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Abstract

The search for robust topological superconductivity and Majorana bound states contin-
ues, exploring both one-dimensional (1D) systems such as semiconducting nanowires
and two-dimensional (2D) platforms. In this work we study a 2D approach based on
graphene bilayers encapsulated in transition metal dichalcogenides that, unlike previ-
ous proposals involving the Quantum Hall regime in graphene, requires weaker magnetic
fields and does not rely on interactions. The encapsulation induces strong spin-orbit cou-
pling on the graphene bilayer, which opens a sizeable gap and stabilizes fragile pairs of
helical edge states. We show that, when subject to an in-plane Zeeman field, armchair
edges can be transformed into p-wave one-dimensional topological superconductors by
contacting them laterally with conventional superconductors. We demonstrate the emer-
gence of Majorana bound states (MBSs) at the sample corners of crystallographically
perfect flakes, belonging either to the D or the BDI symmetry classes depending on pa-
rameters. We compute the phase diagram, the resilience of MBSs against imperfections,
and their manifestation as a 4π-periodic effect in Josephson junction geometries, all
suggesting the existence of a topological phase within experimental reach.
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1 Introduction

Majorana bound states (MBSs) were predicted by Kitaev in 2001 [1] as the fractionalized,
zero-energy, protected fermion states that develop at the boundaries of one-dimensional (1D)
topological superconductors. Interest in these states quickly grew past fundamental research,
as it was realized that their spatial wavefunction non-locality could enable, in principle, scal-
able protection of quantum information [2–7]. A practical proposal to engineer MBSs in
proximitized Rashba nanowires was made by Oreg. et al. and Lutchyn et al. a few years
later [8, 9], soon followed by the first experiments [10], which revealed promising hints of
potential MBSs. Since these hallmark results the story of MBSs in nanowires has grown in-
creasingly complex [11,12]. Remarkable fabrication improvements and careful experimental
characterization [13, 14] have now clearly confirmed the existence of zero modes in these
systems [15], but have also revealed significant interpretation issues and departures from the-
oretical expectation in their behavior [11]. The reasons are varied, and are thought to include
disorder [16,17], electrostatics [18,19], metallization [20] and non-topological near-zero en-
ergy states due to confinement effects, including quantum dot formation [21,22] and smooth
potentials [23–26]. One decade after their theoretical proposal, proximitized nanowires have
evolved into the most studied and advanced solid state platform for topological supercon-
ductivity. However, we have still not been able to conclusively demonstrate the predicted
topological MBSs, let alone harness their potential for quantum computation.

This state of affairs has pushed numerous researchers to explore alternative experimental
platforms for topological superconductivity (TSC), including atomic chains [27,28], 2D semi-
conducting heterostructures [29,30], planar Josephson junctions [31,32], full-shell nanowires
[22, 33], graphene-based platforms [34, 35], several 2D crystals [36–38] and van der Waals
heterotructures [39]. Many of the proposals for 1D TSCs start from the basic Fu-Kane recipe
[40,41]: couple an s-wave superconductor to a 1D spinless electron liquid with finite helicity
(i.e. to non-degenerate 1D modes with some degree of spin-momentum locking, such as the
edge states of a 2D Quantum Spin Hall system [42, 43]). The s-wave pairing opens a finite
p-wave TSC gap on the helical liquid [4], and gives rise to zero-energy MBSs at boundaries
with trivial gaps. The various implementations of this recipe typically differ in the mechanism
that generates the spinless helical phase. For example, in the original 1D Rashba nanowires
proposal [8,9] it is a combination of Rashba spin-orbit coupling (SOC), Zeeman field and low
electron densities.

We focus here on graphene-based approaches to MBSs. Graphene allows for exquisitely
clean electronics [44, 45] and good superconducting proximity effect under magnetic fields
[46–49], properties that could help overcome some of the material-specific problems of Majo-
rana nanowires. In Ref. 50 it was experimentally demonstrated that the ν = 0 quantum Hall
state of monolayer graphene behaves, under a strong in-plane magnetic field, as a quantum
spin Hall state, an observation explained as the result of Zeeman polarization of an antiferro-
magnetic ground state induced by strong electron-electron interactions [51, 52]. In Ref. 34 it
was shown that a 1D TSC could be created on such a polarized ν = 0 quantum Hall state by
proximitizing its edges. The proposed configuration, while conceptually correct for the pur-
pose of generating Majoranas, was experimentally problematic, since s-wave pairing breaks
down quickly under the required magnetic fields, thus making the proximity effect of the
ν= 0 state challenging. A subsequent proposal was put forward that does away with the need
of strong in-plane magnetic fields by employing twisted bilayer graphene in the QH regime
under a strong perpendicular electric field [35,53]. The latter is used to transform the bilayer
QH edge states into a spinless helical phase by tuning each layer to an opposite filling factor
ν = ±1. This proposal, however, still requires strong electron-electron interactions to trigger
the helical spin structure, as it exploits the ferrimagnetic sublattice polarization induced by
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Figure 1: Lateral and top views of proposed device configurations A and B for the
generation of Majorana bound states (MBSs) (schematically represented in red). The
device is composed of a graphene bilayer (black), encapsulated in a transition metal
dichalcogenide (TMDC) (orange) and laterally contacted with conventional s-wave
superconductors (purple). The superconductor split in (b) creates a weak link that
allows to phase-bias the junction.

interactions to stabilize ν = ±1 QH plateaus. Furthermore, it presents other potential prob-
lems such as a reduced topological gap and a required electron-hole character of the bilayer,
which could hinder superconducting pairing by a nearby superconductor. Other proposed
avenues towards MBSs based on electronic interactions include the use of intrinsic supercon-
ducting correlations in magic-angle twisted graphene bilayers in combination with other 2D
crystals [54].

In this work we present a third kind of approach to MBSs in graphene that does not rely
on the QH effect or electron-electron interactions. Instead, it exploits the strong spin-orbit
coupling (SOC) induced onto a Bernal-stacked graphene bilayer when it is encapsulated in a
semiconducting transition metal dichalcogenide (TMDC) such as WSe2, see Fig. 1(top). The
SOC gaps the bulk of the bilayer [55–57,57–60], and is thought to be responsible for anoma-
lies observed in different graphene-based Josephson junctions [61, 62]. In the bilayer, the
induced SOC produces Kramers pairs of counterpropagating topologically fragile edge states
at the boundaries, see red and blue lines in Fig. 2(a,b). We show that some of these bound-
aries can develop spinless helical 1D modes under small Zeeman fields. We use here the term
spinless helicity, as is conventional, to denote the existence of an odd number of pairs of non-
degenerate counterpropagating modes at a given energy and edge, whose spin depends on
the direction of propagation. The development of spinless helicity depends on edge crystallo-
graphic orientation. It is optimal for armchair edges and is absent for zigzag edges. A spinless
helical edge can be gapped into a p-wave superconductor by side-contacting it to an s-wave
superconductor [40]. MBSs then arise at the corners of the sample (see Fig. 1) above a Zee-
man field comparable to the induced superconducting gap, as in Majorana nanowires. Despite
their dependence on the crystallographic orientation of the edges, we show that MBSs are
resilient to a certain amount of contact disorder and misalignment, and exhibit the expected
4π-periodic topological Josephson effect [41,63]. Our analysis also reveals the appearance of
an intriguing regime with pairs of near-zero modes at each corner, analogous to the approxi-
mate BDI-class MBSs of narrow multimode nanowires [64, 65], that occupies a large portion
of parameter space around charge neutrality.
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2 Edge modes in encapsulated bilayer graphene

TMDCs are semiconducting 2D crystals, such as WSe2 or MoS2, with strong spin-orbit. The
possibility of inducing a strong SOC on graphene monolayers by placing it in contact to a
TMDC was demonstrated using a variety of theoretical [66–68] and experimental techniques
[55–57,57–60]. Two main types of SOC are generated on the low-energy sector of monolayer
graphene close to the neutrality point: Ising and Rashba [59, 60, 67]. At low energies these
two couplings can be written as

HI =
λI

2
τzsz , (1)

HR =
λR

2
(σxτzsy −σysx) , (2)

in terms of the valley (τ), spin (s) and pseudospin (σ) Pauli matrices, which act on the sub-
space of the K and K ′ valleys, the physical electron spin and the carbon sublattices within the
graphene unit cell, respectively.

The expected magnitude of the couplings is rather sizable, of the order of λR ≲ λI ≈ 2−3
meV in the case of WSe2 [59] (possibly larger for WS2 [55,56]) and depends strongly on the
interlayer rotation angle with graphene [66]. The low-energy model for graphene becomes
H = H0 + HI + HR, where H0 = vF (τzkxσx + kyσy) is the Dirac Hamiltonian for an isolated
graphene monolayer and vF is the Fermi velocity.

In the case of a graphene bilayer encapsulated on both sides with lattice-aligned WSe2,
each layer acquires the above couplings, with the peculiarity that the corresponding λI and
λR have an opposite sign on each layer [59,69]. In the low-energy sector of bilayer graphene
the pseudospin is equal to the layer quantum number [70], so that the low-energy effective
model for bilayer graphene with a simple Bernal interlayer hopping t1 (i.e. neglecting trigonal
warping [70]) becomes

H =
vF k2

t1
(τzσx kx +σy ky)

2 +
λ̃I

2
τzszσz +O(k3) ,

λ̃I =

�

1− 2
v2

F k2

t2
1

�

λI . (3)

Note that HR does not contribute to the low-energy bulk modes to this order. The HI , in con-
trast, becomes a Kane-Mele coupling [42], which in the monolayer would open a topological
QSH gap at the Dirac point of magnitude∼ λI . Here, λI is much larger than the (impractically
small) intrinsic Kane-Mele term of the monolayer, but is expected to open a topologically trivial
gap due to the 2π Berry phase of each valley in the bilayer (as opposed to π in the monolayer)
with pairs of topologically fragile helical modes on each edge inside it [69]. We confirm this
expectation below. Despite their technically fragile nature, we note that the helical edge states
are robust against a wide range of disorder, in particular any form of spin-independent disor-
der on the lattice, including vacancies or other valley-mixing perturbation (see App. A). The
reason is that, as will be shown promptly, their helicity is exact, in the sense that counterprop-
agating edge states have opposite out-of-plane spin sz on any edge, so backscattering requires
a spin-active perturbation.

To understand the structure of SOC-induced edge states we numerically simulate the band-
structure of graphene bilayer nanoribbons with both armchair and zigzag edges. The bilayer
is modeled with a Bernal-stacked tight-binding Hamiltonian [70]. To reach experimental sizes
(particularly important in the next section) we use a scaled lattice constant, with hopping pa-
rameters also scaled to keep low-energy observables scaling-independent [71]. On each layer
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Figure 2: Dispersion and spin structure of edge modes along armchair (a,c) and
zigzag (b,d) edges of a graphene bilayer flake where a full TMDC encapsulation opens
a gap λI = 10 meV. Red and blue denote subgap modes propagating along a given
edge with opposite out of plane spin polarization (⊙ and ⊗), which is locked to
momentum as shown in the insets. |P±〉 and |Q±〉 denote an additional quantum
numbers due to orbital symmetries P and Q, see text. On the bottom row we show
the effect of an in-plane Zeeman field EZ on the edge modes. On an armchair edge
(c) EZ opens helical windows around the ky = 0 (Γ -point) band crossings [black
arrows in (a)], while on a zigzag edge (d) it opens an insulating gap around zero
energy. The different combinations of armchair/zigzag phases are encoded in each
energy interval by a white, purple, salmon and yellow background (see also Fig. 3).

we add the SOC terms HI and HR with opposite sign. The resulting bandstructures are show
in Fig. 2 for armchair nanoribbons (left column) and zigzag nanoribbons (right column).

The effective low-energy Kane-Mele coupling is indeed found to open a SOC gap, with two
pairs of counterpropagating states on each edge. Spin-symmetry is broken, with two distinct
propagating modes of opposite spin out-of-plane for each edge and propagation direction.
These states are shown in Fig. 2(a,b), with red and blue denoting their spin orientation.
Despite the fact that Rashba SOC HR does not enter the low-energy Hamiltonian of bulk modes,
it does affect the edge modes. For armchair edges, in particular, it constitutes a weak, time-
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reversal-symmetric, gap-opening perturbation around zero energy (charge neutrality point),
see Fig. 2(a).

If we neglect Rashba, we find that armchair edge states |ky〉 have a second (orbital) quan-
tum number, independent of the spin and associated to their behavior under the parity opera-
tor P = σxK, where K is conjugation and σx exchanges layers and sublattices. This quantum
number is η = 〈−ky |P|ky〉 = ±1, and its value for each mode is indicated by |P+〉 (even) and
|P−〉 (odd) in Figs. 2(a,c). In the zigzag case all subbands are even under parity, but at the
M -point crossings (kx a0/2π= 0.5 in Fig. 2), edge states |M〉 can be classified by a second or-
bital symmetry Q = σy , where σy is now defined to act on the two columns of sites in the unit
cell perpendicular to the edge. Unlike P, the Q symmetry is just approximate, but quickly be-
comes exact in the limit of small a0. The corresponding quantum number η′ = 〈M |Q|M〉= ±1
of each band is denoted in Figs. 2(b,d) as |Q±〉. These orbital symmetries are important to
understand the splitting of the edge modes under an in-plane Zeeman field.

Let us focus first on the Γ -point crossing at finite energy in the armchair edge states, see
the black arrows in Fig. 2(a). Both of these are crossings between states of equal parity η.
The addition of a Zeeman field along the y direction

HZ = EZσy , (4)

preserves parity but breaks the time-reversal symmetry, and immediately turns the crossings
into anticrossings. This is illustrated in Fig. 2(c). The reason is the opposite (helical) out-
of-plane spin orientation of the armchair states crossing at ky = 0, see the inset sketch. The
out-of-plane spin polarization is due to the dominant Ising SOC HI of Eq. (1). The in-plane
Zeeman HZ mixes the crossing modes, opening energy windows inside the SOC gap (shaded
in purple and salmon color) wherein armchair edges support spinless helical edge modes. In
contrast, for the crossings at ky ̸= 0 and zero energy, the crossing modes have opposite parity,
which prevents their splitting (unless Rashba is non-zero).

Zigzag edge modes behave in the opposite way, acquiring a full gap around zero energy,
while the crossings at the M point remain unsplit owing to the opposite η′ of the crossing
modes. Depending on the value of the chemical potential inside the SOC gap, zigzag edges
can therefore be either insulating or metallic (i.e. with spinful edge modes as in the absence
of Zeeman field), but never spinless. There are then four distinct combinations possible in a
vacuum terminated (normal) sample, corresponding to either spinless helical or metallic arm-
chair edges and to insulating or metallic zigzag edges. We encode these four phases in white,
purple, yellow and salmon throughout this work, see Fig. 2. The sample can be tuned to any
of the four by adjusting Zeeman and chemical potential. Note that here and in the following,
we use the term ‘metallic’ to denote edges where an even number of counterpropagating edge
modes coexist at a given energy, in contrast to the case of a spinless helical edge with an odd
number of them.

3 Superconducting proximity effect and Majoranas

For the purposes of implementing a Fu-Kane approach to generate MBSs in this system we
need to introduce superconducting pairing correlations on the spinless helical edge modes.
We follow the conventional route of inducing superconductivity externally by contacting a
conventional superconductor laterally to the encapsulated bilayer, a technique that has been
extensively demonstrated [46–49]. We analyze two distinct geometries, see Fig 1. Configu-
ration A, Fig. 1(a), has proximitized armchair and vacuum-terminated zigzag edges, while in
B, Fig. 1(b), the zigzag edges are also contacted to a superconductor (possibly with a weak
link to allow phase-biasing the junction, though this detail can be ignored until Sec. 6). The
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Figure 3: Phase diagrams of an encapsulated bilayer with induced SOC λI = 5 meV
versus Zeeman and chemical potential. Panels (a) and (b) correspond to configu-
rations A and B in Fig. 1, respectively. Each region is defined by different types of
edge states along armchair (AC) and zigzag (ZZ) edges, terminated with either vac-
uum (vac) or a superconductor (SC), see legend for each configuration. An induced
pairing ∆ = 0.3 meV is applied to any edge sites in direct contact to a SC. Dashed
(dash-dotted) lines are metallic/helical (metallic/insulating) boundaries in AC/vac
(ZZ/vac) edges. Vertical dotted lines indicate effective induced gaps∆∗ in AC and ZZ
edges. In the salmon-colored regions of both phase diagrams, the system develops a
D-class MBS at each sample corner [where a p-wave AC/SC edge and an insulating
ZZ/vac (insulating ZZ/SC) meet in configuration A (B)]. In the purple region, cor-
ner MBSs also appear in configuration B, whereas Majorana states delocalize along
the ZZ/vac metallic edges in configuration A. In the yellow region, BDI-class pairs of
MBSs develop at each corner for both configurations if Rashba SOC is neglected (see
text for details).
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superconducting proximity effect is modeled as a pairing term ∆ on the boundary sites of
each edge, although the results are qualitatively similar with a more elaborate model where a
square-lattice superconductor is explicitly incorporated in the tight-binding lattice.

We compute their corresponding phase diagrams in each configuration, see Figs. 3(a,b),
by locating Γ -point band inversions in sufficiently wide infinite nanoribbons, with either arm-
chair/superconductor or zigzag/superconductor edges. We find that proximitized edges of any
type develop a trivial s-wave gap at zero Zeeman field (white region in the phase diagrams).
On proximitized armchair edges tuned to their spinless helical window, a Zeeman energy above
the effective induced pairing∆∗AC (here≈ 0.21meV for the chosen value of∆= 0.3 meV), cre-
ates a band inversion into a topological p-wave phase (purple and salmon-colored regions), as
predicted by Fu and Kane [4,40]. In contrast, on a proximitized zigzag edge close to neutrality,
µ= 0, a Zeeman that exceeds the corresponding∆∗ZZ ≈ 0.27 meV transforms the s-wave phase
into an insulator [yellow and salmon-colored regions in Fig. 3(b)]. As a result, a device in
configuration A or B within the salmon-colored region (strong Zeeman fields) should localize
a MBS at each of its armchair/zigzag corners, as these are boundaries between topological (p-
wave) and trivial (insulating) edges. However, within purple regions (weaker Zeeman) only
configuration B should host localized corner MBSs (corners become p-wave/s-wave bound-
aries). Configuration A should instead delocalize its corner MBSs along the metallic zigzag
edges.

These predictions are readily confirmed by numerical simulations of large but finite-size
rectangular samples in both A and B configurations. In Fig. 4 we show the low-energy eigen-
values for A and B samples (top row) as a function of EZ , and the local density of states (LDOS,
bottom row) corresponding to the lowest (red) eigenstates. For both configurations (left and
right columns) we choose a point within the purple region (marked with a red dot in Fig. 3).
As anticipated, the LDOS exhibits spatially localized/delocalized MBSs in the B/A configura-
tions as described above. The energy of localized MBSs in Fig. 4(d) remains pinned to zero
within the purple region, but eventually becomes finite in the salmon-colored region due to
finite-size effects (splitting due to MBS overlap). In contrast, delocalized MBSs in configura-
tion A, purple region, strongly hybridize along the zigzag edge with the MBS at the opposite
corner, splitting and merging into a quasi-continuous set of finite energy Andreev bound states.

4 BDI-class Majorana pairs

To complete the analysis of the phase diagram we now show the spectrum within the yellow
regions of Fig. 3(a,b). Focusing on configuration B at zero chemical potential µ = 0, one
would expect an s-wave gap along the armchair edge, and an s-wave or insulating gap for
EZ < ∆

∗
ZZ and EZ > ∆

∗
ZZ, respectively. In both cases, the generic expectation is therefore to

have no zero-modes. Surprisingly, however, the spectrum shows a multiply-degenerate near-
zero mode at EZ >∆

∗
ZZ (insulating zigzag edge). These states become exact zero modes when

we remove the Rashba coupling, λR = 0. The results are shown in Fig. 5 at µ= 0 (a), µ= 0.6
meV (b) and µ = 1.2 meV (c), and as a function of λR (d,e), for the same parameters as in
Figs. 3 and 4 but for a longer 2µm junction along x and an increased ∆= 1 meV.

To understand the nature of these unexpected zero modes we must recall the phenomenol-
ogy of multimode Rashba nanowires, which may also exhibit multiple near-zero modes at ei-
ther end when an even number of modes become topological. When the number of inverted
modes is even, the wire is technically in a trivial D-class phase with νD = 0 invariant (νD ∈ Z2),
so no protected zero energy MBSs are expected. It was shown [65, 72], however, that a hid-
den BDI-symmetry [73] emerges if the SOC-induced inter-mode coupling vanishes, which is a
good approximation for nanowires of width much smaller than the spin-orbit length. In such
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Figure 4: (a,b) Low-energy spectrum as a function of Zeeman splitting EZ of a rect-
angular sample in the two configurations A and B of Fig. 1 and with the same param-
eters as Fig. 3. Background colors match Fig. 3. (c,d) Local density of states across
the sample corresponding to the four lowest eigenstates [red curves in (a,b)] at the
vertical dashed line in (a,b) (p-wave armchair phase). In configuration A (a,c), the
zigzag edges are metallic, so the MBSs become spatially delocalized and merge into
a quasi-continuum of zigzag states, while in configuration B (b,d) zigzag edges have
a trivial s-wave gap, so the MBS remain localized at the corners.

limit the nanowire Hamiltonian can be cast into a real matrix belonging to the BDI symmetry
class, albeit one where time-reveral symmetry (TRS) T = isyK is broken by Zeeman, and a
pseudo-TRS T̃ = K (conjugation) takes its place. The BDI invariant in 1D is νBDI ∈ Z. The
total number of zero modes at a nanowire boundary then becomes the difference in νBDI at
either side of the boundary, which can be more than one [65, 72]. In nanowires the value of
νBDI actually matches the total number of spinless modes that have undergone a topological
transition. For small but finite EZ , such that no modes have transitioned yet, it is therefore
νBDI = 0 (like in vacuum). This trivial invariant can also be physically understood as a con-
sequence of the opposite helicity of two pairs of modes weakly split by Zeeman in a Rashba
nanowire.

A similar situation applies to the armchair edge in our encapsulated bilayer. The low-
energy Hamiltonian Eq. (3) for a nanoribbon with proximitized armchair edges and zero
Rashba λR = 0 can be cast into a real form, so its symmetry class effectively becomes BDI
in this limit, with invariant νAC

BDI ∈ Z when TRS is broken by a finite Zeeman field. A crucial
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ZZ one. The zero-energy eigenvalues in the yellow region are therefore eightfold-
degenerate. These become near-zero modes as the BDI symmetry is slightly broken
by a finite Rashba coupling λR (d). In the regions with salmon-colored background
of (b) and (c) the armchair edge has a νAC

D = ν
AC
BDI = 1 invariant, regardless of sym-

metry class. Thus, the four zero-energy MBSs (red lines), one at each sample corner,
remain insensitive to Rashba (e). Vertical dashed lines in (b,c) correspond to the EZ
used in (d,e), respectively.

difference with nanowires, however, is that the spinful edge modes along a given armchair edge
do not have zero net helicity: the two pairs of modes in a given edge have an equal (instead of
opposite) helicity, determined by the sign of λI [see inset in Fig. 2(a)]. As a consequence, the
Z BDI invariant in an armchair edge at small EZ (and actually all throughout the white and
yellow regions of Fig. 3) is νAC

BDI = 2, not zero. This has the dramatic implication that pairs of
localized MBSs will arise at each corner as soon as the zigzag edge becomes insulating, and
hence trivial, with zero BDI invariant νZZ

BDI = 0 (yellow region). This phenomenon is shown in
Fig. 5(a). In Fig. 5(b) we see that at finite µ we can cross from the νAC

BDI = 2 regime (yellow
region, metallic armchair) to the conventional D-class νAC

D = ν
AC
BDI = 1 regime (salmon-colored

region, spinless helical armchair), whereupon the number of MBSs per edge is halved, from
two to one, following a band inversion. Degenerate BDI-class MBSs are expected to survive as
near-zero modes if the BDI-breaking effect of Rashba coupling λR on the armchair edge states
is finite but small, as is the case for typical experimental values of λR ∼ 1−5 meV, see Fig. 5(f).
In contrast, increasing λR leaves the MBSs in the salmon-colored region completely unaffected
in large enough samples, see Fig. 5(d), since in this case the D-class armchair edge remains
topologically non-trivial.
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5 Effect of disorder and misalignment

Up to this point all our results have assumed perfect crystallographic armchair and zigzag
edges. In real samples it is impossible to avoid a certain degree of misalignment when fabri-
cating the superconducting contacts, or to create some amount of disorder. Since MBSs are
topologically protected states, they should withstand such perturbations to a certain extent,
but it is far from clear a priori if they are resilient to a realistic degree of misalignment and
disorder. In this section we attempt to address this question by simulating the spectrum of a
sample in configuration B with a fraction of vacancies along each edge and a finite rotation of
the lattice.

Figure 6 compares the spatial localization of BDI-class and D-class MBSs on pristine, un-
rotated samples (a, b) and in samples with a 1% contact disorder and with a 2◦ contact mis-
alignment (c, d). Disorder is introduced in our simulation in the form of vacancies at the given
fraction of terminal sites along contact edges, removing any dangling bonds that are produced.
While disorder and misalignment degrade MBS localization, for the device parameters con-
sidered they are found to remain spatially decoupled at this level of contact imperfections.
Disorder above ∼ 2% or misalignments above 7◦ leads to a splitting of MBSs due to edge
leakage and overlap. We also quantitatively show in panels (e, f) the size of the minigap and
degree of MBS splitting in contacts without disorder, purely as a function of the misalignment
angle. We find that, at least in the regimes explored in our simulations, the BDI-class MBS
minigap is actually more resilient to misalignment than the one of D-class MBSs. The latter
tend to delocalize faster and to exhibit a minigap that becomes quickly polluted by low-lying
states as the angle is increased. Above a 5◦ − 7◦ misalignment, the MBSs in both cases are
found to quickly merge into an edge-state quasicontinuum.

6 Josephson effect

A hallmark consequence of an odd number of MBSs at either side of a Josephson junction is the
development of an anomalous 4π-periodic Josephson effect [41, 74] in the superconducting
phase difference φ across the junction. A short (in x) and wide (in y) junction in configura-
tion B, with a superconductor split as in Fig. 1(b), can be operated by tuning φ across the split
weak link. As the junction is assumed much wider than the size of the MBSs, it should behave
as two Josephson junctions in parallel (one along each zigzag edge).1 In the D-class (λR ̸= 0)
the device can be tuned to host either one or zero Majoranas per corner, which should produce
an Andreev spectrum and Josephson current with 4π- or 2π-periodicity in φ, respectively. In
the BDI-class (λR = 0), Majorana pairs at a given corner will be decoupled from each other, so
they should produce a 4π-periodic spectrum and supercurrent.

We confirm these expectations, first for λR = 0, both for νAC
BDI = 2 MBSs per corner,

Fig. 7(a), and νAC
BDI = ν

AC
D = 1 MBS per corner, Fig. 7(b). Breaking BDI symmetry with a

finite λR = 2 meV makes the invariant trivial, νAC
D = 0, so the Josepshon effect becomes

2π-periodic, Fig. 7(c). Again, D-class Majoranas are unaffected by Rashba, and remain 4π-
periodic, Fig. 7(d).

1In a realistic experiment, the phase bias is controlled by an external magnetic field on a SQUID geometry.
The field could in principle produce a flux across the bilayer graphene junction that would result in a φ gradient
across the junction width. Note that we neglect such gradients here, so φ is assumed to be y-independent. This is
equivalent to neglecting the junction area as compared to that of the SQUID.
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Figure 6: Spatial profile of MBSs, both in pristine (a,b) and imperfect (c,d) samples
in configuration B. Left and right columns correspond, respectively, to BDI-class and
D-class MBSs [for parameters marked with dashed lines of Figs. 5(b) and 5(c)]. In
(c,d) contact disorder is 1% and misalignment angle is 2◦. (e,f) Misalignment angle
dependence of the low-energy spectrum in otherwise clean samples. In the BDI-class
we depict the two Majoranas at each corner in blue and red, while the lone MBSs in
the D-class are shown in red. The scaling of the lattice constant in the simulation has
only a small effect on the magnitude and evolution of the topological gap in (e,f).
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Figure 7: Andreev levels as a function of superconducting phase bias in a Josephson
junction similar to Fig. 1(b), for λR = 0 (a,b) and λR = 2 meV (c,d). The value of
EZ is fixed to the vertical dashed line of Fig. 5(b) (a,c) and Fig. 5(c) (b,d). The
width of the junction is W = 2.5µm, but the length is shortened to L = 0.2µm to
increase the phase-dependent MBS hybridization across the junction. Both the pairs
of BDI-class MBSs in (a) and the lone D-class MBSs in (b) give rise to an approximate
4π Josephson effect. Increasing λR breaks the BDI symmetry of (a), making the
Josephson effect from corner Majorana pairs (near-zero modes) 2π-periodic, and
hence trivial (c). The 4π case of a single MBS per corner is however unaffected by
Rashba (d).

7 Conclusion

We have shown that bilayer graphene, proximitized by laterally contacted superconductors and
vertically encapsulated in transition metal dichalcogenides, exhibits a phase diagram with sev-
eral topological phases below the spin-orbit bulk gap induced by the encapsulation. It includes
non-trivial phases with single or pairs of MBSs at each armchair/zigzag corners, depending
on the induced Rashba coupling. The system’s phase can be controlled by tuning the chem-
ical potential and an in-plane Zeeman field in ranges of the order of the bulk spin-orbit gap
and the induced superconducting gap, respectively. The mechanism behind the topological
phases is directly connected to the distinct properties of armchair and zigzag edges and the
type of boundary modes they develop as a result of the SOC induced by the encapsulation. De-
spite the requirements of concrete arcmhair/zigzag crystallographic edges, a finite tolerance
of around ∼ 5◦ in contact misalignment and ∼ 1% in contact disorder is predicted, making
experimental realizations feasible.

A brief comparison of the above proposal to Majorana nanowires, as the current leading
platform for MBSs, is in order. The two approaches exhibit interesting differences. One disad-
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vantage of graphene is the g-factor, which is smaller (∼ 2) than in semiconducting nanowires
(∼ 2 − 18, depending on details such as degree of metallization). As both approaches re-
quire a Zeeman energy comparable or greater than the induced superconducting gap, this
demands stronger magnetic fields for comparable induced gaps. It has been shown, however,
that highly controllable contacts and induced gaps are possible in graphene by using robust
Type-II superconductors such as MoRe, that have much larger critical fields than Aluminum
(the superconductor of choice for Majorana nanowires). This makes graphene’s reduced g-
factor potentially less of an issue. The problem of disorder also exhibits very different char-
acteristics. In nanowires, charged defects and other sources of disorder are considered one of
the most important challenges towards realizing MBSs [16, 17]. In graphene-based van der
Waals heterostructures, a very good control of puddles and bulk disorder is now possible using
particular 2D crystals as substrates, such as hBN and graphite [75,76]. It is also to be expected
that potential disorder will scatter electrons very differently in graphene than in semiconduc-
tors. Finally, the scale of energies that trigger multimode physics in our proposal is λI ∼ 2−10
meV, which is larger than in typical low-density nanowires (ħh2/[2m∗R2]∼ 0.5 meV). All these
differences suggest that encapsulated graphene is worth exploring as a potential alternative
to Majorana nanowires.

Methods

All our tight-binding simulations were performed using Quantica.jl v0.5.0 [77]. All the code
is available at Zenodo [78].

Data availability

All data presented here is available at Zenodo [78].
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A Resilience of helical modes in the presence of arbitrary edge
orientation and scalar disorder

In the main text we have analyzed the emergence of helical edge modes in the armchair and
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Figure 8: (a) Total density of states (DOS) of encapsulated bilayer graphene with-
out Rashba or Zeeman couplings, with λI = 20meV, and with the shape of a circular
strip. The subgap DOS comes from edge states that remain ungapped all along the
boubdaries of the sample, which span all crystallographic orientations from arm-
chair to zigzag. The edge states carry a spin current, shown in (b) for states within
the yellow strip. The current is not suppressed by the varying edge orientation, since
localization would require spin-flip-backscattering. Curved arrows indicate current
direction, and colored circles encode current magnitude. (c,d) The same as in (a,b)
but with the addition of Anderson disorder of amplitude 2meV and zero average, dis-
tributed throughout the sample. Again, the spin-independent nature of the disorder
leaves the edge states unperturbed, even though the DOS around and above the gap
edge is strongly affected.

zigzag edges by analyzing their respective bandstructures. Their robustness against disorder
and edge misalignement is also studied, but only at the level of the p-wave phase and the asso-
ciated MBSs in an SC-N contact. This does not directly address, however, the question about
the general stability of the original helical states even before proximitization with a super-
conductor. We have argued that the induced SOC does not open a true topological-insulator
gap, whose edge modes would be protected against any time-reversal-invariant perturbation
by virtue of the bulk topology. Instead, the 2π Berry phase of the bilayer spectrum makes
the SOC gap topologically fragile, meaning that time-reversal-symmetric perturbations such
as Rashba may in principle destroy the associated pairs of helical edge states. In this appendix
we demonstrate that this is not the case, at least for conventional spin-independent graphene
imperfections, such as invervalley scattering at the edges or charge puddles.

As discussed in the main text, counterpropagating edge states have exactly opposite out-
of-plane spin sz in both the armchair and zigzag cases. This is true even if we include re-
alistic Rashba couplings, to a good approximation, due to its subleading contribution in the
low-energy sector. Hence, backscattering of the edge states requires a spin-flip for both crys-
tallographic orientations. Conventional scalar disoder should then be unable to localize edge
states. We now show that this is also true for any other edge orientation, even in the presence
of disorder.

Figure 8(a) shows the total density of states (DOS) in a sample of encapsulated bilayer
graphene, with zero Zeeman and Rashba, and shaped like a circular strip. It is computed
using the Kernel Polynomial Method [79]. The circular geometry has edges that vary across
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all possible crystallographic orientations. Figure 8(b) shows the corresponding spin-resolved
current densities J⃗↑,↓ in real space for all states within an energy window around neutrality
(yellow box). The states were obtained by exact diagonalization using the Arnoldi method.

We see that despite the varying edge orientation around the circular strip, the DOS remains
finite (ungapped) throughout the SOC gap (here from -10meV to 10meV). All these subgap
states are spatially localized at the boundaries of the sample, and carry a net spin current,
just as in the armchair and zigzag cases. This shows that edge states remain robust and gap-
less in the presence of arbitrary variations of edge orientation. The analysis can be extended
by adding disorder. We apply strong Anderson disorder througout the whole circular strip,
uniformly distributed in the interval [−2meV, 2meV]. The result is presented in Fig. 8(c,d).
While disorder has a strong effect on the DOS outside the gap, the subgap DOS remains unper-
turbed. Likewise, the edge current remains insensitive to the disorder. We thus find that the
helical edge states behave as true topological modes protected against arbitrary perturbations,
as long as they are spin-independent, or at most commute with sz .
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