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Abstract

Generative networks are opening new avenues in fast event generation for the LHC.
We show how generative flow networks can reach percent-level precision for kinematic
distributions, how they can be trained jointly with a discriminator, and how this dis-
criminator improves the generation. Our joint training relies on a novel coupling of the
two networks which does not require a Nash equilibrium. We then estimate the gen-
eration uncertainties through a Bayesian network setup and through conditional data
augmentation, while the discriminator ensures that there are no systematic inconsisten-
cies compared to the training data.

Copyright A. Butter et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 14-12-2021
Accepted 09-02-2023
Published 20-04-2023

Check for
updates

doi:10.21468/SciPostPhys.14.4.078

Content

1 Introduction 2

2 Precision generator 2
2.1 Data set 3
2.2 INN generator 4

3 DiscFlow generator 9
3.1 Discriminator reweighting 9
3.2 Joint training 11

4 Uncertainties and control 15
4.1 Bayesian network 15
4.2 Conditional augmentations 19
4.3 Discriminator for consistency 20

5 Outlook 21

References 22

1

https://scipost.org
https://scipost.org/SciPostPhys.14.4.078
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.14.4.078&amp;domain=pdf&amp;date_stamp=2023-04-20
https://doi.org/10.21468/SciPostPhys.14.4.078


SciPost Phys. 14, 078 (2023)

1 Introduction

Precise first-principle simulations provided by the theory community are a defining feature of
Large Hadron Collider (LHC) physics. They are based on perturbative quantum field theory
with fundamental Lagrangians as their physics input, and they provide the simulated events
necessary for modern LHC analyses. Because of the close correlation of complexity and preci-
sion in perturbative calculations, precision and speed are, largely, two sides of the same medal.
Both of these sides are facing major challenges for the LHC Runs 3 and 4, and the hope is that
machine learning and its modern numerics toolbox allow us to provide the simulations needed
for a 25-fold increase of LHC data as compared to Run 2.

In recent years, modern machine learning has shown great potential to improve LHC sim-
ulations. Underlying techniques include generative adversarial networks (GANs) [1–3], vari-
ational autoencoders (VAEs) [4, 5], normalizing flows [6–10], and their invertible network
(INN) variant [11–13]. As part of the standard LHC event generation chain [14], modern
neural networks can be applied to the full range of phase space integration [15, 16], phase
space sampling [17–20], amplitude computations [21, 22], event subtraction [23], event un-
weighting [24, 25], parton showering [26–30], or super-resolution enhancement [31, 32].
Conceptionally new developments are, for instance, based on fully NN-based event genera-
tors [33–37] or detector simulations [38–48]. In essence, there is no aspect of the standard
event generation chain that cannot be improved through modern machine learning.

A structural advantage of generative networks for event generation or detector simula-
tions is that, unlike forward Monte Carlo simulations, the network-based generation can be
inverted. Specifically, conditional GANs and INNs allow us to invert the simulation chain to
unfold detector effects [49, 50] and extract the hard scattering process at parton level in a
statistically consistent manner [51]. Because of their superior statistical properties, the same
conditional INNs can be used for simulation-based inference based on high-dimensional and
low-level data [52]. Finally, normalizing-flow or INN generators provide new opportunities
when we combine them with Bayesian network concepts [53–58] to construct uncertainty-
controlled generative networks [59].

In this paper we combine the full range of ML-concepts to build an NN-based LHC event
generator which meets the requirements in terms of phase space coverage, precision, and
control of different uncertainties. We first present a precision INN generator in Sec. 2 which
learns underlying phase space densities such that kinematic distributions are reproduced at
the percent level, consistent with the statistical limitations of the training data. Next, our
inspiration by GANs leads us to construct the DiscFlow discriminator–generator architecture
to control the consistency of training data and generative network in in Sec. 3. Finally, in Sec. 4
we illustrate three ways to control the network training and estimate remaining uncertainties
(i) through a Bayesian generative network, (ii) using conditional augmentations for systematic
or theory uncertainties, and (iii) using the DiscFlow discriminator for controlled reweighting.
While we employ forward event generation to illustrate these different concepts, our results
can be directly transferred to inverted simulation, unfolding, or inference problems.

2 Precision generator

As we will show in this paper, generative networks using normalizing flows have significant
advantages over other network architectures, including GANs, when it comes to LHC event
generation. As a starting point, we show how flow-based invertible networks can be trained
to generate events and reproduce phase space densities with high precision. Our network
architecture accounts for the complication of a variable number of particles in the final state.
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2.1 Data set

The kind of NN-generators we discuss in this paper are trained on unweighted events at the
hadronization level. We exclude detector effects because they soften sharp phase space fea-
tures, so simulations without them tend to be more challenging and their results are more
interesting from a technical perspective. This means our method will work even better on
reconstucted objects.

The production of leptonically decaying Z-bosons with a variable number of jets is an es-
pecially challenging benchmark process. First, the network has to learn an extremely sharp
Z-resonance peak. Second, QCD forces us to apply a geometric separation between jets, in-
ducing a non-trivial topology of phase space. Finally, again because of QCD it does not make
sense to define final states with a fixed number of jets, so our generative network has to cover
a final state with a variable number of dimensions. Given these considerations we work with
the process

pp→ Zµµ + {1,2, 3} jets , (1)

simulated with SHERPA2.2.10 [60] at 13 TeV. We use CKKW merging [61] to generate a merged
sample with up to three hard jets including ISR, parton shower, and hadronization, but no pile-
up. The final state of the training sample is defined by FASTJET3.3.4 [62] in terms of anti-kT
jets [63] with

pT, j > 20 GeV , and ∆R j j > Rmin = 0.4 . (2)

The jets and muons are ordered in pT . Because jets have a finite invariant mass, our final state
dimensionality is three for each muon plus four degrees of freedom per jet, giving us phase
space dimensionalities 10, 14, and 18. Momentum conservation does not further reduce the
dimensionality, as not every generated hadron is captured by the three leading jets. However,
we will reduce this dimensionality by one by removing the symmetry on the choice of global
azimuthal angle. Our combined sample size is 5.4M events, divided into 4.0M one-jet events,
1.1M two-jet events, and 300k three-jet events. This different training statistics will be dis-
cussed in more detail in Sec. 4.1.

To define a representation which makes it easier for an INN to learn the kinematic patterns
we apply a standard pre-processing. First, each lepton or reconstructed jet is represented by

{ pT ,η,φ, m } . (3)

Because we can extract a global threshold in the jet pT we represent the events in terms of
the variable p̃T = log(pT − pT,min). This form leads to an approximately Gaussian distribution,
matching the Gaussian latent-space distribution of the INN. Second, the choice of the global
azimuthal angle is a symmetry of LHC events, so we instead train on azimuthal angles relative
to the muon with larger transverse momentum in the range ∆φ ∈ [−π,π]. A transformation
intog∆φ = atanh(∆φ/π) again leads to an approximately Gaussian distribution. For all phase
space variables q we apply a centralization and normalization step

q̃i =
qi − qi

σ(qi)
. (4)

Finally, we apply a whitening/PCA transformation separately for each jet multiplicity.
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Figure 1: Generative flow architecture for events with two muons and one to three
jets. The INNs relate the latent space (left) to the physical phase space (right).

2.2 INN generator

For a fixed final-state dimensionality we can use a completely standard INN [11,59] to generate
LHC events, especially after the preprocessing step defined above. Our technical challenge is to
expand the INN architecture to generate final states with 9, 13, and 17 phase space dimensions.
Of course, we could just split the training sample into different multiplicities and train a set of
individual networks. However, in this case each of these networks has to learn the basic QCD
patterns, making this naive approach inefficient and unstable.

To increase the efficiency of the training, we use one network for the common µ1,2 and j1
momenta and add additional small networks for each additional jet, as illustrated in Fig. 1.
Some basic kinematic features of the muons and the first jet, like their transverse momen-
tum balance, depend on possible additional jets, so we first provide the base network with
the one-hot encoded number of jets as a condition. This allows the base network to generate
all relevant {µµ j}-configurations. Starting from those configurations we then train additional
networks for each additional jet. These small networks are conditioned on the training ob-

Table 1: Training setup and hyperparameters for the INN generators used in our
different setups.

hyperparameter INN (Sec. 2.2) INN (Sec. 3.1) DiscFlow (Sec. 3.2) BINN (Sec. 4.1)

LR scheduling one-cycle same same same
Starter LR 10−4 4 · 10−4 2 · 10−4 10−5

Maximum LR 10−3 4 · 10−3 2 · 10−3 10−4

Epochs 100 200 200 100
Batch size 1024 2048 2048 3072
ADAM β1, β2 0.9, 0.99 0.9, 0.99 0.5, 0.9 same

Coupling block cubic spline same same same
# spline bins 60 same same same
# coupling blocks 25 25 25 20
Layers per block 3 3 3 6

# generated events 2M 2M 2M 1M
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servables of the base networks or the lower-multiplicity network, and on the number of jets.
Because the µµ j and µµ j j networks are trained on events with mixed multiplicities, we guar-
antee a balanced training by drawing a random subset of the training data set at the beginning
of each epoch containing equal numbers of events from all different multiplicities. While all
three networks are trained separately, they are combined as a generator. We have found this
conditional network architecture to provide the best balance of training time and performance.

Our network is implemented using PYTORCH [64] with the ADAM optimizer [65], and a
one-cycle learning-rate scheduler [66]. The affine coupling blocks of the standard conditional
INN setup [51,67] are replaced by cubic spline coupling blocks [68], which are more efficient
in learning complex phase space patterns precisely and reliably. The coupling block splits the
target space into bins of variable width based on trainable support points, which are connected
with a cubic function. They are combined with random but fixed rotations to ensure interaction
between all input variables. The parameter ranges of input, output and intermediate spaces
are limited to [−10,10] on both sides of the coupling blocks, numbers outside this range are
mapped onto themselves. The individual coupling blocks split their input vector in two halves
(ui , vi) and transforms vi as

vi
′ = s(vi;χ(ui , ci)) . (5)

The ci are the conditional inputs of the network. The function χ is a fully connected sub-
network with 2nbins + 2 outputs, where nbins is the number of spline bins. They encode the
horizontal and vertical positions of the spline knots and its slope at the boundaries. The loss
function for a cINN can most easily be defined in terms of the ratio of the intractable reference
density Pdata(x; c) and the learned or model density P(x; c) in terms of the phase space position
x and the condition c. We can ignore the normalization log Pdata(x; c), because it does not
affect the network training,

LG = −
∫

d x Pdata(x , c) log
P(x; c)

Pdata(x; c)

= −
∫

d x Pdata(x , c) log P(x; c) + const

= −
∫

d x Pdata(x , c)
�

log Platent(ψ(x; c)) + log J(x; c)
�

+ const . (6)

In the last line we change variables between phase space and latent space and split P(x; c)
into an the latent-space distribution in terms of the INN-encoded mapping ψ and its Jacobian
J . Assuming a Gaussian in the latent space this gives us for a batch of B inputs

LG ≈
B
∑

i=1

�

ψ(x i; ci)2

2
− log Ji

�

. (7)

We list all hyperparameters in Tab. 1.

Magic transformation

A major challenge of the Z+ jets final state is illustrated in Fig. 2, where we show the ∆φ vs
∆η correlations for the exclusive 2-jet sample. We see that most events prefer a back-to-back
topology, but a small number of events features two jets recoiling against the Z , cut off by the
requirement ∆R j j > 0.4. The ring around the corresponding small circle is a local maximum,
and inside the ring the phase space density drops to zero. Because this entire structure lives
in a poorly populated phase space region, the INN typically ignores the local maximum and
smoothly interpolates over the entire ring-hole structure. We emphasize that in our case this
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Figure 2: Jet-jet correlations for events with two jets. We show truth (left) and INN-
generated events (right).

problem is not caused by the non-trivial phase space topology [69], the network interpolates
smoothly through the holes, but a problem of the precision with which the network learns
features just around these holes.

We can improve our network performance, after noticing the issue, by using some physics
intuition and observing a near-magic aspect of network training. To this end, we map out
the local maximum structure and make use of the fact that our network is extremely effi-
cient at interpolating smooth functions. To exploit this property we define a ∆R j j-dependent
transformation which turns the actual phase space pattern into a smoothly dropping curve, let
the network learn this smooth function extremely well, and then undo the transformation to
re-build the local maximum pattern. A simple smoothing function for our case is

f (∆R) =



















0 , for ∆R< R− ,

∆R− R−
R+ − R−

, for ∆R ∈ [R−, R+] ,

1 , for ∆R> R+ .

(8)

The transition region is defined such that it includes the cutoff to ensure non-vanishing
weights, R− < Rmin = 0.4, and its upper boundary is in a stable phase space regime. In
our case we use R− = 0.2 and R+ = 1.5 without much fine-tuning. We also apply this trans-
formation to the 3-jet sample, where all ∆R j j-distribution have similar challenges, through
additional event weights

w(1-jet) = 1 ,

w(2-jet) = f (∆R j1, j2) ,

w(3-jet) = f (∆R j1, j2) f (∆R j2, j3) f (∆R j1, j3) . (9)

After training the INN generator on these modified events we also enforce the jet separation
and set all event weights with ∆R j j <∆Rmin to zero. The inverse factor compensating for our
magic transformation is then

f̃ (∆R) =



















0 , for ∆R< Rmin ,

R+ − R−
∆R− R−

, for ∆R ∈ [Rmin, R+] ,

1 , for ∆R> R+ .

(10)
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Figure 3: Left: ∆R j1 j2-distribution for Z +2 jets events before and after the transfor-
mation of Eq.(9). Right: histogram of the weights of the generated events.

To train the INN generator on weighted data the loss function of Eq.(7) has to be changed to

LG =
B
∑

i=1

�

ψ(x i; ci)
2
− J(x i)
�

w(x i)
∑B

i=1 w(x i)
, (11)

per batch with size B. Here, the weights are defined in Eq.(9), x i are the latent space vectors,
and Ji are the corresponding logarithms of the Jacobian. In the right panel of Fig. 2 we see
that our network architecture indeed captures the intricate structure in the jet-jet correlations.
The distribution of the resulting event weights is shown in Fig. 3. By construction all finite
event weights are above one, and hardly any of them reach values for more than seven, which
implies that these weights can be easily removed by standard reweighting techniques.

Our magic transformation is similar to a refinement, defined as per-event modifications of
phase space distributions [70], whereas reweighting uses weights for individual phase space
points or events to improve the agreement between generator output and truth [71]. How-
ever, our transformation is, by standard phase-space mapping arguments, counter-intuitive.1

Instead of removing a leading dependence from a curve and learning a small but non-trivial
difference, we smooth out a subtle pattern and rely on an outstanding network interpolation
to learn the smoothed-out function better than the original pattern. This is motivated by the
way flow networks learn distributions, which is more similar to a fit than a combination of
local patterns [59]. The technical disadvantage of the smoothing transformation is that the
generated events are now weighted, its advantage is that it is very versatile. Another disad-
vantage is that it needs to be applied based on an observed deficiency of the network and
does not systematically improve the training of generative INNs, so below we will try to find
alternative solutions to improve the network performance.

INN-generator benchmark

In Fig. 4 we show a set of kinematic distributions for our training data, truth defined as a
statistically independent version of the training sample, and the output of the INN-generator
with the magic transformation of Eq.(9). We show distributions for exclusive Z + {1, 2,3} jets
samples and define the relative deviation for binned kinematic distributions as

δ[%] = 100
|Model− Truth|

Truth
. (12)

1As a matter of fact, our magic transformation of the density is the exact opposite of the standard phase space
mapping for Monte Carlo integration.
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Figure 4: INN distributions for Z+1 jet (upper), Z+2 jets (middle), Z+3 jets (lower
left) and an inclusive distribution (lower right) from a combined Z+ jets generation.
We show weighted events using the magic transformation of Eq.(9) to improve the
∆R distributions.

In the top row the final state consists of the Z-decay products and one recoil jet, and we see
that the recoil spectrum as well as the sharp Z-mass are learned with high precision. That
remains true when we add a second jet, including the critical ∆R j1 j2 correlation discussed
above. Finally, adding yet another jet the network learns the complete set of angular jet-jet
correlations. Looking a the precision of the training sample, which consists of half of our full
data set, we see that at least in the bulk of the kinematic distribution, the training data set
agrees with truth at the percent level or better. This changes in the kinematic tails, where the
statistical precision of the training data drops continuously. The level of agreement between
the INN-generated events and truth also reaches the percent level in densely populated phase
space regions, but it is slightly worse than the precision of the training sample. Also the Z-
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peak even in the 1-jet sample is not perfectly learned by the INN, which leaves us a little bit
of work to do on the precision side. To confirm that the differemt jet-exclusive samples are
combined correctly, we show the hadronic HT or scalar sum of all transverse jet momenta in
the lower-right panel. Its precision nicely tracks that of the different pT, j distributions.

3 DiscFlow generator

One way to systemically improve and control a precision INN-generator is to combine it with
a discriminator. It is inspired by incredibly successful GAN applications also in LHC simu-
lations [2, 3, 72]. In our preliminary studies we never reached a sufficient precision with
established GAN architectures [36], while INN-generators proved very promising [59]. Com-
pared to reweighting and refinement methods, a GAN-like setup has the advantage that the
generator and discriminator networks already communicate during the joint training. We will
show how such a discriminator network can be used to improve precision event generation
and then show how a discriminator can be coupled to our INN generator in a new DiscFlow
architecture.

3.1 Discriminator reweighting

Before we train our INN-generator jointly with a discriminator, we illustrate the power of such
a discriminator by training it independently and reweighting events with the discriminator
output [71]. This requires that our discriminator output can eventually be transformed into a
probabilistic correction. We train a simple network described in Tab. 2 by minimizing the cross
entropy to extract a probability D(x i)→ 0(1) for an identified generator (truth) event x i . For
a perfect generated sample the discriminator cannot tell generated events from true events,
and the output becomes D(x i) = 0.5 everywhere. Using this discriminator output we define
the event weight

wD(x i) =
D(x i)

1− D(x i)
→

Pdata(x i)
P(x i)

. (13)

In the conventions of Eq.(6) wD approximates the ratio of true over generated phase space
densities, so we can use it to reweight each event such that it reproduces the true kinematic
distributions at the level they are encoded in the discriminator.

To see how precisely this kind of discriminator works we use the standard INN generator
from Sec. 2.2. We omit the magic transformation described in Eq.(9), to define a challenge for

Table 2: Training setup and hyperparameters for the discriminator.

hyper-parameter value

LR scheduling Reduce-on-plateau
Starter LR 1 · 10−2

Epochs 200
Batch size 2048
Adam β1, β2 0.5, 0.9
Layer type Dense
Number layers 8
Internal size 256
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Figure 5: Discriminator-reweighted INN distributions for Z+1 jet (upper), Z+2 jets
(middle), and Z + 3 jets (lower) from a combined Z+ jets generation. The bottom
panels show the average correction factor obtained from the discriminator output,
the INN results without reweighting are the same as in Fig. 4, except for slightly
longer training.

the discriminator. For each jet-multiplicity of the cINN model, we train a discriminative model
in parallel to the generative model, but for now without the two networks communicating with
each other. The input to the three distinct discriminator networks, one per multiplicity, are the
usual observables pT ,η,φ, and m of Eq.(3) for each final-state particle. We explicitly include
a set of correlations known to challenge our naive INN generator and train the discriminator

LD = −
B
∑

i

log(1− D(x i,gen))−
B
∑

i

log(D(x i,data) , (14)
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Figure 6: Illustration of the DiscFlow method. Weights computed by the discrimi-
nator shift the reference (true) density downwards whenever the generator (fake)
distribution overshoots and vice-versa. This way the deviations of the to-be-trained
generator density are over-exaggerated.

with generated vectors extended depending on the jet multiplicity

x i = {pT, j ,η j ,φ j , M j} ∪ {Mµµ} ∪ {∆R2,3} ∪ {∆R2,4,∆R3,4} , (15)

and corresponding training vectors x i,data.
In Fig. 5 we show sample kinematic distributions for the Z + {1, 2,3} jet final states. Truth

is defined as the high-statistics limit of the training data. The INN events are generated with
the default generator, without the magic transformation of Eq.(9), so they are unweighted
events. The reweighted events are post-processed INN events with the average weight per
bin shown in the second panel. While for some of the shown distribution a flat dependence
wD = 1 indicates that the generator has learned to reproduce the training data to the best
knowledge of the discriminator, our more challenging distributions are significantly improved
by the discriminator. That includes the reconstructed Z-mass as well as the different ∆R j j-
distributions.

Comparing the discriminator-reweighted performance to the magic transformation results
in Fig. 4, reproduced as the blue lines in Fig. 5, we see that the tricky distributions like ∆R j1 j2
or ∆R j1 j3 are further improved through the reweighting over their entire range. For the com-
parably flat pT -distributions the precision of the reweighted events is becoming comparable
to the training statistics, both for the bulk of the distribution and for the sparsely populated
tails. Of all kinematic distributions we checked, the vector sum of all hard transverse mo-
menta of the 5-object final state is the only distribution where the naive INN-generator only
learns the phase space distribution only at the 10% level. Also those are corrected fine by the
discriminator reweighting.

While the discriminator reweighting provides us with an architecture that learns complex
LHC events at the percent level or at the level of the training statistics, it comes with the
disadvantage of generating weighted events and does not use the opportunity for the generator
and discriminator to improve each other. Both of these open questions will be discussed in the
next architecture.

3.2 Joint training

After observing the benefits from an additional discriminator network, the question is how we
can make use of this second network most efficiently. If it is possible to train the discriminator
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Figure 7: DiscFlow distributions for Z+1 jet, Z+3 jets, and an inclusive distribution
from a combined Z+ jets generation after joint generator–discriminator training.

and generator network in parallel and give them access to each other, a joint GAN-like setup
could be very efficient [73]. Unfortunately, we have not been able to reach the required Nash
equilibrium in an adversarial training for our specific INN setup. Instead, one of the two
players was always able to overpower the other.

Instead of relying on a Nash equilibrium between the two competing network architectures
we can avoid a two-part loss functions entirely and incorporate the discriminator information
into the generator loss of Eq.(7) through the event weight function wD(x) of Eq.(13),

LDiscFlow = −
B
∑

i=1

wD(x i)
α log

P(x i; ci)
Pdata(x i; ci)

≈ −
∫

d x
Pα+1

data (x)

Pα(x)
log

P(x)
Pdata(x)

= −
∫

d x
�

Pdata(x)
P(x)

�α+1

P(x) log P(x) +

∫

d x
�

Pdata(x)
P(x)

�α

Pdata(x) log Pdata(x)

= −
¬

�

Pdata(x)
P(x)

�α+1

log P(x)
¶

P
+
¬

�

Pdata(x)
P(x)

�α

log Pdata(x)
¶

Pdata
, (16)

with an appropriately defined expectation value. For the continuum limit we omit the condi-
tional argument and assume a perfectly trained discriminator. Note that in our simple DiscFlow
setup the discriminator weights ωD ≈ Pdata(x)/P(x) do not have gradients with respect to the
generative model parameters, so only the first term in the last line contributes to the optimiza-
tion. This term corresponds to the negative log-likelihood of training samples drawn from the
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weighted truth distribution. The hyperparameter α determines the impact of the discriminator
output, and we introduce an additional discriminator dependence as

α= α0

�

�

�

�

1
2
− D(x)

�

�

�

�

. (17)

During training we increase α0 linearly to enhance the impact of the reweighting factor, while
the improved training will drive the discriminator to D(x)→ 1/2. This functional form for α
is the simplest way of combining the two effects towards a stable result.

From Eq.(16) we see that our modified loss is equivalent to training on a shifted reference
distribution. In Fig. 6 we illustrate what happens if the generator populates a phase space
region too densely and we reduce the weight of the training events there. Conversely, if a
region is too sparsely populated by the generator, increased loss weights amplify the effect
of the training events. Our new discriminator–generator coupling through weights has the
advantage that it does not require a Nash equilibrium between two competing networks, so
the discriminator can no longer overpower the generator. As the generator converges towards
the true distribution, the discriminator will stabilize as wD(x)→ 1, and the generator loss will
approach its unweighted global minimum.

When training the two DiscFlow networks jointly, we split the batches per epoch equally
between both networks, training each network on a separate subset of the training data. To
increase the stability, we start by training the generator and the separate discriminators for the
different jet multiplicities separately and only combine them to a stable joint training once all
networks are pre-trained.

In Fig. 7 we show the performance of the DiscFlow setup to our Z+jets benchmark pro-
cess. First, we see that in the bulk of the flat distributions like pT, j the generator reproduces
the correct phase space density almost at the level of the training statistics. Comparing the
results to Fig. 4 and Fig. 5 we see a comparable, possibly improved, performance of the joint
training. The non-negligible density of generated events below the cut at ∆R = 0.4 shows
that the DiscFlow method is only effective in phase space regions populated by training data.
These results indicate that the joint training of the generator with a discriminator corrects the
invariant mass and all other tricky distribitions almost to the level of the training statistics,
but with unweighted events, unlike for the magic transformation in Fig. 4 and the explicit
reweighting in Fig. 5.

In the ideal AI-world we assume that after successful joint training the discriminator will
have transferred all of its information into the generator, such that D(x) = 0.5 at any point of
phase space. In reality, this is not at all guaranteed. We know from Fig. 5 that the discrimi-
nator can learn the ∆R features very well, so we combine the joint training and discriminator
reweighting strategies to ensure that we extract the full performance of both networks. In
Fig. 8 we show the same training results as in Fig. 7, but reweighted with wD. We see that
the reweighting leads to a small correction of the Mµµ-distribution and a sizeable correction
to the ∆R j j features close to the jet separation cut. Because of the way we provide the event
input, we note that the transverse momentum conservation would become the next challenge
after mastering Mµµ and∆R j j . For all other observables our reweighted DiscFlow network in-
deed reproduces the true kinematic distributions at the percent level provided by the training
statistics.

While in Fig. 8 we see that the correction factor obtained from the discriminator shows
the agreement of training events and simulated events, it is crucial that we search the fully
exclusive phase space for systematic deviations between training and simulated events. In
Fig. 9 we histogram all event weights wD(x i) for Z+ jets production. For the high-statistics
Z + 1 jet sample the correction weights are at most at the percent level. The fact that our
generator only learns the phase space density and not the total rates allows for a slight bias
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Figure 8: Discriminator-reweighted DiscFlow distributions for Z + 1 jet (upper),
Z + 2 jets (middle), and Z + 3 jets (lower) from a combined Z+ jets generation.
The bottom panels show the average correction factor obtained from the discrimina-
tor output. The DiscFlow results for joint generator–discriminator training without
reweighting are the same as in Fig. 7.

in the event weight distributions. For the bulk of the kinematic distributions the bin-wise
correction in Fig. 8 is still slightly smaller than the weights shown here, which means that
some of the corrections are simply noise. The width of the weight distribution increases for
higher jet multiplicities, simply reflecting the drop in training statistics. Combining Fig. 9 and
Fig. 8 allows us to trace the large weights wD to critical phase space regions, like the lower
tail of the Mµµ-distribution for Z + 1 jet or ∆R j j ≲ 0.5 for Z + 2/3 jets.
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Figure 9: Distribution over the weights wD computed over the entire, not marginal-
ized phase space.

4 Uncertainties and control

After introducing our precision generator architecture in Sec. 2 and extending it to a
discriminator-generator architecture for control in Sec. 3, the last item on our list of LHC
tasks is a comprehensive treatment of uncertainties. A proper uncertainty treatment has been
discussed for instance for regression or classification networks [57, 58, 74], while for genera-
tive networks there exists only a first study on how to use and interpret Bayesian INNs [59]. In
this final section we discuss how different uncertainties on generated events can be extracted
using a Bayesian generator network, a conditional sampling using simulated uncertainties,
and the discriminator introduced in the previous section. Each of these handles allows us to
control certain kinds of uncertainties, and in combination they allow us to extract a meaningful
uncertainty map over phase space.

4.1 Bayesian network

The simple idea behind Bayesian networks is to replace trained network weights by trained
distributions of network weights. If we evaluate the network by sampling over these distri-
butions, the network output will be a central value of the numerically defined function and
an uncertainty distribution [53–55]. Because general MCMC-methods become expensive for
larger networks, we rely on variational inference to generate the weight distributions [75].
More specifically, we rely on a Gaussian approximation for the network weight distribution
and learn the mean and the standard deviation instead of just one value in a deterministic
network. Because of the non-linear nature of the network the output does not have a Gaus-
sian uncertainty distribution [58]. Our Bayesian INN (BINN) follows the same setup as our
deterministic INN-generator in Sec. 2.2, converted to the Bayesian setup following Ref. [59].

For a Bayesian generative network we supplement the phase space density p(x), encoded in
the density of unweighted events, with an uncertainty map σ(x) over the same phase space.
To extract the density we bin events in a histogram for a given observable and with finite
statistics. Focussing on one histogram and omitting the corresponding phase space argument
x the expected number of events per bin is

µ≡ 〈n〉=
∑

n

nPN (n) , (18)
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with PN (n) given by the binomial or Poisson probability of observing n events in this bin.
This event count should be the mean of the BINN distribution, defined by sampling from the
distribution q(θ ) over the network weights θ ,

〈n〉=
∫

dθ q(θ )
∑

n

nPN (n|θ )≡
∫

dθ q(θ ) 〈n〉θ . (19)

Following the same argument as in Ref. [58] we can compute the standard deviation of this
sampled event count and split it into two terms,

σ2
tot = 〈(n− 〈n〉)

2〉

=

∫

dθ q(θ )
�

〈n2〉θ − 2〈n〉θ 〈n〉+ 〈n〉2
�

=

∫

dθ q(θ )
�

〈n2〉θ − 〈n〉2θ + (〈n〉θ − 〈n〉)
2
�

≡ σ2
stoch +σ

2
pred . (20)

The first contribution to the uncertainty is the variance of the Poisson distribution,

σ2
stoch =

∫

dθ q(θ )
�

〈n2〉θ − 〈n〉2θ
�

= 〈n〉 . (21)

Even if the network is perfectly trained and q(θ ) turns into a delta distribution, it does not
vanish, because it describes the stochastic nature of our binned data set. The second term,

σ2
pred =

∫

dθ q(θ ) [〈n〉θ − 〈n〉]
2 , (22)

captures the deviation of our network from a perfectly trained network, where the widths of
the network weights vanish.

Moving from a binned to a continuous distribution we can transform our results into
the density and uncertainty maps over phase space, as introduced in Ref. [59]. Assuming
〈n〉 ∝ p(x), with an appropriate proportionality factor and a continuous phase space vari-
able x , Eqs.(19) and (22) turn into

p(x) =

∫

dθ q(θ ) p(x |θ ) ,

σ2
pred(x) =

∫

dθ q(θ ) [p(x |θ )− p(x)]2 . (23)

To estimate σtot, we sample θ and n from their underlying distributions and compute 〈n〉.
In practice, we draw weights θ , generate N events with those weights, histogram them for the
observable of interest, extract n per bin. Because the INN-generator is very fast, we can repeat
this process to compute the standard deviation. To see the effect of the different contributions
to the BINN uncertainty we illustrate the correlation between the event count and σtot for
Z + 1 jet events in Figure 10, with the pT, j-distribution described by 60 bins. Each of these
bins corresponds to a dot in the figure. As long as our sampling is limited by the statistics
of the generated events we find the expected Poisson scaling σ ∝ pµ, corresponding to
the contribution σstoch. For larger statistics, σstoch becomes relatively less important, and the
actual predictive uncertainty of the BINN takes over, σtot ≈ σpred.
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Figure 10: Correlation between event count and BINN uncertainty for 1000 (left)
and 1M (right) generated events. The diagonal like defines the Gaussian scaling for
a statistically limited sample.

Sources of uncertainties

By construction, Bayesian networks capture the effects of limited training statistics and non-
perfect training. If we control the truth information and can augment the training data, a
Bayesian network can also propagate the effects of systematic biases, systematic uncertainties,
or noise into the network output [57, 58]. For generative networks, the Bayesian network is
ideally suited to understand the way the network learns the phase space density by following
the density map it learns in parallel [59]. As a side remark, we can use this information to
track the learning of the BINN for our Z+jets events. We find that the network first learns the
pT -distributions of the different final-state particles quite precisely, before it targets the angular
correlations. This explains why small features of the∆R-distributions are the hardest to learn,
because they arise only for the correlation of the∆η and∆φ observables. Correspondingly, we
find that one way of improving the performance on the angular correlation is to apply noise
specifically to the pT -distributions. On the other hand, the magic transformation of Eq.(9)
turns out to be the more efficient solution to this problem, so we also apply it to the BINN.

When modelling different uncertainties, the problem with augmented training data for
generative networks is that their training is, strictly speaking, unsupervised. We do not have
access to the true density distribution and have to extract it by binning event samples. This
means that additional noise will only be visible in the BINN uncertainty if it destabilizes the
training altogether. Other data augmentation will simply lead to a different target density,
overriding the density encoded in the original set of events. This is why in the following
we will discuss training statistics and stability, and postpone the description of systematics in
generative network training to Sec. 4.2.

In Fig. 11 we show the uncertainty σtot ≈ σpred given by the BINN for a Bayesian ver-
sion of the network introduced in Sec. 2.2, including the magic transformation for the ∆R-
distributions. As before, we see that the network learns the phase space density very precisely
for simple kinematic distributions like pT, j1 . The slightly worse performance compared to the
deterministic network in Fig. 11 is due to the increased training effort required by the larger
network. The extracted uncertainties for pT, j1 and pT, j2 for instance in the bulk reflect the
lower statistics of the Z + 2 jet training sample compared to Z + 1 jet. The narrow Mµµ-
distribution challenges the uncertainty estimate in that the network learns neither the density
nor the uncertainty very precisely [59]. This limitation will be overcome once the network
learns the feature in the density properly. For the different ∆R-distributions we see that the
network learns the density well, thanks to the magic transformation of Eq.(9). Therefore, the
network also reports a comparably large uncertainty in the critical phase space regions around
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Figure 11: BINN densities and uncertainties for Z + 1 jet (upper), Z + 2 jets (mid-
dle), and Z + 3 jets (lower) from a combined Z+ jets generation. The architecture
and training data correspond to the deterministic network results shown in Fig. 4,
including the magic transformation of Eq.(9).

∆Ri j = 0.4 ... 1.

Effect of training statistics

From the above discussion it is clear that one way to test the BINN uncertainties is to train the
same network the same way, but on training samples of different size. We start with one batch
size, 3072 events, and increase the training sample to the maximum of 2.7M. For Z +1 jet we
show the relative uncertainty as a function of transverse momenta, for instance, in Fig. 12. In
both cases we see that over most the distribution the uncertainty improves with the training
statistics. However, we also see that in the right tail of the pT,µ1

distribution the lowest-statistics
trainings does not estimate the uncertainty correctly. Again, this reflects the fact that, if the
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Figure 12: Relative uncertainty from the BINN for the Z +1 jet sample, as a function
of the size of the training sample.

network does not even have enough data to estimate the density, it will not provide a reliable
uncertainty estimate. For pT, j1 this effect does not occur, even in the tails where the network
has to extrapolate eventually.

4.2 Conditional augmentations

As discussed above, Bayesian generative networks will not capture typical systematic or the-
ory uncertainties. Those uncertainties are known, for instance as limitations to predict or
reconstruct objects in certain phase space regions, but unlike for regression or classification
networks we cannot augment the training date to account for them. The reason is that gen-
erative networks extract the underlying phase space density implicitly, so we cannot control
what augmented training data actually does to the network training.

For illustration purpose, let us introduce a toy theory uncertainty proportional to the trans-
verse momentum of a jet. This could incorporate the limitation of an event generator, based
on perturbative QCD, in predicting tails of kinematic distributions inducing large logarithms.
In terms of a nuisance parameter a such an uncertainty would shift the unit weights of our
training events to

w= 1+ a

�

pT, j1 − 15 GeV

100 GeV

�2

, (24)

where the transverse momentum is given in GeV, we account for a threshold at 15 GeV, and
we choose a quadratic scaling to enhance the effects of this shift in the tails.

Instead ot just augmenting the training data, we train the network conditionally on this
nuisance parameter and then sample the nuisance parameter for the trained network, to re-
produce the systematic or theory uncertainty now encoded in the network. This means we
then our Bayesian INN conditionally on values a = 0 ... 30 in steps of one. For the event
generation incorporating the theory uncertainty we can sample kinematic distributions for
different a-values. In Fig. 13 we show generated distributions for different values of a. To
model the conditional parameter similar to phase space and allow for an uncertainty on the
conditional nuisance parameter, we sample a with a Gaussian around its central value and
a standard deviation of min(a/10, 0.1). The two panels show the modified pT, j1-distribution
and its impact on pT, j2 through correlations. As expected, the effects are similar, but the multi-
particle recoil washes out the effects on pT, j2 . In the upper panels we compare the effect of
the theory uncertainty a = 0 ... 12 to the statistical training uncertainty given by the BINN.
We see that our method traces the additional theory or systematic uncertainty, and allows us
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Figure 13: BINN densities for Z+ jets and conditional training with an enhanced-tail
augmentation in pT,1 , as defined in Eq.(24).

to reliably estimate its sub-leading nature for pT, j2 . While we show ranges of a, correspond-
ing to the typical flat likelihood used for theory uncertainties, we could obviously sample the
different a-values during event generation. In the lower panels we show the relative BINN
uncertainties, to ensure that the training for the different a-values is stable. For pT, j1 the data
augmentation has a slight chilling effect on the high-precision training around the maximum
of the distribution. In the statistically limited tails towards larger pT the BINN training without
and with augmentations behaves the same. Looking at the recoil correlation, the BINN reports
a slightly larger uncertainty for the augmented training, correctly reflecting the fact that the
network now has to learn an additional source of correlations. At least for the range of shown
a-values this BINN uncertainty is independent of the size of the augmentation.

4.3 Discriminator for consistency

After introducing two ways of tracing specific uncertainties for generative networks and con-
trolling their precision, we come back to the joint DiscFlow generator–discriminator training.
In complete analogy to, for instance, higher-order perturbative corrections, we can use the
jointly trained discriminator to improve the network precision and at the same time guide us
to significant differences between training data and generated data. Because the discriminator
is a simpler network than the INN-generator, it is well suited to search for deviations which
the BINN misses in its density and uncertainty maps.

In Fig. 14 we illustrate the different aspects of our uncertainty-controlled precision genera-
tor. First, we see that the INN generator indeed learns and reproduces the phase space density
at the level of the training statistics. In the remaining panels we show three ways to control
possible uncertainty, using the discriminator, a BINN, and a BINN combined with augmented
training data.
Each aspect is described in detail in this paper:

· joint discriminator–generator training (DiscFlow) for precision generation — Fig. 7;

· discriminator to control inconsistencies between training and generated events — Fig. 8;

· BINN to track uncertainty on the learned phase space density — Fig. 11;

· conditional augmentation for systematic or theory uncertainties — Fig. 13.
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Figure 14: Illustration of uncertainty-controlled DiscFlow simulation. We show the
reweighted pT, j1-distribution for the inclusive Z+jets sample, combined with the dis-
criminator D, the BINN uncertainty, and the sampled systematic uncertainty defined
through the data augmentation of Eq.(24).

5 Outlook

A crucial step in establishing generative networks as event generation tools for the LHC is the
required precision in estimating the phase space density and full control of uncertainties in
generated samples.

In the first part of this paper, we have shown how INN-generators can be trained on Z+jets
events with a variable number of particles in the final state, to reproduce the true phase space
density at the percent level, almost on par with the statistical uncertainty of the training sam-
ple. If we are willing to work with weighted events, with event weights of order one, we can
either use a magic variable transformation or an additional discriminator network to achieve
high precision all over phase space. Alternatively, we can train the discriminator jointly with
the generator and use our novel DiscFlow architecture to provide unweighted events with high
precision (Fig. 7). This joint training does not involve a Nash equilibrium and is especially sta-
ble. Any information that the discriminator has not transferred to the generator training can
eventually be included through reweighting, giving our NN-event generator high precision
combined with a high level of control (Fig. 8).

In the second part of this paper we have established three methods to control the preci-
sion INN-generator and its uncertainties. First, for unsupervised generative training we can
use a Bayesian INN to estimate uncertainties from limited training statistics or sub-optimal
network training (Fig. 11). Second, we can augment the training data conditionally on a nui-
sance parameter and sample this parameter to account for systematic or theory uncertainties
including the full phase space correlations (Fig. 13). A reliable estimate of the different un-
certainties allows us to compare the numerical impact of the different uncertainties. Finally,
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we can use the jointly trained discriminator to identify phase space regions where the BINN
lacks the necessary precision in its density and uncertainty maps over phase space.

All these aspects of our uncertainty-controlled precision generator are illustrated in Fig. 14.
With this level of precision and control, INN-generators should be ready to be used as extremely
efficient tools to generate LHC events. More generally, our study shows that generative INNs
working on reconstructed objects can be used as reliable precision tools for a range of forward
and inverse inference approaches as well as dedicated detector simulations.
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