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Abstract

We study free particle motion on homogeneous kinematical spacetimes of galilean type.
The three well-known cases of Galilei and (A)dS–Galilei spacetimes are included in our
analysis, but our focus will be on the previously unexplored torsional galilean space-
times. We show how in well-chosen coordinates free particle motion becomes equiva-
lent to the dynamics of a damped harmonic oscillator, with the damping set by the tor-
sion. The realization of the kinematical symmetry algebra in terms of conserved charges
is subtle and comes with some interesting surprises, such as a homothetic version of
hamiltonian vector fields and a corresponding generalization of the Poisson bracket. We
show that the Bargmann extension is universal to all galilean kinematical symmetries,
but also that it is no longer central for nonzero torsion. We also present a geometric
interpretation of this fact through the Eisenhart lift of the dynamics.
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1 Introduction

Colloquially and in a physics context, a kinematical Lie algebra is a Lie algebra containing
time and space translations, rotations and boosts, with the assumption that boosts and space
translations are vectors under rotations, while time translations are invariant under rotations.
Examples of kinematical Lie algebras are the isometry Lie algebras of the maximally symmetric
lorentzian manifolds (Minkowski and (anti) de Sitter spacetimes), the Galilei and Carroll al-
gebras, the Newton–Hooke algebras, as well as a host of other anonymous Lie algebras which
have been known since the pioneering work of Bacry and Lévy-Leblond [1,2].

The Lie groups corresponding to these kinematical Lie algebras act transitively on so-called
kinematical spacetimes, which have recently been classified [3]. Among them we find, of
course, Minkowski and (anti) de Sitter spacetimes, but also their nonrelativistic limits: Galilei
and (anti) de Sitter–Galilei spacetimes, as well as their ultra-relativistic limits: Carroll and
(anti) de Sitter–Carroll spacetimes. There are many more, but they all fall into families:
lorentzian, galilean, carrollian and aristotelian, depending on the invariant geometric struc-
ture that they possess.

It is one of the postulates of general relativity that free particle motion in a lorentzian
spacetime (such as Minkowski or (anti) de Sitter) follows (causal) geodesics of the Levi-Civita
connection, and it is therefore a natural question to ask about free particle motion in the other
non-lorentzian kinematical spacetimes.

For example, the dynamics of a standard nonrelativistic free particle, with Lagrangian
L = 1

2 ẋa ẋa, is well-known to be invariant under the Galilei group. This can be explained
by the fact that the extrema of that Lagrangian can be interpreted as geodesics of the invari-
ant connection on Galilei spacetime which is compatible with the invariant galilean structure.
Since this spacetime is a homogeneous spacetime for the Galilei group there is a natural action
of this group and because the connection is invariant, the group acts as symmetries of geodesic
motion.

With one exception — namely, the carrollian lightcone — all kinematical spacetimes have
invariant connections [3, 4] and hence we may define free particle motion on a kinematical
spacetime as geodesics relative to any invariant compatible connection.

In this paper we shall be concerned only with galilean kinematical spacetimes. In general
spacetime dimension (here ≥ 4), there are three symmetric spatially isotropic homogeneous
galilean spacetimes: Galilei and (anti) de Sitter–Galilei and two one-parameter families of
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torsional galilean spacetimes with a common galilean limit. As mentioned above, free particle
motion on Galilei spacetime is understood. Similarly, one can study free particle motion on
(anti) de Sitter–Galilei spacetime, either intrinsically or by taking the nonrelativistic limit of
geodesic motion on (anti) de Sitter spacetime. These were studied in [5], who called them
Newton–Hooke spacetimes, and showed that the effect of the cosmological constant Λ was
to modify the standard nonrelativistic free particle Lagrangian by the addition of a potential
L = 1

2 ẋa ẋa+ 1
2Λxa xa, such that force is restorative for Λ< 0 (anti de Sitter) and repulsive for

Λ > 0 (de Sitter). Motion on (anti) de Sitter–Galilei spacetime has recently been considered
in [6] in the context of AdS/CFT, see also [7] for an earlier discussion of the invariant wave
equation.

Particle motion in the torsional galilean spaces had remained unexplored until now and this
was the main motivation for this work. As we will see, the effect of the torsion is simply to add a
dampening force to the motion. The damped harmonic oscillator has a long history, reviewed,
e.g., in [8]. Our novel perspective – to interpret it as motion invariant under a torsional
galilean kinematical symmetry algebra – reveals some relations among the conserved charges
that so far went unnoticed. Although the galilean kinematical symmetries act on phase space
as usual, i.e., as a subgroup of diffeomorphisms, the time translation is neither hamiltonian nor
symplectic when the torsion is non-zero. Since it remains homothetically hamiltonian one can
still associate a conserved charge, but the Poisson algebra of conserved charges is no longer
homomorphic to the algebra of vector fields generating the kinematical symmetries. We show
however that there exists a natural Lie bracket on the space of phase space functions extended
with a scaling weight, that makes this space homomorphic as a Lie algebra to the algebra of
homothetic hamiltonian vector fields. Under this bracket the conserved charges do form an
algebra homomorphic to the torsional galilean symmetry algebra. More precisely the algebra
of conserved charges is a one-dimensional extension, well known in the case without torsion
as the Bargmann extension [9], of the kinematical algebra. When the torsion is non-zero this
Bargmann extension is no longer central. We proceed to show that, as in the case without
torsion [10], this extension can be given a geometric interpretation through the Eisenhart
lift [11].

The results in this paper lead to a few natural questions that could be interesting to inves-
tigate further. How does the galilean kinematical Lie algebra embed into the full symmetry
group of the damped harmonic oscillator [12]? What is the rôle of the torsional kinematical
symmetry and its (non-central) Bargmann extension in the quantum theory? Is the notion
of free particle defined via geodesics of invariant connections in a non-lorentzian geometry
equivalent to the notion of elementary particle in the sense of Souriau [13,14]?

This paper is organized as follows. In Section 2 we review the geometry of the torsional ho-
mogeneous galilean spacetimes, deriving some coordinate expressions and paying particular
attention to the invariant connections. In particular, in Section 2.1 we define the spacetimes
in terms of their Klein pairs, in Section 2.2 we introduce modified exponential coordinates
which we prove to be global coordinates and in Section 2.3 we give explicit expressions for
the Christoffel symbols of the invariant connections in these coordinates. In Section 3 we
discuss geodesic motion on the galilean spacetimes relative to the invariant connection. More
concretely, in Section 3.1 we show that in a convenient parametrization, the geodesic equation
relative to any invariant connection reduces to that of a damped harmonic oscillator. Then in
Section 3.2, we discuss the realization of the kinematical Lie algebra as symmetries of this
equation and in terms of conserved charges. In Section 4 we re-examine geodesic motion in
terms of motion in a Newton–Cartan geometry and we relate it, via the Eisenhart lift, to null
geodesic motion on certain homogeneous pp-waves. The paper ends with four appendices. In
Appendix A we record some definitions about Type I Newton–Cartan geometry, particularly
the notion of compatible NC-doublets and NC-triplets and their use in defining an affine con-
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nection compatible with the Newton–Cartan structure. In Appendix B we discuss the notion of
symplectic and hamiltonian homotheties, which play an important rôle in Section 3.2. In par-
ticular we motivate and define a modified bracket on phase space functions, which we believe
is new and might find applications outside the context of this paper as well. In Appendix C
we extend the discussion of the main text to galilean spacetimes in spacetime dimension ≤ 3,
where particularly in dimension 3 there is a richer family of homogeneous galilean spacetimes.
Finally, in Appendix D we comment on the freedom to conformally redefine the Eisenhart lift
and use this to connect some of our results to those of [15].

2 Kinematical homogeneous spacetimes of galilean type

In this section we review the kinematical algebras of galilean type, the associated homogeneous
spacetimes and the key invariant geometric structure – the invariant NC-compatible connection
– that differentiates them. With the aim of keeping the discussion brief and as concrete as
possible, we only summarize those results of relevance to the remainder of the paper and do
so in a language and notation adapted to the problem discussed there. We refer to [3, 4] for
a more general discussion of kinematical homogeneous spaces of all types, as well as a more
precise and detailed discussion of the galilean case.

2.1 Kinematical Lie algebras of galilean type

Our starting point is the Lie algebra of (infinitesimal) symmetries in d spatial dimensions, a
generalization of the well-known galilean algebra of a nonrelativistic free particle.

A kinematical Lie algebra of galilean type is a real Lie algebra for which there exists a basis
{Jab = −Jba, Ba, H, Pa}, a, b = 1, . . . , d with Lie brackets

[Jab, Jcd] = δbcJad −δacJbd −δbd Jac +δad Jbc ,

[Jab, Bc] = δbcBa −δacBb ,

[Jab, Pc] = δbc Pa −δac Pb ,

[Jab, H] = 0 ,

(2.1)

and1

[H, Ba] = −Pa , [H, Pa] = αBa + βPa , [Pa, Bb] = [Pa, Pb] = [Ba, Bb] = 0 , (2.2)

where α,β are arbitrary real constants. We refer to this Lie algebra as k(α,β).
The first set of brackets (2.1) is universal to all kinematical lie algebras, by their very

definition. The Jab generate a rotation subalgebra under which the generators Ba and Pa
transform as vectors, while H is a scalar. A basis independent definition of a kinematical Lie
algebra is a Lie algebra that contains an so(d) subalgebra with respect to which the whole
algebra decomposes as so(d)⊕2V ⊕S where 2V are two copies of the d-dimensional (vector)
irreducible representation of so(d) and S is the one-dimensional (scalar) trivial representation
of so(d). Some well known examples other than the galilean ones we restrict attention to in
this paper, are the Poincaré and Carroll algebras.

The Lie brackets between the generators {H, Ba, Pa} are left free by the definition of kine-
matical Lie algebra and are only constrained by the Jacobi identity. The brackets (2.2), which
are only a subset of the possible solutions to the Jacobi identities, then select those kinematical

1Our definition here and our further discussion in the main text is only complete when d ≥ 3. When d = 2
there exists an additional kinematical algebra of galilean type where the brackets (2.2) are slightly modified. See
Appendix C for the discussion when d ≤ 2.
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algebras that we call ‘of galilean type’.2 Indeed, the class of algebras k(α,β) defined by (2.1)
and (2.2), contains the Galilei algebra k(0,0) as well as the galilean (A)dS – or Newton–Hooke
– algebras k(±1,0). Less familiar algebras can be obtained by choosing β ̸= 0 and these will be
the main focus of this paper. There is some redundancy in the parameters (α,β), as well as
through mixing of the Pa and Ba: different choices can lead to isomorphic Lie algebras. We will
discuss this in more detail in the next subsection at the level of the associated homogeneous
spacetimes.

Finally let us mention that based on the above, one can define a kinematical Lie group of
galilean type simply to be a Lie group whose Lie algebra is kinematical of galilean type. We’ll
refer to the (simply connected) Lie group with Lie algebra k(α,β) as K(α,β).

2.2 Homogeneous spacetimes and modified exponential coordinates

As a physicist, one would intuitively interpret the generators of the kinematical algebra —
(2.1) and (2.2) — as spatial rotations Jab, time and space translations H, Pa as well as boosts
Ba. One should be aware however that such interpretation is associated to an action of the
associated transformations on a spacetime. It is only this action which distinguishes the boosts
Ba from the translations Pa: while boosts leave the origin invariant the translations do not. If
we assume the group action to be transitive then the spacetime will be a homogeneous space
that can be identified with a coset space K/H of the kinematical Lie group K.

The mathematical formulation of our physical intuition is then that a (homogeneous) kine-
matical spacetime corresponds3 to a Klein pair (k,h). Such that k,h are the Lie algebras of K
and its subgroup H respectively, and we require h to contain precisely the rotations so(d) and
one vector representation V , i.e.

h= so(d)⊕ V ⊂ k= so(d)⊕ 2V ⊕ S . (2.3)

This last condition imposes that rotations and one of its vector representations, the boosts,
leave spacetime points invariant (i.e. generate the stabilizer subgroup). The complement
V ⊕ S are the space translations (a vector) and the time translation (a scalar). It is the choice
of h which distinguishes the boosts from translations inside the subspace 2V of k.

Since in this paper we will always have a homogeneous kinematical spacetime – i.e. a
pair (k,h) – in mind, we’ll simply indicate the choice of h through our notation for the basis
{Jab, Ba, Pa, H} of k. From now on we’ll assume that this notation implies that {Jab, Ba} is a
basis of h. In other words, with this additional interpretation of the notation, the choice of
basis (2.1, 2.2) for a kinematical Lie algebra of galilean type directly defines a kinematical

2For a classification of (spatially isotropic) kinematical Lie algebras, see [1,2,16] (for d = 3), [17] (for d > 3)
and [18] (for d = 2). For d = 1 every three-dimensional Lie algebra is kinematical, so the classification goes back
to Bianchi [19, 20]. Note that in the literature the ‘type’ nomenclature is often reserved for Klein pairs (k,h) of
a kinematical Lie algebra k together with a subalgebra h, see, e.g., [3], where Klein pairs are referred to as Lie
pairs. These pairs fall into the distinct classes of lorentzian-, riemannian-, galilean-, carrollian-, aristotelian- and
low-dimensional exotic- type. One can extend this typification of the pairs to the kinematical algebras themselves,
by defining such an algebra to be of a particular type if it allows a Klein pair of that type. The only subtlety is that
with this definition a kinematical Lie algebra can be of more than one type. For example, the Poincaré algebra is
of both lorentzian and carrollian type, as illustrated in the example on page 9 of [3] or more recently also in [21],
which displays a number of homogeneous spaces of the Poincaré group of different types describing the asymptotic
geometry of Minkowski spacetime. Fortunately, there is no such ambiguity for the galilean type: only galilean Lie
algebras admit (spatially isotropic) galilean Klein pairs.

3More formally a homogeneous kinematical spacetime is a connected smooth manifold M with a transitive (and
locally effective) action by a kinematical Lie groupK, whose typical stabilizer subgroup H has a Lie algebra h which
is given by so(d)⊕V as an so(d) representation. It follows from this definition that any homogeneous kinematical
space-time M is (K-equivariantly) diffeomorphic to the coset space K/H. This then allows to identify it with
the pair (k, h) given a number of further technical conditions, such as the pair being effective and geometrically
realizable. Full details can be found in e.g. [3].

5

https://scipost.org
https://scipost.org/SciPostPhys.14.4.059


SciPost Phys. 14, 059 (2023)

homogeneous spacetime of galilean type. Since (α,β) are the only free parameters in (2.1,
2.2), which furthermore do not appear in the brackets of h, we can indicate the corresponding
homogeneous spacetime as

M(α,β) =K(α,β)/H . (2.4)

Let us now define global coordinates on M(α,β), that we will refer to as modified exponential
coordinates. We may choose the coset of the identity element o = eH ∈M(α,β) as our origin.
A point p ∈M(α,β) is then given the coordinates (t, xa) via the definition

p = etH exa Pa · o . (2.5)

This defines a smooth map j : Rd+1 → M(α,β) sending (t, xa) 7→ etH exa Pa · o. This map
is a local diffeomorphism. Indeed, we can see that its derivative has full rank by simply
computing the pull-back of the left-invariant Maurer–Cartan one-form on K(α,β) via the map
σ : Rd+1→K(α,β) sending (t, xa) 7→ etH exa Pa . Doing so we find that

σ−1dσ = Hdt + (d xa + β xad t)Pa +αxad tBa , (2.6)

from where we read off the coframe θ = (d t, d xa + β xad t), which is clearly everywhere
invertible. Next we observe that M(α,β) is acted on transitively by the solvable subgroup
B(α,β) ⊂ K(α,β) generated by H, Ba, Pa. In other words, the rotations are redundant and we
will ignore them for the purposes of showing that the coordinates (t, xa) are indeed global.

We now define a transitive action of B(α,β) on Rd+1 by demanding that the map j be
equivariant. The action of B(α,β) on M(α,β) is induced by left multiplication on the group, so
calculating the product of exponentials we arrive at:

eaH · (t, xa) = (t + a, xa) ,

evaBa · (t, xa) =
�

t, xa + e−tβ/2 sin(ωt)
ω

va
�

,

e ya Pa · (t, xa) =
�

t, xa + e−tβ/2
�

cos(ωt)− β
sin(ωt)

2ω

�

ya
�

,

(2.7)

where ω := 1
2

p

4α− β2. This action is transitive almost by definition. Indeed, starting from
the origin (0,0) we can reach (t, xa) by acting with σ(t, xa) = etH exa Pa . By equivariance,
the image of the map j is an orbit of B(α,β) on M(α,β), but since M(α,β) is homogeneous, j
is surjective and, being a local diffeomorphism, it is a covering map.4 Since both Rd+1 and
M(α,β) are simply connected, the map j must be a diffeomorphism.

In summary, the coordinates (t, xa) thus defined are global and hence, as manifolds, all
the spacetimes M(α,β) are diffeomorphic to Rd+1. Either directly from equation (2.7) or start-
ing with (2.5) via the method in [4], one calculates that the kinematical Lie algebra k(α,β) is
realized5 on M(α,β) through the vector fields

ξJab
= x b∂a − xa∂b ,

ξH = ∂t ,

ξPa
= e−β t/2
�

cosωt −
β

2
sinωt
ω

�

∂a ,

ξBa
= e−β t/2 sinωt

ω
∂a .

(2.8)

4Strictly speaking it is a branched covering, but this cannot happen for equivariant maps between homogeneous
spaces, since the existence of a non-empty branched locus would spoil homogeneity.

5Recall that in the standard conventions this is an anti-homomorphism of Lie algebras.
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Note that depending on the respective values of α,β the parameter ω can be either real or
imaginary, in all cases the vector fields above remain real and well defined.

Remark that although the time translations are simply a shift of the time coordinate t by
a constant, this is not the case for the spatial translations which are a shift with a particular
function of time in case α or β are non-zero.

Although as manifolds all the kinematical homogeneous spacetimes of galilean type M(α,β)
are the same, this is no longer true if we equip them with invariant geometric structures, since
the symmetries act differently in the different cases. We’ll discuss this in more detail in the
next subsection.

Before we introduce these additional geometric invariants, let us comment on the redun-
dancy in the parameters (α,β). Observe that the change of basis H → sH, Ba→ s−1Ba, for any
s ∈ R×, leads to the change of parameters

α→ s2α , β → sβ . (2.9)

This implies that the homogeneous spaces of which the parameters (α,β) are related through
such a transformation are isomorphic.6 Indeed this can be seen explicitly by observ-
ing that if one accompanies the transformation (2.9) with the coordinate transformation
(t, xa)→ (s−1 t, xa) then the vector fields (2.8) remain invariant.

Without loss of generality one can thus reduce the values of (α,β) via (2.9) to one of the
following three classes

• Galilei spacetime: M(0,0) ,

• (torsional) galilean dS spacetime: M(γ,1+γ)
∼=M(γs2,(1+γ)s) , γ ∈ [−1,1] ,

• (torsional) galilean AdS spacetime: M(1+χ2,2χ)
∼=M((1+χ2)s2,2χs) , χ ∈ [0,∞) .

The standard, rather well-known cases all have β = 0 and are Galilei spacetime (α = 0),
galilean de Sitter (α < 0) and galilean Anti de Sitter (α > 0). The cases with β ̸= 0 are less
well studied and are the topic of this paper. As we’ll see in the next subsection, β parameterizes
the torsion of the unique invariant connection compatible with the invariant Newton–Cartan
structure on the M(α,β).

In the following we will find it convenient to keep working with the parameters (α,β),
rather than γ or χ that parametrize the inequivalent spacetimes, since it will allow us to discuss
all cases at once in a simple way. Furthermore each of α and β will turn out to have a clear
physical interpretation in the particle dynamics, with α parameterizing a harmonic potential
and β determining the damping.

2.3 The invariant NC-compatible connection

The difference between the various kinematical homogeneous spacetimes of galilean type
M(α,β) is most explicitly seen in their unique invariant NC-compatible connection. This is
the unique invariant affine connection that preserves the invariant Newton–Cartan structure
on M(α,β), as we’ll explain below. In modified exponential coordinates (2.5) the non-vanishing
components of the invariant NC-compatible connection on M(α,β) are

Γ a
bt = βδ

a
b ,

Γ a
t t = αxa .

(2.10)

Note that since Γ a
t b = 0 this connection has torsion, the non-vanishing components being

T a
bt = βδ

a
b . (2.11)

6As homogeneous spaces, not just as manifolds.
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Furthermore the only non-vanishing components of the Riemann tensor are

Ra
t bt = −Ra

t t b = αδ
a
b . (2.12)

We thus see that the parameters (α,β) can be identified with respectively the curvature and
torsion of the unique invariant NC-compatible connection on M(α,β).

To derive the above results one starts from the fact [4] that since the M(α,β) are of galilean
type, they carry an invariant Newton–Cartan structure7 (τµ, hµν). (In fact, one can rescale τ
and h independently, by nonzero real numbers, so one has a two-parameter family of invariant
Newton–Cartan structures.) In the modified exponential coordinates (xµ) = (t, xa) introduced
in (2.5), the invariant Newton–Cartan structure takes the same trivial form on all M(α,β):

τµ = δ
t
µ , hµν = δµaδ

ν
bδ

ab . (2.13)

Crucially however the invariant affine connections differ significantly in the various cases.
Such connections can be classified using the theorem of Nomizu [22], or more explicitly by
demanding invariance under the infinitesimal coordinate transformations associated to the
kinematical symmetries.8 Both methods agree, and one finds that in modified exponential
coordinates the only non-zero components of an invariant affine connection Γρµν on M(α,β)
are9

Γ t
t t = (κ+ ι) ,

Γ a
t b = κδ

a
b ,

Γ a
bt = (β + ι)δ

a
b ,

Γ a
t t = αxa .

(2.14)

In summary, on a given M(α,β) there is a family of invariant connections parameterized by the
two (unconstrained, real) constants κ, ι.

A short calculation reveals that among this two parameter family of invariant connections
there is a unique one that is compatible with the invariant Newton–Cartan structure (2.13)
on M(α,β), i.e. such that ∇µτν = 0 and ∇µhνρ = 0. This connection, that we refer to as the
invariant NC-compatible connection, is the invariant affine connection for which κ = ι = 0,
which leads to (2.10).

3 Torsional galilean particles and the damped harmonic oscillator

In this section we will provide a physical interpretation to the less familiar galilean kinematical
algebras with β ̸= 0, by realizing them as the symmetries of free, or geodesic, particle motion
in the space-time M(α,β). In the first part of this section we show how this geodesic motion
with respect to the invariant NC compatible connection on M(α,β) can be identified, upon
fixing time parametrization invariance, with the dynamics of the damped harmonic oscillator.
In the second part of this section we study how (an extension of) the kinematical symmetry
algebra k(α,β) is realized in terms of phase space vector fields and conserved charges.

3.1 Damped harmonic oscillator from geodesic equation

To formulate a K(α,β) invariant particle dynamics on M(α,β) we can simply define the particle
motion to be the geodesic equation with respect to an invariant connection. Since such invari-
ant connections are not unique, see Section 2.3, there could a priori be more than one invariant

7See appendix A for a definition, nomenclature and some related notions.
8This amounts to solving Lξ∇ = 0 for each ξ in (2.8), which relative to local coordinates becomes the differ-

ential relations ξρ∂ρΓ
λ
µν
− Γ ρ

µν
∂ρξ

λ + Γ λ
ρν
∂µξ

ρ + Γ λ
µρ
∂νξ

ρ + ∂µ∂νξλ = 0.
9The result (2.14) is complete for d ≥ 3. Some exceptions are present when d ≤ 2, see Appendix C.
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particle dynamics. It turns out however that the free parameters κ, ι specifying the different
invariant connections drop out of the actual geodesic equations. In other words, all invariant
connections share the same set of geodesics, something which should not really be a surprise,
since in the highly symmetric situation we are considering one would expect10 the geodesics to
be generated purely by the symmetries, and these are independent of the parameters κ and ι.

The affine geodesic – or autoparallel – equation associated to an affine connection Γρµν
reads

d2 xρ

dσ2
+ Γρµν

d xµ

dσ
d xν

dσ
= f

d xρ

dσ
. (3.1)

Choosing coordinates (xµ) = (t, xa) we can re-express f via the t component of the above
equation:

f =
d2 t
dσ2 + Γ t

µν
d xµ
dσ

d xν
dσ

d t
dσ

. (3.2)

Inserting this into (3.1) and then specializing to the invariant connections (2.14) we find that
it is equivalent to

d2 xa

dσ2
+ β

d xa

dσ
d t
dσ
+αxa
�

d t
dσ

�2

−
d2 t
dσ2

d t
dσ

d xa

dσ
= 0 . (3.3)

As we mentioned at the beginning of this section the Nomizu parameters κ and ι drop out of
this equation, so that the geodesic equation is the same for all invariant connections. Upon
choosing time t to be the parameter along the curve,11 i.e. σ = t, the equation (3.3) further
simplifies to

ẍa + β ẋa +αxa = 0 , (3.4)

with d
d t denoted by a dot. Here, we recognize the dynamical equation of damped harmonic

motion, with damping β and stiffness α.
We have thus arrived at a somewhat surprising but very concrete physical interpretation

of particle motion on the most general galilean homogeneous kinematical spacetimes. Just
as the invariant geodesics on Galilei spacetime correspond to free mechanical motion, the
invariant geodesics on the spacetime M(α,β) correspond to damped harmonic motion. The
invariant geodesics of the torsional galilean AdS spacetimes correspond to the underdamped

cases (α > β2

4 ), while those of the torsional galilean dS spacetimes are equivalent to the

overdamped ones12 (α < β2

4 ). The critically damped oscillator describes the geodesics on the
spacetime M(1,2), which is the boundary case γ= 1 of the torsional galilean dS spacetimes.

3.2 The kinematical algebra through conserved charges

Since the equation (3.4) is equivalent to the geodesic equation of a K(α,β) invariant connection
on M(α,β) it will exhibit K(α,β) symmetry by construction. To study this symmetry and the
corresponding conserved charges it will be convenient to introduce an action that reproduces
the damped harmonic dynamics (3.4) as its Euler-Lagrange equations. This action, known as
the Bateman–Caldirola–Kanai (BCK) action [23–25], is

S =

∫

meβ t

2
( ẋa ẋa −αxa xa) d t . (3.5)

10Indeed this is the case.
11Note that if we choose σ = t then f = Γ t

t t = κ + ι. So t is not an affine parameter if one works with a
connection for which κ+ ι ̸= 0. Since this sum vanishes for the invariant NC-compatible connection (2.10), t is
an affine parameter in that case.

12Note that in these we include the α < 0 range, where the potential is repulsive.
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Here we introduced m, the mass of the particle, to provide a proper physical interpretation.
Since we chose time t as our parameter,13 it will be useful to describe transformations

in their passive form. I.e. given a vector field ξµ, so that δxµ = ξµ, we define the passive
transformations of the xa(t) as

δpassive xa = ξa − ẋaξt , δpassive ẋa =
d
d t
δpassive xa , δpassive t = 0 . (3.6)

The vector fields (2.8) that generated the K(α,β) action then lead to the following passive
transformations

δJab
x c = x bδc

a − xaδc
b , δPa

x b = Ḟ(t)δb
a , δBa

x b = F(t)δb
a , δH xa = − ẋa , (3.7)

with

F(t) = e−β t/2 sinωt
ω

. (3.8)

For calculational purposes, it is useful to note that F itself is a solution to the damped harmonic
equation (3.4): F̈ + β Ḟ + αF = 0. One checks that the commutators of the transformations
(3.7) reproduce those of the vector fields (2.8) and thus also represent the Lie algebra k(α,β).

The transformations corresponding to the rotations, boosts and spatial translations are
symmetries in the most standard sense, in that they leave the action (3.5) invariant. Noether’s
theorem then leads to associated conserved charges. The time translation is a bit more subtle,
as it rescales the action with a constant, i.e. δHS = βS, rather than leaving it strictly invariant.
This is sufficient however to leave the equations of motion invariant and so time translations
are indeed, as was warranted by construction, also a symmetry of the particle motion. The
association of a conserved charge is now a bit more subtle, but can still be performed.

The discussion of the conserved charges, as well as the Lie algebra they form, is clearest
in the Hamiltonian formalism. It allows us to realize the kinematical algebra k(α,β) as a Lie
algebra of phase space vector fields that can then be made homomorphic to an algebra of
conserved charges. The fact that the time translations rescale the action rather than leave it
invariant (when β ̸= 0), has two interesting related effects: the algebra of conserved charges
is realized through a slight generalization of the standard Poisson bracket, and simultaneously
the Bargmann extension – which appears for all Lie algebras k(α,β) – is no longer central.

First one observes that the canonical momenta defined by the Lagrangian (3.5) are

pa = meβ t ẋa , (3.9)

and one finds the canonical Hamiltonian

h=
e−β t

2m
papa +

mα eβ t

2
xa xa . (3.10)

Via (3.9) one finds the (on-shell) transformations of the canonical momenta and by introducing
the phase space coordinates (yA) = (xa, pa) one can then express the transformations on phase
space in terms of phase space vector fields, Ξ= Ξa∂a+Ξa∂

a, via δ yA = ΞA. Here we used the
notation ∂ a = ∂

∂ pa
. Carrying out this procedure for all symmetry transformations one finds

ΞJab
= x b∂a − xa∂b + pb∂

a − pa∂
b , (3.11)

ΞPa
= Ḟ∂a +meβ t F̈∂ a , (3.12)

ΞBa
= F∂a +meβ t Ḟ∂ a , (3.13)

ΞH = −
e−β t

m
pa∂a + (mαeβ t xa + βpa)∂

a , (3.14)

13A fully reparametrization and coordinate invariant formulation is discussed in section 4. Although we do not
discuss the Hamiltonian formulation there, a discussion identical to the one in this section can be repeated keeping
reparametrization invariance manifest, by using the formalism of constrained Hamiltonian systems.
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where F is given by equation (3.8). One verifies that under commutation the above phase
space vector fields close into an algebra which is (anti-)isomorphic to the kinematical algebra
k(α,β) defined in (2.1) and (2.2).

We should now recall the notion of hamiltonian vector field. The canonical symplectic
form is Ω= d xa ∧ dpa. A vector field X is hamiltonian if there exists a phase space function f
such that

iXΩ= d f ⇔ X a = ∂ a f , Xa = −∂a f . (3.15)

In this case, we will write X = X f . It follows that the commutator of two hamiltonian vector
fields can be re-expressed in terms of the Poisson bracket:

[X f1 , X f2] = −X{ f1, f2} . (3.16)

In particular, the time evolution is determined by the hamiltonian vector field associated
to the canonical Hamiltonian (3.10):

Xh =
e−β t

m
pa∂a −mαeβ t xa∂ a , (3.17)

via Hamilton’s equations
d yA

d t
= X A

h . (3.18)

These imply the following time evolution for an arbitrary (time-dependent) phase space func-
tion f :

d
d t

f = ∂t f + { f , h} . (3.19)

It follows that a phase space function f is conserved when {h, f }= ∂t f , or

[X f , Xh] = X∂t f . (3.20)

The vector fields (3.11-3.13) associated to rotations, spatial translations and boosts are all
hamiltonian:

ΞJab
= XJab

, with Jab = x bpa − xapb , (3.21)

ΞPa
= XPa

, with Pa = Ḟ pa −meβ t F̈ xa , (3.22)

ΞBa
= XBa

, with Ba = F pa −meβ t Ḟ xa , (3.23)

where F is given by equation (3.8). One checks that all of Jab, Pa and Ba satisfy (3.20) and
are hence conserved charges. They form the following Poisson algebra

{Jab, Jcd} = δbcJad −δacJbd −δbd Jac +δad Jbc , (3.24)

{Jab, Bc} = δbcBa −δacBb , {Jab, Pc}= δbc Pa −δac Pb , (3.25)

{Pa, Bb} = mδab . (3.26)

The first two lines, (3.24, 3.25), reproduce the brackets of the subalgebra of the kinematical
algebra k(α,β) spanned by rotations, boosts and spatial translations, while the last line provides
the well known Bargmann extension [9]. The mass m is a constant, which implies that Xm = 0
and that m Poisson commutes with all the Jab, Pa and Ba – so that the extension (3.26) is central
in the subalgebra (3.24, 3.25). It is interesting to note that although the charges intricately
depend on the parameters (α,β) and time t, see (3.21-3.23, 3.8), the Bargmann extension
is universal to all cases and independent of these parameters. In deriving (3.26) the relation
Ḟ2 − F̈ F = e−β t is crucial, it expresses the Wronskian of F and Ḟ , both of which are solutions
to the dynamical equation (3.4).
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We have reserved the discussion of the time translation symmetry and the associated vector
field ΞH until now, as it is more subtle. Indeed, the vector field ΞH (3.14) is not hamiltonian,
indeed not even symplectic. Instead, it rescales the symplectic structure by a constant:

LΞH
Ω= β Ω . (3.27)

We discuss such symplectic homotheties and how they can lead to conserved charges in more
generality and detail in Appendix B. Here we simply remark that the difference between ΞH
and βE is however hamiltonian, where we introduced a preferred symplectic homothety

E =
1
2
(xa∂a + pa∂

a) . (3.28)

In other words, we can write
ΞH = X(β ,H) := βE + XH , (3.29)

where a short computation reveals that

H = −
�

e−β t

2m
papa +

β

2
xapa +

mαeβ t

2
xa xa

�

= −
�

h+
β

2
xapa

�

. (3.30)

Interestingly H is again a conserved charge. This can simply be verified by direct computation
of d

d t H and use of the equations of motion. This is however not a coincidence: in Appendix B
we show how for any homothetic hamiltonian vector field X(s, f ) = sE + X f that satisfies

LX(s, f )h= sh+ ∂t f , LEh= h , LEΩ= Ω , (3.31)

the phase space function f is a conserved charge. This is a generalization of the standard
argument for hamiltonian vector fields X f = X(0, f ) to homothetic hamiltonian vector fields
X(s, f ). Verifying that indeed (3.28) and (3.29) satisfy the conditions (3.31), with s = β and
f = H, is thus another way of showing that H is a conserved charge.

It is now important to point out that although the homothetic hamiltonian vector fields still
form a subalgebra of the algebra of vector fields (see Appendix B), this algebra is no longer
homomorphic to the Poisson algebra of phase space functions. Rather one finds the relation

[X(s1, f1), X(s2, f2)] = −[[(s1, f1) , (s2, f2)]] , (3.32)

where
[[(s1, f1) , (s2, f2)]] := (0, { f1, f2} − s1(LE f2 − f2) + s2(LE f1 − f1)) . (3.33)

It should be clear that (3.32) is a direct generalization of (3.16) and that furthermore
[[(0, f1) , (0, f2)]] = (0, { f1, f2}). Note however that although [[· , ·]] is a Lie bracket, it is not a
Poisson bracket (nor even a Jacobi bracket [26, 27]). An important subtlety that will play a
role below, is that the constant phase space functions c, are no longer central (as they are in
the Poisson algebra):

[[(s, f ) , (0, c)]] = (0, sc) . (3.34)

Since it is the algebra of phase space vector fields (3.11-3.14) that is (anti-) isomorphic to
the kinematical algebra k(α,β) and since one of these vector fields is homothetic hamiltonian
rather than simply hamiltonian, it follows that we will be able to recover the kinematical
algebra in terms of conserved charges only with respect to the generalized bracket (3.33) and
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by taking into account the scaling weight s, defined via LΞΩ= sΩ, of each symmetry. Indeed,
an explicit calculation shows that the non-vanishing brackets are

[[Jab , Jcd]] = δbcJad −δacJbd −δbdJac +δadJbc ,

[[Jab ,Bc]] = δbcBa −δacBb ,

[[Jab ,Pc]] = δbcPa −δacPb ,

[[H ,Ba]] = −Pa ,

[[H ,Pa]] = αBa + βPa ,

[[Pa ,Bb]] = δabM ,

[[H ,M]] = βM ,

(3.35)

where we introduced the shorthands

Jab = (0, Jab) , Pa = (0, Pa) , Ba = (0, Ba) , H= (β , H) and M= (0, m) . (3.36)

The Lie algebra (3.35) is a one-dimensional extension, by the generator M, of the galilean kine-
matical algebra k(α,β) defined in (2.1) and (2.2). In case β = 0 one recovers the Bargmann
central extensions of the Galilei (α = 0) and Newton–Hooke (α > 0 and α < 0) algebras. If
β ̸= 0, the appearance of the mass M on the right hand side of the bracket of boosts and com-
mutators remains intact, but this Bargmann extension is now no longer central, as can be seen
from the nonzero [[H ,M]] bracket. Physically this has the interpretation of time translations
rescaling the mass of the particle by a constant. Indeed, the physical mass of the particle can
be identified with the overall prefactor of the action. Since time-translations rescale the action
rather than leaving it invariant when β ̸= 0, the effect of a time translation is indeed to rescale
the physical mass.

For any values of α,β the Lie algebras (3.35) are a deformation of the centrally extended
static kinematical Lie algebra. Such deformations were classified in [16, Table 2] for d = 3
and [17, Table 18] for d > 3. In section 4.3 we show how they also appear as the algebras of
homotheties of the Lorentzian metrics (4.23), that are obtained through the Eisenhart lift of the
damped harmonic oscillator. They are also the isometry Lie algebras of certain homogeneous
pp-waves discussed in [15], as we explain in appendix D.

We end this section with a small curiosity. As we discussed above, the conserved charges
form a Lie algebra homomorphic to the kinematical algebra only upon the introduction of
a modified bracket. Somewhat surprisingly the charges also close under the usual Poisson
bracket. In this case they do not reproduce the kinematical algebra k(α,β), but rather a central
extension of the kinematical algebra at different values of the parameters, i.e. k(ω2,0).

To see this explicitly one can first compute

{H, Ba} = −Pa −
β

2
Ba , {H, Pa}= αBa +

β

2
Pa . (3.37)

Upon performing the change of basis

P̃a = Pa +
β

2
Ba , (3.38)

one then gets the following Poisson bracket algebra:

{Jab, Jcd}= δbcJad −δacJbd −δbd Jac +δad Jbc ,

{Jab, Bc}= δbc ba −δac bb ,

{Jab, P̃c}= δbc P̃a −δac P̃b ,

{H, Ba}= −P̃a ,

{H, P̃a}=ω2Ba ,

{P̃a, Bb}= mδab ,

(3.39)
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which is the Bargmann central extension of the galilean kinematical algebra k(ω2,0). This shows
that the free motion of a particle on M(α,β), or equivalently a damped harmonic oscillator of
parameters α,β , has not only k(α,β) symmetry, but also k(ω2,0) symmetry. It is well known, see
e.g. [12], that the algebra of all symmetries of the damped harmonic oscillator is larger than
k(α,β), but what is somewhat surprising is that this larger symmetry group apparently also has
k(ω2,0) as a subgroup.

4 Particle motion via Newton-Cartan and Bargmann geometry

In the previous section we saw how a free particle, or from a mathematical point of view a
geodesic, on a galilean kinematical spacetime M(α,β) is equivalent to damped harmonic mo-
tion. This is made explicit by working in adapted coordinates (t, xa) that split time and space
and furthermore by choosing time t as the parameter along the geodesic. In this section we re-
turn to a more intrinsic and geometric description by rewriting the action (3.5) in a coordinate
and reparametrization invariant way. This will make use of a Newton-Cartan structure, which
– somewhat surprisingly – is not invariant, but only homothetically invariant under K(α,β).
Indeed, since the action for a particle on a Newton-Cartan background leads to a compatible
symmetric connection, but the analysis of Section 2.3 revealed that when β ̸= 0 the invariant
compatible connection is not symmetric, an action based on the invariant Newton-Cartan struc-
ture on M(α,β) cannot lead to a geodesic equation involving an invariant connection (when
β ̸= 0).

We will first, in section 4.1 review the general formulation and properties of the action
describing particle dynamics on a Newton-Cartan background and then, in subsection 4.2,
specialize to the case of our interest: K(α,β) invariant motion on M(α,β). Finally, we will
discuss in subsection 4.3 how the Bargmann extended algebra, that appeared through a careful
consideration of the conserved charges on phase space in section 3.2, can be given a geometric
interpretation as an algebra of homotheties14 of an associated (higher dimensional) Lorentzian
metric through the Eisenhart lift.

4.1 Particle motion on Newton–Cartan spacetimes

A Newton–Cartan spacetime is a d + 1 dimensional manifold M equipped with a Newton–
Cartan structure (τµ, hµν), see appendix A. Particle motion on such a Newton–Cartan space-
time is then described in terms of a curve xµ(σ), where xµ are coordinates on M and σ is a
worldline parameter. Free particle motion is essentially geodesic and so to define it one needs
an affine connection. Contrary to the riemannian or lorentzian case there is more than one
torsion free compatible connection for a given Newton–Cartan structure. This implies that to
define particle motion one needs to provide additional information. A priory this could be
(part of) the connection itself, but this turns out not to be the most useful way to package this
additional freedom, especially in case one would want to formulate a variational principle.
The action for a particle on a Newton–Cartan background goes back to [28], reviews from a
more modern perspective can be found in e.g. [29,30].

To write a reparametrization invariant particle Lagrangian, one introduces what we will
refer to as a compatible NC-doublet, (τ̂µ, h̄µν), see Appendix A for a precise definition and
further details.

14Actually the same transformations are also isometries of a conformally related metric, see appendix D.
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A Newton–Cartan structure together with a compatible NC-doublet then define the action

S[xµ(σ)] =
m
2

∫

h̄µν
d xµ
dσ

d xν
dσ

τρ
d xρ
dσ

dσ . (4.1)

In this paper we will furthermore restrict attention to the case ∂[µτν] = 0, the Euler–
Lagrange equations for the action (4.1) then take the form

d2 xµ

dσ2
+ Γµρσ

d xρ

dσ
d xσ

dσ
=

d
dσN

N
d xµ

dσ
, (4.2)

where N = τρ
d

dσ xρ and

Γλµν = τ̂
λ∂(µτν) +

1
2

hλρ(∂µh̄νρ + ∂νh̄µρ − ∂ρh̄µν) . (4.3)

As the notation suggests, the Γλµν provide an affine connection on M, which is symmetric and
leaves the Newton–Cartan structure (τµ, hµν) invariant.

We can thus conclude that particle motion on a Newton–Cartan spacetime (M,τµ, hµν),
as specified by the action (4.1), is equivalent to geodesic motion with respect to a symmetric
connection compatible with the Newton–Cartan structure. Both are determined by a choice of
compatible NC-doublet (τ̂µ, h̄µν).

Let us now connect the somewhat abstract discussion above to the more familiar me-
chanics of a nonrelativistic particle. Under the assumption ∂[µτν] = 0, we can always
(locally) make a choice of coordinates (t, xa) such that τµ = δt

µ. Additionally, we can
choose the worldline parameter to coincide with our choice of time: σ = t. It follows that
hµν = δµaδνbhab and we can choose (without loss of generality) a compatible NC-doublet
τ̂µ = δµt , h̄µν = δa

µδ
b
νhab +δt

µCν +δt
νCµ. The action (4.1) then takes the form

S[xa(t)] = m

∫

�

1
2

hab ẋa ẋ b + Ca ẋa + Ct

�

d t . (4.4)

We recognize here the Lagrangian of a particle moving in a d-dimensional space with Rieman-
nian metric hab, under the influence of a vector potential Ca and scalar potential −Ct .

The motion of particles on the galilean homogeneous spacetimes M(α,β) are highly sym-
metric special cases of the above. In general these symmetries, which in this setting are sym-
metries of the action (4.1), are generated by infinitesimal diffeomorphisms on M that take the
form

δξxµ = ξµ . (4.5)

The Lagrangian (4.1) transforms under such a diffeomorphism as

δξL =
m
2

�

(Lξh̄µν)
d xµ
dσ

d xν
dσ

τµ
d xµ
dσ

−
h̄µν

d xµ
dσ

d xν
dσ (Lξτρ)

d xρ
dσ

(τµ
d xµ
dσ )2

�

. (4.6)

This implies that if ξµ satisfies

Lξτµ = ζτµ , (4.7)

Lξh̄µν = (λ+ ζ)h̄µν + 2τ(ν∂µ)K ,

for some arbitrary functions K ,ζ and constant λ, then

δξL = λL +m
d

dσ
K . (4.8)
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The above is equivalent to the action (4.1) being invariant up to a rescaling with the constant λ.
It follows that transformations of the form (4.5) with ξ satisfying (4.7) leave the equations of
motion (4.2) invariant so can be considered symmetries. The associated conserved Noether
charges are

Qξ(σ) =
δL

δ d xµ
dσ

ξµ −mK −λ
∫ σ

Ldσ′ . (4.9)

The generalization to symmetries that rescale the action rather than leave it invariant are
crucial, since, as we discussed in Section 3.2, the time translations are of this type when β ̸= 0.

4.2 Covariant description of motion on M(α,β)

We can now view the action (3.5) as a special case of (4.4) and that way rewrite it as a
manifestly covariant and reparametrization invariant particle action (4.1) on a Newton-Cartan
spacetime. One verifies that the dynamic equation (3.3) describing the particle on M(α,β)
equals the Euler–Lagrange equations (4.2) for the action (4.1) with Newton–Cartan structure

τµ = δ
t
µ , hµν = e−β tδµaδ

ν
a (4.10)

and compatible NC-doublet

τ̂µ = δµt , h̄µν = eβ tδa
µδ

a
ν −αeβ t xa xaδt

µδ
t
ν . (4.11)

Observe that the Newton–Cartan structure (4.10) is not the invariant one (2.13) when β ̸= 0.
The above shows however that the symmetric part15 of the unique invariant connection (2.10)
compatible with the invariant Newton–Cartan structure (2.13) coincides with the symmetric
connection (4.3) compatible with the Newton–Cartan structure (4.10) and specified by the
NC-doublet (4.11).

The Newton–Cartan structure (4.10) is invariant under the subalgebra generated by the
ξPa

,ξBa
and ξJab

of (2.8), but this is not the case for the time translations: although LξH
τµ = 0

one finds that LξH
hµν = −βhµν. Similarly one verifies that the ξPa

,ξBa
and ξJab

satisfy (4.7)
for (4.10, 4.11) with λ= ζ= 0 and

KJab
= 0 , KPa

= eβ t F̈ xa , KBa
= eβ t Ḟ xa , (4.12)

where F was defined in (3.8). It follows that the transformations associated to the rota-
tions, boosts and spatial translations leave the action invariant and are thus symmetries in
the strictest sense. The time translation vector field ξH also satisfies (4.7) for (4.10, 4.11), but
now with

λH = β and KH = ζH = 0 . (4.13)

This implies the time-translations do not leave the action invariant, but rather rescale it with
the constant β , they are therefore symmetries in a slightly weaker sense: they still leave the
geodesic equation invariant – as indeed they should since that equation was constructed using
the invariant connection. I.e. we come, as expected, to the same conclusion as in Section 3.

4.3 Eisenhart lift: the extended kinematical algebra through homotheties

About a century ago Eisenhart [11] pointed out that a large class of nonrelativistic mechanical
systems can be equivalently described in terms of null geodesic motion on a higher dimensional
lorentzian spacetime with a null Killing vector. This relation was rediscovered by Duval et

15Remark that it is only the symmetric part of a connection that appears in the geodesic equation (3.1).
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al. [10] (see also [31–33]) and more recently studied from a more general perspective in
[34, 35], among others. Looked at from a top down perspective this equivalence becomes a
null reduction [10,36].

From a geometric perspective, and restricted to the subclass of cases that we are interested
in, the relation can be precisely phrased as the equivalence of d + 2 dimensional Bargmann
structures with parallel null Killing vector and d + 1 dimensional torsionless Type I Newton–
Cartan geometry.

Let us for clarity recall the relevant definitions. A Bargmann structure is a lorentzian metric
gAB together with a nowhere vanishing null vector field kA. This vector field is parallel when
∇AkB = 0 (w.r.t. the Levi-Civita connection of gAB) and is then also automatically Killing.
Type I Newton–Cartan geometry can take various equivalent shapes. We’ll define it to be
a Newton–Cartan structure (τµ, hρσ) together with an equivalence class of compatible NC
doublets [(τ̂µ, h̄ρσ)], see Appendix A for more details, it is torsionless when the intrinsic torsion
[37] of the galilean G-structure vanishes, i.e. dτ= 0.

The equivalence between these two geometric concepts is most explicit upon a choice of
coordinates (xA) = (u, xµ) such that k = ∂u. The (d + 2) dimensional lorentzian metric then
takes the form

ds2 = −2duτµd xµ + h̄µνd xµd xν . (4.14)

In components this implies

(gAB) =

�

0 −τµ
−τν h̄µν

�

, (gAB) =

�

−τ̂ρτ̂σh̄ρσ −τ̂µ

−τ̂ν hµν

�

. (4.15)

A different choice of coordinates u′ = u+Λ(xµ) is equivalent to a change

τ̂
′µ = τ̂µ − hµν∂µΛ , h̄′µν = h̄µν + ∂µΛτν + ∂νΛτµ , (4.16)

which leaves the equivalence class invariant, i.e. [(τ̂µ, h̄µν)] = [(τ̂
′µ, h̄′µν)]. Note that the

identification (4.14) implies that (kA) = (0,τµ) and so k being parallel becomes equivalent to
τ being closed.

Eisenhart’s equivalence between nonrelativistic motion and null geodesic motion is then
a direct consequence of the geometric equivalence reviewed above. First, one observes that a
null curve (xA(s)) = (u(s), xµ(s)) for the metric (4.14) satisfies

u̇=
1
2

h̄µν ẋµ ẋν

τρ ẋρ
. (4.17)

Using this relation (and that τ is closed), a short calculation then reveals that for such a null
curve

ẍA+ Γ A
BC ẋA ẋC = f ẋA ⇔ ẍµ + Γµρσ ẋρ ẋσ =

Ṅ
N

ẋµ . (4.18)

On the left side of the equivalence the connection is the Levi-Civita connection of the metric
gAB, while on the right hand side the connection is the Newton–Cartan one (4.3), and one rec-
ognizes the equation (4.2) which, as discussed in section 4.1, via the choices (xµ) = (t, xa),
s = t describes the motion of a nonrelativistic particle described by the action (4.4). Inter-
estingly, the relation (4.17) also provides a geometric interpretation of the NC action (4.1),
i.e. SNC = ∆u, or in other words: Nonrelativistic particle motion follows null geodesics upon
the Eisenhart lift and furthermore such null geodesics extremize the coordinate difference ∆u
between start and endpoint. Note that this is due to the Bargmann structure exhibited by
the lifted geometry and remark that ∆u = ∆ũ is indeed a geometric invariant (although we
expressed it in local coordinates).
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Possibly the most interesting feature of the Eisenhart lift is that it provides a new, more
geometric, perspective on the symmetries of the mechanical system [10]. To start the discus-
sion we recall that the right-hand side of (4.17) is the nonrelativistic Lagrangian, i.e. mu̇= L.
Those symmetries of the lower dimensional nonrelativistic system that leave the Lagrangian
invariant only up to the addition of a total derivative, i.e. δL = mK̇ , will thus have to act on
u as well. In particular, to leave the relation (4.17) invariant one has to impose δu = K . If
we let ξµ be the (d + 1) dimensional vector field generating the nonrelativistic symmetry, i.e.
δxµ = ξµ, then its lift to (d + 2) dimensions will thus be (ξ̂A) = (K ,ξµ). It follows that the
(d + 2) dimensional bracket is ([ξ̂1, ξ̂2]Ad+2) = (ξ1K2 −ξ2K1, [ξ1,ξ2]

µ

d+1). The (d + 1) dimen-
sional vector fields form by assumption an algebra, i.e. [ξ1,ξ2]d+1 = ξ3, and it thus follows
that16

[ξ̂1, ξ̂2]d+2 = ξ̂3 + a k , a = (ξ1K2 − ξ2K1 − K3), ξ3 = [ξ1,ξ2]d+1 . (4.19)

So if there are symmetries of the original nonrelativistic mechanical system that change the
Lagrangian by a total derivative, then through the Eisenhart lift they extend the symmetry
algebra by an extra generator ak.17

A striking example is already provided by the Galilei symmetry algebra k(0,0) of a nonrel-
ativistic free particle. Taking ξ1 = ξP = ∂x to be a translation and ξ2 = ξB = t∂x a boost,
one finds that ξ3 = 0, as well as K1 = K3 = 0 but K2 = x . It follows that [ξ̂P , ξ̂B]d+2 = k.
Furthermore k commutes with all other generators ξ̂ of the (lifted) Galilei symmetries and one
thus recovers the Bargmann extension of the Galilei group. The Eisenhart lift thus provides a
geometric realization of this classic central extension.

We are now ready to return to the main topic of this paper, namely the galilean kinematical
algebras of generic type. In that case, as we discussed in Section 3.2 and Section 4.2, we need
to take into account that some symmetries (in particular time translation) are of an even more
general type, in that they also rescale the Lagrangian rather than only leaving it invariant up
to a total derivative, i.e. δL = λL+mK̇ . Via (4.17), this then implies δu= λu+K which leads
to a more general form of the lift, i.e.,

ξ̂= (λu+ K)∂u + ξ . (4.20)

As a check, one verifies that if ξ is a symmetry of the nonrelativistic dynamics, i.e. satisfies
(3.31), then ξ̂ is a conformal Killing vector of the Bargmann structure and hence a symmetry
of the null-geodesic equation, i.e.

Lξ̂gAB = (λ+ ζ)gAB . (4.21)

Let us recall that, as mentioned in the previous subsection, ζ is zero for all vector fields (2.8)
generating k(α,β). In this case the lifted vector fields ξ̂ then act as homotheties, since λ is
constant.

The algebra of the lifted vector fields is then

[ξ̂1, ξ̂2]d+2 = ξ̂3+a k , a = (K1λ2−K2λ1+Lξ1
K2−Lξ2

K1−K3) , ξ3 = [ξ1,ξ2]d+1 . (4.22)

So apart from the small addition to the definition of a with respect to (4.19), it might appear
not much has changed. But that is not the case. Let us restrict attention to the case where a

16Note that, by definition, ξ̂3 = K3∂u + ξ3. But a is defined in a way that it contains −K3 and thus ξ̂3 + ak is
independent of K3.

17Let us remark that since k = ∂u is a Killing vector, it generates a symmetry of the (null) geodesic equation
and is thus automatically a (d +2) dimensional symmetry. In case a is not constant then ak is a generator linearly
independent of k and in that case the full (d + 2) dimensional algebra is an extension of the (d + 1) dimensional
algebra by at least ak and k. In this paper we will focus only on the extension by ak only.
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is constant, which is the case of our interest, so that (4.22) is an extension of the symmetries
by the generator k. Now, observe that via (4.20) we have [k, ξ̂]d+2 = λk. This implies that k
does not commute with those symmetries, ξ̂, that rescale the nonrelativistic Lagrangian and
so when such symmetries are present, the extension provided by the Eisenhart lift is no longer
central!

The whole discussion above is made explicit in the examples provided by the kinemati-
cal homogeneous spacetimes of galilean type that we have been studying in this paper. The
Type I Newton–Cartan geometry (4.10, 4.11) describing the particle motion corresponds to
the Bargmann structure

ds2 = −2dud t −αeβ t(xa xa)d t2 + eβ t d xad xa , k = ∂u . (4.23)

In particular, via the general formalism reviewed above, this implies that the null-geodesic
equations of this lorentzian metric are equivalent to the equations of motion of the damped
harmonic oscillator (3.4), as indeed can be verified explicitly. Furthermore, using (4.12) and
(4.13), the vector fields (2.8), that form the kinematical algebra k(α,β) and that are symmetries
of the nonrelativistic system, get lifted to

ξ̂Jab
= ξJab

,

ξ̂H = βu∂u + ξH ,

ξ̂Pa
= eβ t xa F̈∂u + ξPa

,

ξ̂Ba
= eβ t xa Ḟ∂u + ξBa

,

(4.24)

where F was defined in equation (3.8). One verifies that these are indeed homothetic Killing
vectors of the metric (4.23). Together with the Killing vector

ξ̂M = −∂u , (4.25)

they form the Lie algebra

[ξ̂Jab
, ξ̂Jcd

] = −δbcξ̂Jad
+δacξ̂Jbd

+δbd ξ̂Jac
−δad ξ̂Jbc

,

[ξ̂Jab
, ξ̂Bc
] = −δbcξ̂Ba

+δacξ̂Bb
,

[ξ̂Jab
, ξ̂Pc
] = −δbcξ̂Pa

+δacξ̂Pb
,

[ξ̂H , ξ̂Ba
] = ξ̂Pa

,

[ξ̂H , ξ̂Pa
] = −αξ̂Ba

− βξ̂Pa
,

[ξ̂Pa
, ξ̂Bb
] = −δabξ̂M ,

[ξ̂H , ξ̂M ] = −βξ̂M .

(4.26)

This algebra is (anti-)isomorphic to the one formed by the conserved charges (3.35) and pro-
vides the same extension of the kinematical algebra k(α,β). In conclusion, we see that the
Eisenhart lift provides a geometric realization, namely as homotheties of the metric (4.23),
of this (non-centrally) extended algebra in a direct generalization of what happens for the
usual free particle. The universality of this extension suggests to refer to it as the Bargmann
extension of the galilean kinematical algebra k(α,β), for any value of α and β .
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A Type I Newton–Cartan geometry: doublets, triplets and connec-
tions

Given a (d + 1) dimensional manifold M, a Newton–Cartan18 structure is a pair of tensors
(τµ, hµν), where τµ everywhere spans the kernel of hµν, which is symmetric and positive semi-
definite. See e.g. [38] for a modern review.

For each Newton-Cartan structure one can define the following two additional notions:

• a compatible NC-doublet is an equivalence class [(τ̂µ, h̄µν)] of tensors (τ̂µ, h̄µν) such that

τµτ̂
ν + h̄µρhρν = δνµ , (A.1)

with the equivalence relation (τ̂µ, h̄µν)∼ (τ̂
′µ, h̄′µν) if and only if

τ̂
′µ = τ̂µ − hµν∂νΛ , (A.2)

h̄′µν = h̄µν +τµ∂νΛ+τν∂µΛ , (A.3)

• a compatible NC-triplet is an equivalence class [(τµ, hµν, Cµ)] of tensors (τµ, hµν, Cµ) such
that

τµτ
ν + hµρhρν = δνµ , τµτνhµν = 0 , (A.4)

with the equivalence relation (τµ, hµν, Cµ)∼ (τ
′µ, h′µν, C ′µ) if and only if

τµχ
µ = 0 , (A.5)

τ
′µ = τµ −χµ , (A.6)

h′µν = hµν + hµρχ
ρτν + hνρχ

ρτµ + hρσχ
ρχστµτν , (A.7)

C ′µ = Cµ − hµρχ
ρ −

1
2

hρσχ
ρχστµ + ∂µΛ . (A.8)

The notions of compatible NC-triplet and compatible NC-doublet are actually equivalent.
This can be verified by considering the following explicit maps between them

[(τµ, hµν, Cµ)] 7→ [(τ̂µ, h̄µν)] = [(τ
µ − hµνCν, hµν +τµCν +τνCµ)] , (A.9)

[(τ̂µ, h̄µν)] 7→ [(τµ, hµν, Cµ)] = [(τ̂
µ, h̄µν −τµτντ̂ρτ̂σh̄ρσ,−

1
2
τµτ̂

ρτ̂σh̄ρσ)] . (A.10)

A Newton–Cartan structure together with a choice of compatible NC-triplet or -doublet was
dubbed Type I Newton–Cartan geometry in [40], see also [30,41]. As we review in Section 4.3
this geometric structure is also equivalent to a Bargmann structure in one dimension higher.

18Throughout the literature (slightly) different nomenclature has been used. As reviewed in [37] the
pair (τµ, hµν) are (the local components of characteristic tensor fields of) a Gal0-structure. Here Gal0 is
the homogeneous Galilei group that can be defined as the subgroup of GL(d + 1,R) consisting of the

matrices
�

1 0T

v A

�

∈ GL(d + 1,R), with v ∈ Rd , A ∈ O(d). Some authors for this reason speak of a Galilei (or

galilean) structure, as in e.g. [10] and reserve the notion Newton(-Cartan) structure for a Galilei structure to-
gether with a (particular type of) compatible connection. In [38] a similar distinction is made by referring to a
Galilei structure as a weak Newton-Cartan structure. In this paper we will however use the term Newton-Cartan
structure interchangeably for Galilei, galilean or weak Newton-Cartan structure, i.e. to refer to the pair (τµ, hµν),
without any additional notions implied. Finally let us point out that in e.g. [39] the term leibnizian structure is
used.
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The first use of NC-doublets/triplets is that they define an affine connection compatible
with the Newton–Cartan structure. If we assume the intrinsic torsion of the NC structure to
vanish, i.e. dτ= 0, then this connection takes the form

Γρµν = τ̂λ∂µτν +
1
2

hλρ(∂µh̄νρ + ∂νh̄µρ − ∂ρh̄µν) (A.11)

= τρ∂µτν +
1
2

hρσ(∂µhνσ + ∂νhµσ − ∂σhµν)− hρσKσ(µτν) , (A.12)

where
Kµν = ∂µCν − ∂νCµ . (A.13)

One can directly verify that the connection above is invariant under the equivalences (A.2-A.3)
and (A.6-A.8) and that (A.11) and (A.12) are related via (A.9). Essentially19 all symmetric
compatible connections are of the form (A.11, A.12), see e.g. [39,42].

A second, related, application is that a choice of NC-doublet/triplet allows to write a La-
grangian for a particle on a manifold with Newton-Cartan structure:

S =

∫

1
2

h̄µν ẋµ ẋν

τµ ẋµ
dσ =

∫ �

1
2

hµν ẋµ ẋν

τµ ẋµ
+ Cµ ẋµ
�

dσ . (A.14)

Again it is straightforward to check that this action does not depend on a change of represen-
tative (A.2-A.3) and (A.6-A.8). The Euler–Lagrange equations of this action describe geodesic
motion with respect to the affine connection (A.11, A.12), see (4.2).

B Symplectic Homotheties

Symmetries of the equations of motion are not necessarily symmetries of the action in the strict
sense of leaving it invariant, rather they can also rescale the action with a constant. Using the
term homothety for a diffeomorphism that multiplies a tensor with a constant we can rephrase
the previous statement as saying that homotheties of the action map solutions of the equation
of motion to other solutions. These symmetries in the more general sense have been considered
in e.g., [43–48] (in a gravity context they are sometimes referred to as trombone symmetries
[49]), and when considered on phase space they are generically symplectic homotheties (i.e.
homotheties of the symplectic form) rather than symplectomorphisms.

Since results on symplectic homotheties appear somewhat scattered in the literature we
collect some of the key concepts and their properties in this appendix. In addition, we will
discuss the generalization of the extension of the Lie algebra of hamiltonian vector fields to
the Poisson algebra of phase space functions to the homothetic case, where this extension is
no longer central. This last result has not previously appeared in the literature as far as we are
aware.

In this appendix (S,Ω) will be assumed to be a symplectic manifold; that is Ω is a closed
non-degenerate two-form on S. One then defines a homothetic symplectic vector field as a
vector field X such that

LXΩ= sΩ , s ∈ R . (B.1)

Given two such vector fields X , Y one verifies L[X ,Y ]Ω= 0 and thus the homothetic symplectic
vector fields form a Lie algebra which we will denote as sym(S). The definition defines a map
σ : X 7→ s = σ(X ) which is a Lie algebra homomorphism. In particular the kernel of this map,
i.e. those vector fields X for which s = 0, are the symplectic vector fields that form the Lie

19A subtle exception is provided by connections of the form A.12 where Kµν is a two form that is not closed.
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algebra sym0(S). Vector fields with s ̸= 0 exist iff the symplectic form Ω is exact, i.e. Ω= dθ ,
since then Ω = 1

s d(iXΩ). Note that this is the case for the canonical symplectic form on a
cotangent bundle. It follows from the above that on an exact symplectic manifold S one has
sym(S)/sym0(S) = R.

Before we continue let us recall that for a symplectic vector field X the one-form iXΩ is
closed, and that when iXΩ is furthermore exact X is called hamiltonian. Such vector fields form
a subalgebra ham ⊂ sym0. The non-degeneracy of the symplectic form allows to associate to
every real function f on S a hamiltonian vector field X f via

iX f
Ω= d f . (B.2)

The map f 7→ X f is a Lie algebra (anti-)homomorphism if we equip the space of functions with
the Poisson bracket { f , g}= Ω(X f , X g), i.e.,

[X f , X g] = X−{ f ,g} . (B.3)

Since the kernel of the map f 7→ X f are the constant functions, which are central with respect
to the Poisson bracket, one observes the well known fact that the Poisson algebra of functions
is a central extension of the Lie algebra of hamiltonian vector fields.

Let us now get back to the homothetic generalization. Assuming from now on that Ω= dθ
is exact we can define an20 Euler vector field E via21

iEΩ= θ . (B.4)

Now remark that X −σ(X )E is symplectic when X is homothetic symplectic. If furthermore
X − σ(X )E is hamiltonian we say that X is homothetic hamiltonian (with respect to θ). It
follows directly from this definition that for every such vector field there exists a function f
and a real number s such that X = X(s, f ), where

X(s, f ) = sE + X f . (B.5)

A short computation reveals that

[X(s1, f1), X(s2, f2)] = X−[[(s1, f1) ,(s2, f2)]] , (B.6)

where
[[(s1, f2) , (s2, f2)]] = (0, { f1, f2}+ s1( f2 − E[ f2])− s2( f1 − E[ f1])) . (B.7)

First of all this implies that the homothetic hamiltonian vector fields form a Lie algebra, that we
denote as22 hamθ (S). It also makes clear that ham(S) is an ideal in hamθ (S). Indeed, one has
the Lie algebra extension by derivation 0→ ham(S)→ hamθ (S)→ R→ 0 [44]. Furthermore
[[· , ·]] defines a Lie23 algebra on the space C∞

θ
(S) = R ⊕ C∞(S). By construction the map

(s, f ) 7→ X(s, f ) is a Lie algebra homomorphism, and via (B.5) one infers the kernel is given by
(0, c)with c ∈ R ⊂ C∞(S) being a constant function. So also in the homothetic generalization
it remains true that C∞

θ
(S) is a one-dimensional extension of hamθ (S), but it is no longer true

that this extension is central, since

[[(0, c) , (s, f )]] = (0,−sc) . (B.8)

20Note that the choice of the symplectic potential θ , and hence the associated Euler vector field, is not unique.
The possible choices differ by an arbitrary closed form. So although one could choose to write Eθ to emphasize
the dependence on the choice of θ we will refrain from doing so to ease notation.

21Since Ω is non-degenerate E is unique given θ .
22Indeed different choices of symplectic potential θ lead to different algebras hamθ (S), these are isomorphic

iff the two potentials are cohomologous.
23Note that although [[· , ·]] is a Lie bracket, it is neither a Poisson nor Jacobi bracket.
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A summary of the various Lie algebra extensions is provided below:

0 0

0 R C∞(M) ham(M) 0

0 R C∞
θ
(M) hamθ (M) 0

R R

0 0

All arrows in the above commutative diagram are Lie algebra homomorphisms. The four Lie
algebra extensions discussed in the text correspond to the two vertical and two horizontal
short exact sequences.

In a physical context, the homothetic symplectic vector fields are only relevant when, in
addition, they leave invariant Hamilton’s equations. This extra condition can alternatively be
expressed by considering the hamiltonian action

S[γ] = −
∫ tf

ti

(γ∗θ + γ∗h d t) , (B.9)

with γ a curve and h, the Hamiltonian, a function on S, and requiring that under δγ= X(s, f )

δS = λS + q(γi,γf) , (B.10)

where q is some arbitrary function of the endpoints of the curve.
Define now (the generator of) a symmetry of an exact hamiltonian system (S,θ , h) to be a

homothetic hamiltonian vector field X(s, f ) such that24

LX(s, f )h= s h+ ∂t f . (B.11)

It then follows that under such symmetries indeed (B.10) is guaranteed. To verify this, remark
that

δ

∫ tf

ti

γ∗h d t =

∫ tf

ti

γ∗(LX(s, f )h) d t , (B.12)

while

δ

∫ tf

ti

γ∗θ = s

∫ tf

ti

γ∗θ + ( f −LE f )|γf
γi
−
∫ tf

ti

γ∗∂t f d t . (B.13)

Here we used that25

δ(γ∗θ ) = γ∗LX(s, f )θ − γ
∗(∂tLE f ) and LX(s, f )θ = sθ + d( f −LE f ) . (B.14)

24Note that (B.11) can equivalently be rewritten as LX(s, f )Xh + X∂t f = 0 or [[(0, h) , (s, f )]] = (0,∂t f ).
25Remark: iX f

θ = iX f
iEΩ= −iE d f = −LE f and iEθ = iE iEΩ= 0.
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Now observe

d
d t

f = LXh
f + ∂t f (B.15)

= −LX(s, f )h+ sLEh+ ∂t f (B.16)

= s(LEh− h) . (B.17)

We thus see that a symmetry X(s, f ) leads to a conserved charge f when

s = 0 , or LEh= h . (B.18)

We should point out that the condition (B.18) depends on the choice of Euler vector field (and
thus choice of symplectic potential θ).

In summary, for the existence of a conserved charge f it is thus sufficient that there exists
an Euler vector field for which both (B.18) and (B.11) hold.

C Low dimensional cases

When the number of spatial dimension is two or less, d ≤ 2, there appear some exceptions to
the discussion of d > 2 in the main text. When d = 2 there exists an additional kinematical
algebra of galilean type [3], and both for d = 1 and d = 2 the invariant connections are less
constrained than in higher dimensions. In this appendix we shortly go over the various cases
and point out the similarities and subtle differences with the generic case discussed in the main
text.

C.1 d = 2

The case of two spatial dimensions is special, since it is the unique dimension where there is a
second rotationally invariant 2-tensor; apart from the generic δab one now also has εab. This
extra tensor can appear in the symmetry algebra, as well as in the invariant connection.

C.1.1 M(α,β)

First we discuss the standard kinematical homogeneous spaces of galilean type M(α,β), i.e.
those based on the algebra k(α,β), defined in (2.1) and (2.2). The homogeneous space itself
is constructed as in the higher dimensional cases in main text. A subtle difference is in the
classification of invariant affine connections on this homogeneous space. A short calculation
reveals them to take the following form in modified exponential coordinates

Γ t
t t = κ+ ι ,

Γ a
t b = δ

a
bκ+κ

′εba ,

Γ a
bt = δ

a
b(β + ι)− κ

′εba ,

Γ a
t t = αxa .

(C.1)

Comparing to (2.14) one sees that there is one additional free parameter κ′. However, just
like the other two Nomizu parameters κ and ι it drops out of the autoparallel equation, which
upon fixing the parameter as σ = t, takes the form

ẍa + β ẋa +αxa = 0 . (C.2)

This is exactly the same damped oscillation equation as in higher dimensions and so the anal-
ysis of the symmetries and conserved charges is identical to that of the main text.
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C.1.2 M̃(γ,χ)

The existence of εab leads to an additional class of kinematical algebras of galilean type in two
spatial dimensions. The additional homogeneous kinematical spacetimes are called S12γ,χ

in [3], but we will refer to them as M̃(γ,χ). Their underlying kinematical Lie algebra k̃(γ,χ)
shares the brackets (2.1) with the generic algebra k(γ,χ) , but the non-vanishing brackets in
(2.2) get replaced by

[H, Ba] = −Pa , [H, Pa] = γBa + (1+ γ)Pa −χεab(Pb + Bb) . (C.3)

The associated homogeneous space is then similarly defined as M̃(γ,χ) = K̃(γ,χ)/H. As in the
generic case one defines modified exponential coordinates (2.5). In these coordinates one can
compute the vector fields generating the K̃(γ,χ) action:

ξJab
= x b∂a − xa∂ b ,

ξH = ∂t ,

ξBa
= A(t)∂a + B(t)εab∂b ,

ξPa
= Ȧ(t)∂a + Ḃ(t)εab∂b ,

(C.4)

where now

A(t) =
e−t(γ− 1) + e−tγ(χ sin(tχ)− (γ− 1) cos(tχ))

(γ− 1)2 +χ2
,

B(t) =
e−tχ + e−tγ(−χ cos(tχ)− (γ− 1) sin(tχ))

(γ− 1)2 +χ2
.

(C.5)

The non-zero components of an invariant affine connection can then be computed to be of
the form

Γ t
t t = (κ+ ι) ,

Γ a
t b = (κδ

a
b +κ

′εba) ,

Γ a
bt = (1+ γ)δ

a
b +χεab + (ιδ

a
b −κ

′εba) ,

Γ a
t t = γxa +χεab x b ,

(C.6)

where κ,κ′, ι are three unconstrained, real constants.
Upon fixing the parameter σ = t the autoparallel equation associated to this invariant

connection reads

ẍa + ẋa + γ(xa + ẋa) +χεab(x
b + ẋ b) = 0 . (C.7)

Note that these equations have a rather different26 structure than that of the damped harmonic
oscillator (3.4).

Somewhat surprisingly there exists a one-parameter family of Lagrangians (not related by
a total derivative term) with (C.7) as their Euler–Lagrange equations:

Lθ =
e(1+γ)t

2
Mab(θ )( ẋ

a ẋ b − Abc xa x c) , (C.8)

26Formally the equations (C.7) are some complexification of the equations (3.4), since by introducing
z = x1 + i x2 and α = γ − iχ,β = 1 + γ − iχ the equations (C.7) take the form z̈ + β ż + αz = 0. Indeed also
the the algebra k̃(γ,χ) can formally be brought into the form k(α,β) via a complexification of boost and translation
generators. I.e. defining B= B1 − iB2, P= P1 − iP2 one finds [H,B] = −P and [H,P] = αB+ β P.
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where

(Mab) = m

�

cos(χ t + θ ) sin(χ t + θ )
sin(χ t + θ ) − cos(χ t + θ )

�

, (Aab) =

�

γ χ

−χ γ

�

. (C.9)

One easily verifies that the actions Sθ =
∫

Lθ d t are invariant under the transformations gen-
erated by ξJab

, ξBa
and ξPa

listed in (C.4) and these thus constitute symmetries in the usual
sense. Under a time translation one however finds

δHSθ = (1+ γ)Sθ +χSθ+π2 . (C.10)

In the first term we recognize a homothetic rescaling of the action, as we encountered in the
main text. The second term mixes the action Sθ with another action Sθ+π2 . So time trans-
lations are no longer a symmetry in the standard sense. But since Sθ and Sθ+π2 both share
the same Euler–Lagrange equations, it follows that indeed the time-translations leave these
Euler–Lagrange equations invariant – as can be directly verified from the form (C.7) – and so
(C.10) still is a symmetry in a more general sense.

One could repeat the Hamiltonian analysis and try to find a way to represent the symme-
try algebra in terms of conserved charges. It is rather straightforward to compute canonical
momenta pa and their transformation under the symmetries. One can then verify that indeed
the corresponding phase space space vector fields reproduce the Lie algebra k̃(γ,χ). What com-
plicates a further analysis however is that the vector field corresponding to time translations
is no longer symplectic, and not even homothetic symplectic. Indeed, it mixes the canonical
symplectic form with a non-canonical one. It would be interesting to understand this more
general notion of symplectic transformation, construct an analog of hamiltonian vector fields
and a corresponding generalized notion of Poisson bracket. I.e. extending the discussion of
Appendix B to these more general transformations. This would however take us too far from
the main topic of this paper and so we leave this as an interesting open problem.

C.2 d = 1

The case of one spatial dimension is special, since there are no rotations in this case. This
does not change anything from the point of view of the kinematical algebras or homogeneous
spaces, which remain only of the type M(α,β). In particular the vector fields generating the
group action remain the same, i.e., (2.8). A small but not completely trivial change is the
presence of an extra freedom in the invariant connections, which take the form

Γ t
t t = (κ+ ι) ,

Γ 1
t1 = κ ,

Γ 1
1t = (β + ι) ,

Γ 1
t t = αx −ψ .

(C.11)

Comparing to the case in generic dimensions, (2.14) one sees there is an additional free pa-
rameter ψ.

Unlike in all other cases, the Nomizu parameter ψ, particular to d = 1, does not drop out
of the autoparallel equation:

ẍ + β ẋ +αx =ψ . (C.12)

The extra Nomizu parameter corresponds physically speaking to an extra constant force mψ.
We should point out that when α ̸= 0 adding ψ is rather trivial, since one can obtain all

expressions from the ψ = 0 case simply by the replacement x → x − α−1ψ. This is true for

26

https://scipost.org
https://scipost.org/SciPostPhys.14.4.059


SciPost Phys. 14, 059 (2023)

the action (3.5), and the conserved charges (3.21-3.23), which thus take the form

P = Ḟ p−meβ t F̈(x −α−1ψ) ,

B = F p−meβ t Ḟ(x −α−1ψ) .
(C.13)

Also the Euler vector field (3.28) gets shifted,

Ẽ =
1
2
(x −α−1ψ)∂x +

p
2
∂p (C.14)

and one should consider the canonical Hamiltonian

h̃= h+m
ψ2

2α
eβ t =

e−β t

2m
p2 +

mαeβ t

2
(x −α−1ψ)2 . (C.15)

This to guarantee one has the crucial relationship LẼ h̃= h̃, see Appendix B. One additionally
verifies that the vector field generating the phase space time translation takes the form

ΞH = X(β ,H) = β Ẽ + XH , H = −(h̃+
β

2
(x −α−1ψ)p) . (C.16)

The realization of the kinematical algebra K(α,β) in terms of conserved charges then goes
through as in the main text.

Somewhat to our surprise, the case α = 0 is subtly different. One still has an action for
(C.12), which in this case reads

S =

∫

meβ t

2
( ẋ2 + 2ψx) d t . (C.17)

For the spatial translation and boost we find satisfying and rather standard results. There exist
the conserved charges27

P = e−β t p+m(β x −ψt) ,

B = β−1(1− e−β t)p−mx +mψβ−2(1+ β t − eβ t) ,
(C.18)

and the phase space transformations are generated by the corresponding hamiltonian vector
fields XP and XB respectively. But when β ̸= 0, there does not exist an Euler field and charge
H for which ΞH = βE + XH while at the same time also the conditions (3.31) are met. This
implies we cannot represent the algebra k(0,β) in terms of conserved charges when β ̸= 0 and
ψ ̸= 0.

The special case when both α= β = 0 does have a (simple) solution. In this case the time
translation vector field is hamiltonian: ΞH = XH with

H = −h= −
p2

2m
+mψx . (C.19)

Since h is time independent this charge is indeed conserved. In addition one can set β = 0 in
(C.18) to get conserved charges

P|α=β=0 = p−ψmt ,

B|α=β=0 = pt −mx −ψm
t2

2
.

(C.20)

27Note that both expressions in (C.13) are singular in the α → 0 limit. This singularity can be removed by
adding to the expressions for P and B the constants α−1βmψ and −α−1mψ, respectively. The charges in (C.18)
are then the α→ 0 limit of these ’regularized’ charges.
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We thus uncover the curiosity that in one dimension a free particle, i.e., α = β = 0, remains
Galilei-invariant even in the presence of a constant force mψ. In other words, the fact that
in d > 1 the presence of a constant force breaks this invariance is only due to the fact that
it breaks rotational invariance, which is not an issue when d = 1. Note however that the
Bargmann central extension appears slightly differently when ψ ̸= 0:

{P, B}= m , {H, B}= −P , {H, P}=ψm . (C.21)

It can be put into a standard form by defining H̃ = H +ψB = − (p−mψt)2

2 :

{P, B}= m , {H̃, B}= −P , {H̃, P}= 0 . (C.22)

Actually this redefinition of time translations is an isomorphism of the 1d Galilei algebra k(0,0).

D Conformally equivalent Eisenhart lifts

In Section 4 we reviewed how mechanical motion can be described in a covariant fashion
using Newton-Cartan geometry and how that description in turn is equivalent to null geodesic
motion with respect to a particular Lorentzian metric. In this appendix we shortly recall that
these descriptions are unique only up to a conformal redefinition. We refer to [34] for a
complete discussion, here we simply mention how some key formulae of Section 4 behave
under such a conformal redefinition and then focus on the case of interest in this paper, namely
the damped harmonic motion describing a free particle on M(α,β), and how some results in
this paper are related to those in [15].

The starting observation is that the Type I NC geometries (τµ, hµν; τ̂µ, h̄µν) and
(τc
µ, hµνc ; τ̂µc , h̄c

µν) lead to the same action (4.1) if they are conformally related as

τc
µ = eψτµ , hµνc = e−ψhµν , τ̂µc = e−ψτ̂µ , h̄c

µν = eψh̄µν , (D.1)

for an arbitrary function ψ. So really the particle action (4.1) only depends on a conformal
class of type I NC geometries.

Under such a conformal redefinition of the NC geometry essentially all results of Section 4
remain valid, but some of the parameters will depend on the choice of conformal prefactor.
For example, the parameters characterizing the invariance of the action under symmetries, as
in (4.7), transform as

ζc = ζ+Lξψ , λc = λ , Kc = K . (D.2)

Since the lift (4.20) of the vector fields generating the symmetries only depends on λ
and K it remains invariant under a conformal redefinition. In turn this implies that the lifted
symmetry algebra is independent of the choice of conformal prefactor ψ. Of course this is
not the case for the Lorentzian metric (4.14): unsurprisingly, it transforms by a conformal
rescaling

gc
AB = eψgAB . (D.3)

Note that since ψ is, by construction, independent of u, the vector field k = ∂u remains null
and Killing for all choices of conformal factor.

The transformations (D.2) and (D.3) are compatible in that they leave (4.21) invariant
i.e., one also has that

Lξ̂gc
AB = (λc + ζc)g

c
AB , (D.4)

so that for any choice of conformal factor the lifted symmetries will be conformal Killing vec-
tors. Let us remark that since ζ changes under a change of conformal factor, see (D.2), one
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may be able to find special conformal factors for which all λc + ζc are constant and the lifted
symmetries are homotheties, or even such that λc+ζc = 0 for all vector fields so that the lifted
symmetries become isometries. This turns out to be possible for the geometries of interest.

Let us now specialize to motion on M(α,β), the case of interest in this paper. Allowing for
a generic conformal factor, the NC geometry (4.10, 4.11) becomes

τc
µ = eψδt

µ ,

hµνc = e−β t−ψδµaδ
ν
a ,

τ̂µc = e−ψδµt ,

h̄c
µν = eβ t+ψδa

µδ
a
ν −αeβ t+ψxa xaδt

µδ
t
ν .

(D.5)

The Lorentzian metric describing the Eisenhart lift (4.23) then gains an overall conformal
prefactor:

ds2
c = eψ
�

−2dud t −αeβ t xa xad t2 + eβ t d xad xa
�

, k = ∂u . (D.6)

To make the equivalence to [15] explicit, make the coordinate transformation

u′ = u+Λ , Λ=
β

2
eβ t xa xa . (D.7)

Note that this is a special type of coordinate transformation corresponding to the redefinitions
of the NC doublet, as mentioned in (4.16). The Bargmann structure (D.6) then becomes

ds2
c = eψ
�

−(2du′ +αeβ t xa xad t)d t + eβ t(d xa + β xad t)(d xa + β xad t)
�

, k = ∂u′ . (D.8)

Upon the choice ψ = −β t this becomes exactly the metric described in Appendix A of [15].
In conclusion, while the lifted vector fields (4.24), that form the algebra (4.26), generate
homotheties of the metric (4.23), these same transformations are isometries of (D.8) when
ψ= −β t. This follows from (D.4) and the fact that ζ c

H = −β = −λ
c
H , while ζH = 0 ,λH = β .
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