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Abstract

We investigate dynamical chiral symmetry breaking and the emergence of mesonic
bound states from the infrared dynamics of four-quark scatterings. Both phenomena
originate from the resonant scalar-pseudoscalar channel of the four-quark scatterings,
and we compute the functional renormalisation group (fRG) flows of the Fierz-complete
four-quark interaction of up and down quarks with its t channel momentum depen-
dence. This is done in the isospin symmetric case, also including the flow of the quark
two-point function. This system can be understood as the fRG analogues of the complete
Bethe-Salpeter equations and quark gap equation. The pole mass of the pion is deter-
mined from both direct calculations of the four-quark flows in the Minkowski regime of
momenta and the analytic continuation based on results in the Euclidean regime, which
are consistent with each other.
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1 Introduction

The dynamical emergence of masses and spectra is one of the most intriguing questions in
particle physics. Although the current quark masses are generated by the Higgs mechanism
in the Standard Model of particle physics [1], they only account for ∼ 2% of the proton mass.
The missing ∼ 98% mass of the proton, or more generally most of the mass of visible matter
in the universe originates from dynamical strong chiral symmetry breaking. The respective
pseudo-Goldstone bosons are the composite pions that acquire their masses from the current
u, d quark masses, and are massless in the chiral limit [2].

In the past two decades impressive progress has been made both within continuum QCD
with functional approaches, see [3–7], and lattice simulations, [8–10]. In functional QCD
one typically evaluates bound state equations such as Bethe-Salpeter equations [11,12] (two-
body), Faddeev equations [13–15] (three-body) and four-body equations, utilising results for
quark and gluon correlation functions obtained in 1st principle functional QCD, for recent re-
views see e.g. [3, 16]. Commonly, such a combination is used self-consistently in particular
for the sake of symmetry identities and the persistence of massless states throughout the sys-
tem, while also allowing for an access to timelike momenta. This combination of non-trivial
requirements poses restrictions on such self-consistent approximations, which lead to further
approximations both in the bound state sector and in the functional equations for quark and
gluon correlation functions.

In the current work we complement the functional renormalisation group approach for
bound state computations in a QCD set-up in [5, 17–22]. This approach is based on dynam-
ical hadronisation, [5, 18, 22–26], which utilises the option to describe specific tensor and
momentum channels in scattering vertices by the exchange of effective fields.

If restricting ourselves to momentum-independent tensors, we are left with a Fierz-
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complete basis of ten tensor structures. The full basis including momentum-dependent tensor
structures is much larger, see [3]. In most of the above works only the scalar-pseudoscalar
channel (σ-pion) of the four-quark interaction is treated with dynamical hadronisation, as
this channel carries the lightest degrees of freedom, the pions. We note, that within this setup
functional QCD flows naturally into chiral perturbation theory at low momentum scales.

The exchange of the effective low energy fields take into account one momentum channel
(in the above case the t-channel), which leaves us with a remnant four-quark interaction in
this tensor channel, cf., e.g. [27, 28]. This remnant interaction in the scalar-pseudoscalar
channel can be now iteratively treated with further momentum channel fields, as can be also
introduced for other tensor structures or higher scattering vertices, see [22].

While possible, we consider it in most cases more efficient to keep both the remnant scalar-
pseudoscalar vertex as well as all the other tensor channels as four-quark vertices and evaluate
their full momentum dependence. Subject to a sufficiently quantitative approximation such
an approach also allows to detect further emergent resonances as resonant channels in the
four-quark vertices. Then, potentially also these resonances may or may not be treated with
dynamical hadronisation, depending on their scattering dynamics. For spacelike (Euclidean)
momenta it has been shown that the t-channel of the scalar-pseudoscalar channel of the four-
quark vertex is by far dominating the flows as well as the physics [18,20], which is at the root of
the success of chiral perturbation theory, and the rapid convergence of functional computations
of Euclidean correlation functions in QCD. In turn, for timelike momenta or finite chemical
potential we expect that both the general momentum dependence of the scalar-pseudoscalar
channel as well as further channels become relevant or even dominating. Here, a relevant
example is the diquark channel which is known to play an important rôle in Faddeev equations
for baryons [3] as well as QCD at large density [29–31]. In summary, it is suggestive to keep
as much tensor structures and momentum dependence as possible of the full coupled system
of four-quark scattering vertices, thus monitoring the emergence of resonant tensor structures
as well as non-trivial momentum dependences.

In the present work, we initiate the latter important endeavor by studying the flow of the
coupled set of the vertex dressings of the ten Fierz complete four-quark interactions in two-
flavour QCD in the chiral limit, accompanied by the flow of the (inverse) quark propagator.

In a first step we only consider the system of scale-dependent vertices and quark propa-
gator, for some earlier related work on Fierz complete systems in QED and QCD at vanishing
and finite temperature see [32–35,35–38], for a review see [39]. This approximation allows
us to study dynamical chiral symmetry breaking for generic quark masses, including the chi-
ral limit within an extrapolation: We show that the system can be solved for all cutoff scales
except for the chiral limit with vanishing current quark masses. In the chiral limit it develops
an unphysical divergence of the constituent quark mass. This behaviour sets in for very small
current quark masses (or rather pion masses), and the results admit a physical extrapolation
to the chiral limit.

In a second step we also consider the t-channel momentum dependence of the scalar-
pseudoscalar channel in a Fierz complete system. This allows us to solve the system for Eu-
clidean spacelike momenta as well as timelike momenta; which gives us access to the pion
pole mass as the resonance pole in the pseudoscalar channel of the four-quark scattering ver-
tex. This result of the direct timelike (Minkowski space) computation agrees well with the
extrapolation result also computed here.

A study with the full momentum dependences of the s, t, u channels as well as the discus-
sion of the remnant momentum dependence is subject of ongoing work, [40], as is the em-
bedding in QCD, [41]. While we could treat the scalar-pseudoscalar channel with dynamical
hadronisation, we refrain from doing so in order to evaluate the systematics of the four-quark
flows as well as the emergence of the resonant interaction in the four-quark representation. In

3

https://scipost.org
https://scipost.org/SciPostPhys.14.4.069


SciPost Phys. 14, 069 (2023)

consequence the current t-channel setup is tantamount to that used in [18,42], if dropping the
multi-scattering of the pions and theσ-mode and considering only the cutoff scale dependence
of the remaining channels (pointlike dispersion). This naturally allows for an embedding of
the present flows and results and that in [40] within QCD [41].

This work is organised as follows: In Section 2 we discuss our approximation for the ef-
fective action with a quark two-point function and the Fierz-complete four-quark interaction,
including the respective set of coupled flow equations. In Section 3, dynamical chiral sym-
metry breaking and the quark mass generation are investigated. In Section 4 we discuss the
natural emergence of bound states. In Section 5 we summarise and discuss our findings. Some
technical details are presented in appendices.

2 Functional RG approach to QCD and four quark scatterings

In the present work and the following ones, [40, 41], we aim at a comprehensive description
of the infrared scattering physics of quarks, as well as laying the foundations for further ones.
This line of research is embedded in the general research line of the fQCD collaboration, aiming
at the description of QCD at finite temperature and density with functional methods, including
hadron resonances and their formation in the medium. Therefore we use this Section also to
briefly review the general setup and some convention uses in our collaboration.

We use the functional renormalisation group approach to QCD, in which the evolution of
the full effective action of QCD is described by its functional flow equation for the effective
action Γk[Φ] where k is an infrared cutoff scale that regularises the infrared propagation of all
fields, for recent reviews see [43, 44]. Including dynamical hadronisation, the flow equation
reads [5,45],

∂tΓk[Φ] +

∫

φ̇k,i[Φ]
�

δΓk[Φ]
δφi

+ cσδiσ

�

=
1
2

Tr
�

Gk[Φ]∂tRk

�

+ Tr
�

GφΦ j
[Φ]
δφ̇k,i[Φ]

δΦ j
Rφ

�

, (1a)

with the RG time t = ln(k/Λ), and

Gk[Φ] =
1

Γ
(2)
k [Φ] + Rk

, GΦiΦ j
= (Gk)ΦiΦ j

. (1b)

In (1a) we have introduced the superfield Φ with

Φ= (Φ f ,φ) , Φ f = (A, c, c̄, q, q̄) , φ = (σ,π) , (1c)

where Φ f contains the fundamental fields in QCD, φ comprises the effective degrees of free-
dom, and φ̇k[Φ] denotes their change with k. As an example we have used the effective fields
for the scalar-pseudoscalar channel (t-channel), the σ-mode and the pions π in (1c). These
are the commonly used effective degrees of freedom, but the setup is not restricted to this,
see [22]. General (1PI) correlation functions are denoted by

Γ
(n)
Φi1 ···Φin

(p) =
δ

δΦin

· · ·
δΓk[Φ]
δΦi1

, p = (p1, ..., pn) , (1d)

with Φi j
= Φi j

(p j) and all momenta are taken as incoming, which are depicted in Figure 1.

Also, the vertex Γ (n) is taken in a general background Φ.
In the present work we consider two-flavour QCD, and hence q = (u, d). In (1) we have

introduced the effective fields for the scalar-pseudoscalar channel (t-channel), the σ-mode
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−Γ (n)Φi1 ···Φin
(p1, · · · , pn) =

Φi1 Φin

p1 pn
· · ·

Figure 1: Diagrammatic representation of general 1PI n-point functions or vertices,
as shown in (1d).

and the pions π. More details can be found in [5], or the reviews [43, 44]. This QCD set-
up will be used in the subsequent works [40] and in particular [41], while in the present
work we concentrate on the matter sector in the infrared regime for cutoff scales k ≲ 1 GeV.
Accordingly we drop the gluons, which indeed decouple successively in this regime. We note
that one may also integrate out the gluons which leaves us with a non-local effective action of
the remaining matter degrees of freedom. Accordingly, this setup still allows for qualitative and
quantitative computations depending on the choice of the initial effective action at k ≈ 1 GeV,
for a detailed discussion see [5]. Finally, we refrain from using dynamical hadronisation in
the scalar-pseudoscalar channel as we want to investigate the persistence and reliability of
computations in fundamental quark correlation functions.

2.1 Matter sector of QCD and four quark scatterings

The restriction to the infrared matter sector of QCD described above leaves us with an effective
action of the quarks, which can be expanded in powers of the quark and anti-quark field q, q̄.
In the vacuum the higher order scatterings (q̄q)n for n ≥ 3 are strongly suppressed and we
do not consider them here, which leaves us with the kinetic term of the quarks Γkin and the
four-quark scattering term, Γ4q with

Γk[q, q̄] = Γkin,k[q, q̄] + Γ4q,k[q, q̄] . (2)

The general kinetic term reads

Γkin,k =

∫

x ,y
Zq(x , y)q̄(x)
�

∂/ +Mq(x , y)
�

q(y) , (3)

with
∫

x =
∫

d4 x , and

∂/ = γµ∂µ , and {γµ , γν}= 2δµν . (4)

Both, Zq and Mq carry also a k-dependence. The general kinetic term (3) also accommo-
dates breaking of translation invariance as may happen in inhomogeneous phases or moat
regimes [46], or in expanding backgrounds.

In the present work we perform computations in the vacuum, and hence (3) reduces to

Γkin,k =

∫

p
Zq(p) q̄(−p)
�

ip/+Mq(p)
�

q(p) , (5)

with
∫

p ≡
∫

d4p/(2π)4. The general four quark scattering term is given by

Γ4q,k =

∫

p

λα(p)T (α)i jlm(p)q̄i(p1)q̄ j(p2)ql(p3)qm(p4) , (6)
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Γ
(4)
q̄i q̄ jqlqm

(p1, p2, p3, p4) =
m

ji

lp3 p4

p1 p2

Figure 2: Diagrammatic representation of the quark four-point function. All mo-
menta are counted as incoming and i, j, l, m carry the Dirac, flavour and color indices,
see the representation of general 1PI n-point functions in Figure 1.

where a sum over α= 1, ..., 512 is implied, and
∫

p

≡
∫

d4p1

(2π)4
· · ·

d4p4

(2π)4
(2π)4δ4(p1 + · · ·+ p4) . (7)

The set of tensors {T (α)i jlm(p)} with α= 1, ..., 512 constitutes a complete set of four-quark tensor
structures, see e.g. [47]. The indices i, j, l, m are composed from Dirac, flavour (N f = 2) and
color (Nc = 3) indices. We have suppressed the field indices as well as the cutoff dependence
in the four-quark couplings, λα = λ

(α)
qqq̄q̄,k, as the superscript (α) already labels the basis. We

can project onto the different tensor structures or rather their k-dependent dressings λα(p) by
considering

Γ
(4)
q̄i q̄ jqlqm

(p) = 4λα(p)T (α)i jlm(p) (2π)
4δ4(p1 + · · ·+ p4) , (8)

and contracting (8) with the T (α)i jlm, where the factor 4 on the r.h.s. arises from the two quark
fields and two anti-quark fields. In (8), all momenta are counted as incoming, thus leading to
the sum of all momenta in the δ-function that carries momentum conservation. The symme-
tries of the couplings λα(p) under commutation of the momentum arguments follow from that
of the respective tensors T (α)i jlm and crossing symmetry. Equation (8) is depicted in Figure 2.

This general setup is important for resonance computations, while most of the four-quark
tensor structures in (6) are negligible for the off-shell dynamics of the theory. In particular
they effectively decouple from the dynamics of the lower order correlation functions that drive
the chiral and confinement dynamics of QCD. The fRG approach used here is tailor-made for
accommodating these properties explicitly: Firstly the momentum loops in (1) only carry (off-
shell) loop momenta with p2 ≲ k2. This allows for an efficient, rapidly converging expansion
of loops in external momenta. In particular this suppresses the contributions of vertices that
vanish at p = 0. Secondly, the infrared suppression of momentum modes with p2 ≲ k2 in the
propagators suppresses the effects of angular dependences by the respective angular averages,
hence further suppressing the contributions of momentum-dependent tensor structures. In
summary, we expect a rapidly converging expansion of (6), if the tensor structures are ordered
in terms of powers of momenta. Note that this implies an expansion in smooth tensor structures
without kinematic divergences, for related and more general discussions see e.g. [16,20,48].

This finalises our discussion of the four-quark scattering part in the effective action in
N f = 2 flavour QCD.

2.2 Flow of quark propagator and four-quark vertices

We proceed with the system of flow equations of the four-quark vertices. In QCD the four-
quark vertices are generated by quark-gluon diagrams that dominate the respective flows for
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−Γ (2)q̄q (p
′, p) =

pp′

Figure 3: Diagrammatic representation of the quark two-point function. All momenta
are counted as incoming, see the representation of general 1PI n-point functions in
Figure 1.

cutoff scales k ≳ 1 GeV. For smaller scales, ≲ 1 GeV the dynamics of the pure matter sector is
taking over, and there the flow is dominated by that governed by (2) with (5) and (6). This
leads us to the coupled flows for the quark propagator and the four-quark vertices depicted
in Figure 4. The first flow is that of the quark two-point functions in a vanishing background
Φ= 0,

Γ
(2)
q̄q,k(p

′, p) = Zq(p)
�

ip/+Mq(p)
�

(2π)4δ(p+ p′) , (9)

where both momenta are incoming as defined in (1d) for general n-point correlation functions.
The two-point function (9) is depicted in Figure 3.

The full quark two-point function is given by the sum of Γ (2)q̄q and the regulator Rq

Rq =

�

0 Rqq̄

Rq̄q 0

�

, Rq̄q = −RT
qq̄ , (10a)

with the superscript T denoting the transpose and the chiral regulator that preserves chiral
symmetry, reading

Rq̄q = Zq(p) ip/ rq(x) , x =
p2

k2
, or p→ p . (10b)

The substitution of the four momentum with its spatial part also implies p/→ p γ. In short, we
allow for chiral spatial momentum (3d) and full momentum (4d) regulators. These options
as well as a variation of the shape is used for a reliability check of the results obtained here.
For this check see Appendix G.

With the wave function factor in (10b) the regulator is RG-adapted [25]: These regulators
preserve the underlying RG-scaling of the physical theory without the regulator. Moreover,
this choice leads to a uniform suppression of momentum modes in all the tensor structures of
the regulator, see (12).

In (10b) we have introduced the dimensionless shape function rq(x) with x = p2/k2. In
the present work we consider general shape functions, but a common simple choice is given
by the shape function of the flat or Litim regulator, [49,50], see Appendix G. In summary, the
quark propagator Gqq̄(p, p′) in homogeneous backgrounds is given by

Gqq̄ =





1

Γ
(2)
k +Rq





qq̄

= Gq(p)(2π)
4δ4(p+ p′) , (11)

where we have suppressed the momentum arguments in the first two expressions. The
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∂t

( )
= ∂̃t

(
−

)

∂t

( )
= ∂̃t


 − + +

1

2




Figure 4: Diagrammatic representation of the flow equations for the two-point and
four-point correlation functions. Here t = ln(k/Λ) is the RG time with a UV cutoff
Λ. The partial derivative with a tilde denotes that it only hits the dependence of the
RG scale through the regulator in propagators, whose implementation would result
in the insertion of a regulator for every inner line of diagrams on the r.h.s. of flow
equations.

momentum dependent kernel is given by

Gq(p) =
1

Zq(p)
1

ip/
�

1+ rq

�

p2/k2
�

�

+Mq(p)
. (12)

With the RG-adapted choice of the regulator in (10b) the propagator has a uniform dependence
on the quark wave function Zq(p) for all cutoff scales. The shape function rq modifies the
classical Dirac dispersion p/ not involving the wave function. This is at the core of the RG-
adaptation introduced in [25].

These preparations allow us to consider the full coupled set of flow equations of the general
effective action (2) of the quark sector. The flow equations for the inverse quark propagator
and the four-quark vertices are depicted in Figure 4, see Equations (B.1) in Appendix B. In the
following sections, we will employ these flow equations within different approximations to
the full set of four-quark vertices for the investigation of dynamical chiral symmetry breaking,
Section 3, and the emergence of bound states, Section 4.

2.3 Flow of off-shell relevant correlation functions

The successive momentum shell integration of the flow with Euclidean (spacelike) loop mo-
menta q2 ≲ k2 allows for a very effective relevance ordering within the coupled set of flow
equations for vertex and propagator dressing. To begin with, all four quark channels decouple
very rapidly for k ≈ 1 GeV towards larger cutoff scales. This reflects the dominance of (off-
shell) quark-gluon fluctuations in this regime. In turn, the chiral symmetry breaking cutoff
scale is kχ ≈ 0.5 GeV, below which we expect resonant interaction channels.

The investigation of dynamical chiral symmetry breaking only requires a quantitative grip
on the off-shell quark two-point function. In view of the relevance ordering of the complete
set of tensor structures {T (α)i jlm(p)} of the four-quark vertex discussed at the end of Section 2.1

below (8), we only consider the set of momentum-independent tensor structures, {T (α)i jlm}, see
Appendix A.

For two flavours such a Fierz-complete basis has ten basis elements, and a specific one is
listed in Appendix A. For 2+1 flavours the basis has 26 basis elements, see e.g. [51]. Note
that the tensor structures T (α)i jlm carry the symmetries of the combination of the four Grass-
mann variables (momentum-independent), with which they are contracted. Comprehensive
discussions concerning projections, flows and partial momentum dependences can be found
e.g. in [18,20,31,39,51].
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These considerations lead us to a reduced but still rather general four quark sector, whose
effective action includes the kinetic term (5) and four-quark terms with a Nambu–Jona-Lasinio
type structure [2,52],

Γ4q,k =

∫

p
λα(p)T (α)i jlm q̄i(p1)q̄ j(p2)ql(p3)qm(p4) , (13)

with α = 1, ..., 10, indicating the tensor basis discussed in Appendix A. Alternatively, using
labels for the basis elements there, one arrives at

α ∈
¦

(V ± A) , (S ± P)± , (V − A)adj , (S ± P)adj
− , (S + P)adj

+

©

. (14)

The Fierz complete tensors T (α)i jlm are antisymmetric under the commutation of pairs of in-

dices i, j and l, m, see (A.2) in Appendix A. Accordingly, the ten vertex dressings λ(α)(p) are
symmetric under the interchange of the momenta p1 and p2, or that of p3 and p4, i.e.,

λα(p1, p2, p3, p4) = λα(p2, p1, p3, p4) = λα(p1, p2, p4, p3) = λα(p2, p1, p4, p3) . (15)

In Appendix F we discuss a possibility to extend the ten four-quark dressings to another ten
ones, which are anti-symmetric under the interchange of two quarks or antiquarks.

In our computation we re-arranged the tensor elements, T (S−P)+ in (A.1a), T (S+P)−

in (A.1b), T (S−P)− in (A.1c), and T (S+P)+ in (A.1d), such that they carry either scalar or
pseudoscalar quantum numbers. This facilitates the identification of scalar or pseudoscalar
resonances from momentum channels of a given tensor structure. We are led to

T σi jlmq̄iql q̄ jqm =(q̄ T0q)2 ,

T πi jlmq̄iql q̄ jqm =− (q̄γ5T aq)2 ,

T a
i jlmq̄iql q̄ jqm =(q̄ T aq)2 ,

T ηi jlmq̄iql q̄ jqm =− (q̄γ5T0q)2 . (16)

It is left to extract the coupled flows of the ten respective vertex dressings as well as those
of the quark wave function and the quark mass function from the flows in Figure 3 and Fig-
ure 4. Contracting the flow of the four-point correlation functions with all ten tensor elements
provides us with the flow of all couplings. Contracting the flow of the quark two-point func-
tion with p/ and 1 leads us to the flow of the quark wave function, the quark mass function
respectively. The required projections and contractions of the flows are done with the aid of
FormTracer, a Mathematica tracing package using FORM, see [53] for details.

The current work initiates the comprehensive investigation of the flow equations (B.1) and
their solution with different approximations, e.g., with or without the momentum dependence,
to investigate the mechanism of quark mass production and the natural emergence of bound
states, and also to extend the relevant flow equations to include the glue dynamics such that
the low energy effective theory is extended to a first-principle QCD, see e.g., [5,17–20].

3 Chiral symmetry breaking and quark mass production

In this section we use the present four-quark fRG set-up to access the mechanism of the emer-
gence of the constituent quark mass due to the dynamical chiral symmetry breaking. In a first
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step we neglect the momentum dependence of the four-quark couplings and the quark mass,

λα = λα(pi = 0) , (i = 1, · · · , 4) ,

Mq = Mq(p = 0) , (17)

and assume the quark wave function Zq = 1, which simplifies the numerical calculations sig-
nificantly. Obviously, this truncation is only a very qualitative one, and we expect it to break
down in the chiral limit: there, λα(p) is bound to develop a pole and it is suggestive that in
a momentum-independent approximation this pole will be a global non-integrable singular-
ity for all momenta. Indeed, this is precisely what happens, see Figure 6 and the respective
discussion. Still, the approximation should work well away from this singularity, and one of
the aims of the present work and the following ones is to find out minimal truncations that
capture qualitative and quantitative physics.

For the following computations we introduce dimensionless variables for convenience, and
in particular we shall use

λ̄α = λαk2 , M̄q =
Mq

k
. (18)

3.1 Single channel approximation

A further simplification is achieved by assuming the dominance of the scalar-pseudoscalar
channel and hence dropping the other nine channels. This approximation is tailor-made for
unravelling the dynamics of chiral symmetry breaking, also at work in the full system. More-
over, this has been proven as a very good approximation within full QCD flows, where the dom-
inant scalar-pseudoscalar channel has been also treated with dynamical hadronisation, [20].
There it has been checked that the scalar-pseudoscalar channel is by far the dominant one
by switching off one by one the other channels. Here we confirm this property within the
four-quark setup. Moreover, we identify σ and π exchange. This is summarised in

λσ−π ≡ λπ = λσ , λα/∈{σ,π} = 0 . (19)

In this approximation, the full flow equations in (B.1c) and (B.1b) reduce to simple flows for
the dimensionless coupling and quark mass,

∂t λ̄σ−π =2λ̄σ−π +
λ̄2
σ−π

2π2

∫ ∞

0

d x x3rq
′(x)×

�

− 4M̄2
q + 7x
�

1+ rq(x)
�2��

1+ rq(x)
�

�

x
�

1+ rq(x)
�2
+ M̄2

q

�3 , (20a)

and

∂t M̄q =− M̄q + M̄qλ̄σ−π
13

4π2

∫ ∞

0

d x x3rq
′(x)×

1+ rq(x)
�

�

1+ rq(x)
�2

x + M̄2
q

�2 . (20b)

The set of flow equations (20) are the standard flow equations in the local NJL-type model,
for a detailed discussion of the flows in the chiral limit, and a first qualitative discussion of the
mass-dependence see [39]. The flow for the coupling can be written schematically as

βλ̄σ−π ≡ ∂t λ̄σ−π = 2λ̄σ−π − C(M̄q)λ̄
2
σ−π , (21)

with

C(M̄q) =
7− 4M̄2

q

8π2
�

1+ M̄2
q

�3 , (22)
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Figure 5: β-function βλ̄σ−π defined in (21) as a function of the coupling λ̄σ−π with
vanishing and finite dimensionless quark mass M̄q.

for the flat or Litim regulator (G.1). Fixed points of the flow are defined by βλσ−π = 0. Apart
from the Gaußian fixed point at λσ−π = 0, the system has a non-trivial fixed point,

λ̄∗σ−π(M̄q) =
2

C(M̄q)
. (23)

This fixed point is an attractive ultraviolet fixed point: wherever we initiate the flow towards
larger cutoff scales, the coupling is drawn to this fixed point. For illustration we show in
Figure 5 the β-function (21) for M̄q = 0, and these properties are clearly seen.

The location of this fixed point is regulator dependent. In Figure 5, where the single
channel approximation with M̄q = 0 and the 4d flat regulator has been used, we obtain
λ̄∗σ−π = (16π2)/7 ≈ 22.56 from (22). The fixed point location for all regulators used in
the present work are summarised in Table 1 for both, the single channel and Fierz complete
approximation.

The strong regulator dependence of the fixed point is not an artifact of the approximation
and has two different but related sources [25]: First of all, the dimensionless coupling is
rescales with k2 and the relation of k to a mass scale in the theory depends on the chosen
regulator. Second, the regulator choice also implies a coice of RG scheme which shows in

Table 1: Ultraviolet fixed point location λ∗σ−π for different regulators in the single
channel and Fierz-complete approximations.

Regulator single channel λ̄∗ Fierz-complete

3d flat 16.91 16.81

4d flat 22.56 22.43

3d exp 6.15 6.10

4d exp 9.98 9.92
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the the values of non-universal couplings. In short, the fixed point location alone carries no
physics and strongly depends on the regulator.

The qualitative picture is best evaluated in the chiral limit for M̄q = 0 as depicted in
Figure 5, where we show the β-function (21) as a function of λ̄σ−π in the chiral limit. Then,
the flow of M̄q vanishes identically above the scale of dynamical chiral symmetry breaking as
it is proportional to M̄q, see (20b). Consequently we only have to discuss the β-function of the
coupling. If initiating the flow at k = Λ with λ̄σ−π < λ̄

∗
σ−π, the dimensionless coupling will

flow into the Gaußian fixed point at λ̄∗σ−π = 0 without dynamical chiral symmetry breaking.
In turn, if the initial coupling is larger than the UV fixed point coupling, λ̄σ−π > λ̄

∗
σ−π, the

coupling grows in the IR flow and finally hits a singularity at kχ , which signals chiral symmetry
breaking. This simple analysis already entails that we cannot flow to k = 0 in the chiral limit
with λ̄σ−π > λ̄

∗
σ−π, and the flow terminates at the chiral symmetry breaking cutoff scale kχ .

However, the chiral limit is a special case, and for non-vanishing mass the sign of the
coefficient C(M̄q) of the β-function depends on the size of M̄q. In particular, it is negative for
sufficiently large masses M̄q > M̄Gauß

q . For the flat regulator (G.1) we find

M̄Gauß
q =

p
7

2
. (24)

Above this mass the Gaußian regime extends to infinity. While the value of M̄Gauß
q depends

on the chosen regulator as does the location of the fixed point, the existence of this regime
is a physics feature of the system and holds true for all regulators. In conclusion, for masses
Mq∝ kγ, that do not decay with γ > 1 for k→ 0 (massless limit), the dimensionless mass M̄q
grows large and we enter the Gaußian regime. For M̄q,Λ ̸= 0 at the initial scale, the mass is
flowing with (20b), and schematically it reads

∂t M̄q = −M̄q

�

1+ λ̄σ−πC(M̄q)
�

, (25)

with

C(M̄q) =
13

16π2
�

1+ M̄2
q

�2 , (26)

for the flat or Litim regulator (G.1). We remark that in more advanced schemes the dimension
counting term in (21) acquires an anomalous part

2λ̄σ−π→ [2+B(Mq)]λ̄σ−π , (27)

where B(Mq) accounts for the anomalous scaling of the quark fields. While this is important
for a fully quantitative analysis, it does not change the qualitative structure of the flow.

Hence, the dimensionless mass is always increasing towards the infrared and the coupled
system of flow equations for λ̄σ−π, M̄q always enters the Gaußian regime below some cutoff
scale kGauß. Accordingly, the flow of the dimensionful coupling and quark mass parameters
freezes in below this scale.

For physical quark masses close to the chiral limit, the four-quark coupling grows very large
before entering the Gaußian regime: in this regime with an explicit small chiral symmetry
breaking the pion dynamics grows strong, and the scalar-pseudoscalar channel of the four-
quark interaction with the coupling λσ−π develops a pseudoscalar resonance which carries
the properties of a pion exchange with a pion propagator

1
P2 +m2

π

, (28)
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Figure 6: Physical constituent quark mass Mq,k→0 as a function of the UV (current)
quark mass Mq,Λ for an initial coupling λσ−π,Λ = 24.5. The results for M̄q,Λ also
depicted in Figure 7 are indicated on the curve in blue triangles. The dashed line
denotes a linear extrapolation from the region of large current quark mass towards
the chiral limit, and is supported by its presence within dynamical hadronisation,
e.g. [54]. A comparison with the Fierz complete computation is done in Figure 12.

with the pion exchange momentum P2. In the present momentum-independent approxima-
tion for λσ−π the pion propagator in (28) is simply approximated by 1/m2

π which greatly
overestimates the strength of this channel for m2

π→ 0. In terms of the initial mass this regime
close to the chiral limit is entered for

M̄q,Λ ≲ M̄χ , (29)

and the latter has to be determined dynamically. This resonant behaviour of the pseudoscalar
channel is also responsible for the singularity in the flow for M̄q ≡ 0, and it shows an unphysical
growth of the constituent quark mass in the regime (29) if lowering the initial current quark
mass Mq,Λ.

In this regime one either includes momentum-dependent four quark couplings and in par-
ticular λσ−π(P) or one resorts to dynamical hadronisation as done in [5,17,18,20,54]. In the
latter computations with dynamical hadronisation no unphysical rise of the constituent quark
mass occurs in the chiral limit. and presence within dynamical hadronisation, e.g. [54]: the
linear dependence on the current quark mass holds up into the chiral limit both in low en-
ergy effective theories and in QCD. In the present work we consider a momentum-dependent
λσ−π(P) for the discussion of bound states in Section 4.

The above structure, both the reliability of the present simple approximation for current
quark masses M̄q,Λ ≳ M̄χ , as well as the successive failure for M̄q,Λ ≲ M̄χ is illustrated in
Figure 6. There we show the physical constituent quark mass Mq,k→0 as a function of the initial
(current) quark mass Mq,k=Λ for an initial coupling value of λ̄σ−π = 24.5. The setups with
the different initial masses M̄q,Λ are indicated with numbers (in circles), counting from small
initial masses close to the chiral limit to larger ones with a large explicit symmetry breaking.
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Figure 7: Quark mass Mq (left panel) and four-quark coupling λσ−π (right panel)
as functions of the RG scale k with different initial current quark mass values M̄q,Λ

and a fixed initial coupling λ̄σ−π,Λ = 24.5. The respective flowing masses Mq,k and
couplings λσ−π,k are also indicated in Figure 6 and Figure 8.

The respective flowing masses Mq,k and couplings λσ−π,k are shown as functions of k in
Figure 7. There one clearly sees that the masses are monotonously decreasing with smaller
M̄q,Λ for k ≳ 0.3Λ. Already for k ≲ 0.3Λ the mass and coupling flows are too large due
to the lack of momentum-dependence, and it is these oversized flows that cause the non-
monotonicity of the constituent quark mass for small input masses. Note that this amplification
of the flows for small cutoff scales is also present for larger initial quark masses, but there the
flows are approximately vanishing for k ≲ 0.25Λ, and hence this is irrelevant.

In our example the onset of the small mass regime, where the present simple approximation
lacks reliability, is readily read off from Figure 6 as the initial mass M̄q,Λ, for which the curve
stops being roughly linear in the initial mass. This leads us to

M̄χ ≈ 0.025 , for λ̄σ−π,Λ = 24.5 . (30)

In summary this structural analysis leads to the following picture with three different regimes,
the size of which is ruled by a characteristic mass scale M̄χ that depends on the initial cou-
pling λ̄σ−π:

(i) M̄q,Λ ≳ M̄χ : The system enters the Gaußian regime for sufficiently large k. Moreover, the
quark mass and coupling also settle for large enough k and the present approximation
is working well.

(ii) M̄q,Λ ≲ M̄χ : The system enters the Gaußian regime for too small k, and the over-
estimation of the infrared flows in the absence of momentum dependences has an in-
creasing impact on the values of the physical masses and couplings at k = 0. In this
regime a better momentum resolution is required to obtain accurate results, as is dis-
cussed below (29).

(iii) M̄q = 0: In the chiral limit the flow hits a singularity at a finite kχ > 0.

As discussed above, we can clearly distinguish the first two regimes in Figure 6. Interestingly,
the unphysical regime with M̄q,Λ is reached for rather small initial masses roughly two orders
of magnitude below the initial cutoff scale. In QCD the physical UV cutoff scale for the NJL
model is approximately 1 GeV and hence the unphysical regime is entered for current quark
masses of about 10 MeV. Accordingly, this should allow for a chiral extrapolation as also shown
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Figure 8: fRG flow diagram in the M̄q-λ̄σ−π plane, with the dimenionless M̄q, λ̄σ−π
given in (18). Arrows indicate the flow towards the infrared. The plane is sepearated
into two sub-planes (blue and orange). Blue flows start in the regime with dynamical
chiral symmetry breaking with (31) and finally enter the Gaußian regime, orange
flows are initiated in the Gaußian regime with (32) and stay there. Circled numbers
indicate flows with the initial coupling λσ−π,Λ = 22.5 and different current quark
masses Mq,Λ, see Figure 7. Roman numbers indicate flows with initial current quark
mass Mq,Λ = 5× 10−3 and different initial couplings λσ−π,Λ, see Figure 9.

in Figure 6 with a constituent quark mass of Mq,χ = 0.242Λ in the chiral limit. This concludes
our structural discussion of the local NJL-type flows.

With this preparation we proceed with the discussion the general solutions of the coupled
system of flow equation in (20a) and (20b). They are depicted in Figure 8, which can be
understood in terms of the discussions in the following:

To begin with, the λ̄σ−π-M̄q plane in Figure 8 is separated into two sub-planes by the red
solid line, the orange and blue regimes, respectively.

These two regimes are qualitatively different as only the blue regime carries the dynamics
of chiral symmetry breaking: It is determined by all flows which are initiated with

βλ̄σ−π(M̄q,Λ, λ̄σ−π,Λ)< 0 , (31)

and hence the dimensionless coupling λ̄σ−π increases first which indicates the dynamics of
spontaneous chiral symmetry breaking. However, for some small k the β-function vanishes as
discussed before. In Figure 8 the violet solid line shows the vanishing β-function curve (23).
Note that the asymptotic line of the violet curve at large λ̄σ−π is given by the line of M̄q =

p
7/2

as shown in (24). Then, the flow enters the attraction regime of the Gaußian fixed point and
the λ̄σ−π decreases towards zero. We call this regime that with dynamical chiral symmetry
breaking. It is determined by all flows that intersect the violet curve.

In turn, the flows in the orange regime are initiated in the attraction regime of the Gaußian
fixed point with

βλ̄σ−π(M̄q,Λ, λ̄σ−π,Λ)> 0 , (32)
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Figure 9: Quark mass Mq (left panel) and four-quark coupling λσ−π (right panel) as
functions of the RG scale k for several different initial values of the coupling λ̄σ−π,k=Λ
and a fixed initial current quark mass M̄q,k=Λ = 5× 10−3, also shown in Figure 8.

Then, the β-function is positive for all k and hence the flow stays in the attraction regime of
the Gaußian fixed point. We call this regime that with Gaußian regime.

The red solid line that separates the two regimes, is given by the flow initiated with the
initial conditions as follows

M̄q,Λ→ 0+ , λ̄σ−π,Λ = λ̄
∗
σ−π(0) , (33)

which is approaching the boundary from within the Gaußian regime.
We proceed with a discussion of the properties of the two regimes with and without dy-

namical chiral symmetry breaking.

3.1.1 Gaußian regime

Flows in the Gaußian regime are depicted in Figure 8 and Figure 9 with (i) and (ii). These
flows are dominated by its dimension counting part 2λ̄σ−π. The dimensionless coupling is
decreasing monotonously as is also visible in Figure 8. Finally it tends towards zero for k = 0.
In turn, the dimensionful coupling is increasing for large k as B(M̄q)> 0 for sufficiently small
initial M̄q, and settles at a finite value for k→ 0. Note, that B(M̄q) < 0 entails that the initial
quark mass is larger than the initial cutoff scale, see (24), in which case all flows are already
suppressed at the initial scale.

An interesting detail of the flows in the Gaußian regime is the potentially significant in-
crease of the mass function Mq,k towards the infrared. We emphasise that this simply reflects
a trivial RG-running in the Gaußian regime. This regime does not sustain the dynamics of
spontaneous chiral symmetry breaking. Accordingly, while such a flow leads to larger infrared
masses, and this may be used to mimic a constituent quark mass it lacks the respective dynam-
ics.

In short, such a setup can be used to emulate a large constituent quark mass but fails
qualitatively to incorporate the respective dynamics. The latter fact then shows in other ob-
servables.

3.1.2 Regime with dynamical chiral symmetry breaking

Flows in the regime with dynamical chiral symmetry breaking are depicted in Figure 8 and
Figure 9 with 1 − 4 with the initial coupling λ̄σ−π,Λ = 24.5 and (iv) with the initial coupling
λ̄σ−π,Λ = 43.4.
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Figure 10: Four-quark couplings λα,k of 10 Fierz-complete channels as functions of
the RG scale k. In the calculations the initial values of couplings at the UV cutoff Λ
are chosen to be λ̄π,Λ = λ̄σ,Λ = 24.2 and λ̄α,Λ = 0 (α /∈ {σ,π}) for other channels.
Two different initial values of quark mass at k = Λ are adopted with M̄q,Λ = 2×10−2

(left panel) and 3× 10−2 (right panel).

Consequently, λ̄σ−π is first increasing during the flow towards the infrared as does M̄q, see
Figure 8. With the growth of the latter, the system enters the attraction regime βλ̄σ−π > 0 of
the Gaußian fixed point for small enough k, and λ̄σ−π starts decreasing towards the infrared.
This turning point is given by the violet curve of fixed points in Figure 8. This qualitative
structure is present for all flows in the blue regime with dynamical chiral symmetry breaking.

We emphasise that while the flows of dimensionful couplings and quark masses do not
differ qualitatively from that in Gaußian regime in particular for large initial quark masses,
the dynamics does.

Finally, as discussed before, for small initial masses M̄q,Λ ≲ M̄χ defined in (29), we de-
tect a non-monotonous dependence of the constituent quark mass Mq on the input (current)
quark mass Mq,Λ, see Figure 6 and Figure 7. We remark that this artificial behavior disappears
in an improved truncation with a quark propagator with full momentum dependence and
momentum-dependent four-quark couplings. A detailed discussion goes beyond the scope of
the present work and is deferred to [40].

3.2 Fierz complete approximation

We close this section with presenting the results in the best approximation considered here: We
use a Fierz-complete basis of the four-quark interaction with the ten momentum-independent
tensor structures, see (A.1) and (16). At the initial scale k = Λ we only keep a non-vanishing
scalar-pseudoscalar coupling λ̄σ−π, all the other couplings are set to zero,

λ̄σ,Λ = λ̄π,Λ = 24.2 , λ̄α/∈{σ,π},Λ = 0 . (34a)

Identifying the scalar and pseudoscalar couplings at the initial scale assumes a negligible effect
from the explicit chiral symmetry breaking due to the initial (current) quark mass M̄q,Λ. The
latter is kept small in units of the initial cutoff, and varied within one order of magnitude
5×10−3−5×10−2 and is used change the initial conditions from the orange Gaußian regime
in Figure 8 to the blue regime with dynamical chiral symmetry breaking,

M̄q,Λ = 5× 10−3 , (1 , 2 , 3 , 4 , 5)× 10−2 . (34b)
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Figure 11: Quark mass as a function of the RG scale k obtained in the computation
with four-quark interactions of 10 Fierz-complete channels. Results for several differ-
ent initial values of M̄q,k=Λ are compared. The initial values of four-quark couplings
are fixed with λ̄π,k=Λ = λ̄σ,k = 24.2 and λ̄α/∈{σ,π},Λ.

This setup allows us also to evaluate the relevance of the additional channels by successively
switching them off and comparing the respective results to that of the full Fierz-complete
computation. Finally, we estimate the quantitative reliability of the simple one-channel ap-
proximation as discussed in Section 3.1.

The results of the Fierz-complete computation are presented in Figure 10 and Figure 11.
In Figure 10 we depict the coupling strengths of different channels as functions of the cutoff
scale k. As expected, the σ and π channels are dominant for all k. Moreover, for the initial
masses in (34b) they stay degenerate for k ≳ 0.6Λ as can be seen for M̄q,Λ = 3 × 10−3 in
Figure 10. For even larger masses this regime shrinks towards k = Λ and finally the assumed
degeneracy is not self-consistent anymore. However, for the present masses the degeneracy as
used in (34a) is supported well.

In turn, for even smaller cutoff scales, the two channels are not degenerate anymore, which
signals the onset of dynamical chiral symmetry breaking. Then, λπ is significantly larger than
λσ due to the presence of pseudo-Goldstone modes, the pions, see Figure 10. This already indi-
cates, that the single-channel approximation used in Section 3.1 may not provide quantitative
precision. Indeed, one finds that the results agree only qualitatively.

In Figure 11 we show the dependence of the quark mass on k with several values of M̄q,Λ
for the Fierz complete approximation. The results agree qualitatively but not quantitatively
with the results in the left panel of Figure 7. As the running quark mass is sensitive to the ac-
cumulated fluctuations in all channels, it is an optimal quantity for evaluating the convergence
(or deviation) of results of different approximations towards results in the Fierz-complete one.

The large dominance of the scalar-pseudoscalar channel and in particular that of the pion
exchange with λπ suggests that the feedback of the other channels in the flow is negligible.
This can be tested with switching off λα/∈(σ,π) on the right hand side of the flow equations and
flowing down from the same initial conditions (34). We find that this changes the results just
by a few percent: less than 2% for the constituent quark mass, less than 3% for λσ and less than
5% for λπ, see also Figure 16 and Figure 17 in Appendix D. In this approximation the couplings
λα/∈{σ,π} are simply generated from λσ,λπ diagrammatically. They deviate from the full results
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Figure 12: Physical constituent quark mass Mq,k→0 as a function of the UV (current)
quark mass Mq,Λ obtained from the Fierz-complete (red solid) and the one-channel
(blue solid) computations, both with an initial coupling λ̄σ−π,Λ = 24.2, cf. also Fig-
ure 6 for the one-channel computation. The respective linear extrapolations towards
the chiral limit are depicted as dashed lines, and is supported by its presence within
dynamical hadronisation, e.g. [54].

by less than 2%, see Figure 18 in Appendix D. This confirms the quantitative dominance of the
σ−π quantum fluctuations in this system. These findings corroborate results in the literature
within Fierz complete systems both in NJL-type models and in QCD [18,20,29–31].

While being subdominant, we also find an ordering in the strength of the couplings
λα/∈(σ,π): In the present tensor basis with (A.1), the strengths of the (V − A)adj and (S + P)adj

−
channels significantly exceed that of the further channels. A similar pattern has also been
seen in other Fierz complete computations in both NJL-type models, see e.g. [29, 30], and
QCD [18, 20, 31]. A direct comparison of the results in the present work with those in the
literature is not possible: in [29–31] the computations are performed in the chiral limit and
hence the flows stop at kχ , where the flow hits a singularity. The flows in [18, 20] are com-
puted in full QCD and use a slightly different basis. We have checked in all cases, that our
results are compatible with those in the literature, if these differences are taken into account.

We close our analysis of the dynamics of spontaneous chiral symmetry breaking with a
comparison of the approach towards the chiral limit as already discussed for the single-channel
approximation. There we have discussed the constituent quark masses Mq as a function of
the current quark mass M̄q,Λ, see depicted Figure 6. In Figure 12 we compare Mq(Mq,Λ) for
the single channel approximation (blue curve) with the results of the Fierz-complete one (red
curve). We have already discussed, that the results from the two approximations do not agree
quantitatively and we have to tune both initial coupling for the best comparison: in Figure 12
we use λ̄σ−π,Λ = 24.2 for the Fierz complete results (red curve), and λ̄σ−π,Λ = 24.5 as already
used for Figure 6 for the single-channel approximation.

In the linear regime of both curves for Mq,Λ ≳ 0.02, the constituent masses (and their
slopes) on both curves deviate less than 5%. Since the initial current quark masses are less than
20% of the final constituent quark masses, this entails that the pseudoscalar-scalar channel is
dominanting completely the dynamics in the linear regime. This is also seen from comparing
the one-channel results for λ̄σ−π,Λ = 24.2 in Figure 12 and λ̄σ−π,Λ = 24.5 in Figure 6. Note
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that this 1% change of the coupling already gives rise to a larger change (≈ 10%) of the
constituent quark masses in comparison to adding all channels (less than 2%).

In turn, for small current quark masses with Mq,Λ ≲ 0.02 we enter the unphysical non-
linear regime where the four-quark couplings are oversized. We expect that the related un-
physical infrared divergence of the constituent quark mass is amplified by the presence of all
channels. Indeed the Fierz complete computation (red curve) deviates earlier and stronger
from the linear behaviour.

4 Emergent bound states

We continue with the main goal of the present work, the evaluation of emergent hadronic
bound states within the present formulation.

So far, respective fRG computations in QCD have been done within the framework of dy-
namical hadronisation [5, 17, 18, 20–22, 24, 55], see also the reviews [43, 44]. In short, in
this framework composite bilinear fields q̄T q are introduced, that comprises the full dynam-
ics of one momentum channel of a four-quark exchange (q̄T q)2 with the given tensor struc-
ture T . We emphasise that dynamical hadronisation only reparametrises the QCD effective
action, it does not suffer from double counting problems, well-known from standard Hubbard-
Stratonovich transformations.

In most cases dynamical hadronisation has been used for the t-channel of the scalar-
pseudoscalar tensor structure. The respective composite fields carry the same quantum num-
bers as the pseudoscalar mesons, the pions, and the scalar σ-mode. More importantly, they
carry the pole masses and decay properties of the respective mesons. Finally, higher order
scatterings of resonant interaction channels (such as multi-pion scatterings) are conveniently
and reliably accounted for with a full effective potential of the composite fields. This is chiefly
important in the presence of quasi-massless modes as well as phase transitions.

In such a formulation all the other tensor channels of the four-quark interactions as well
as a remnant momentum dependence have to be treated independently: This can be done
either within further dynamical hadronisation steps or by keeping the rest of the four-quark
interactions explicitly in the system. This is discussed in detail in [22].

Hence, a systematic and reliable treatment of the bound state spectrum of QCD as well as
the phase structure of QCD at larger densities with the fRG asks for a resolution of the dynamics
of resonant interaction channels as well as an approximation in the four-quark scatterings or
even higher order quark interactions, that can capture the emergence of resonant channels.

In the present Section we initiate the analysis of reliable approximations in the four-quark
sector of QCD with a detailed study of the dynamics of the scalar-pseudoscalar channel. In
consequence of the findings of the last sector we shall use a t-channel approximation of the
scalar-pseudoscalar four-quark scatterings. This is similar to dynamical hadronisation with a
full momentum dependence of the pion and σ propagators and a momentum-independent
Yukawa coupling between (σ,π) and (q̄q, iq̄γ5τq). This approximation is well-known for cap-
turing the infrared dynamics of pions and σ well, and we confirm this here without dynamical
hadronisation. This shows the capability of the present framework to account for potentially
resonant interaction channels.

We also compute the timelike regime of the t-channel which gives us access to the pion
pole mass as well as further scattering properties such as the pion decay constant. A detailed
evaluation of the on-shell properties of the pions andσ is beyond the scope of the present work
and will be discussed elsewhere. Finally, we complete the present case study with a discussion
of the regulator dependence or rather lack thereof.
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Figure 13: Sketch of four-quark vertex and it’s resonance behavior at the pole of
relevant meson mass. Here the square and half-circles denote the full four-quark and
quark-meson vertices, respectively. The dashed line stands for the meson propagator.

4.1 Pion pole mass and the Goldstone theorem

The information of bound states of, e.g., two quarks (or one quark and one antiquark), or three
quarks are encoded in the four-point or six-point vertices of quarks, respectively, see [3] for the
DSE-BSE approach and [22] for the fRG approach. This is schematically depicted in Figure 13,
where we have taken mesons as a simple example: We consider Euclidean momenta P of the
respective tensor channel (e.g. the pseudoscalar channel for the pion) with P2→−m2

meson, that
is close to on-shell momenta. Then the respective tensor channel in the four-quark vertex is
resonant, and the full four-quark vertex can be well approximated as two quark-meson vertices
connected with a meson propagator, as shown in the right part of Figure 13. Accordingly, we
have to access the full four-quark vertex or the quark-meson vertex in this momentum regime.

4.1.1 Flow equations in the t-channel approximation

The resummation required for the four-quark couplings in this momentum channel is already
encoded in the flow equation in (B.1c). For our pion example it is λπ(P). Naturally, the fRG
flows are therefore well-suited for the description of bound states. Properties of the meson
in a given channel can be inferred from its respective four-quark coupling in (B.1c) with an
appropriate external momentum for the meson. We emphasise that the RG flows in (B.1c)
and (B.1b) have a welcome property, that any truncation to the effective action in (2) leads
to self-consistency of the quark propagator and the emerging bound states. In turn, the self-
consistency between gap equation and the Bethe-Salpeter equation is a nontrivial require-
ment [3].

We proceed with investigating the pole behavior of mesons as shown in Figure 13 with
the flow equations of four-quark couplings in (B.1c). It is obvious that the truncation for the
coupling in (17), where all the external momenta are ignored, is not applicable any more for
the current purpose, but rather partial momentum dependence at least should be restored.

The relevant Mandelstam variables read

s =(p1 + p2)
2 ,

t =(p1 + p3)
2 = P2 ,

u=(p1 + p4)
2 . (35)

For momenta close to the on-shell condition of the resonance, this bound state naturally
emerges from the flow equation of its relevant four-quark coupling in (B.1c), see Figure 13.
In this work we are interested in the qualitative dynamics of such a system in the four-quark
flows in (B.1c). Hence we only keep the momentum dependence of the resonant channel. For
the π meson under investigation we use the t-channel in (35) with P2 ∼ −m2

π, while keeping
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s = u= 0, that is p1 = −p2 = −p4. Thus, one is led to

t = P2→−m2
π , s = u→ 0 . (36a)

For these momenta the pion coupling λπ is divergent and all other four-quark couplings are
negligible: As the system is coupled and the couplings are not orthogonal, they also diverge
but λπ is by far dominant. Moreover, its t-channel dominates over the rest of the momentum
dependence as indicated in Figure 13.

In the present work we concentrate on the scalar-pseudoscalar t-channel vertex and eval-
uate its full flow in Appendix B on the t-channel configuration (36a) with

p1 = p3 = −P/2 . (36b)

The diagrams are depicted in the second line of Figure 4. For the momentum configuration
(36a) with (36b) only the first diagram on the r.h.s. of the flow equation for the four-quark
functions has vertices with a momentum flowing through the diagram, and this momentum is
simply the t-channel momentum P. Moreover, its vertices are of the form,

Γq̄1q̄iq3q j
(−P/2,−q,−P/2, P + q)∝λ(P) ,

Γq̄ j′ q̄2qi′q4
(−P − q, P/2, q, P/2)∝λ(P) , (36c)

where all momenta are counted inflowing and i, j, i′, j′ labels the internal lines. In (36c) we
have also used that the loop momenta q are limited by the cutoff scale, q2 ≲ k2, and the
momentum dependence of the vertices is subleading for these momenta: The initial vertices
are momentum independence and hence the momentum dependence originates from that of
the propagators. For q2 ≲ k2 the propagators are dominated by the regulator R2

q(q
2 ≲ k2)∼ k2

which is approximately constant in this regime. Accordingly, for P2 ≫ k2 these vertices are
well approximated by those with q = 0, leading to (36c). The validity of this conceptual
argument has been tested with the full results in [18,20] in QCD.

Importantly, the approximation (36c) leads to a factorisation in the first diagram on the
r.h.s. of the flow equation in the second line in Figure 4: The vertex dressing λ(P) multiplies
the loop, whose P-dependence only comes from the propagators.

The above argument also implies that the vertices in the second and third diagrams are
well approximated by their values at vanishing momenta, e.g.,

Γq̄q̄iqq j
(P/2,−q,−P/2, q)∝λ(0) . (36d)

Finally, the pion channel λπ has the dominant resonance, and hence we can use

λα(P)→ λα(0) , α ̸= π , (36e)

in the resonant first diagram in Figure 4. In summary, it is this diagram which gives rise to the
dominant momentum dependence in the flow, and hence the (integrated) flow equation for
λπ(P) will relate to standard t-channel resummations.

Within the t-channel approximation described above and summarised in (36), we are led
to the flow

∂tλπ(P) =A(P) +B(P)λπ(P) + C(P)λ2
π(P) , (37)

where we have suppressed the k-dependence for the sake of simplicity. The two terms pro-
portional to λπ(P) and λ2

π(P) with the k-dependent coefficients B(P), C(P) are the scalar-
pseudoscalar contribution of the first diagram on the r.h.s. in the second line in Figure 4.
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The factorisation described above is explicit in these terms. Note that B(P) is linear in the
other couplings λα̸=π. In present t-channel approximation all coefficients have simple repre-
sentations in terms of loop diagrams with constant vertex factors and momentum dependent
propagators. They can be read off from the general flows in Appendix B and Appendix C,
which are collected in Appendix E.

The three terms in (37) are ordered in increasing powers of the resonant coupling λπ and
hence are increasingly important in the resonant regime. Their coefficients have a natural
interpretation in terms of the β-function of λπ depicted in Figure 5:

The first coefficient A leads to a global shift of the β-function up or down depending on
its sign. This leads to a shifted Gaußian infrared fixed point as well as a shift of the UV fixed
point λ∗π to larger values (sign(A)> 0) or smaller values (sign(A)< 0). In QCD this term also
carries negative gluon contributions proportional to α2

s and beyond a critical coupling αs > α
∗
s ,

the UV fixed point disappears and the β-function is negative for all values of λπ.
The second coefficient linear in λα̸=π accounts for the anomalous dimension of the vertex

dressing and shifts the canonical term 2λ̄π→ (2+B) λ̄π. In QCD it also includes terms linear
inαs. In contradistinction it has no qualitative impact forB > −2 and hence is of no importance
in our present qualitative analysis.

Finally, the third and most relevant coefficient C is λ-independent and is simply the loop
integral of the t-channel diagram in the second line in Figure 4 with λπ = 1. As discussed
above, its momentum dependence triggers that of λπ(P) in the present approximation.

4.1.2 Persistence of the Goldstone theorem

We are now in the position to discuss the natural emergence of the pion bound state and the
persistence of the Goldstone theorem within the current approximation.

In Section 4.2.1 and Section 4.2.2 we numerically compute the coupling λπ,k from the
flow (37) in the following way: While the momentum-dependent vertex dressing λπ(P) and
the momentum-independent vertex dressings λα̸=π are computed from their respective cou-
pled flow equations, the quark propagator is taken as an input and computed within the ap-
proximation detailed in Section 3.2.

Accordingly, this approximation is not self-consistent for general momenta P2 ̸= 0. How-
ever, it is self-consistent for P = 0 due to the factorisation discussed before: At P = 0 (37)
reduces to

∂tλπ(0) =A(0) +B(0)λπ(0) + C(0)λ2
π(0) , (38)

which is the approximation used in Section 3.2 for computing the coupling in the coupled
system for Mq,k,λk. There it has been shown that the coupling only diverges for Mq,Λ → 0,
tantamount to the occurrance of a massless mode in the system. Hence it is precisely the self-
consistency for P = 0, which leads to the persistence of the Goldstone theorem, see also the
explicit results in Section 4.2.1 and Section 4.2.2.

We now elucidate the above with an analytic computation within a simplified approxima-
tion that already captures the relevant structure: As the first term Ak(P) in (37) is regular in
the chiral limit as well as more generally for P2 →−m2

π, we can drop it for a first qualitative
study. For Ak = 0, the flow (37) is readily integrated,

λπ(P) =
λπ,ΛD0(P)

1−λπ,Λ

∫ 0
Λ

dk
k Dk(P)Ck(P)

, (39)

with

Dk(P)≡ e
∫ k
Λ

dk′
k′ Bk′ (P) . (40)
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Table 2: Pion pole mass with different current quark masses. The results in the first
line denote those obtained in the direct computations in the Minkowski regime, while
others are obtained from analytic continuation from the Euclidean to Minkowski
regimes based on Padé approximants of different orders. The calculations are done
with the 3d flat regulator, where the initial values of four-quark couplings are fixed
with λ̄π,k=Λ = λ̄σ,k=Λ = 16.92 and λ̄α,k=Λ = 0 (α /∈ {σ,π}), see also Figure 14.

Mq,k=Λ[Λ] 10−4 10−3 5× 10−3 2× 10−2

Exact 0.03683 0.1185 0.2067 0.3375

Padé [1,1] 0.07120 0.1139 0.2039 0.3359

Padé [2,2] 0.03812 0.1185 0.2068 0.3382

Padé [10, 10] 0.03683 0.1185 0.2067 0.3374

Padé [20, 20] 0.03683 0.1185 0.2075 0.3281

Here, λπ = λπ,k=0 and the initial four-quark coupling λπ,Λ is momentum-independent.
Evidently, the physical four-quark coupling λπ(P) diverges, if the denominator in (39)

crosses through zero. Therefore, the pole mass of a bound state, here the pion, can be deter-
mined through the equation as follows

∫ 0

Λ

dk
k

Dk(P)Ck(P) =
1
λπ,Λ

, (41)

for P2 = −m2
π. In the presence of explicit chiral symmetry breaking with m2

π > 0 the resolution
of the pole condition (41) requires timelike momenta P2 < 0.

In the chiral limit with Mq,Λ = 0, the pion is massless due to the Goldstone theorem,
m2
π = 0. Hence, the persistence of the Goldstone theorem in the current approximation implies

∫ kχ

Λ

dk
k

Dk(0)Ck(0) +

∫ 0

kχ

dk
k

Dk(0)Ck(0) =
1
λπ,Λ

, (42)

where kχ is the chiral symmetry breaking cutoff scale in the chiral limit,

Mq,k ≡ 0 , for k > kχ . (43)

The first term on the l.h.s. of (42) can be regarded as a constant due to the vanishing quark
mass in (43), and the second term only depends on Mq,k, which itself is a function of λπ,Λ.

In conclusion in the present fRG approach the self-consistency of a BSE-DSE system of
the BSE system for the four-quark scattering kernel and the DSE gap equation translates into
the combined (self-consistent) solution of the flow equation for the quark propagator and the
four-quark vertex. It is worth mentioning that within dynamical hadronisation the necessity
for a self-consistent flow is absent as all these features are carried by the flow equation of
the mesonic potential of pion and sigma mode: Every approximation of the latter carries the
Goldstone theorem independent of the approximation of the flow for the quark propagator,
for more details see the recent works [22,43,44] and references therein.

4.2 Numerical results

In this Section we present the results of our explicit computations within the approximation
described in detail in Section 4.1. The present fRG approach allows for a direct access to
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Figure 14: Left panel: Inverse of the four-quark coupling of the π channel, 1/λπ,k=0,
as a function of the Mandelstam variable t = P2 = P2

0 + P2 with P = 0. Here the
3d flat regulator is used. Results for several different initial values of M̄q,k=Λ are
compared. The initial values of four-quark couplings are fixed with (46a). Data
points denote the results calculated directly in the analytic flow equation as shown
in (37) both in the Euclidean (P2 > 0) and Minkowski (P2 < 0) regions. The dashed
and solid lines stand for results of analytic continuation from P2 > 0 to P2 < 0 based
on the fit of the Padé [2,2] and Padé [20,20] approximation, respectively.
Right panel: Squared pion mass as a function of the initial value of the quark mass
Mq,Λ obtained with the 3d regulator. The same initial values of four-quark couplings
are employed as the left panel. The several different points denote the four values of
m2
π corresponding to those extracted from the left panel.

timelike momenta P2 < 0 for appropriate regulators: The respective properties are discussed
in detail in [56].

In short, if one wants to maintain a spectral representation and the standard Wick rota-
tion as well as Lorentz invariance for finite cutoff scales, one is left with the masslike Callan-
Symanzik regulators which explicitly breaks chiral symmetry. Then, chiral symmetry is re-
stored for k → 0 and this restoration can be monitored with modified symmetry identities.
This is a viable option but we do not want to burden the present work with yet another layer
of complexity and we restrict ourselves to chirally symmetric regulators.

Chiral symmetry is maintained with the class of spatial momentum regulators with Dirac
structure. This choice is used in Section 4.2.1, see (44). While this choice breaks the Euclidean
O(4) symmetry and hence also Lorentz symmetry, it allows us to directly compute the four-
quark dressings at timelike momenta even for finite cutoff scales. For k→ 0 full Euclidean and
Lorentz symmetry is restored. The direct computational results for timelike momenta also give
us access to the highly interesting question of the validity of spectral reconstructions.

Another chirally invariant regulator class is that with full Euclidean O(4) symmetry and
hence full Lorentz symmetry. This choice is used in Section 4.2.2, see (50). However, all
known classes of regulators generate additional poles or cuts in the complex frequency [56].
These additional singularities also complicate the direct evaluation at timelike momenta at
k ̸= 0. Indeed, in the case of the four-dimensional flat regulator the theta function is even
non-analytic from the onset and has no natural extension to P2 < 0. However, for k → 0
these additional singularities are removed. Therefore we can apply standard reconstruction
methods for our results at k = 0 on the basis of the consistency checks for reconstructions
done for the results with the spatial momentum regulators.
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4.2.1 Results with spatial momentum regulators

Here we present results with an flat spatial momentum regulator,

Rq̄q = Zqi/p rq(p
2/k2) , (44)

with

rflat
q (x) =
�

1
p

x
− 1
�

Θ(1− x) , (45)

see also (G.1) in Appendix G. Within this choice the loop momentum integrals can be computed
analytically as long as classical dispersions are used in the propagators. Within the current
approximation with classical scale-dependent quark dispersions this allows for some analytic
cross-checks.

We emphasise that for more advanced approximations as also used in [40], all computa-
tions are purely numerical. Then smooth regulators such as the exponential one, see (G.2) in
Appendix G are advantageous: To begin with, functional optimisation entails that the flat reg-
ulator is only optimal within the local potential approximation. Optimisation in the presence
of scale-dependent wave function renormalisations already leads to smooth analytic regula-
tor, [25]. Moreover, these regulators with shape functions such as (G.2) are then taken for
computational convenience: The shape function decays rapidly for large spatial momenta and
hence facilitates the computation of the loop integrals, as is the fact that it is infinitely differ-
entiable. The lack of the latter property is a numerical obstruction for the use of non-analytic
regulators such as the flat regulator (45). In any case, while the present results are obtained
within the specific choice (44). They persist also for other regulator shape functions rq(p2/k2),
and results for the exponential spatial momentum regulator are discussed in Appendix G.

As discussed above, the spatial momentum regulators allows us to do the calculations
directly in the region of P2 < 0. The flow equation in (37) is solved with the 3d regulators
and four-quark interactions of all 10 Fierz-complete channels with the initial conditions

λ̄π,Λ(P) = λ̄σ,Λ = 16.92 , λ̄α/∈{σ,π},Λ = 0 , (46a)

in the chirally symmetric phase. Note that the symmetry λ̄π = λ̄σ is lost for large initial current
quark masses Mq,Λ. We choose M̄q,Λ = Mq,Λ/Λ as

M̄q,Λ = 10−4 , 10−3 , 5× 10−3 , 2× 10−2 , (46b)

far lower than the initial cutoff scale k = Λ. Accordingly, the approximation λ̄π,Λ ≈ λ̄σ,Λ used
in (46a) is well justified. Indeed, the difference between λ̄π,k and λ̄σ,k develops safely below
k = Λ, see Figure 10.

As discussed in Section 4.1.1 and indicated in (46a), we only take the dominant π chan-
nel coupling λπ,k(P) momentum-dependent, while the other channel couplings λα̸=π,k are
momentum independent.

The results for the inverse physical channel dressing 1/λπ(P) = 1/λπ,k=0(P) are depicted
in the left panel of Figure 14: Different colors and shapes of the data points refer to different
initial values of the quark mass at the UV cutoff k = Λ, (46b). While we have full Euclidean
and Lorentz symmetry at k = 0, the spatial regulator breaks it for k ̸= 0. Therefore we take
P = (P0, 0) which should minimise any remnant breaking effect due to the cutoff integration.
Moreover, the use of spatial momentum regulators allows us to compute the flow equation of
the four-quark coupling both in the Euclidean (P2 > 0) and Minkowski (P2 < 0) regimes. The
pion pole mass m2

π is determined by

1

λπ(P2
0 = −m2

π)
= 0 , (47)
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the position of the pole of λπ(P). In Figure 14 (left panel) this is simply the intersection point
of the curves 1/λπ,k=0 with the horizontal dashed line.

The direct Minkowski results also allow us to test the validity of reconstruction methods
for the pole position based on Euclidean data. As we are only interested in the location of
the first pole or cut in the complex plane, we may use a Padé approximant for the four-quark
coupling in term of the Mandelstam variable t = P2 > 0 in the Euclidean region,

λπ,k=0(P
2)≈ λπ,k=0[n, n](P2)≡

1+
∑n

i=1 ai(P2)i
∑n

i=0 bi(P2)i
, (48)

and the data are taken from the regime

P2 ∈ [0, (0.2Λ)2] . (49)

The timelike momentum results are then readily obtained from (48), evaluated for P2 < 0.
We have chosen diagonal Padé fractions indicated by [n, n] as the coupling does not show any
decay behaviour in the regimes (49). The order of the Padé approximants employed is varied
with n ∈ [1, 20], and some selective results are presented in Table 2 and in the left panel of
Figure 14, where the exact results calculated directly in Minkowski regime are also presented
for comparison. Note that in Table 2 errors from fitting are not shown, since they are very small
for a fixed n, especially when n is large. In the left panel of Figure 14 the analytically continued
results are depicted as dashed lines (Padé [2,2]) and solid lines (Padé [20,20]). One can see
that when the order is n≥ 2, the analytically continued results agree quantitatively with those
from the direct computations. The lowest order of n = 1 is not adequate, and there are some
sizable distinctions, in particular for small current quark masses.

In the right panel of Figure 14 we show the dependence of the extracted squared pion mass
on the quark mass at the UV cutoff k = Λ, i.e., the current quark mass. It is found that the
dependence is well approximated as m2

π ∼ Mq,Λ, i.e., m2
π is linearly proportional to Mq,Λ, with

M̄q,Λ ≳ (2 ∼ 3) × 10−3. This is consistent with the Gell-Mann–Oakes–Renner relation [57].
However, the linear relation is violated when M̄q,Λ is very small, which is attributed to the fact
that the flows of the quark mass and the four-quark couplings are not solved self-consistently
in this work. In our future work in [40], the self-consistency between the quark propagator
and the four-quark couplings are obtained.

In short, we have shown that the present fermionic fRG approach can be used reliably to
compute bound state properties of hadrons.

4.2.2 Results for regulators with Lorentz symmetry

The same calculations for the momentum-dependent four-quark coupling in (37) are also done
with the 4d regulator,

Rq̄q = Zqi/p rq(p
2/k2) , (50)

with the flat shape function (45). As discussed in Section 4.2.1, for more advanced approxi-
mations smooth regulators are more convenient both computationally as well as in the context
of optimised fRG flows. For comparison we also present results obtained with an exponential
shape function (G.2) in Appendix G.

The results on the (inverse) four-quark coupling 1/λπ(P) are depicted in Figure 15.
In contradistinction to the spatial momentum regulators a direct computation at timelike

momenta with P2 < 0 is qualitatively more difficult. However, we have already argued in
Section 4.2.1 that the location of the pion pole can be extracted quantitatively by using simple
Padé approximants. This has also been confirmed by a comparison of the direct computation to
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Figure 15: Inverse four-quark coupling of the π channel, 1/λπ,k=0, as a function
of the Mandelstam variable t = P2 = P2

0 + P2 with P = 0, obtained with the 4d
flat regulator. Results for several different initial values of M̄q,Λ are compared. The
initial values of four-quark couplings are fixed with λ̄π,Λ = λ̄σ,Λ = 22.55 and λ̄α,Λ = 0
(α /∈ {σ,π}). Data points denote the results calculated in the flow equation in the
Euclidean (P2 > 0) region. The dashed and solid lines stand for results of analytic
continuation from P2 > 0 to P2 < 0 based on the fit of the Padé[2,2] and Padé[20,20]
approximants, respectively.

the analytic continuation. Hence we use the diagonal Padé approximants as in the 3d case. As
there we have a rapid convergence, see Table 3: Already the Padé [2,2] approximant (dashed
lines in Figure 15) agrees very well with the largest order [20,20] (straight lines in Figure 15)
considered.

Table 3: Pion pole mass with different current quark masses, which are obtained
from analytic continuation from the Euclidean to Minkowski regimes based on Padé
approximants of different orders. Results in the Euclidean regions are calculated with
the 4d flat regulator, where the initial values of four-quark couplings are fixed with
λ̄π,k=Λ = λ̄σ,k=Λ = 22.55 and λ̄α,k=Λ = 0 (α /∈ {σ,π}), see also Figure 15.

Mq,k=Λ[Λ] 10−4 10−3 5× 10−3 2× 10−2

Padé [1,1] 0.05942 0.1064 0.1926 0.3225

Padé [2,2] 0.06313 0.1162 0.1971 0.3300

Padé [10, 10] 0.06234 0.1219 0.2073 0.3442

Padé [20, 20] 0.06361 0.1166 0.1966 0.3291
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5 Conclusions

In this work we have investigated the quark mass production and the formation of bound
states in the RG flows. This is done in a low energy effective theory of pure fermionic degrees of
freedom within the fRG approach. The four-quark interaction is comprised of a Fierz-complete
basis with ten channels, and thus there is no ambiguity arising from projecting the flows of
four-quark vertices onto different channels. In the fRG approach flow equations of the quark
propagator and the four-quark vertex play a similar role as the quark gap equation and Bethe-
Salpeter equation for the four-quark scattering kernel in the formalism of DSE-BSE. Important
relations resulting from the chiral symmetry and its dynamical breaking in low energy QCD,
such as Gell-Mann–Oakes–Renner relation and Goldstone theorem, are guaranteed by the self-
consistency between the flows of the two-point and four-point quark correlation functions.

The flow diagram of the quark mass and the four-quark couplings has been analysed in
detail. In a reduction to the dominant four-quark coupling in of the scalar-pseudoscalar chan-
nel, the two-dimensional flow diagram is divided into a Gaußian regime and a regime with
dynamical chiral symmetry breaking. In the Gaußian regime the β-function of coupling is
positive for all cutoff scales, and the flow takes place in the attraction regime of the Gaußian
fixed point. In the regime with dynamical chiral symmetry breaking the flow is initiated with
a negative β-function for the coupling. This results in a significant dynamical enhancement of
both the coupling and the quark mass during the flow.

We also have analysied the dominance of the σ and π channels over other channels in
the Fierz-complete basis: we find that the differences between the results of the fully self-
consistent calculation with ten Fierz-complete four-quark channels and the two-channel com-
putation with λσ,k ̸= λπ,k vary between 2-5% for all couplings and the quark mass, and hence
are very small. This entails, that the feedback effects of non-dominant four-quark couplings,
i.e., λα,k (α /∈ {σ,π}) are very small.

Finally, we have computed on-shell properties of pions within a Fierz complete computa-
tion with momentum-independent coupling except the resonant pseudoscalar channel. In the
latter we have used a t-channel approximation. Bound states emerge naturally as poles of their
respective four-quark scatterings when the momenta are in close vicinity to on-shell momenta.
The pole mass of the pion is determined from both direct calculations in the Minkowski regime
of momenta and the analytic continuation with based on results in the Euclidean regime. This
allows us to check explicitly that Padé approximants work very well for determining the loca-
tion of the (first) pole in the complex plain.

The approximation used in the present work is self-consistent, similar to the self- consis-
tency of BSE-DSE bound state computations required for capturing the Goldstone theorem
and hence the chiral limit. We have shown that the pion is indeed massless in the chiral limit.
We emphasise that this self-consistency is not required in the fRG approach and the Goldstone
theorem can naturally be built-in with dynamical hadronisation, independent of the approxi-
mations used.

The translation of this property into the present four-quark language as well as further
conceptual and numerical improvements is subject of the follow-up works [40, 41]. Specifi-
cally, this series of works aims at QCD applications, and we hope to report the results in the
near future.
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A Fierz complete basis: two flavours

In the following, we list the four-quark interactions of ten channels. According to the varying
properties under global transformations of the Dirac fields SUV(N f ), UV(1), SUA(N f ), and
UA(1), the four-quark interaction can be classified into four different sets. The first set is
comprised of four channels, to wit,

T (V−A)
i jlm q̄iql q̄ jqm = (q̄γµT0q)2 − (q̄iγµγ5T0q)2 ,

T (V+A)
i jlm q̄iql q̄ jqm = (q̄γµT0q)2 + (q̄iγµγ5T0q)2 ,

T (S−P)+
i jlm q̄iql q̄ jqm = (q̄ T 0q)2 − (q̄γ5T0q)2 + (q̄ T aq)2 − (q̄γ5T aq)2 ,

T (V−A)adj

i jlm q̄iql q̄ jqm = (q̄γµT0 taq)2 − (q̄iγµγ5T0 taq)2 , (A.1a)

which are invariant with all the aforementioned transformations. Here, T a and ta denote
the generators of the flavor SU(N f ) group and the color SU(Nc) group, respectively. Here a
summation for the index of generators is assumed. Moreover, there is the generator of U(1)
in the flavor space T0 = 1/

Æ

2N f 1N f ×N f
. The four-quark interactions in the second set read

T (S+P)−
i jlm q̄iql q̄ jqm = (q̄ T0q)2 + (q̄γ5T0q)2 − (q̄ T aq)2 − (q̄γ5T aq)2 ,

T (S+P)adj
−

i jlm q̄iql q̄ jqm = (q̄ T0 taq)2 + (q̄γ5T0 taq)2 − (q̄ T a t bq)2 − (q̄γ5T a t bq)2 , (A.1b)

which preserve the symmetry of SUV(N f )⊗UV(1)⊗SUA(N f ) while break UA(1). The third set
includes another two channels as follows

T (S−P)−
i jlm q̄iql q̄ jqm =(q̄ T 0q)2 − (q̄γ5T0q)2 − (q̄ T aq)2 + (q̄γ5T aq)2 ,

T (S−P)adj
−

i jlm q̄iql q̄ jqm =(q̄ T 0 taq)2 − (q̄γ5T0 taq)2 − (q̄ T a t bq)2 + (q̄γ5T a t bq)2 . (A.1c)

They are symmetric under the transformations of SUV(N f )⊗UV(1)⊗UA(1)while break SUA(N f).
The fourth set consists of the last two channels, which read

T (S+P)+
i jlm q̄iql q̄ jqm =(q̄ T 0q)2 + (q̄γ5T0q)2 + (q̄ T aq)2 + (q̄γ5T aq)2 ,

T (S+P)adj
+

i jlm q̄iql q̄ jqm =(q̄ T 0 taq)2 + (q̄γ5T0 taq)2 + (q̄ T a t bq)2 + (q̄γ5T a t bq)2 . (A.1d)

They only preserve SUV(N f )⊗ UV(1) while break both SUA(N f ) and UA(1).
Finally, we note that all the tensors defined in this Appendix carry the Grassmann symme-

tries of the product of quarks and anti-quarks attached,

T (α)i jlm = −T
(α)
jilm = −T

(α)
i jml = T (α)jiml . (A.2)

1The fQCD collaboration is comprised of J. Braun, Y.-r. Chen, W.-j. Fu, F. Gao, A. Geissel, J. Horak, C. Huang,
F. Ihssen, J. M. Pawlowski, F. Rennecke, F. Sattler, B. Schallmo, Y.-y. Tan, S. Topfel, R. Wen, J. Wessely, N. Wink and
S. Yin.
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B Flow equations of the quark two-point and four-point correla-
tion functions

The flow equation for the quark wave function Zq(p) in (9) is readily obtained by projecting
the flow of the quark two-point function in the first row in Figure 4 onto the vector channel,
that reads

∂t Zq(p) =

∫

d4q
(2π)4
�

ZR
q (q)∂̃t Ḡq(q) + Ḡq(q)∂̃t Z

R
q (q)
� p · q

p2

×
�3

2
λπ(−p,−q, p, q) +

1
2
λσ(−p,−q, p, q)−

3
2
λa(−p,−q, p, q)

−
1
2
λη(−p,−q, p, q)−

8
3
λ(S−P)adj

−
(−p,−q, p, q)− 12λ(V+A)(−p,−q, p, q)

− 14λ(V−A)(−p,−q, p, q)−
8
3
λ(V−A)adj(−p,−q, p, q)

�

, (B.1a)

where the explicit expressions of Ḡq(q), ZR
q (q), ∂̃t Ḡq(q), ∂̃t Z

R
q (q) are given in Eqs. (C.2)

through (C.5). Similarly, projecting the same flow onto the scalar channel, one arrives at
the flow equation of the quark mass function, as follows

∂t Mq(p) = −
∂t Zq(p)

Zq(p)
Mq(p) +

∫

d4q
(2π)4
�

∂̃t Ḡq(q)
�

Mq(q)

×
�3

2
λπ(−p,−q, p, q) +

23
2
λσ(−p,−q, p, q)−

3
2
λa(−p,−q, p, q)

+
1
2
λη(−p,−q, p, q) +

8
3
λ(S+P)adj

−
(−p,−q, p, q)

−
16
3
λ(S+P)adj

+
(−p,−q, p, q)− 4λ(V+A)(−p,−q, p, q)

�

. (B.1b)

The flow equations of the four-quark dressings λα’s read

∂tλα(p1,p2, p3, p4)

=
∑

α′,α′′

∫

d4q
(2π)4
�

λα′(p1,−p1 − q− p3, p3, q)λα′′(p2,−q, p4, q+ p3 + p1)F t
α′α′′,α

+λα′(p2,−p2 − q− p3, p3, q)λα′′(p1,−q, p4, q+ p3 + p2)Fu
α′α′′,α

+λα′(p1, p2, q,−q− p1 − p2)λα′′(−q, q+ p1 + p2, p3, p4)F s
α′α′′,α

�

, (B.1c)

where the three terms in the square bracket on the r.h.s. of (B.1c) above correspond to the
t-, u-, and s-channels of loop diagrams in the flow equation of the four-point vertex as shown
in the second line of Figure 4, respectively. The coefficients F t

α′α′′,α, Fu
α′α′′,α, and F s

α′α′′,α are
momentum-dependent functions of quark propagators and regulators. In Appendix C relations
among these coefficients are discussed, and explicit expressions of some selective coefficients
are presented.

C Coefficients of the Fierz complete flow

In this appendix we present explicit expressions of some coefficients F t
α′α′′,α, Fu

α′α′′,α, and
F s
α′α′′,α in (B.1c), which are restricted to α,α′,α′′ ∈ {σ,π} for illustrative purpose. We begin
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with

F t
σσ,σ = −

1
N f

�

∂̃t Ḡq(q)
�

Ḡq(q+ p1 + p3)
�

21Mq(q)Mq(q+ p1 + p3)Zq(q)Zq(q+ p1 + p3)

− 22q · (q+ p1 + p3)Z
R
q (q)Z

R
q (q+ p1 + p3)
�

= −
1

N f
Ḡq(q)Ḡq(q+ p1 + p3)(−22)q · (q+ p1 + p3)

�

∂̃t Z
R
q (q)
�

ZR
q (q+ p1 + p3) , (C.1)

where one used the notations as follows

ZR
q (q) = Zq(q) + RF (q) , (C.2)

with RF (q) = Zq(q)rq(q2/k2), and

Ḡq(q) =
1

�

ZR
q (q)
�2

q2 + Z2
q (q)M2

q (q)
, (C.3)

as well as

∂̃t Ḡq(q) = −2
�

Ḡq(q)
�2

ZR
q (q)q

2∂tRF (q) , (C.4)

∂̃t Z
R
q (q) = ∂tRF (q) . (C.5)

To proceed, one arrives at

F t
ππ,σ =

N f

12(N f + 2)

�

∂̃t Ḡq(q)
�

Ḡq(q+ p1 + p3)

×
�

9(N f + 2)Mq(q)Mq(q+ p1 + p3)Zq(q)Zq(q+ p1 + p3)

+ 2q · (q+ p1 + p3)Z
R
q (q)Z

R
q (q+ p1 + p3)
�

(C.6)

+
N f

12(N f + 2)
Ḡq(q)Ḡq(q+ p1 + p3)2q · (q+ p1 + p3)

�

∂̃t Z
R
q (q)
�

ZR
q (q+ p1 + p3) ,

and

F t
σπ,σ =

1
6(N f + 2)

�

∂̃t Ḡq(q)
�

Ḡq(q+ p1 + p3)

×
�

− 9(N f + 2)Mq(q)Mq(q+ p1 + p3)Zq(q)Zq(q+ p1 + p3)

+ (9N f + 17)q · (q+ p1 + p3)Z
R
q (q)Z

R
q (q+ p1 + p3)
�

+
1

6(N f + 2)
Ḡq(q)Ḡq(q+ p1 + p3)(9N f + 17)

× q · (q+ p1 + p3)
�

∂̃t Z
R
q (q)
�

ZR
q (q+ p1 + p3) . (C.7)

Moreover, it is found that

F t
πσ,σ = F t

σπ,σ , (C.8)

which is demanded by the symmetry properties of λα’s in (15). Insofar as the pion basis is
concerned, one arrives at

F t
σσ,π = 0 , (C.9)
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and

F t
ππ,π =

1
6(N f + 2)

�

∂̃t Ḡq(q)
�

Ḡq(q+ p1 + p3)

×
�

78(N f + 2)Mq(q)Mq(q+ p1 + p3)Zq(q)Zq(q+ p1 + p3)

+ (77N f +156)q · (q+ p1+ p3)Z
R
q (q)Z

R
q (q+ p1+ p3)
�

+
1

6(N f + 2)
Ḡq(q)Ḡq(q+ p1 + p3)(77N f + 156)

× q · (q+ p1 + p3)
�

∂̃t Z
R
q (q)
�

ZR
q (q+ p1 + p3) , (C.10)

as well as

F t
σπ,π = F t

πσ,π =
1

6N f (N f + 2)

�

∂̃t Ḡq(q)
�

Ḡq(q+ p1 + p3)

×
�

12(N f + 2)Mq(q)Mq(q+ p1 + p3)Zq(q)Zq(q+ p1 + p3)

+ (7N f + 12)q · (q+ p1 + p3)Z
R
q (q)Z

R
q (q+ p1 + p3)
�

+
1

6N f (N f + 2)
Ḡq(q)Ḡq(q+ p1 + p3)(7N f + 12)

× q · (q+ p1 + p3)
�

∂̃t Z
R
q (q)
�

ZR
q (q+ p1 + p3) . (C.11)

Coefficients of the u-channel are related to those of the t-channel through the symmetry
relation of λα’s in (15), under the interchange of the momenta of two quarks or two antiquarks.
As a consequence, one is led to

Fu
α′α′′,α = F t

α′α′′,α

�

�

�

p1→p2

. (C.12)

Finally, we show some coefficients for the s-channel:

F s
σσ,σ=

2
N f

�

∂̃t Ḡq(q)
�

Ḡq(−q− p1 − p2)Mq(q)Mq(−q− p1 − p2)Zq(q)Zq(−q− p1 − p2) , (C.13)

and

F s
ππ,σ =

N f

6(N f + 2)

�

∂̃t Ḡq(q)
�

Ḡq(−q− p1 − p2)

×
�

9(N f + 2)Mq(q)Mq(−q− p1 − p2)Zq(q)Zq(−q− p1 − p2)

− 2q · (−q− p1 − p2)Z
R
q (q)Z

R
q (−q− p1 − p2)

�

+
N f

6(N f + 2)
Ḡq(q)Ḡq(−q− p1 − p2)(−2)

× q · (−q− p1 − p2)
�

∂̃t Z
R
q (q)
�

ZR
q (−q− p1 − p2) , (C.14)

moreover,

F s
σπ,σ = F s

πσ,σ =
1

3(N f + 2)

�

∂̃t Ḡq(q)
�

Ḡq(−q− p1 − p2)q (C.15)

· (−q− p1 − p2)Z
R
q (q)Z

R
q (−q− p1 − p2)

+
1

3(N f + 2)
Ḡq(q)Ḡq(−q− p1 − p2)q (C.16)

· (−q− p1 − p2)
�

∂̃t Z
R
q (q)
�

ZR
q (−q− p1 − p2) . (C.17)
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In the same way, for the pion basis one arrives at

F s
σσ,π = 0 , (C.18)

and

F s
ππ,π =

N f

3(N f + 2)

�

∂̃t Ḡq(q)
�

Ḡq(−q− p1 − p2)q · (−q− p1 − p2)Z
R
q (q)Z

R
q (−q− p1 − p2)

+
N f

3(N f + 2)
Ḡq(q)Ḡq(−q− p1 − p2)q·(−q− p1 − p2)

�

∂̃t Z
R
q (q)
�

ZR
q (−q− p1 − p2) , (C.19)

also

F s
σπ,π = F s

πσ,π =
1

3N f (N f + 2)

�

∂̃t Ḡq(q)
�

Ḡq(−q− p1 − p2)

×
�

6(N f + 2)Mq(q)Mq(−q− p1 − p2)Zq(q)Zq(−q− p1 − p2)

− N f q · (−q− p1 − p2)Z
R
q (q)Z

R
q (−q− p1 − p2)

�

+
1

3N f (N f + 2)
Ḡq(q)Ḡq(−q− p1 − p2)(−N f )q

· (−q− p1 − p2)
�

∂̃t Z
R
q (q)
�

ZR
q (−q− p1 − p2) . (C.20)

D Dominance of the scalar-pseudoscalar four-quark channel

In this appendix we demonstrate the dominance of theσ and π channels in the Fierz-complete
four-quark couplings of ten channels, as discussed in Section 3.2. Two computations are com-
pared in detail: One is the fully self-consistent calculation with ten Fierz-complete four-quark
channels, and the other one is the two-channel computation with only the σ and π cou-
plings. Note that in the two-channel calculation, the σ and π couplings are distinguished, viz.,
λσ,k ̸= λπ,k for a generic cutoff scale k, which is different from the case of the one-channel
truncation as discussed in Section 3.1. Furthermore, we also investigate the feedback effects of
four-quark couplings of other channels, i.e., λα,k (α /∈ {σ,π}) on the running of flows in a trun-
cation, which is called as the quenched calculation in this work. In the quenched calculation,
the four-quark dressings λσ,k and λπ,k, and the mass function obtained in the two-channel
computation as well as λα,k = 0 (α /∈ {σ,π}) are input into the r.h.s. of the four-quark flow
equations for other channels. In another word, the four-quark couplings of other channels
are decoupled from the coupled flow equations, and their nonvanishing values are completely
resulting from their respective flow diagrams in the scalar-pseudoscalar channels.

The quark mass and the four-quark couplings of the σ and π channels are compared be-
tween these two computations in Figure 16 and Figure 17, respectively. It is observed that the
difference between the full results and the two-channel ones is less than 2% for the constituent
quark mass, less than 3% for λσ and less than 5% for λπ. Moreover, it is found that the feed-
back effects of non-dominant four-quark couplings, i.e., λα,k (α /∈ {σ,π}) are negligible, as
shown in Figure 18, where the full and quenched results are compared.

E Coefficients of Equation (37)

In the t-channel approximation described in (36), the flow for λπ is given by (37) with the
coefficients A,B,C.
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Figure 16: Constituent quark mass Mq,k→0 as a function of the current quark mass
Mq,Λ obtained from the computation of the Fierz-complete basis (red solid) and that
of the two channels with σ and π, cf. (16). The same initial conditions of the four-
quark couplings λ̄π,Λ = λ̄σ,Λ = 24.2 and λ̄α,Λ = 0 (α /∈ {σ,π}) are used for the
two computations. The respective linear extrapolations towards the chiral limit are
depicted as dashed lines.

The coefficient A is readily obtained from the r.h.s. of (B.1c),

A(P) =
∫

d4q
(2π)4
∑

α̸=π
α′ ̸=π

λα,k λα′,k

�

F t
αα′,π(P) +Fu

αα′,π +F s
αα′,π

�

, (E.1)

with momentum independent four-quark couplings λα̸=π. The momentum dependence of
A(P) comes solely from the first diagram on the r.h.s. in the second line in Figure 4 as the
loops F s,u

αα′,π only depend on s, u= 0 in the present momentum configuration.
The coefficient B is given by

B(P) =2

∫

d4q
(2π)4
∑

α′ ̸=π
α′′=π

λα′,k

�

F t
α′α′′,π(P) +Fu

α′α′′,π +F s
α′α′′,π

�

, (E.2)

where the factor 2 on the r.h.s. comes from the interchange of the indices α′ and α′′, and as
for A its momentum dependence is due to the t-channel diagram in Figure 4. Finally, the most
relevant coefficient C, see (C.10), is given by

C(P) =
∫

d4q
(2π)4

F t
ππ,π(P) . (E.3)

It only comprises the contributions from the t-channel diagram in Figure 4.

F Sub-leading four-quark vertices

As we have discussed in Section 3, when the momentum dependence of four-quark dressings
λα is neglected, there is a Fierz complete basis of four-quark interactions, which includes
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Figure 17: Four-quark couplings of the σ and π channels as functions of the RG
scale k. Results obtained from the computation of the Fierz-complete basis are com-
pared with those from the two-channel computation. The same initial conditions
λ̄π,Λ = λ̄σ,Λ = 24.2, λ̄α,Λ = 0 (α /∈ {σ,π}), and M̄q,Λ = 3×10−2 are used for the two
computations.

ten tensors T (α)i jlm with α = 1, ..., 10 for the two flavor case, presented in Appendix A. The
Grassmann nature of quark fields and the momentum-independence of λα lead us to the anti-
symmetric properties of the ten tensors under the interchange of indices connected two quarks
or antiquarks, to wit,

T (α)i jlm = −T
(α)
jilm = −T

(α)
i jml = T (α)jiml , (F.1)

with α = 1, ..., 10. Evidently, when the momentum dependence of four-quark dressings is
taken into account, one can easily extend the ten tensors to another ten ones, here denoted
by T (ᾱ)i jlm with ᾱ = 11, ..., 20, which are symmetric under the interchange of two quarks or
antiquarks, i.e.,

T (ᾱ)i jlm = T (ᾱ)jilm = T (ᾱ)i jml = T (ᾱ)jiml , (F.2)

with ᾱ = 11, ..., 20. Since the combination λ(ᾱ)(p)T (ᾱ)i jlm has to be anti-symmetric under the
interchange of two quarks or antiquarks, one arrives at

λᾱ(p1, p2, p3, p4) = −λᾱ(p2, p1, p3, p4) = −λᾱ(p1, p2, p4, p3) = λᾱ(p2, p1, p4, p3) , (F.3)

with ᾱ = 11, ..., 20, which is a natural extension of the symmetry properties for the first ten
four-quark dressings in (15). Note that from (F.3) it is readily found that λᾱ are vanishing
when their momentum dependence is neglected, which thus can be regarded as sub-leading
four-quark vertices in terms of the expansion of external momenta.
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Figure 18: Non-dominant four-quark couplings of the Fierz-complete channels, i.e.,
λα,k (α /∈ {σ,π}), as functions of the RG scale k. Results obtained from the self-
consistent Fierz-complete computation (solid lines) are compared the quenched re-
sults. In the quenched calculation, the four-quark dressings λσ,k and λπ,k obtained
in the two-channel computation as well as λα,k = 0 (α /∈ {σ,π}) are input into the
r.h.s. of the four-quark flow equations for other channels. The same initial conditions
as Figure 17 are employed.

G Regulator dependence of the bound state results

The results in the present work have been obtained with the flat or Litim regulator, whose
shape function is given by

rflat
q (x) =
�

1
p

x
− 1
�

Θ(1− x) , (G.1)

with the Heaviside step function Θ(x). This regulator is a convenient choice within simple,
momentum-independent approximations. Moreover, it is the optimal regulator for momentum-
independent truncations, see [25, 49, 50]. In the presence of wave functions (Zk or Zk(p)) it
is not optimal any more, [25]. Still it is a convenient choice as it leads to analytic flows, and
we shall also used it for our analysis of chiral symmetry breaking with scale-dependent wave
function, mass, and four point vertices.

For momentum-dependent approximations including scale-dependent wave functions Zk
it looses both properties: it neither leads to analytic flows nor is it optimal, see [25] for the
systematic construction of optimal regulators for higher orders of the derivative expansion or
momentum-dependent approximations. Moreover, the non-analyticity of the regulator even
slows down standard integration routines.

For the sake of comparability with the results on chiral symmetry breaking we have still
used the flat regulator for our bound state analysis. A self-consistency check of these results is
done by varying the shape function rq of the regulator. We use a simple exponential regulator,

rexp
q (x) =

1
x

e−x , x =
p2

k2
, or x =

p 2

k2
. (G.2)
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Figure 19: Left panel: Inverse four-quark coupling of the π channel, 1/λπ,k=0, as
a function of the Mandelstam variable t = P2 = P2

0 + P2 with P = 0, which is the
analogue of results in the left panel of Figure 14, but calculated with the 3d expo-
nential regulator in (G.2). Here the initial four-quark couplings are chosen to be
λ̄π,k=Λ = λ̄σ,k=Λ = 6.11 and λ̄α,k=Λ = 0 (α /∈ {σ,π}). Right panel: Inverse four-
quark coupling of the π channel, 1/λπ,k=0, as a function of the Mandelstam variable
t = P2 = P2

0 + P2 with P = 0, which is the analogue of results in Figure 15, obtained
with the 4d exponential regulator in (G.2). Here the initial four-quark couplings are
chosen to be λ̄π,k=Λ = λ̄σ,k=Λ = 9.98 and λ̄α,k=Λ = 0 (α /∈ {σ,π}).

Equation (G.2) and variants thereof are common choices for momentum-dependent approxi-
mations, for applications in QCD see e.g. [18,20,48,58].

As indicated in (G.2), we have used both, the spatial momentum (3d) and 4d shape func-
tions in the bound state computations for a comparison with the results obtained with the flat
regulator (G.1). The use of the 3d shape function is relevant for its application to QCD at finite
temperature and density, where such regulators carry the Silver blaze property [29,59–63].

We employ the exponential regulator in (G.2) and redo the calculations of bound states
in the left panel of Figure 14 and in Figure 15 for the 3d and 4d cases, respectively, and the
relevant results are presented in Figure 19. One can see the exponential regulator only results
in minor quantitative distinctions in comparison to the results obtained from the flat regulator,
in both the 3d and 4d cases. Thus, one concludes that the bound state results obtained in
the RG flows within the one-momentum-channel truncation in this work, show no obvious
dependence or preference on what kinds of regulators are used.

Moreover, the Lorentz invariance is broken by the 3d regulators, while it is preserved by
the 4d one. Therefore, it is possible to investigate how large the breaking effect of Lorentz
invariance by the 3d regulators is, through a direct comparison between the 3d and 4d results.
The relevant comparison is done in Figure 20, where the inverse four-quark coupling of the
π channel is depicted as a function of P2

0 in the Euclidean regime with the 3d and 4d flat
regulators. Similar results are also found for the exponential regulators. The comparison is
done for several different initial values of the quark mass, and for each value of the quark mass,
the initial four-quark couplings are adjusted a bit, such that both the 3d and 4d calculations
produce the same results at P0 = 0. One can see that the comparison in Figure 20 indicates
that the breaking effect of Lorentz invariance resulting from the 3d regulators is mild.
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Figure 20: Comparison of the inverse four-quark coupling 1/λπ,k=0 between the re-
sults obtained with the 3d regulator (solid line) and those with the 4d one (dashed
line), where the flat shape function has been used for both calculations. Sev-
eral different initial values of M̄q,k=Λ are adopted. The initial four-quark coupling
λ̄k=Λ = λ̄π,k=Λ = λ̄σ,k=Λ with λ̄α,k=Λ = 0 (α /∈ {σ,π}) is adjusted a bit, such that
both the 3d and 4d calculations arrive at the same 1/λπ,k=0 at P0 = 0 for each value
of the current quark mass.
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