds to the results of
analytical calculations given by Eq. (A.6). (b) Elastic tensor components as a function
of distance from the vortex core. The solid purple and solid green lines depict the
numerical solution for components ur r and uzz , respectively; the dotted purple and
dotted green lines demonstrate the analytical approximation given by (A.7).

A.3 Energy parameters

Here, we find the numerical parameters in the approximate expressions for the energies of
vortices, given in Section 4.2-4.3. The obtained from the phase-field simulations energies
of vortex states in cylinders with different R are shown in Fig. 4 (Section 4.4) as a func-
tion of h by the black dots. Red and blue lines fit the numerical data for the c- and a-
vortices according to equations (6) and (4), respectively. The following best-fit parameters
were obtained: Fc ≈ −0.053 × 109Jm−3, F1c ≈ 0.78 × 109 Jm−3 for the c-vortex states and
Fa ≈ −0.07 × 109Jm−3, F1a ≈ 0.50 × 109 Jm−3, and Fæ ≈ 0.29 × 109 Jm−3 for the a- vortex
states.

Figure 8: Energy fit for c-vortex. (a) Numerical data and the best fit for the c-
vortices in cylinders with different h. (b) Linear scaling of the parameter Ec/(hR).

Figures 8 and 9 demonstrate the details of the fitting of the energies Ec and Ea of the c-
and a- vortex states, respectively. The numerical data for vortex energies in cylinders with
different h, and their fits according to equations (6) and (4) are shown as function of R in
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Figure 9: Energy fit for a-vortex. (a) Numerical data and the best fit for
the a-vortices in cylinders with different h. (b) Linear scaling of the parameter
(Ea − Eæ)/(hR), in which Eæ = 2πR2ξ0 Fæ is the vortex terminal energy.

panels 8a and 9a, respectively. Panels 8b and 9b demonstrate the data combinations, Ec/(hR)
and (Ea− Eæ)/(hR) (with the terminal energy Eæ = 2πR2ξ0 Fæ), which according to the equa-
tions (6) and (4) scale as linear functions, allowing for the accurate determination of the fitting
parameters. The scattered points in Fig. 9 correspond to the a-vortex states in cylinders with
h = 42 nm and radii R ≳ 20 nm, which is close to region II (twisted DW state) in diagram in
Fig 2. Due to slight distortion of the vortex core in this transient region the linear assumption
given by (4) can deviate.

A.4 Critical temperatures

Linearized GL equations for the divergenceless polarization field, P = Pθ (r) θ̂ + Pz(r,θ ) ẑ, are
written in cylindrical coordinates as

Ḡ
�

∇2Pθ −
Pθ
r2

�

= α1(T − Tc)Pθ , (A.8a)

Ḡ∇2Pz = α1(T − Tc)Pz , (A.8b)

where∇2 = r−1∂r (r∂r)+ r−2∂ 2
θ

. We assume here that the polarization distribution is uniform
along z-direction and look for the solution of Eqs. (A.8) with the natural boundary conditions
∂r Pθ (R) = 0, ∂r Pz(R) = 0.

Besides the uniform monodomain c-phase with Pu = Cu(Tc − T )1/2 ẑ and critical tempera-
ture Tc , there are two competitive solutions of Eqs. (A.8).

(i) The solution of Eq. (A.8a) Pc = Cc(Tcc − T )1/2 J1 (λ1r/R) θ̂ corresponds to the c-vortex,
(ii) and the solution of Eq. (A.8b) Pa = Ca(Tca − T )1/2 J1 (λ1r/R) cosθ ẑ is the precursor of

the vertical domain wall which forms the a-vortex state.
Here, J1 is the first-order Bessel function, λ1 = 1.8412 is the first zero of the

derivative ∂x J1(x). The corresponding critical temperatures, Tcc = Tc(1 − λ2
1 ξ

2
0/R

2) and
Tca = Tc(1−λ2

1 ξ
2
0/R

2), are found as eigenvalues of Eqs. (A.8). They appear to be equal; how-
ever, the accounting of the depolarization terminal energy of the a-vortex makes Tca smaller
than Tcc as discussed in Section 4.5. The coefficients Cu, Ca and Cc are found from the solution
of the nonlinear problem.
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