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Chiral gauge theories on R3 × S1 and SUSY breaking
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Abstract

We study SU(5) chiral gauge theories on R3×S1. With an unequal number of fundamental
and antifundmental matter representations we calculate nontrivial pre-ADS superpoten-
tials generated by composite multi-monopoles. We also point out that the structure of
the composite multi-monopoles can be determined simply from the affine Dynkin dia-
grams of the gauge group and its unbroken subgroup. For the case of one flavor, we find
that the superpotential is independent of the composite meson. We show that dynam-
ical 4D SUSY breaking in the simplest chiral SU(5) gauge theory can be demonstrated
directly via semi-classical effects on the circle.
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1 Introduction

Compactifying on a circle (4D → R3 × S1) provides an intriguing approach to understanding
strongly coupled supersymmetric (SUSY) gauge theories: holomorphic quantities can be calcu-
lated at weak coupling on a sufficiently small circle and continued back to the 4D limit [1–8].
In the compactified theory an adjoint vacuum expectation value (VEV) typically breaks the
non-Abelian gauge group to U(1) factors, and the low-energy dynamics boils down to under-
standing the resulting monopole/instanton solutions [9,10] and their zero modes. A monopole
with exactly two fermionic zero modes generates a semi-classical term in the superpoten-
tial since it corresponds to a dynamical mass insertion amplitude. In the absence of matter
fields this describes the low-energy dynamics of a Coulomb branch moduli space [11]. Adding
matter fields allows for richer behavior on the mixed Higgs-Coulomb branch. On the mixed
branch [12]matter VEVs can break some of the U(1)’s down to diagonal U(1) subgroups, thus
confining some monopoles [13–15] via Nielsen-Olesen flux tubes [16, 17]. Confined multi-
monopole configurations can also contribute to the (pre-ADS) superpotential [12], and these
multi-monopole configurations have the correct topological charges to be the monopoles of
the unbroken non-Abelian gauge group that is recovered in the 4D limit. For SU(N) with F
flavors, the Affleck-Dine-Seiberg (ADS) superpotential [18, 19] was discovered long ago, but
there is no reliable dynamical calculation for F < N − 1 in 4D. On the circle the matter VEVs
reduce the rank of the gauge group, producing confined multi-monopoles and a corresponding
(pre-ADS) superpotential [12]. Integrating out massive modes and taking the 4D limit gives
exactly the ADS superpotential [12].

The inclusion of antisymmetric matter allows for more complicated breaking patterns, e.g.
SU(2N) can break to Sp(2N), and in some cases breaking the gauge group does not reduce the
rank. If the rank is not reduced the corresponding monopoles are not confined but may still
form bound states [20–22]. Antisymmetric matter also allows for the construction of a chiral
gauge theory, with SU(5) providing the standard example. So far the only chiral gauge theory
studied on R3×S1 is SU(2)with a chiral superfield in the four dimensional representation [23].
It was shown that no superpotential is generated by monopoles, suggesting that the SUSY
breaking conjectured [24] for this model does not occur.

Here we study chiral SU(5) gauge theories on R3 × S1. We explore the pattern of symme-
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try breaking, monopole confinement, and the resulting superpotential for a variety of matter

content, using chiral superfields in the following representations of SU(5): = 10, = 10,
= 5, and = 5̄. In section 2 we give an overview of the models and a quick summary of

the results for superpotentials on R4, R3 × S1, and R3. We review SU(5) monopole solutions
and their zero modes in section 3. We analyze a vector-like SU(5) theory with antisymmetric
matter as a warm-up example in section 4. In section 5 we discuss chiral SU(5) theories with
+F +(F+1) with F > 0 on R3×S1. We also explore SUSY breaking for SU(5)with and
on the circle so that it can be analyzed at weak coupling in section 6. Finally we present our

conclusions in Section 7. We also provide a review of zero mode configurations on monopoles
in Appendix A, and Coulomb branches and their moduli in Appendix B. Appendix C discusses
the dynamics of chiral SU(5) theories in fundamental Weyl chamber regions outside the region
discussed in the main text. Appendix D examines the case of F = 2 in alternative regions of
the moduli space, demonstrating continuity of the low-energy physics as boundaries between
regions are crossed.

2 Results

We are mainly interested in SU(5) gauge theories with chiral superfields in three different
representations: one antisymmetric tensor, F fundamentals, and F +1 antifundamentals. The
gauge and global charges of the fields and their gauge invariant composites are given in Table 1.

Table 1: Gauge and global quantum numbers of the fields. Top rows: elementary
matter fields. Bottom rows: gauge invariant composite fields.

SU(5) SU(F) SU(F + 1) U(1)1 U(1)2 U(1)R

A 1 1 0 2F + 1 0
Q 1 −F − 1 -3 2
Q 1 F −3 − 6

F+1

M =QQ if F ≥ 1 -1 -6 2− 6
F+1

B2 = A2Q if F ≥ 1 1 −F − 1 4F − 1 2

B1 = AQ
2

if F ≥ 1 1 2F 2F − 5 − 12
F+1

B1 = AQ3 if F ≥ 3 1, , ,. . . 1 −3(F + 1) 2F − 8 6

B0 =Q
5

if F ≥ 4 1 1, , ,. . . 5F -15 − 30
F+1

A summary of the superpotentials we find is given in Table 2. The vector like case with

+ matter has four types of composite monopoles, and hence four terms in the pre-ADS
superpotential. In 4D this means there is a runaway branch and a branch with a vanishing
superpotential. The 4D superpotential for F = 4 is well-known since it is the s-confining
case [25]. The largest value of F we will consider in detail is F = 3 which has a deformed
moduli space [26] in 4D. The F = 2 superpotential on R3×S1 results from a composite of all the
SU(5) monopoles, including the Kaluza-Klein (KK) monopole [4, 27–29], which corresponds
to a single instanton in 4D and a deformed moduli space in 3D. The F = 1 superpotential on
R3×S1 results from a KK monopole and a composite of the other monopoles, which turns out
to be independent of the composite meson field, M . The meson branch for F = 1 is completely
lifted. For the SUSY breaking case, F = 0, there are contributions to the scalar potential from
monopole-antimonopole pairs, including a KK monopole, a composite of four monopoles, and
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a composite of four monopoles bound to the KK monopole; the D-terms lift the vacuum in this
case, while in 3D there is simply a Coulomb-branch-runaway superpotential.

Table 2: Superpotentials for various mixed Higgs-Coulomb branches of SU(5) gauge
theories on R4, R3 × S1, and R3, where T = AA and ε = ±1. The Coulomb branch
operators Yi are reviewed in Appendix B. The Lagrange multiplier field X enforces
the standard deformed moduli space constraint [26], while the remaining symbols
are intrinsic scales of the gauge theory.

matter 4D R3 × S1 3D

+ 2(εa + εb)
Ç

Λ12

T3
ηY + 1

Y T3 +η
Y2Y3
T2 +

1
Y2Y3T

1
Y T3 +

1
Y2Y3T

+ 3 + 4 X
�

B2B1M2 − B1B
2
1 −Λ

10
�

Y
�

B2B1M2 − B1B
2
1 −η
�

Y
�

B2B1M2 − B1B
2
1

�

+ 2 + 3 Λ11

B2B1M

η

B2B1M λ
�

Y (B2B1M)− 1
�

+ + 2 2ε Λ6
q

B2B1

ηY + 1
Y B2B1

1
Y B2B1

+ SUSY breaking SUSY breaking Coulomb branch runaway

3 Monopoles of SU(5)

At a simplistic level, compactifying a non-Abelian gauge theory on a circle converts the gauge
field component along the circle to a scalar adjoint which can obtain a VEV. If this VEV breaks
the gauge group down to one containing U(1) factors then there are necessarily monopole
solutions [9,10].

To write out the monopole solutions one must first chose a set of Cartan generators corre-
sponding to the U(1) subgroups [30]. The standard basis of the Cartan subalgebra of SU(5)
is given by:

H1 =
1
2

diag(1,−1,0, 0,0) , (1)

H2 =
1

2
p

3
diag(1,1,−2,0, 0) , (2)

H3 =
1

2
p

6
diag(1,1, 1,−3,0) , (3)

H4 =
1

2
p

10
diag(1, 1,1, 1,−4) , (4)

which we can assemble into a vector

H= (H1, H2, H3, H4) . (5)
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It will be convenient to use the simple roots

α1 = (1, 0,0, 0) , (6)

α2 =

�

−
1
2

,

p
3

2
,0, 0

�

, (7)

α3 =

�

0,−
1
p

3
,

√

√2
3

,0

�

, (8)

α4 =

�

0, 0,−
p

3

2
p

2
,

p
5

2
p

2

�

. (9)

The corresponding Cartan generators are:

Q1 = α1 ·H=
1
2

diag(1,−1, 0,0, 0) , (10)

Q2 = α2 ·H=
1
2

diag(0, 1,−1, 0,0) , (11)

Q3 = α3 ·H=
1
2

diag(0, 0,1,−1,0) , (12)

Q4 = α4 ·H=
1
2

diag(0, 0,0, 1,−1) . (13)

The static SU(2) monopole solution can simply be embedded [31] in SU(N). We first write
the asymptotic value of the adjoint scalar along the z-axis as

lim
z→∞

φ = v h ·H , (14)

where h is a unit vector.
For each simple root αi there is an SU(2) subgroup whose diagonal generator is

τ3
i = αi ·H . (15)

The basis of simple roots can be chosen such that

h ·αi ≥ 0 . (16)

The region of adjoint VEVs that satisfies (16) for a fixed set of simple roots is called the fun-
damental Weyl chamber. Then we can write the monopole solution [30] associated with the
ith root as

φ = r̂aτa
i v(h ·αi) f (r, v(h ·αi)) + v(h− (h ·αi)αi) ·H) , (17)

where, τa
i are generators (a = 1, 2,3) of the SU(2) subgroup associated with αi .

In a given Weyl chamber we can decompose the adjoint VEV into a piece that acts like an
adjoint of the SU(2) subgroup, given by

v(h ·αi)(αi ·H) (18)

and a remainder that acts like a singlet under the SU(2) subgroup, given by

v(h− (h ·αi)αi) ·H) . (19)

The magnetic field associated with the monopole (17) is [30]

B=
gi r̂
er2

, (20)
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where e is the electric coupling constant and the magnetic charge is given in terms of the dual
root vector α∗i :

gi = α
∗
i ·H , α∗i =

αi

α2
i

. (21)

For the case of SU(N), the dual root vector simplifies to α∗i = αi .
Compactifying onto R3×S1, the component of the gauge field along the S1 direction plays

the role of the adjoint scalar, and all the static monopole solutions continue to be solutions with
the spatial dependence entirely in R3. There is a fifth monopole as well, which is constructed
by performing a periodic gauge transformation along the S1 that takes the adjoint back to itself
after one period. This is the twisted, or KK, monopole [27,32]. It is associated with the lowest
root

α0 = −α1 −α2 −α3 −α4 . (22)

The simple roots along with α0 can be used to construct the affine (extended) Dynkin diagram,
which will be useful to us in what follows.

4 Warm-up Example: SU(5) with +

Let us first consider a non-chiral theory: SU(5) with chiral supermultiplets A and A, which

transform as the antisymmetric, , and its conjugate, , under SU(5). At a generic point on
the classical moduli space the antisymmetric VEVs can be gauge rotated to

A=











0 0 0 0 a
0 0 0 b 0
0 0 0 0 0
0 −b 0 0 0
−a 0 0 0 0











, A=











0 0 0 0 a
0 0 0 b 0
0 0 0 0 0
0 −b 0 0 0
−a 0 0 0 0











. (23)

D-flatness requires A†A− A
†
A= 0. With this matter content the 4D one-loop β function coef-

ficient is

b1 = 3 T (Ad)− T
� �

− T
� �

= 3 · 5− 2 ·
5− 2

2
= 12 , (24)

where T (R) is the index of the representation R.
With a = 0, the antisymmetric VEV b breaks SU(5) → SU(3)a × SU(2)b with Cartan

generators

Q1+2 =
1
2

diag(1,0,−1,0, 0) , (25)

Q3+4 =
1
2

diag(0,0, 1,0,−1) , (26)

Q2+3 =
1
2

diag(0,1, 0,−1,0) , (27)

while the broken U(1) generator is

X = 2(Q1 −Q4)−Q2 +Q3 =
1
2

diag(2,−3,2,−3,2) . (28)
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Q1+2 and Q3+4 are the Cartan elements of the SU(3)a while Q2+3 is the Cartan element of
SU(2)b. The scales of the SU(5) theory and the low-energy SU(3)a×SU(2)b theory are related
by

Λ8
(3a) =

Λ12

b4
, Λ6

(2b) =
Λ12

b6
. (29)

The antisymmetric decomposes as A ∼ 10→ (3,2) + (3,1) + (1, 1). The (3,2) and (3,2) are
eaten by the broken gauge bosons, so the low-energy theory has one flavor for SU(3)a and
no flavors for SU(2)b. The VEV b ̸= 0 classically lifts part of the Coulomb moduli. In other
words, on this mixed Higgs-Coulomb branch there are additional restrictions on the SU(5)
adjoint VEV,

φ = diag(v1, v2, v3, v4, v5) . (30)

Working in one particular region of the fundamental Weyl chamber (see Table 8 in Appendix B):

|v5| ≥ v1 ≥ |v4| ≥ v2 ≥ v3 ≥ 0≥ v4 ≥ v5 , (31)

we must further satisfy

v1 + v3 + v5 = 0 , v2 + v4 = 0 , (32)

that is, the VEVs take the form of the adjoint VEVs of the low-energy gauge group
SU(3)a × SU(2)b, and can be expanded in the basis Q1+2, Q3+4, and Q2+3. Eqs. (31) and
(32) imply

|v5|= v1 + v3 ≥ v2 . (33)

Turning on both antisymmetric VEVs (a and b) breaks SU(5) → SU(2)a × SU(2)b with
Cartan generators

Qa =Q1+2+3+4 =
1
2

diag(1, 0,0, 0,−1) , (34)

Qb =Q2+3 =
1
2

diag(0, 1,0,−1,0) , (35)

and there is a second broken U(1) generator

X ′ =Q1 +Q2 −Q3 −Q4 =
1
2

diag(1,0,−2,0, 1) . (36)

The scales of the SU(5) theory and the low-energy SU(2)a × SU(2)b theory are related by

Λ6
(2a) =

Λ12

a2 b4
, Λ6

(2b) =
Λ12

b6
. (37)

There are now further restrictions on the SU(5) adjoint VEV φ. At a generic point on the
mixed Higgs-Coulomb branch parametrized by (23) the adjoint VEV is restricted to have the
form

φ = diag(v1, v2, 0,−v2,−v1) , (38)

so we have VEVs corresponding to the adjoints of the unbroken gauge group SU(2)a×SU(2)b.
In other words, we are forced to be on the boundary of the region (31). We can approach this
boundary, for example, by taking

φ = diag(v1, v2, 2ε,−v2 − ε,−v1 − ε) , (39)
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satisfying the fundamental Weyl chamber conditions

v1 > v2, v2 > v3 = 2ε , v3 > v4⇒ v2 > −3ε , v4 > v5⇒ v1 > v2 , (40)

and finally taking the limit v3 = 2ε→ 0+. In this region of the moduli space, the zero mode
condition (see Eq. A.11 in the Appendix) for the kth doublet (Ai,k, Ai+1,k) from the antisym-
metric tensor on the ith BPS monopole shows that (A1,4, A2,4), (A3,2, A4,2) and (A4,1, A5,1) have
fermionic zero modes on monopoles 1, 3, and 4 respectively. The conjugate representation, A,
has the same distribution of zero modes.

The U(1) charges of the 4 BPS monopoles and the KK monopole are given in Table 3. The
charge of the monopole under QX , for example, can be calculated from (21) via Tr giQX . The

Table 3: Charges of the various SU(5) monopoles on R3 × S1.

monopole Q1 Q2 Q3 Q4 Qa Qb QX QX ′

1 1 0 0 0 1 -1 5
2

1
2

2 0 1 0 0 1 1 -5
2 1

3 0 0 1 0 1 1 5
2 -1

4 0 0 0 1 1 -1 -5
2 −1

2

KK -1 -1 -1 -1 -4 0 0 0

structure of the low-energy effective theories and the resulting composite monopoles is nicely
summarized in the affine (extended) Dynkin diagrams for SU(5) and its subgroups as shown
in Fig. 1.

Let’s take a look at the low-energy effective theory and the structure of the composite
monopoles in detail. Turning on only the b VEV produces various types of composite
monopoles that are neutral under the broken U(1)X (since X charges are confined). We are
primarily interested in composites that have two unlifted fermion zero modes, since these
are the only monopoles that contribute to the low-energy effective superpotential [3]. There
are four types of confined composite monopoles: monopole 1 with monopole 2, monopole 2
with monopole 3, monopole 3 with monopole 4, and monopole 1 with monopole 4. The KK
monopole itself is also neutral under the broken U(1)X . However, as the extended Dynkin dia-
gram for SU(2)b in Fig. 1 shows, the KK monopole and the confined 1+4 composite monopole
must combine together in order to serve as an effective KK monopole for the SU(2)b of the
low-energy effective theory. This indicates that there is an attractive force that is sufficiently
strong for the KK monopole to form a bound state [20, 21] with monopoles 1 and 4. Notice
that the KK monopole and the 1+4 composite have the opposite charge under the unbroken
generator Qa. The KK monopole must also appear by itself for the SU(2)a low-energy gauge
group, as shown in Fig. 1. In the presence of the b VEV the background adjoint VEV (30) can
be split into two pieces:

φ = diag(v1, 0, v3, 0,−v1 − v3) + diag(0, v2, 0,−v2, 0) (41)

≡ eφ3a + eφ2b , (42)

where eφ3a corresponds to an adjoint under the SU(3)a and a singlet under the SU(2)b, and eφ2b
corresponds to a singlet under the SU(3)a and an adjoint under the SU(2)b. Under SU(3)a,
the condition v3 > 0> −v1− v3 shows that all matter zero modes live on the second monopole
of SU(3)a, which is the composite of monopole 3 with monopole 4. The 3+4 composite thus
has four fermion zero modes (there are two SU(3)a gaugino zero modes as well) and does not
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Figure 1: The extended Dynkin diagrams for SU(5) and its subgroups: a) SU(5),
b) SU(3)a, c) SU(2)b, and d) SU(2)a. Each node represents a simple root, or the
lowest root (indicated by 0). Single lines between roots indicated roots separated
by 120◦, the absence of lines connecting roots means that they are orthogonal. The
double lines for SU(2) indicate that the ordinary simple root and the lowest negative
root are anti-parallel, since, with one Cartan element the weight space is only one-
dimensional.

contribute to the superpotential. That this is consistent can be seen by noting that two matter
zero modes on monopole 1 are lifted together with two gaugino zero modes by the Yukawa
coupling,

g A∗4,2λ2
2ψ2,4 + h.c. , (43)

where ψi, j represents the fermion component of the antisymmetric matter field A. Thus only
two gaugino zero modes are left in the 1+2 composite monopole. Similarly, two matter zero
modes on monopole 3 are lifted along with two gaugino zero modes by the Yukawa coupling,

g A∗2,4λ4
4ψ4,2 + h.c. , (44)

however, two matter zero modes on the monopole 4 remains unlifted, which makes a tally
of four zero modes on the 3+4 composite. One can similarly check that the 2+3 composite
and the KK+1+4 bound state have only two gaugino zero modes, so they contribute to the
superpotential. A sketch of each multi-monopole composite under SU(3)a×SU(2)b is shown in
Fig. 2. For multi-monopole composite diagrams throughout the paper we note that the fermion
zero mode can propagate along the flux-tube/string when monopoles are confined [33] and
we indeed move the zero modes to simplify the “resonance" diagrams.1 See Appendix C for
more details.

The effective superpotential is:2

W = ηY1Y2Y3Y4 +
1

Y1Y2AA
+η

Y2Y3

A2A
2 +

1

Y2Y3AA
. (45)

1For example, it should be understood in the 1+2 composite diagram of Fig. 2 that λ2
2 gaugino components of

monopole 1 and monopole 2 are lifted by the Yukawa coupling (43) and components of the gaugino zero modes
associated with the unbroken generator Q1+2 are not lifted.

2See Appendix B for details of Coulomb operators.
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It is conventional to drop the dependence on the radius R in the coefficients. Note that the first
term in (45) is just the single KK monopole, while the third term arises from the composite
of the KK monopole with monopole 1 and monopole 4, so that the Y1Y4 dependence cancels
between numerator and denominator.

Figure 2: A sketch of the multi-monopole composites in the low-energy
SU(3)a × SU(2)b theory. The antisymmetric VEVs are represented by a cross with
their color indices. See text for details.

This superpotential matches the low-energy effective superpotential for SU(3)a × SU(2)b
with matter in (3,1) + (3, 1), which is given by

W = η(3a)Y
(3a)

KK +
1

Y (3a)
1

+η(2b)Y
(2b)

KK +
1

Y (2b)
, (46)

where the matching is

η(3a) =
η

b4
, η(2b) =

η

b6
, Y (3a)

1 = Y1Y2 b2 , Y (3a)
2 = Y3Y4 b2 , (47)

Y (3a)
KK = Y1Y2Y3Y4 b4 = Y (3a)

1 Y (3a)
2 , Y (2b)

KK =
Y1Y2Y3Y4

Y1Y4
b2 = Y (2b) = Y2Y3 b2 . (48)

Note that the effective SU(3)a theory has the adjoint VEV, diag(v1, v3,−v1 − v3), and matter
zero modes on the second monopole.

Turning on the VEV a further requires that composites be neutral under U(1)X ′ , since then
X ′ charges are confined. The 1+2 composite and the 3+4 composite are not neutral under
U(1)X ′ but have opposite charges and thus can be confined together. The composite comprised
of monopoles 1, 2, 3, and 4 has two unlifted fermion zero modes, as seen in Fig. 3, and so
contributes to the low-energy superpotential.

Taking v3→ 0− from (39), we can get to the boundary of the fundamental Weyl chamber
region, (38), from another fundamental Weyl chamber region

|v5|> v1 > |v4|> v2 > 0> v3 > v4 > v5 , (49)

where there are matter zero modes on monopoles 1, 2, and 4. The difference between the
two regions is that certain fermion zero modes jump from monopole 2 to monopole 3. One
can see that once monopoles 2 and 3 are confined in the low-energy effective theory, the low-
energy physics is smooth as we cross the boundary and we arrive at the same set of composite
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Figure 3: A sketch of the four monopole composite contributing to the superpotential
in the low-energy SU(2)a × SU(2)b. The antisymmetric VEVs are represented by a
cross with their color indices.

monopoles as described above. In fact when monopoles 2 and 3 are confined there is a Nielsen-
Olesen flux-tube between them, and the fermion zero mode can propagate along the flux-
tube/string [33].

Thus at a generic point on the moduli space parametrized by (23), we find the superpo-
tential:

W = ηY1Y2Y3Y4 +
1

Y1Y2Y3Y4(AA)3
+η

Y2Y3

A2A
2 +

1

Y2Y3AA
, (50)

which matches the low-energy effective superpotential for SU(2)a × SU(2)b with no matter:

W = η(2a)Y
(2a) +

1
Y (2a)

+η(2b)Y
(2b) +

1
Y (2b)

, (51)

where the matching is given by

η(2a) =
η

a2 b4
, η(2b) =

η

b6
, (52)

Y (2a) = Y1Y2Y3Y4 a2 b4 = Y1Y2Y3Y4 (AA)3 , Y (2b) Y1Y2Y3Y4

Y1Y4
b2 = Y2Y3 AA . (53)

Taking the 3D limit, R→ 0, we have the 3D superpotential:

W3D =
1

Y1Y2Y3Y4(AA)3
+

1

Y2Y3AA
, (54)

which gives a runaway vacuum. Integrating out the lifted Yi ’s from (50) we can take the
R→∞ limit and get the 4D superpotential:

W4D = 2(εa + εb)

√

√

√
Λ12

(AA)3
, (55)

where εa,b = ±1, so there are two branches of the moduli space: one with a runaway ADS
superpotential, and an unlifted quantum moduli space for the meson AA with W4D = 0.

5 Chiral SU(5) on R3 × S1

With the matter content + F + (F + 1) for a 4D SU(5) theory, the one-loop β function
coefficient is

b1 = 3 T (Ad)− T
� �

− F T ( )− (F + 1)T
� �

= 3 · 5−
5− 2

2
−

F
2
−

F + 1
2
= 13− F . (56)

11

https://scipost.org
https://scipost.org/SciPostPhys.14.4.081


SciPost Phys. 14, 081 (2023)

In the fundamental Weyl chamber region (31), there are zero modes from on monopoles
1, 3, and 4, and one zero mode from each and on monopole 3. In other words, the first
fundamental monopole has two gaugino zero modes and a zero mode from a piece of the
antisymmetric, namely (A1,4, A2,4) which is a doublet under the SU(2) subgroup correspond-
ing to α1; the second monopole has two gaugino zero modes; the third monopole has two
gaugino zero modes, F fundamental zero modes, F + 1 antifundamental zero modes and a
zero mode from a piece of the antisymmetric, (A3,2, A4,2), which is a doublet under the SU(2)
subgroup corresponding to α3; and the fourth monopole has two gaugino zero modes and a
zero mode from a piece of the antisymmetric, (A4,1, A5,1), which is a doublet under the SU(2)
subgroup corresponding to α4. We will work with this fundamental Weyl chamber region (31)
throughout the rest of the paper.

5.1 SU(5) with F = 3: + 3 + 4

Let us first discuss the relation of this theory on R3×S1 to the 4D theory with +(F = 4) +5 .
The 4D F = 4 theory is s-confining [25] and has a superpotential which can be written in terms
of the gauge invariant composites (see Table 1):

W4D,F=4 =
1
Λ9

�

B2M3B1 − B1MB
2
1 − B0B2B1

�

. (57)

One can simply add a holomorphic (superpotential) mass term for one flavor and then inte-
grate out that flavor to obtain the superpotential with one less flavor. In practice this means
adding a linear term for a diagonal element of the meson, M44, and solving the equation of
motion. In 4D we end up with a superpotential

W4D,F=3 = X
�

B2B1M2 − B1B
2
1 −Λ

10
�

. (58)

The equation of motion for the Lagrange multiplier X produces a quantum constraint. Inte-
grating our flavors sequentially yields the first column of Table 2.

In the compactified theory on R3 × S1 we can add a real mass for one of the four flavors
and then integrate out the massive flavor which yields the superpotential

WF=3 = Y
�

B2B1M2 − B1B
2
1 −η
�

, (59)

where we have identified the surviving component of the meson containing only the massive
flavor with Y , i.e. Y = M44. Taking the real mass≫ 1/R to reach the 3D limit we have

W3D,F=3 = Y
�

B2B1M2 − B1B
2
1

�

. (60)

5.2 SU(5) with F = 2: + 2 + 3

At a generic point on the moduli space the antisymmetric VEV can be gauge rotated to

A=











0 0 0 0 a
0 0 0 b 0
0 0 0 0 0
0 −b 0 0 0
−a 0 0 0 0











, (61)
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which is invariant under SU(2)a × SU(2)b, with Cartan generators Qa, Qb, given in Eqs. (34)
and (35). D-flatness requires that the matter VEVs

Q f α =











q1,1 0
0 0
0 q2,3
0 0
0 0











, Q
∗
f ,α =













q∗1,1 0 0
0 q∗2,2 0
0 0 0
0 0 q∗3,4
0 0 0













, (62)

satisfy

2|a|2 = 2|a|2 + |q1,1|2 − |q1,1|
2 = |q2,3|2 = 2|b|2 − |q2,2|

2 = 2|b|2 − |q3,4|
2 . (63)

The matter VEVs break the entire gauge group. The gauge invariant operators for F = 2 are

SU(2) SU(3) U(1)1 U(1)2 U(1)R
M =QQ −1 −6 0
B2 = A2Q 1 −3 7 2

B1 = AQ
2

1 4 −1 −4

(64)

In 4D we have an instanton superpotential:

W =
Λ11

B2B1M
, (65)

which has a runaway vacuum, so far from the origin of the moduli space SUSY is approximately
restored.

5.2.1 F = 2, B2≫ B1≫ M

We will first consider the case with hierarchical VEVs:

B2≫ B1≫ M . (66)

For large matter VEVs, A,Q,Q≫ Λ, 1/R then we can map the composites (see Table 1) onto the
classical flat directions: B2 ∼ A1,5A2,4q2,3, B1 ∼ A2,4q2,2q3,4, M ∼ q1,1q1,1, which is a baryonic-
mesonic mixed branch. First we turn on only VEVs for B2 (i.e. a = b and q2,3). To be able to
do so, we have to restrict the adjoint VEVs to satisfy v3 = 0, v2+ v4 = 0 and v1+ v5 = 0, so that
the adjoint VEV is inside the low-energy gauge group. Thus the adjoint VEV is in the Cartan
of Sp(4):

φ = diag(v1, v2, 0,−v2,−v1) . (67)

The gauge symmetry breaks3 at the scale of the matter VEVs from SU(5) to Sp(4), and the
unbroken Cartan elements are:

Q2+3 =
1
2

diag(0,1, 0,−1,0) , (68)

Q1+4 =
1
2

diag(1,−1,0, 1,−1) . (69)

The broken U(1) generators are:

Q2−3 =
1
2

diag(0,1,−2,1, 0) , (70)

Q1−4 =
1
2

diag(1,−1,0,−1,1) . (71)
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Table 4: Embedding of representations of various subgroups into representations of
SU(5).

SU(5) → SU(4) → Sp(4) → SU(2)
5 → 4+1 → 4 +1 → (2+1+1)+1

10 → 6+4 → 5+1+4 → (2+2+1)+1+(2+1+1)
24 → 15+4+4+1 → 10+5+2 · 4 +1 → (3+2+2+3 · 1)+(2+2+1)+2(2+1+1)+1

The embedding of representations is shown in Table 4.
The vector supermultiplet eats the non-singlet pieces of the antisymmetric and one fundamen-
tal via the super-Higgs mechanism, so the low-energy Sp(4) theory has four fundamentals
(aka two flavors). The scales are related by

Λ11 = Λ7
(Sp) ab2 q2,3 . (72)

There are two confined composite monopoles that have the magnetic charges of the monopoles
of the effective Sp(4) theory and that are neutral under the broken U(1)’s, (70) and (71).
One of them is comprised of monopoles 2 and 3, and the other is comprised of monopoles
1 and 4. Four of the ten zero modes of the 2+3 composite are lifted by an antisymmetric
VEV and a fundamental VEV leaving six unlifted zero modes, so the 2+3 composite monopole,
Y (Sp)

1 = Y2Y3 b q2,3 = Y2Y3AQ, cannot contribute to the superpotential. Four of the six zero
modes of the 1+4 composite are lifted by two antisymmetric VEVs leaving exactly two unlifted
zero modes, so the 1+4 composite monopole, Y (Sp)

2 = Y1Y4ab = Y1Y4A2, does contribute to
the superpotential. With no further VEVs the superpotential would be

W = η(Sp)Y
(Sp)

1 Y (Sp)
2 +

1

Y (Sp)
2

= ηY +
1

Y1Y4 A2
. (73)

A sketch of two composite monopoles with their zero modes is shown in Fig. 4. The structure of

Figure 4: A sketch of the multi-monopole composites formed for F = 2 when the
gauge group breaks from SU(5) to Sp(4). The antisymmetric and squark VEVs, (61)
and (62), are represented as a cross with their color indices.

the low-energy effective theories and the resulting composite monopoles can be summarized
in the affine (extended) Dynkin diagrams for SU(5) and its Sp(4) subgroup as shown in Fig. 5.

3The description in terms of an Sp(4) gauge group for F = 2 is only approximate since small gauge invariants
(i.e. B1 and M in this case) cannot be exactly zero given the superpotential (65).
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Figure 5: The extended Dynkin diagrams for breaking patterns of SU(5): a) SU(5),
b) Sp(4), and c) SU(2)a. The directed double lines for Sp(4) indicate that the roots
are separated by 135◦, and the arrows point from a long root to a short root.

Turning on the B1 VEV (i.e the VEVs of q2,2 and q3,4) breaks Sp(4) to SU(2)a, and we have
to restrict the adjoint VEV to the adjoint of the unbroken SU(2)a, which means v2 → 0 and
v4 → 0. Accounting for eaten Goldstone bosons and their superpartners leaves the effective
SU(2)a theory with one fundamental and one antifundamental. The unbroken Cartan gener-
ator is Qa, given in Eq. (34), and the generator (68) is now broken. The scales of the gauge
groups are related by

Λ7
(Sp) = Λ

5
(2a) q2,2 q3,4 . (74)

The 2+3 composite and 1+4 composite are now confined by the antifundamental VEVs and
there is a composite comprised of monopoles 1, 2, 3 and 4 leaving four unlifted zero modes,
so it cannot contribute to the superpotential. The superpotential comes entirely from the KK
monopole:

W = η(2a)Y
(2a) = η(Sp)Y

(Sp)
1 Y (Sp)

2 = ηY , (75)

where Y (2a) = Y1Y2Y3Y4 ab2 q2,3 q2,2 q3,4 = Y1Y2Y3Y4 A2Q AQ
2
. A sketch of the 1+2+3+4 com-

posite monopole is shown in Fig. 6.

Figure 6: A sketch of the multi-monopole composite formed for F = 2 when the gauge
group breaks from SU(5) to SU(2)a; the antisymmetric and squark VEVs, (61) and
(62), are represented as a cross with their color indices.

Finally turning on the meson VEV M (i.e. q1,1 ̸= 0 and q1,1 ̸= 0) results in an instanton
that is a confined composite of the KK monopole and the 1+2+3+4 composite, leaving only
two unlifted zero modes. A sketch of the 1+2+3+4-KK instanton is shown in Fig. 7. The final
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Figure 7: A sketch of the instanton for F = 2.

superpotential (which agrees with the 4D calculation) is:

WF=2 =
ηY

((Y1Y4ab) (Y2Y3 b q2,3)q2,2 q3,4)q1,1 q1,1
=

η

B2B1M
. (76)

We can find the 3D limit by adding a real mass term for one flavor in the s-confining
+ 3 + 4 theory. After integrating out the heavy flavor we obtain a low-energy 3D theory

with a quantum modified constraint given by the superpotential

W3D,F=2 = λ
�

Y (B2B1M)− 1
�

. (77)

In the 3D limit the zero-modes of the massive flavor jump [32] to the KK monopole and it
decouples, leaving a composite monopole with no fermion zero modes. As with an instanton
in 4D [34] this gives a contribution to a scalar n-point function, which (using cluster decom-
position for gauge invariant operators) is equivalent to the constraint of the deformed moduli
space (77). The monopole diagram, shown in Fig. 8, contributes to a 3-point-function of gauge
invariants , in agreement with (77).

5.2.2 F = 2, B2≫ M ≫ B1

The case with hierarchical VEVs,

B2≫ M ≫ B1 , (78)

is similar to the previous subsection. For this case we use the squark VEVs

Q f α =











0 0
q1,2 0
0 q2,3
0 0
0 0











, Q
∗
f ,α =













q∗1,1 0 0
0 q∗2,2 0
0 0 0
0 0 0
0 0 q∗3,5













, (79)

where D-flatness requires

2|b|2 = 2|b|2 + |q1,2|2 − |q2,2|
2 = |q2,3|2 = 2|a|2 − |q1,1|

2 = 2|a|2 − |q3,5|
2 . (80)

For large matter VEVs we can map the composites (see Table 1) onto the classical flat direc-
tions: B2 ∼ A1,5A2,4q2,3, M ∼ q2,2q1,2, B1 ∼ A1,5q1,1q3,5. By turning on VEVs hierarchically,
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Figure 8: A sketch of the instanton contribution to the three-point function of gauge
invariants for F = 2 in the 3D, R→ 0 limit.

the gauge symmetry breaks from SU(5)→ Sp(4)→ SU(2)a, and finally is broken completely.
We again arrive the superpotential (76). In Appendix D we describe other regions of the lifted
moduli space with different patterns of hierarchical VEVs. All cases reproduce the same su-
perpotential, as expected.

5.3 SU(5) with F = 1: + + 2

We will start by looking at the parameterization of the antisymmetric VEV given in Eq. (61);
D-flatness requires squark VEVs

Qα =











0
0
q3
0
0











, Q
∗
f ,α =













0 0
q∗1,2 0
0 0
0 q∗2,4
0 0













, (81)

that satisfy

2|a|2 = 2|b|2 − |q1,2|
2 = |q3|2 = 2|b|2 − |q2,4|

2 . (82)

At a generic point on the moduli space the gauge group is completely broken and the moduli
space is parameterized by gauge invariant composite mesons and baryons:

Table 5: Global quantum numbers of gauge invariant composite fields for F = 1.

SU(2) U(1)1 U(1)2 U(1)R
M =QQ -1 -6 -1
B2 = A2Q 1 -2 3 2

B1 = AQ
2

1 2 -3 -6
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The antisymmetric and squark VEVs, (61) and (81), are both invariant under SU(2)a. For
large VEVs we can map the composites (see Table 5) onto the classical flat directions:

B2 ∼ A1,5A2,4q3 ∼ abq3 , (83)

B1 ∼ A2,4q1,2q2,4 ∼ bq1,2q2,4 , (84)

and we see that our choice of parameterization has placed us on a baryonic branch with M = 0.
We will also see shortly that there are (classically) also two meson branches with M ̸= 0, one
with B2 = 0 and one with B1 = 0

At the point on the baryon branch described by (61) and (81) the adjoint VEV is restricted
to

φ = diag(v1, 0, 0, 0,−v1) , (85)

and we see that this is a mixed Higgs-Coulomb branch. The VEVs of A, Q, Q break the gauge
symmetry to SU(2)a and the low-energy theory has no flavors. The adjoint VEV (85) breaks
SU(2)a down to U(1), and there is a corresponding composite monopole, where 6 gaugino
zero modes are lifted by three A VEVs, one Q VEV, and two Q VEVs. The corresponding super-
potential is:

WF=1 = ηY +
1

Y1Y2Y3Y4B2B1

. (86)

This corresponds to gaugino condensation in the low-energy SU(2) gauge group (which is
only broken by the adjoint VEV). In the 3D limit we find

W3D,F=1,baryonic =
1

Y1Y2Y3Y4B2B1

, (87)

which has a runaway vacuum. Integrating out Y = Y1Y2Y3Y4 from (86) we find the 4D super-
potential:

W4D,F=1,baryonic = 2ε
Λ6

q

B2B1

, (88)

where ε = ±1, so there are actually two runaway baryonic branches. Eq. (88) can also be
derived from the F = 2 superpotential (65) by adding a quark mass for one of the flavor, i.e.
adding mM22 to the superpotential and integrating out the composites that contain the heavy
flavor.

5.3.1 F = 1, Baryon Branch, B2≫ B1

We can first consider the hierarchical VEVs,

B2≫ B1 . (89)

With a large VEV for B2, the gauge symmetry breaks at the high scale from SU(5) to Sp(4),
and the low-energy Sp(4) theory4 has two fundamentals. The scales are related by

Λ12 = Λ8
(Sp) ab2 q3 . (90)

4The Sp(4) gauge symmetry is broken further unless B1 is exactly zero.
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The adjoint VEV has the form

φ = diag(v1, v2, 0,−v2,−v1) . (91)

The monopoles of the effective Sp(4) theory are YSp,1 = Y1Y4 a b and YSp,2 = Y2Y3 b q3, where
monopole 1 and 4 are confined, and monopole 2 and 3 are confined to be neutral under the
broken generators. In addition to the standard two gaugino zero modes, YSp,2 has two extra
zero modes corresponding to the two fundamentals. With no further VEVs the superpotential
is

W = η(Sp)YSp,1YSp,2 +
1

YSp,1
= ηY +

1
Y1Y4 ab

. (92)

Sketches of the two composite monopoles are shown in Fig. 9.

Figure 9: The multi-monopole composites for F = 1 on the baryonic branch when the
gauge group breaks from SU(5) to Sp(4). The antisymmetric and squark VEVs, (61)
and (81), are represented as a cross with their color indices.

Turning on the VEVs for the two fundamentals of the effective Sp(4) theory breaks Sp(4)
to SU(2)a, and the low-energy effective theory has no matter fields. The scales are related by

Λ8
(Sp) = Λ

6
(2) q1,2q2,4 . (93)

The composite monopoles YSp,1 and YSp,2 are now confined and make a composite comprised
of monopoles 1+2+3+4, leaving two unlifted zero modes, so this multi-monopole contributes
to the superpotential. A sketch of the 1+2+3+4 composite monopole is shown in Fig. 10.

Figure 10: The multi-monopole composite contributing to the superpotential for
F = 1 when the gauge group breaks from SU(5) to SU(2)a. The antisymmetric
and squark VEVs, (61) and (81), are represented as a cross with their color indices.
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The superpotential is

WF=1,baryonic = η2YSU(2) +
1

YSU(2)
= η(Sp)YSp,1YSp,2 +

1
YSp,1YSp,2 q1,2q2,4

(94)

= ηY +
1

Ya b2 q3 q1,2q2,4
(95)

= ηY +
1

Y B2B1

. (96)

Integrating out the Coulomb branch moduli Y we recover (88).

5.3.2 F = 1, Baryon Branch, B1≫ B2

Next, let’s consider the case with hierarchical VEVs,

B1≫ B2 . (97)

With a B1 VEV turned on, we have a large antisymmetric VEV b as well as VEVs for q1,2
and q2,4. The b VEV is invariant under SU(3)a × SU(2)b. The q1,2 and q2,4 VEVs further
reduce the gauge symmetry to SU(3)a, and the low-energy theory has one fundamental and
one antifundamental (one flavor). There confined monopoles are 1+2 and 3+4, while the
KK monopole is neutral under the broken generators. The scales of the SU(5) theory and the
low-energy SU(3)a theory are related by

Λ12 = Λ8
(3) b2q1,2 q2,4 . (98)

In region (31) of the fundamental Weyl chamber, turning on a VEV for B1 further restricts
the adjoint VEV v2,3,4→ 0 and v1+ v5→ 0, as in (85). Thus the VEVs for B2 (i.e. a and q3) can
be turned on without any further restriction on the adjoint. The VEVs a and q3 break SU(3)a
to SU(2)a leaving no matter fields in the effective theory. The scales are related by

Λ8
(3) = Λ

6
(2) a q2,3 . (99)

The neutral composite monopole is again 1+2+3+4, as shown in Fig. 10. The 1+2+3+4
monopole has two unlifted gaugino zero modes, so it contributes to the superpotential. We
again arrive the superpotential (96), and by integrating out the Coulomb branch moduli we
recover (88).

In Appendix. C we discuss composite monopoles that appear in another region of the Weyl
chamber region of Table 8 which allows an adjoint under the SU(3) on its boundary.

5.3.3 F = 1, Lifted Meson Branch

We can also consider the case of the meson branch where M is the largest gauge invariant VEV.
It will be useful to consider the following field VEVs:

A=











0 0 0 0 a
0 0 0 a 0
0 0 0 b 0
0 −a −b 0 0
−a 0 0 0 0











, (100)
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Qα =











0
0
q3
0
0











, Q
∗
f ,α =













0 0
0 0

q∗1,3 0
0 q∗2,4
0 0













. (101)

D-flatness requires

2|a|2 = 2|a|2 = 2|b|2 + |q3|2 − |q1,3|
2 = 2|a|2 + 2|b|2 − |q2,4|

2 , (102)

and

2ab = 0 . (103)

For large matter VEVs we can map the composites (see Table 5) onto the classical flat direc-
tions:

M1 ∼ q1,3 q3 , (104)

B1 ∼ A3,4q1,3q2,4 ∼ b q1,3q2,4 , (105)

B2 ∼ A1,5A2,4q3 ∼ a2 q3 . (106)

So we see that classically there are two meson branches: one where B2 vanishes and one
where B1 vanishes, depending on whether we choose a = 0 or b = 0. Since the baryon branch
already gives all the branches obtained by integrating out one flavor from the F = 2 case (65)
we should expect that the meson branches are completely lifted, the question is: how are the
meson branches lifted?

Turning on the VEVs q3 and q1,3 (i.e. an M VEV) breaks the gauge symmetry from SU(5)
to SU(4), and the low-energy SU(4) theory has an antisymmetric, one fundamental and one
antifundamental; the fundamental comes from the components of antisymmetric tensor A.
The scales are related by

Λ12 = Λ10
(4) q3 q1,3 . (107)

Turning on the a VEV (i.e. a B2 VEV), breaks the gauge symmetry from SU(4) to Sp(4),
and the low-energy Sp(4) theory has two fundamentals. The scales are related by

Λ10
(4) = Λ

8
(Sp) a

2 . (108)

The composite monopoles are 2+3 and 1+4 as shown in Fig. 9. Since the low-energy Sp(4)
theory has two fundamentals there is a low-energy D-flat direction which would run away,
at least according to the ADS superpotential. This flat direction corresponds to b q2,4 ̸= 0,
however we know that this is not a D-flat direction of the full SU(5) theory. This is an example
of a non-decoupling D-term [35]. Without the non-decoupling D-term the gauge group breaks
to SU(2), the scales would be related by

Λ8
(Sp) = Λ

6
(2) b q2,4 , (109)

and the superpotential would be

WF=1,SU(2) = ηY +
1

Y q1,3 q3 a2 b q2,4
. (110)
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The full D-term potential is

Da = −T am
n

�

〈A†A〉+ 〈AA†〉+ 〈Q†Q〉 − 〈Q
†
Q〉
�n

m
(111)

VD =
1
2

DaDa =
1
10

�

8|a|4 + 12|b|4 + |a|2
�

8|b|2 − 8|q3|2 + 8|q1,3|
2 − 2|q2,4|

2
�

+6|b|2
�

|q3|2 − |q1,3|
2 − |q2,4|

2
�

+ 2|q3|4 − 4|q3|2|q1,3|
2

+|q3|2|q2,4|
2 + 2|q1,3|

4 − |q1,3|
2|q2,4|

2 + 2|q2,4|
4
�

, (112)

where T a are the SU(5) generators.
Let’s suppose b, q2,4≪ a (so that the SUSY breaking is parametrically small). In this limit

we can minimize the full scalar potential:

V =

�

�

�

�

∂W
∂ a

�

�

�

�

2

+

�

�

�

�

∂W
∂ b

�

�

�

�

2

+

�

�

�

�

∂W
∂ q3

�

�

�

�

2

+
∑

i

�

�

�

�

∂W
∂ qi

�

�

�

�

2

+

�

�

�

�

∂W
∂ Y

�

�

�

�

2

+ VD (113)

=
1

|a2 b q3 q1,3 q2,4 Y |2

�

4
|a|2
+

1
|b|2

+
1
|q3|2

+
1
|q1,3|2

+
1
|q2,4|2

+
1
|Y |2

�

+ |η|2 − 2Re

�

η

a2 b q3 q1,3 q2,4 Y 2

�

+ VD , (114)

Since Y is bounded on R3×S1 we see that the semi-classical F -terms diverge if any of the matter
VEVs goes to zero, while the D-term potential is only minimized at b = q2,4 = 0, so SUSY is
broken on this branch, or in other words, this branch is lifted. The potential is minimized with
respect to Y by:

Y = ±

√

√

√
1

η a2 b q3 q1,3 q2,4
. (115)

Since Y is dimensionless we can easily restore the dependence on R using η = (RΛ)12, which
gives

Y = ±

√

√

√
1

R18Λ12 a2 b q3 q1,3 q2,4
. (116)

Since V is dimension 4, we have

V =
Λ12

|a2 b q3 q1,3 q2,4|

�

4
|a|2
+

1
|b|2

+
1
|q3|2

+
1
|q1,3|2

+
1
|q2,4|2

�

+ VD . (117)

For a ≃ q3 ≃ q1,3 and b ≃ q2,4 the potential is minimized with

b, q2,4∝
Λ2

a
, (118)

so for a≫ Λ, SUSY breaking is indeed parametrically small, as we assumed. More generally,
as we will see in Sec. 6, even without supersymmetry, monopoles contribute to the scalar
potential with inverse powers of the scalar VEVs, so with the D-term potential (112) SUSY
must be broken on this branch.

Alternatively taking b ∼ q2,4≫ a we break from SU(4) to a low-energy SU(3) theory with
a fundamental and an antifundamental. The low-energy SU(3) theory by itself has a D-flat
direction that corresponds to the a direction, but with b ̸= 0 this is not a flat direction of
SU(5). Again the F -terms diverge at a = 0 while the D-terms are minimized at a = 0. So we
have shown that in either case, B1 = 0 or B2 = 0, the meson branch is completely lifted, as
expected.

For both cases, in the 3D limit, Y is no longer bounded and the matter VEVs can approach
zero as Y runs away to infinity on the Coulomb branch.
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6 SUSY Breaking: SU(5) with +

It is well known that this theory breaks SUSY, this has been argued from a variety of perspec-
tives [36–46]. From our results in section 5 we can see a simple new argument for SUSY
breaking. Adding a mass term for the flavor in the F = 1 theory to the superpotential (88) we
have

Wbreak = 2ε
Λ6

q

B2B1

+mM11 . (119)

Since the ADS superpotential term is independent of the meson we see that this breaks SUSY
by the Polonyi mechanism [47]. For a more dynamical understanding we can return to R3×S1,
but first it is worth noting what we should expect to find. There are no D-flat directions, so
there is no moduli space. There are however two gauge invariant operators composed of Q, A
and gauginos:

S = λs
c1
λr

s Q
t
At rAc2c3

Ac4c5
ϵc1c2c3c4c5 , (120)

S′ = λs
aλs, bc1dc2

Q
r
At uAr c3

Ac4c5
ϵa b d t uϵc1c2c3c4c5 , (121)

The tensor products of representations of SU(5) corresponding to the gauge singlets S and S′

are shown in Table 6.

Table 6: The tensor products of representations of SU(5).

(24× 24)s = 1+ 24+ 75+ 200
5̄× 10 = 5+ 45

10× 10 = 5̄s + 45a + 50s

(10× 10× 10)s = 45+ 45+ 45+ 175′′

5̄ ×45 = 24+ 75+ 126

The difference between S and S′ is just whether the matter fields are contracted to the
24 or the 75 dimensional representation. Instanton calculations require that at least one of
S or S′ must be non-zero [36–38, 40,42]. Taking the instanton generated ‘t Hooft vertex and
connecting all the matter fermion zero-modes to a gaugino zero mode using a Yukawa coupling
to a scalar we see that the instanton gives a non-zero amplitude for S or S′ as well as two gauge
invariants formed from gaugino bilinears. A non-zero VEV for S or S′ requires that the gauge
symmetry is broken to SU(2). In our standard region of the Weyl chamber (31) this we are
restricted to SU(2)a. The embedding of representations is shown in Table 7.

Table 7: Embedding of representations SU(2)a into representations of SU(5).

SU(5) → SU(2)
5 → 2+ 3 · 1
10 → 3 · 2+ 4 · 1
24 → 3+ 6 · 2+ 9 · 1

We can examine the SUSY breaking with VEVs for the scalar components of A and Q given
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by:

A=











0 0 0 0 a
0 0 0 b 0
0 0 0 0 0
0 −b 0 0 0
−a 0 0 0 0











, Q
∗
α =











0
0
0
q∗

0











, (122)

which have a non-vanishing D-term potential, and break the gauge symmetry from SU(5) to
SU(2)a. The D-term potential is:

Da = −T am
n

�

〈A†A〉+ 〈AA†〉 − 〈Q
†
Q〉
�n

m
, (123)

VD−term =
1
2

DaDa =
1
5

�

6|a|4 + 6|b|4 + |q|4 − 8|b|2|a|2 + 2|a|2|q|2 − 3|b|2|q|2
�

. (124)

Note that there are not enough massless bosons for the super Higgs mechanism to occur,
since each vector supermultiplet would have to eat an entire chiral supermultiplet. However
without SUSY each massive gauge boson needs to eat only one real scalar degree of freedom
and there are enough Goldstone bosons for this non-SUSY breaking pattern. So even before
accounting for the D-terms, SUSY must be broken in order to reduce the unbroken gauge
symmetry down to SU(2)a. This also means that there are some gauginos that remain massless
even though their superpartner gauge bosons become massive. This is analogous to what
happens in SUSY QCD with a boundary condition that forces a VEV for a fundamental but not
for an antifundamental. In our case, massless broken gauginos appear in both doublet and
singlet representations of SU(2)a.

With matter VEVs breaking SU(5) down to SU(2)a, the unbroken Cartan element is
Q1+2+3+4 as given in (34). The monopoles must be confined to form a composite monopole
as shown in Fig. 11a.

(a) (b)

Figure 11: A sketch of multi-monopole composites for F = 0. The monopole that
generates the ‘t Hooft vertex (126) is shown in (a) and the composite that generates
the ‘t Hooft vertex (128) is shown in (b). The antisymmetric and squark VEVs, (122),
are represented as a cross with their color indices. Two of the gaugino zero modes in
(b) remain massless even though their superpartner gauge bosons are massive. Note
the the KK monopole can form a bound state with the 1-4 composite, as in Sec. 4.

This gauge breaking pattern produces a variety of elementary and composite monopoles.
Since the VEVS do not allow for a supersymmetric spectrum, we cannot discuss their effects
using a superpotential. However, as described in ref. [23], we can look at the scalar potential
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terms generated by joining monopoles to antimonopoles by connecting all the unlifted gaugino
legs with ordinary propagators. First let us look at the various types of ‘t Hooft vertices that are
produced. The simplest vertex is just from the KK monopole which (as we saw in section 4)
can form bound states but is not confined. The corresponding ‘t Hooft vertex is:

OKK = R12Λ13 Y λ2 , (125)

where we have reintroduced the dependence on R using η= (RΛ)13. The monopole of SU(2)a
shown in Fig. 11a generates an ‘t Hooft vertex given by

Oa =
a∗b∗2q∗

R2 |a|2|b|2(|b|2 + |q|2)2Y
λ4 . (126)

To understand the field dependence we need to recall the path-integral calculation of ref. [12],
which included integrations over bosonic and fermionic zero modes. Three of the bosonic zero
modes are collective coordinates representing the location of the center of the monopole in R3.
There are also collective coordinates for each of the flux-tube lengths, ρi . In this case we have
reduced the rank of the gauge group by 3, so there are three collective coordinates correspond-
ing to relative monopole positions. When we integrate over these collective coordinates the
exponential damping by the gauge boson mass term in the action gives a dominant contribu-
tion [12] from

ρi ∼
1

R|Mi|2
, (127)

where Mi is the mass of the broken U(1) gauge boson associated with the flux tube. In the
case at hand the flux-tube between monopoles 1 and 4 is set by the VEV a, between 2 and 3 by
the VEV b. However between the composite monopoles 1+4 and 2+3, both the b and q VEVs
contribute to the gauge boson mass, so we find the non-holomorphic structure in Eq. (126).

There is also an instanton generated vertex from the breaking of SU(2)b as shown in
Fig. 11b which yields

Ob =
R14Λ13 a∗b∗2q∗

(|a|2 + |b|2)2|b|2|q|2
λ6 . (128)

In this case the final breaking of SU(2)b is entirely due to the q VEV, so the mass scale for this
collective coordinate is set entirely by this VEV, while the flux-tube between monopoles 1 and
4 depends on both a and b.

The monopole–anti-monopole and instanton–anti-instanton contributions to the scalar po-
tential are found by integrating out gaugino lines that leave the monopole/instanton and enter
the anti-monopole/instanton [23]. There are further contributions where scalar VEVs are re-
moved and the left-over legs are connected in the same fashion as the gaugino legs were. These
latter contributions do not qualitatively change the results and, in any case, are less singular
for small VEVs.

As in section 5.3.3 we find that since Y is bounded there is a semi-classical contribution to
the scalar potential that diverges when any of the VEVs vanish, while the D-term potential is
only minimized when all the VEVs vanish, so SUSY is indeed broken.

In the 3D limit, Y can become arbitrarily large, so the semi-classical potential terms can
become arbitrarily small while the D-term potential is minimized with all the matter VEVs
approaching zero, so we have a runaway vacuum on the Coulomb branch.
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7 Conclusions

In this paper we have investigated N = 1 supersymmetric chiral gauge theories compactified
on R3× S1. Monopole confinement via rank reduction of the gauge group dynamically gener-
ates superpotentials which can be calculated semi-classically. We found that the structure of
the composite multi-monopoles can be read off from the affine Dynkin diagrams of the gauge
group and its unbroken subgroup. Taking the 4D limit by integrating out the Coulomb branch
moduli results in ADS-like 4D superpotentials. The pre-ADS superpotentials on R3 × S1 for

matter content + and + F + (F + 1) were studied in detail, and their 4D limits were
found to be correct, which provides an important cross-check on the calculations. The F = 1
case is particularly interesting since we were able to show that the meson branch is completely
lifted and that the superpotential only depends on the baryon composite fields. This in itself
is enough to show, in a novel way, that SUSY is broken when the single flavor is integrated
out. For the F = 0 case we were able to show that the composite monopoles drive SUSY
breaking even though the analysis is much more complicated due to the manifest absence of
supersymmetry in the spectrum.

Since it is known that composites of all the monopoles of a compactified gauge theory
(including the KK monopole) map to periodic instantons [27] in the 4D limit, it would be
very interesting to understand in more detail what kind of periodic structures the 4D limit
of the partial composites correspond to. It would also be interesting to extend the type of
analysis presented here to non-SUSY gauge theories at finite temperature, which are known
to be described by compactification on a circle with a radius given by the inverse temperature,
and have analogs of the monopoles discussed here, called calorons in the literature [54–56].
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A Zero Mode Conditions on Monopoles

The condition for a zero mode from the Callias index theorem [48–51] is that the absolute
value of the singlet mass contribution, |m|, is smaller than the adjoint VEV contribution to the
mass, v

2 :

|m|<
v
2

, (A.1)

where v is the asymptotic adjoint scalar VEV. For an SU(2) doublet from a fundamental repre-
sentation of SU(N) we have

�

�

�

�

1
2

Tr v(h− (h ·αi)αi) ·H)Pi

�

�

�

�

<
v(h ·αi)

2
, (A.2)

where Pi with i = 1,2, . . . , N − 1 is a projector onto the SU(2) subspace:

Pi = 4(αi ·H)2 . (A.3)

We can write the SU(N) asymptotic adjoint VEV, up to a gauge transformation, as

φ = diag(v1, v2, · · · , vN ) , v1 + v2 + · · ·+ vN = 0 , (A.4)
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where

vh ·αi = vi − vi+1 > 0 , (A.5)

which requires that we are inside the fundamental Weyl chamber (16). Then the zero mode
condition for the fundamental representation (A.2) on the i’th BPS monopole reads

|vi + vi+1|< vi − vi+1 . (A.6)

For the antisymmetric representation we need a little more work. We can decompose the
representations of SU(N) into representations of SU(2)× SU(N − 2)× U(1) as

= N→ (2, 1) N−2p
2N
+ (1,N− 2)−p2

N
, (A.7)

=
N(N− 1)

2
→ (1, 1)p2(N−2)

N
+
�

1,
(N− 2)(N− 3)

2

�

−2
p

2
N

+ (2,N− 2) N−4p
2N

. (A.8)

The antisymmetric representation decomposes into N −2 doublets under the SU(2) subgroup
and there is an additional singlet contribution to the mass.

The zero mode condition for a k’th doublet (Ai,k, Ai+1,k) of an antisymmetric tensor on the
i’th BPS monopole is

�

�

�

�

1
2

Tr v(h− (h ·αi)αi) ·H)Pi +mA

�

�

�

�

<
v(h ·αi)

2
, (A.9)

which in the fundamental Weyl chamber reads
�

�

�

vi + vi+1

2
+ vk

�

�

�<
vi − vi+1

2
. (A.10)

The condition (A.10) can be written explicitly as











vi > |vk|> vi+1 > 0> vk ,
|vi+1|> vk > |vi|> 0> vi > vi+1 ,
vi > |vk|> |vi+1|> 0> vi+1 > vk ,
|vi+1|> vk > vi > 0> vi+1 .

(A.11)

It is possible for zero modes to exist on the KK monopole for SU(N) when N > 4.
Around the KK monopole we have an anti-periodic fermion solution with time dependence
exp(±i x4/2R). In 4D the ∂4 derivative shifts the fermion mass by ±1/2R, which means the 3D
Dirac equation has an effective real mass [32]

meff = m∓
1

2R
. (A.12)

The asymptotic adjoint VEV is also replaced as [27]

v′ =
1
R
− v , (A.13)

where v is the asymptotic VEV of the adjoint under the SU(2) subgroup corresponding to sum
of the N −1 simple roots of SU(N). Thus the zero mode condition (A.1) for the KK monopole
is translated to |m∓ 1

2R |<
1

2R −
v
2 . In other words the zero mode condition is satisfied provided

m>
v
2

, or m< −
v
2

, (A.14)
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which can be translated as
�

�

�

�

1
2

Tr v(h− (h ·α0)α0) ·H)P0 +mr

�

�

�

�

>
v(h ·αi)

2
, (A.15)

where α0 = α1+α2+ · · ·+αN−1 is the sum of the N −1 simple roots, P0 is a projector onto the
SU(2) subspace corresponding to α0, and mr is an possible additional real mass contribution
other than a real mass from adjoint VEVs of the SU(2) subspace.

In the fundamental Weyl chamber the following inequality is always true:
�

�

�

�

1
2

Tr v(h− (h · ᾱ)ᾱ) ·H)P0

�

�

�

�

=
|v1 + vN |

2
<

v1 − vN

2
=

v(h · ᾱ)
2

. (A.16)

Thus the zero mode condition on the KK monopole, (A.14), for the fundamental representation
under SU(N) cannot be satisfied unless there is an additional real mass contribution. For the
antisymmetric representation the zero mode condition for a k’th doublet (A1,k, AN ,k) on the KK
monopole, i.e. (A.15), reads

�

�

�

v1 + vN

2
+ vk

�

�

�>
v1 − vN

2
, (A.17)

where k = 2,3, . . . , N − 1. For N ≤ 4, the condition (A.17) cannot be satisfied and there is no
zero mode on the KK monopole. This can be proved as follows. We can first assume v1 > |vN |.
Then for N ≤ 4 it is easy to check that |vN |> vk > vN where the first inequality holds because
otherwise vi ’s cannot sum up to zero, and the second inequality comes from the fundamental
Weyl chamber condition (16). Then we get
�

�

�

v1 + vN

2
+ vk

�

�

�<
�

�

�

v1 + vN

2

�

�

�+ |vk|<
�

�

�

v1 + vN

2

�

�

�+ |vN |=
v1 + vN

2
− vN =

v1 − vN

2
, (A.18)

so the condition (A.17) cannot be satisfied for N ≤ 4. When v1 < |vN | we analogously have
v1 > |vk| for the tracelessness and get
�

�

�

v1 + vN

2
+ vk

�

�

�<
�

�

�

v1 + vN

2

�

�

�+ |vk|<
�

�

�

v1 + vN

2

�

�

�+ |v1|= −
v1 + vN

2
+ v1 =

v1 − vN

2
, (A.19)

which concludes the proof. For N > 4 there can be a zero mode on the KK monopole in some
region of the Weyl chamber. The N = 5 case is explicitly studied in next section.

B Coulomb Branches and Operators

On the circle, in the absence of matter, SU(N) is broken down to U(1)N−1 by the adjoint scalar
giving a Coulomb branch moduli space. Classically, the Coulomb branch is a cylinder [3] R×S1

described by N − 1 moduli:

Yi ∼ exp (Φ ·αi2πR/g2) , (B.1)

where Φ is the chiral superfield whose lowest component contains the adjoint scalar φ, αi are
the simple roots, R is the radius of the circle, and g is the 4D gauge coupling. The 3D gauge
coupling is defined by

1

g2
3

=
2πR
g2

. (B.2)
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The number of independent Coulomb branch operators depend on the number of singular-
ities where a matter field becomes massless. For an SU(5) gauge theory, the adjoint scalar φ
has VEV (up to gauge transformation) given by

φ = diag(v1, v2, v3, v4, v5) , v1 + v2 + v3 + v4 + v5 = 0 , (B.3)

along with the fundamental Weyl chamber condition (16). The Coulomb branch singularities
are v2,3,4 = 0 for massless fundamentals; and v1 + v4,5 = 0, v2 + v3,4,5 = 0 and v3 + v4 = 0
for massless antisymmetric matter representations. Higgs branches pinch off the Coulomb
branches at those singularities.

In the fundamental Weyl chamber of SU(5) with the matter content shown in Table 1 we
summarize the various regions in Table 8. Note that there are zero modes from the antisym-

Table 8: Regions of the fundamental Weyl Chamber of SU(5) where F = F + 1 and
NA = 1.

Region Zero Modes
Coulomb
Operators

v1 > 0> v2 > v3 > v4 > v5

�

F + F + 3NA

�

n1 Ẏ1, Ẏ2, Ẏ3, Ẏ4

v1 > |v3|> v2 > 0> v3 > v4 > v5 (F + F)n2 + 3NAn1 eY1, eY2, Ẏ3, Ẏ4

v1 > |v4|> v2 > |v3|> 0> v3 > v4 > v5 (F + F)n2 + NA(2n1 + n3) Y ′1 , eY2, eY3, Ẏ4

v1 > |v5|> v2 > |v4|> 0> v3 > v4 > v5 (F + F)n2 + NA(n1 + n2 + n4) Y ′′′1 , Y ′2 , Y ′3 , eY4

|v5|> v1 > v2 > |v4|> 0> v3 > v4 > v5 (F + F)n2 + NA(n2 + 2n4) Y ′′1 , Y ′2 , Y ′3 , Y ′′4
v1 > v2 > |v5|> 0> v3 > v4 > v5 (F + F + 2NA)n2 + NAnKK Ŷ1, Ŷ2, Y ′3 , Ŷ4

|v4|> v1 > v2 > v3 > 0> v4 > v5 (F + F + 2NA)n3 + NAnKK Ÿ1, Y2, Ÿ3, Ÿ4

v1 > |v5|> |v4|> v2 > v3 > 0> v4 > v5 (F + F)n3 + NA(2n1 + n3) Y ′1 , Y2, Y3, Ẏ4

|v5|> v1 > |v4|> v2 > v3 > 0> v4 > v5 (F + F)n3 + NA(n1 + n3 + n4) Y1, Y2, Y3, Y4

|v5|> v1 > v2 > |v4|> v3 > 0> v4 > v5 (F + F)n3 + NA(n2 + 2n4) Y ′′1 , Y ′′2 , Y ′′3 , Y ′′4

|v5|> v1 > v2 > v3 > |v4|> 0> v4 > v5 (F + F)n3 + 3NAn4 Y ′′1 , Y ′′′2 , Y ′′3 , Y ′4

v1 > v2 > v3 > v4 > 0> v5

�

F + F + 3NA

�

n4 Y ′′1 , Y ′′′2 , Y ′′′3 , Y ′′′4

metric tensor on the KK monopole in some regions. The total number of zero modes in each
region is consistent across the regions as required by the fact that the total number of zero
modes in R3 × S1 for all N monopole solutions including the twisted KK monopole solution
should match the number of zero modes of the one 4D instanton given by the Atiyah-Singer
index theorem [50,51].

The Coulomb branch singularities v2,3,4 = 0, v1 + v4,5 = 0, v2 + v3,4,5 = 0 and v3 + v4 = 0
set the boundaries between regions in Table 8. (Not all of the singularities are on the bound-
ary of a given region.) Whenever zero modes jump from monopole i to monopole j when
we cross the boundary from a certain region to another, new independent Coulomb operators
for the monopole i and j have to be introduced for the region we are moving into. Continu-
ity is maintained by the fact that near the boundary the monopoles involved in the jumping
must be bound together. In the last column in Table 8 we find 30 Coulomb operators in total.
Among the 30 Coulomb operators only 12 operators (which do not have a matter zero mode)
are lifted. However, the remaining 18 unlifted operators are not all independent, and actu-
ally there are only two globally defined operators parametrizing the unlifted Coulomb moduli
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throughout the Coulomb branch. Integrating out all lifted fields only these globally defined
fields and the fields in the Higgs branch appear in the effective superpotential. The first glob-
ally defined modulus is Y ≡ Y1Y2Y3Y4 described by the adjoint under the SU(2) corresponding
to α1 +α2 +α3 +α4:

Y ↔











v
0

0
0
−v











. (B.4)

Ten regions in Table 8 (all but the two regions that have zero modes on the KK monopole5)
can reach the SU(2) adjoint (B.4) on their boundary, specifically by taking v2,3,4→ 0. That is
to say, Y should be continuous across the 10 regions, which imposes 9 constraints. Note that
the twisted monopole solution [27] associated with the lowest root (22) can be described by
the moduli Y . The superpotential contribution by the KK monopole is given by

WKK = exp

�

−
4π

g2
3R
−

4π2(vN − v1)
g2

3

�

= ηY , (B.5)

where

η= exp

�

−
4π

g2
3R

�

= exp

�

−
8π2

g2
4(1/R)

�

= (Rµ0)
b exp

�

−
8π2

g2
4(µ0)

�

≡ (RΛ)b . (B.6)

There is another globally defined modulus eY ≡
p

(Y1Y2Y3Y4)Y2Y3
,6 corresponding to the

adjoint:

eY ↔











v
v

0
−v
−v











. (B.7)

The eY direction breaks the gauge symmetry from SU(5)→ (SU(2)2 × U(1)2)/Z2. Only eight
regions in Table 8 (all but the first two and the last two regions) can reach to the adjoint (B.7)
on its boundary, specifically by taking v3→ 0, v2+v4→ 0 and v1+v5→ 0 together with v2→ v1.
Then eY should be continuous across the eight regions, which imposes other 7 constraints. Thus
total 16 constraints reduce the 18 unlifted local Coulomb moduli to two degrees of freedom,
and we can describe the unlifted local Coulomb moduli in terms of the globally defined moduli
Y and eY throughout the Coulomb branch.

C Dynamics in other Weyl chamber regions

Throughout this section we will study multi-monopole configuration in a different region of
the fundamental Weyl chamber:

|v5|> v1 > v2 > |v4|> v3 > 0> v4 > v5 , (C.1)

5Unlike SU(N) with N ≤ 4 and an antisymmetric tensor, for N ≥ 5 the modulus Y is not globally defined in all
regions of the Weyl Chamber due to the presence of zero modes on the KK monopole in some regions.

6Because of the square root in the definition there can be half-integer charged monopoles [52,53].
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unless otherwise specified. In this region of the fundamental Weyl chamber the first funda-
mental monopole has two gaugino zero modes, the second monopole has two gaugino zero
modes and a zero mode from the antisymmetric tensor doublet (A2,4, A3,4) under the SU(2)
subgroup corresponding to α2, the third monopole has two gaugino zero modes, F fundamen-
tal zero modes, F +1 antifundamental zero modes, and the fourth monopole has two gaugino
zero modes and two antisymmetric zero modes, one from each of the doublets (A4,1, A5,1) and
(A4,2, A5,2) under the SU(2) subgroup corresponding to α4.

Note that the Coulomb operators, Y ′′1 , Y ′′2 , Y ′′3 , and Y ′′4 , for the region (C.1) are not identical
to the Coulomb operators for the region (31) described in the main text. For brevity, we will
substitute Y ′′i → Yi throughout this section.

C.1 SU(5) with F = 2: + 2 + 3

C.1.1 F = 2, M ≫ B2≫ B1

Let’s consider the case with hierarchical VEVs:

M ≫ B2≫ B1 . (C.2)

For this case we parametrize the antisymmetric VEV as

A=











0 0 0 0 a
0 0 0 0 0
0 0 0 b 0
0 0 −b 0 0
−a 0 0 0 0











, (C.3)

and the squark VEVs as

Q f α =











0 0
q1,2 0
0 q2,3
0 0
0 0











, Q
∗
f ,α =













q∗1,1 0 0
0 0 0
0 q∗2,3 0
0 0 0
0 0 q∗3,5













, (C.4)

where D-flatness requires

2|b|2 = 2|b|2 + |q2,3|2 − |q2,3|
2 = |q1,2|2 = 2|a|2 − |q1,1|

2 = 2|a|2 − |q3,5|
2 . (C.5)

For large matter VEVs we can map the composites (see Table 1) onto the classical flat direc-
tions: M ∼ q2,3 q2,3, B2 ∼ A1,5A3,4q1,2, B1 ∼ A1,5q1,1q3,5.

First we turn on the VEVs q2,3 and q2,3. To be able to do so, we have to restrict the adjoint
VEVs to satisfy v3→ 0, i.e.

φ = diag(v1, v2, 0, v4,−v1 − v2 − v4) . (C.6)

Note that contrary to the Weyl chamber region (31), to restrict v3 → 0 does not require
v1 + v5 → 0 nor v2 + v4 → 0 in region (C.1) and the adjoint VEV is in the Cartan of SU(4),
since the matter VEVS break the he gauge symmetry from SU(5) to SU(4). Two matter zero
modes on monopole 3 are lifted along with two gaugino zero modes by the Yukawa coupling,

g q∗3λ3
3 Q3 + h.c. , (C.7)
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and the low-energy theory has an antisymmetric, two fundamentals, and two antifundamen-
tals. One fundamental zero mode comes from the components of antisymmetric tensor. The
scales are related by

Λ11 = Λ9
(4) q2,3 q2,3 . (C.8)

The unbroken Cartan elements are:

Q1 =
1
2

diag(1,−1, 0,0, 0) , (C.9)

Q2+3 =
1
2

diag(0,1, 0,−1,0) , (C.10)

Q4 =
1
2

diag(0,0, 0,1,−1) . (C.11)

The broken Cartan elements is:

X =Q1 + 2Q2 − 2Q3 −Q4 =
1
2

diag(1, 1,−4, 1,1) . (C.12)

There is a confined composite monopole comprised of monopole 2 and monopole 3 to be
neutral under the broken generator. The 2+3 composite monopole has two gaugino zero
modes, two fundamental zero modes, and two antifundamental zero modes unlifted, so it
cannot contribute to the superpotential. The fundamental monopole 1 has two zero modes
unlifted, so it does contribute to the superpotential. Monopole 4 has four zero modes, so it
doesn’t contribute to the superpotential. We have a superpotential:

W = η4YSU(4) +
1
Y1
= η4Y2+3Y1Y4 +

1
Y1
= ηY +

1
Y1

, (C.13)

where Y2+3 = Y1Y2M . A sketch of the 2+3 composite monopole is shown in Fig. 12. In this
diagram we explicitly show “resonance" diagrams where the gauginos lifted by the Yukawa
coupling (C.7) are explicitly shown without simplifying the diagram by moving fermion zero
modes through the string/flux tube.

Figure 12: A sketch of multi-monopole composite with + 2 + 3 when M is
large. The gauge group breaks from SU(5) to SU(4). Two “resonance" diagrams
equivalently form the 2+3 composite. The anti-symmetric and squark VEVs, (C.3)
and (C.4), are represented as X with their indices. A□ represents the components of
anti-symmetric tensor which transform as a fundamental representation under the
unbroken SU(4) subgroup.

We can arrive this same SU(4) effective theory and adjoint VEVs (C.6) from another fun-
damental Weyl chamber region:

|v5| ≥ v1 ≥ v2 ≥ |v4| ≥ 0≥ v3 ≥ v4 ≥ v5 . (C.14)

32

https://scipost.org
https://scipost.org/SciPostPhys.14.4.081


SciPost Phys. 14, 081 (2023)

In this region (anti-)fundamental zero modes live on monopole 2 and zero modes from the
antisymmetric tensor remain on the monopole 2 and monopole 4 (with multiplicity 2). With
the same argument as above, turning on VEVs q2,3 and q2,3 with v3 → 0− gives rise to the
superpotential (C.13) and the 2+3 composite with two gaugino zero modes, two fundamental
zero modes, and two antifundamental zero modes similar to Fig. 12.

Turning a, b and q1,2 as well with v2,4→ 0 and v1+v5→ 0 then breaks the gauge symmetry
from SU(4) to SU(2) leaving two antifundamentals with scales related by

Λ9
(4) = Λ

5
(2) a

2 b q1,2 . (C.15)

The adjoint VEV is in the Cartan of SU(2)a, as shown in (D.10).
The unbroken Cartan element is:

Q1+2+3+4 =
1
2

diag(1, 0,0, 0,−1) . (C.16)

The additional broken Cartan elements are:

Q2+3 =
1
2

diag(0,1, 0,−1,0) , (C.17)

Q1−4 =
1
2

diag(1,−1,0,−1,1) . (C.18)

The fundamental monopoles are all confined to form a neutral composite under the broken
generators, and monopole 1 and 4 join the 2+3 composite turning into a 1+2+3+4 com-
posite monopole. The 1+2+3+4 composite monopole has two gaugino zero modes and two
antifundamental zero modes unlifted, so it cannot contribute to the superpotential. The cor-
responding superpotential is

W = η2YSU(2) = η4Y1Y2Y3Y4 q2,3 q2,3 = ηY , (C.19)

where YSU(2) = Y2+3Y1Y4 a b2 q1,2. A sketch of the 1+2+3+4 monopole is shown in Fig. 13.

Figure 13: A sketch of multi-monopole composite with + 2 + 3 when M ≫ B2
are large. The gauge group breaks from SU(5) to SU(2). Only one of the “resonance"
diagrams is shown. The anti-symmetric and squark VEVs, (C.3) and (C.4), are rep-
resented as X with their indices. A□ represents the components of anti-symmetric
tensor which transform as a fundamental representation under SU(4).
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Figure 14: A sketch of multi-monopole composite with + 2 + 3 when
M ≫ B2≫ B1 are large. The gauge group is completely broken. Only one of the “res-
onance" diagrams is shown. The anti-symmetric and squark VEVs, (C.3) and (C.4),
are represented as X with their indices.

Finally turning on q1,1 and q3,5 VEVs breaks SU(2) completely and the KK monopole joins
with the 1+2+3+4 composite to form an instanton with two unlifted gaugino zero modes. A
sketch of the KK+1+2+3+4 instanton is shown in Fig. 14. The superpotential

W =
ηY

Y2Y3 q2,3 q2,3 Y1Y4 a2 b q1,2 q1,1 q3,5
=

η

B2B1M
. (C.20)

which matches (65).

C.2 SU(5) with + + 2

We will consider the case with hierarchical VEVs,

B1≫ B2≫ Λ , 1/R . (C.21)

For this case we will investigate the dynamics with the antisymmetric VEV parametrizing as

A=











0 0 0 0 a
0 0 0 0 0
0 0 0 b 0
0 0 −b 0 0
−a 0 0 0 0











, (C.22)
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and the squark VEVs as

Qα =











0
q2
0
0
0











, Q
∗
f ,α =













0 0
0 0

q∗1,3 0
0 q∗2,4
0 0













, (C.23)

where D-flatness requires

2|a|2 = |q2|2 = 2|b|2 − |q1,3|
2 = 2|b|2 − |q2,4|

2 . (C.24)

For large matter VEVs we can map the composites (see Table 1) onto the classical flat
directions: B1 ∼ A3,4q1,3 q2,4, B2 ∼ A1,5A3,4q2.

A large B1 turned on with v3,4 → 0 breaks the gauge symmetry from SU(5) to SU(3)
leaving a fundamental and an antifundamental. The scales are related by

Λ12 = Λ8
(3) b2q1,3 q2,4 . (C.25)

The unbroken Cartan elements are::

Q1 =
1
2

diag(1,−1,0, 0,0) , (C.26)

Q2+3+4 =
1
2

diag(0, 1,0, 0,−1) . (C.27)

The broken U(1) generators are:

Q3 =
1
2

diag(0,0, 1,−1, 0) ,

X = 2Q1 + 4Q2 +Q3 − 2Q4 =
1
2

diag(2,2,−3,−3, 2) . (C.28)

There is a confined composite monopole comprised of monopoles 2, 3, and 4 which is neu-

Figure 15: A sketch of the multi-monopole composite with + + 2 when B1 is
large. The gauge group breaks to SU(3). The antisymmetric and squark VEVs, (C.22)
and (C.23), are represented as a cross with their color indices.

tral under the broken generators (C.28). The 2+3+4 composite has two gaugino zero modes,
one fundamental zero mode and one antifundamental zero mode unlifted, so it cannot con-
tribute to the superpotential. The fundamental monopole 1 has two gaugino zero modes, so
it contributes to the superpotential. A sketch of the 2+3+4 composite monopole is shown in
Fig. 15.
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The corresponding superpotential is

W = η3Y1Y2+3+4 +
1
Y1
= ηY +

1
Y1

, (C.29)

where Y2+3+4 = Y2Y3Y4 b2q1,3 q2,4.
Turning on the a and q2 VEVs further breaks the gauge symmetry from SU(3) to SU(2)

leaving no matter fields. The scales are related by

Λ8
3 = Λ

6
(2) a q2 . (C.30)

The unbroken Cartan element is:

Q1+2+3+4 =
1
2

diag(1,0, 0,0,−1) . (C.31)

The additional broken U(1) generator is:

Q1−2−3−4 =
1
2

diag(1,−2, 0,0, 1) . (C.32)

The fundamental monopole 1 joins with the 2+3+4 composite to form a confined 1+2+3+4
composite monopole. A sketch of the 1+2+3+4 monopole constructed by turning on B1 and
B2 VEVs in sequence are shown in Fig. 16. The 1+2+3+4 monopole has two unlifted zero
modes, so it does contributes to the superpotential.

Figure 16: A sketch of the multi-monopole composite with + + 2 when
B1≫ B2 are large. The gauge group breaks to SU(2). The antisymmetric and squark
VEVs, (C.22) and (C.23), are represented as a cross with their color indices.

The superpotential is

W = η2YSU(2) +
1

YSU(2)
= η3Y1Y2+3+4 +

1
Y1Y2+3+4 a q2

(C.33)

= ηY +
1

Ya q2 b2 q1,3q2,4
, (C.34)

where YSU(2) = Y1Y2+3+4 a q2. Integrating out the Coulomb branch moduli we recover (88),
so the calculations in the two different regions agree.
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D Other Hierarchical Patterns for F = 2

D.1 F = 2, B1≫ B2≫ M

Let’s next consider the case with hierarchical VEVs,

B1≫ B2≫ M , (D.1)

with the antisymmetric and squark VEVs parametrized as in (61) and (62). The D-flatness
condition is

2|a|2 = 2|a|2 + |q1,1|2 − |q1,1|
2 = |q2,3|2 = 2|b|2 − |q2,2|

2 = 2|b|2 − |q3,4|
2 , (D.2)

and for large matter VEVs we can map the composites (see Table 1) onto the classical flat
directions: B1 ∼ A2,4q2,2q3,4, B2 ∼ A1,5A2,4q2,3, M ∼ q1,1q1,1. The VEV b is invariant under
SU(3)a × SU(2)b with unbroken Cartan generators

Q1+2 =
1
2

diag(1,0,−1,0, 0) , (D.3)

Q3+4 =
1
2

diag(0,0, 1,0,−1) , (D.4)

Q2+3 =
1
2

diag(0,1, 0,−1,0) . (D.5)

The broken U(1) generator is

X = 2(Q1 −Q4)−Q2 +Q3 =
1
2

diag(2,−3,2,−3,2) . (D.6)

The q2,2 and q3,4 VEVs then leaves only an unbroken SU(3)a gauge invariance. The unbroken
Cartan elements are:

Q1+2 =
1
2

diag(1,0,−1,0, 0) , (D.7)

Q3+4 =
1
2

diag(0,0, 1,0,−1) . (D.8)

The embedding of representations is shown in Table 9. The two triplet representations of

Table 9: Embedding of representations SU(3)a × SU(2)b and SU(3)a into represen-
tations of SU(5).

SU(5) → SU(3)a × SU(2)b → SU(3)a
5 → (3,1) + (1,2) → 3+ 1+ 1

10 → (3, 2) + (3, 1) + (1, 1) → 3+ 3+ 3+ 1
24 → (8,1) + (1,3) + (3,2) + (3, 2) + (1, 1) → 8+ 3+ 3+ 3+ 3+ 4 · 1

the antisymmetric and two anti-triplets from the antifundamentals are eaten by the broken
gauge supermultiplets, so the low-energy SU(3)a theory has only two fundamentals and two
antifundamentals with one of the antifundamentals being a descendant of the original anti-
symmetric. In other words the low-energy theory is SU(3)a with two flavors. The scales of the
SU(5) theory and the low-energy SU(3)a theory are related by

Λ11 = Λ7
(3a) b2q2,2 q3,4 . (D.9)
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There are two confined U(1) charges corresponding to the broken generators (D.6) and (D.5).
The neutral composites are monopole 1 with monopole 2 and monopole 3 with monopole 4.
The KK monopole is neutral under the broken generators.

In region (31), turning on VEVs for B1 (i.e. b, q2,2 and q3,4) restricts the adjoint VEV to
the remainder of the Cartan of SU(3)a: v2,3,4→ 0 and v1 + v5→ 0, i.e.

φ = diag(v1, 0, 0, 0,−v1) . (D.10)

Turning to the VEVs for B2 (i.e. a and q2,3) we need to remember that in the effective
SU(3)a theory the VEV a is in the anti-color corresponding to the color of q2,3. Thus the VEVs
a and q2,3 break SU(3)a to SU(2)a leaving one fundamental and one antifundamental. There
is no further restriction on the adjoint VEV, (D.10), since it was already forced to be in the
Cartan of SU(2)a.

The scale of the SU(2)a effective theory is given by

Λ7
(3a) = Λ

5
(2a) a q2,3 . (D.11)

The unbroken Cartan element is:

Q1+2+3+4 =
1
2

diag(1, 0,0, 0,−1) , (D.12)

while the new broken U(1) generator is:

Q1+2−3−4 =
1
2

diag(1, 0,−2, 0,1) . (D.13)

To be neutral under all three broken U(1) generators, the monopoles 1, 2 3, and 4 are confined
together. The KK monopole is neutral under the broken generators. The 1+2+3+4 composite
monopole is shown in Fig. 6; it has four unlifted zero modes, so it cannot contribute to the
superpotential. The superpotential is thus:

W = η(2a)Y
(2a) = ηY , (D.14)

where Y (2a) = Y1Y2Y3Y4 ab2 q2,3 q2,2 q3,4 = Y1Y2Y3Y4 B2B1.
The q1,1 and q1,1 VEVs break SU(2)a completely and the KK monopoles joins with the

1+2+3+4 composite, forming an instanton with two unlifted zero modes. A sketch of the
KK+1+2+3+4 instanton is shown in Fig. 7. The instanton superpotential is

WF=2 =
ηY

Y1Y2Y3Y4 b2q2,2 q3,4 a q2,3 q1,1 q1,1
=

η

B2B1M
, (D.15)

which matches (65).

D.2 F = 2, B1≫ M ≫ B2

The case with hierarchical VEVs

B1≫ M ≫ B2 , (D.16)

is similar to the previous case. For this case we use the antisymmetric VEV

A=











0 0 0 a 0
0 0 b 0 0
0 −b 0 0 0
−a 0 0 0 0
0 0 0 0 0











, (D.17)
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which is invariant under SU(2)c × SU(2)d , and the squark VEVs

Q f α =











0 0
0 0
0 0

q1,4 0
0 q2,5











, Q
∗
f ,α =













0 0 0
q∗1,2 0 0
0 q∗2,3 0
0 0 q∗3,4
0 0 0













, (D.18)

where D-flatness requires

2|a|2 = 2|b|2 − |q1,2|
2 = 2|b|2 − |q2,3|

2 = 2|a|2 + |q1,4|2 − |q3,4|
2 = |q2,5|2 . (D.19)

For large matter VEVs we can map the composites (see Table 1) onto the classical flat direc-
tions: B1 ∼ A2,3 q1,2q2,3, M ∼ q3,4 q1,4, B2 ∼ A1,4A2,3 q2,5.

Again in region (31) of the fundamental Weyl chamber turning on VEVs for B1 requires
the restriction v2,3,4→ 0 and v1+ v5→ 0. The large B1 VEV (corresponding to b, q1,2, and q2,3
VEVs) breaks the gauge symmetry to an SU(3)c subgroup with Cartan generators:

Q1+2+3 =
1
2

diag(1, 0,0,−1, 0) , (D.20)

Q4 =
1
2

diag(0, 0,0, 1,−1) , (D.21)

and there is a composite monopole made of 1+2+3. Turning on a VEV for M further breaks the
gauge symmetry to SU(2)a and there is a composite monopole made of 1+2+3+4. Turning
on B2 forces a composite of 1+2+3+4 and the KK monopole resulting in the usual instanton
superpotential (76).

Note that by turning on the VEVs for B1 the gauge symmetry breaks from SU(5) to SU(3),
however, the adjoint VEV starting from the fundamental Weyl chamber region (31) is forced to
be in the Cartan of SU(2). In Appendix C we provide a discussion for composite monopoles in
another Weyl chamber region of Table 8 which allows for the adjoint VEV to be in the Cartan
of SU(3)c on its boundary.

D.3 F = 2, M ≫ B1, B2

Let’s consider the case with hierarchical VEVs,

M ≫ B1≫ B2 . (D.22)

For this case we use the antisymmetric VEV parameterized as

A=











0 0 0 0 0
0 0 0 b 0
0 0 0 0 a
0 −b 0 0 0
0 0 −a 0 0











, (D.23)

and the squark VEVs

Q f α =











q1,1 0
0 0
0 q2,3
0 0
0 0











, Q
∗
f ,α =













0 0 0
q∗1,2 0 0
0 q∗2,3 0
0 0 q∗3,4
0 0 0













, (D.24)
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where D-flatness requires

2|a|2 = 2|a|2 + |q2,3|2 − |q2,3|
2 = |q1,1|2 = 2|b|2 − |q1,2|

2 = 2|b|2 − |q3,4|
2 . (D.25)

For large matter VEVs we can map the composites (see Table 1) onto the classical flat direc-
tions: M ∼ q2,3 q2,3, B1 ∼ A2,4q1,2q3,4, B2 ∼ A3,5A2,4q1,1.

First turning on the M VEV (i.e. q2,3 and q2,3), the gauge symmetry breaks from SU(5) to
SU(4), and the low-energy theory has an antisymmetric, two fundamentals and two antifunda-
mentals (see Table 4 for the embedding of representations). Note that one of the fundamentals
of the low energy theory arises from the components of antisymmetric tensor, the VEV of this
fundamental corresponds to a in our parameterization (D.23). The scales are related by

Λ11 = Λ9
(4) q2,3 q2,3 . (D.26)

The unbroken Cartan elements are:

Q1 =
1
2

diag(1,−1, 0,0, 0) , (D.27)

Q2+3 =
1
2

diag(0,1, 0,−1,0) , (D.28)

Q4 =
1
2

diag(0,0, 0,1,−1) , (D.29)

while the broken generator is:

X =Q1 + 2Q2 − 2Q3 −Q4 =
1
2

diag(1, 1,−4, 1,1) . (D.30)

Monopoles 2 and 3 are confined so as to be neutral under the broken generator. In re-
gion (31) of the fundamental Weyl chamber, turning on VEVs for q2,3 and q2,3 further restricts
the adjoint VEV to be in the Cartan of SU(4), so v3 → 0, v2 + v4 → 0 and v1 + v5 → 0. Thus
the adjoint VEV has the form

φ = diag(v1, v2, 0,−v2,−v1) . (D.31)

Next turning on a VEV for B1 (i.e b, q1,2, and q3,4), we see that the antisymmetric VEV b
is invariant under an Sp(4) subgroup, while the q VEVs reduce this to an unbroken SU(2)a
gauge symmetry leaving just two doublets in the effective gauge theory. The scales of the
SU(4) theory and the low-energy SU(2) theory are related by

Λ9
(4) = Λ

5
(2a) b2 q1,2 q3,4 . (D.32)

A composite monopole 1+2+3+4 is confined so as to be neutral under the broken genera-
tors, while the KK monopole is neutral under the broken generators. The 1+2+3+4 monopole
has four unlifted zero modes (see Fig. 6), so it cannot contribute to the superpotential. The
superpotential is:

W = η(2a)Y
(2a) = ηY , (D.33)

where Y (2a) = Y1Y2Y3Y4 q2,3 q2,3 b2 q1,2 q3,4 = Y1Y2Y3Y4 MB1. The associated extended Dynkin
diagrams for this breaking pattern are shown in Fig. 17.

Finally turning on the a and q1,1 VEVs (i.e. tuning on the VEVs for the remaining two dou-
blets) breaks SU(2) completely and confines the KK monopole with the 1+2+3+4 composite
to form and instanton with two unlifted gaugino zero modes. and the final superpotential is

WF=2 =
ηY

Y1Y2Y3Y4 q2,3 q2,3 b q1,2 q3,4 a b q1,1
=

η

B2B1M
. (D.34)
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Figure 17: The extended Dynkin diagrams for breaking patterns of SU(5): a) SU(5),
b) SU(4), and c) SU(2)a.

which again matches (65).

The case with hierarchical VEVs

M ≫ B2≫ B1 , (D.35)

is similar. For this case we use the antisymmetric VEV

A=











0 0 0 0 a
0 0 0 0 0
0 0 0 b 0
0 0 −b 0 0
−a 0 0 0 0











, (D.36)

and squark VEVs

Q f α =











0 0
q1,2 0
0 q2,3
0 0
0 0











, Q
∗
f ,α =













q∗1,1 0 0
0 0 0
0 q∗2,3 0
0 0 0
0 0 q∗3,5













, (D.37)

where D-flatness requires

2|b|2 = 2|b|2 + |q2,3|2 − |q2,3|
2 = |q1,2|2 = 2|a|2 − |q1,1|

2 = 2|a|2 − |q3,5|
2 . (D.38)

For large matter VEVs we can map the composites (see Table 1) onto the classical flat direc-
tions: M ∼ q2,3 q2,3, B2 ∼ A1,5A3,4q1,2, B1 ∼ A1,5q1,1q3,5.

Turning on VEVs for M breaks SU(5) to SU(4). As before there is a confined multi-
monopole 2+3, and further gauge symmetry breaking from turning on VEVs for B2 breaks
the gauge symmetry to SU(2)a, producing a 1+2+3+4 composite multi-monopole. Turning
on the B1 VEV breaks the gauge symmetry completely, and an instanton is formed, and we
again arrive at the superpotential (76).

Note that by turning on the VEVs for M the gauge symmetry breaks from SU(5) to SU(4),
however, the adjoint VEV starting from the fundamental Weyl chamber region (31) is forced
to be in the Cartan of Sp(4). In Appendix. C we provide a discussion for composite monopoles
in another Weyl chamber region (see Table 8) which allows an adjoint VEV to be in the Cartan
of SU(4) on its boundary.

41

https://scipost.org
https://scipost.org/SciPostPhys.14.4.081


SciPost Phys. 14, 081 (2023)

References

[1] N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, (arXiv
preprint) doi:10.48550/arXiv.hep-th/9607163.

[2] J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge
theories, quivers and D-branes, Nucl. Phys. B 493, 101 (1997), doi:10.1016/s0550-
3213(97)00125-9.

[3] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg and M. J. Strassler, Aspects of
N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499, 67 (1997),
doi:10.1016/s0550-3213(97)00323-4.

[4] N. M. Davies, T. J. Hollowood, V. V. Khoze and M. P. Mattis, Gluino condensate and
magnetic monopoles in supersymmetric gluodynamics, Nucl. Phys. B 559, 123 (1999),
doi:10.1016/s0550-3213(99)00434-4.

[5] N. M. Davies, T. J. Hollowood and V. V. Khoze, Monopoles, affine algebras and the gluino
condensate, J. Math. Phys. 44, 3640 (2003), doi:10.1063/1.1586477.

[6] E. Poppitz and M. Unsal, Seiberg-Witten and “Polyakov-like” magnetic bion con-
finements are continuously connected, J. High Energy Phys. 1107, 082 (2011),
doi:10.1007/jhep07(2011)082.

[7] O. Aharony, S. S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, J.
High Energy Phys. 1307, 149 (2003), doi:10.1007/jhep07(2013)149.

[8] O. Aharony, S. S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities for or-
thogonal groups, J. High Energy Phys. 08, 099 (2013), doi:10.1007/JHEP08(2013)099.

[9] G. ’t. Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys. B 79, 276 (1974),
doi:10.1016/0550-3213(74)90486-6.

[10] A. M. Polyakov, Particle spectrum in quantum field theory, J. Exp. Theor. Phys. Lett. 20
(1974).

[11] I. Affleck, J. Harvey and E. Witten, Instantons and (super-) symmetry breaking in (2+ 1)
dimensions, Nucl. Phys. B 206, 413 (1982), doi:10.1016/0550-3213(82)90277-2.

[12] C. Csàki, M. Martone, Y. Shirman and J. Terning, Pre-ADS superpotential from confined
monopoles, J. High Energy Phys. 1805, 188 (2018), doi:10.1007/jhep05(2018)188.

[13] G. ‘t Hooft, Gauge fields with unified weak, electromagnetic, and strong interactions, in EPS
international conference on high energy physics, 1225 (1976).

[14] S. Mandelstam, II. Vortices and quark confinement in non-Abelian gauge theories, Phys.
Rep. 23, 245 (1976), doi:10.1016/0370-1573(76)90043-0.

[15] S. Mandelstam, Charge-monopole duality and the phases of non-Abelian gauge theories,
Phys. Rev. D 19, 2391 (1979), doi:10.1103/PhysRevD.19.2391.

[16] Y. Nambu, String-like configurations in the Weinberg-Salam theory, Nucl. Phys. B 130, 505
(1977), doi:10.1016/0550-3213(77)90252-8.

[17] H. B. Nielsen and P. Olesen, Vortex-line models for dual strings, Nucl. Phys. B 61, 45
(1973), doi:10.1016/0550-3213(73)90350-7.

42

https://scipost.org
https://scipost.org/SciPostPhys.14.4.081
https://doi.org/10.48550/arXiv.hep-th/9607163
https://doi.org/10.1016/s0550-3213(97)00125-9
https://doi.org/10.1016/s0550-3213(97)00125-9
https://doi.org/10.1016/s0550-3213(97)00323-4
https://doi.org/10.1016/s0550-3213(99)00434-4
https://doi.org/10.1063/1.1586477
https://doi.org/10.1007/jhep07(2011)082
https://doi.org/10.1007/jhep07(2013)149
https://doi.org/10.1007/JHEP08(2013)099
https://doi.org/10.1016/0550-3213(74)90486-6
https://doi.org/10.1016/0550-3213(82)90277-2
https://doi.org/10.1007/jhep05(2018)188
https://doi.org/10.1016/0370-1573(76)90043-0
https://doi.org/10.1103/PhysRevD.19.2391
https://doi.org/10.1016/0550-3213(77)90252-8
https://doi.org/10.1016/0550-3213(73)90350-7


SciPost Phys. 14, 081 (2023)

[18] I. Affleck, M. Dine and N. Seiberg, Supersymmetry breaking by instantons, Phys. Rev. Lett.
51, 1026 (1983), doi:10.1103/PhysRevLett.51.1026.

[19] I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in supersymmetric
QCD, Nucl. Phys. B 241, 493 (1984), doi:10.1016/0550-3213(84)90058-0.

[20] T. J. Hollowood, Semiclassical decay of monopoles in N = 2 gauge theory, (arXiv preprint)
doi:10.48550/arXiv.hep-th/9611106.

[21] A. Ritz and A. Vainshtein, Dyon dynamics near marginal stability and non-BPS states, Phys.
Lett. B 668, 148 (2008), doi:10.1016/j.physletb.2008.08.016.

[22] C. Csàki, Y. Shirman and J. Terning, In preparation.

[23] E. Poppitz and M. Unsal, Chiral gauge dynamics and dynamical supersymmetry breaking,
J. High Energy Phys. 0907, 060 (2009), doi:10.1088/1126-6708/2009/07/060.

[24] K. A. Intriligator, N. Seiberg and S. H. Shenker, roposal for a simple model of dynamical
SUSY breaking, Phys. Lett. B 342, 152 (1995), doi:10.1016/0370-2693(94)01336-B.

[25] C. Csáki, M. Schmaltz and W. Skiba, Confinement in N = 1 SUSY gauge theories and model
building tools, Phys. Rev. D 55, 7840 (1997), doi:10.1103/physrevd.55.7840.

[26] B. Grinstein and D. R. Nolte, Systematic study of theories with quantum modified moduli,
Phys. Rev. D 57, 6471 (1998), doi:10.1103/physrevd.57.6471.

[27] K. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev.
D 56, 3711 (1997), doi:10.1103/PhysRevD.56.3711.

[28] K. Lee, Instantons and magnetic monopoles on R3×S1 with arbitrary simple gauge groups,
Phys. Lett. B 426, 323 (1998), doi:10.1016/S0370-2693(98)00283-4.

[29] K. Lee and C. Lu, SU(2) calorons and magnetic monopoles, Phys. Rev. D 58, 025011
(1998), doi:10.1103/PhysRevD.58.025011.

[30] E. J. Weinberg, Fundamental monopoles and multimonopole solutions for arbitrary simple
gauge groups, Nucl. Phys. B 167, 500 (1980), doi:10.1016/0550-3213(80)90245-X.

[31] E. J. Weinberg and P. Yi, Explicit multimonopole solutions in SU(N) gauge theory, Phys.
Rev. D 58, 046001 (1998), doi:10.1103/physrevd.58.046001.

[32] C. Csáki, Y. Shirman, J. Terning and M. Waterbury, Kaluza-Klein monopoles and their zero
modes, Phys. Rev. Lett. 120, 071603 (2018), doi:10.1103/PhysRevLett.120.071603.

[33] E. Witten, Superconducting strings, Nucl. Phys. B 249, 557 (1985), doi:10.1016/0550-
3213(85)90022-7.

[34] D. Finnell and P. Pouliot, Instanton calculations versus exact results in four-dimensional
SUSY gauge theories, Nucl. Phys. B 453, 225 (1995), doi:10.1016/0550-3213(95)00318-
m.

[35] P. Batra, A. Delgado, D. E. Kaplan and T. M. P. Tait, The Higgs mass bound in gauge ex-
tensions of the minimal supersymmetric Standard Model, J. High Energy Phys. 0402, 043
(2004), doi:10.1088/1126-6708/2004/02/043.

[36] R. Dashen, Some features of chiral symmetry breaking, Phys. Rev. D 3, 1879 (1971),
doi:10.1103/PhysRevD.3.1879.

43

https://scipost.org
https://scipost.org/SciPostPhys.14.4.081
https://doi.org/10.1103/PhysRevLett.51.1026
https://doi.org/10.1016/0550-3213(84)90058-0
https://doi.org/10.48550/arXiv.hep-th/9611106
https://doi.org/10.1016/j.physletb.2008.08.016
https://doi.org/10.1088/1126-6708/2009/07/060
https://doi.org/10.1016/0370-2693(94)01336-B
https://doi.org/10.1103/physrevd.55.7840
https://doi.org/10.1103/physrevd.57.6471
https://doi.org/10.1103/PhysRevD.56.3711
https://doi.org/10.1016/S0370-2693(98)00283-4
https://doi.org/10.1103/PhysRevD.58.025011
https://doi.org/10.1016/0550-3213(80)90245-X
https://doi.org/10.1103/physrevd.58.046001
https://doi.org/10.1103/PhysRevLett.120.071603
https://doi.org/10.1016/0550-3213(85)90022-7
https://doi.org/10.1016/0550-3213(85)90022-7
https://doi.org/10.1016/0550-3213(95)00318-m
https://doi.org/10.1016/0550-3213(95)00318-m
https://doi.org/10.1088/1126-6708/2004/02/043
https://doi.org/10.1103/PhysRevD.3.1879


SciPost Phys. 14, 081 (2023)

[37] G. C. Rossi and G. Veneziano, Non-perturbative breakdown of the non-renormalization
theorem in supersymmetric QCD, Phys. Lett. B 138, 195 (1984), doi:10.1016/0370-
2693(84)91899-9.

[38] Y. Meurice and G. Veneziano, Susy vacua versus chiral fermions, Phys. Lett. B 141, 69
(1984), doi:10.1016/0370-2693(84)90561-6.

[39] I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in chiral theories,
Phys. Lett. B 137, 187 (1984), doi:10.1016/0370-2693(84)90227-2.

[40] I. Affleck, M. Dine and N. Seiberg, Calculable nonperturbative supersymmetry breaking,
Phys. Rev. Lett. 52, 1677 (1984), doi:10.1103/PhysRevLett.52.1677.

[41] I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in four dimensions
and its phenomenological implications, Nucl. Phys. B 256, 557 (1985), doi:10.1016/0550-
3213(85)90408-0.

[42] D. Amati, K. Konishi, Y. Meurice, G. C. Rossi and G. Veneziano, Non-perturbative as-
pects in supersymmetric gauge theories, Phys. Rep. 162, 169 (1988), doi:10.1016/0370-
1573(88)90182-2.

[43] P. Pouliot, Duality in SUSY SU(N) with an antisymmetric tensor, Phys. Lett. B 367, 151
(1996), doi:10.1016/0370-2693(95)01427-6.

[44] H. Murayama, Studying noncalculable models of dynamical supersymmetry breaking, Phys.
Lett. B 355, 187 (1995), doi:10.1016/0370-2693(95)00744-6.

[45] E. Poppitz and S. P. Trivedi, Some examples of chiral moduli spaces and dynamical super-
symmetry breaking, Phys. Lett. B 365, 125 (1996), doi:10.1016/0370-2693(95)01260-5.

[46] M. A. Luty and J. Terning, New mechanisms of dynamical supersymmetry breaking and
direct gauge mediation, Phys. Rev. D 57, 6799 (1998), doi:10.1103/physrevd.57.6799.

[47] J. Polonyi, Generalization of the massive scalar multiplet coupling to the supergrav-
ity, Central Research Institute for Physics, Budapest Hungary, KFKI-1977-93 (1978),
doi:10.13140/RG.2.1.4621.4884.

[48] C. Callias, Axial anomalies and index theorems on open spaces, Commun. Math. Phys. 62,
213 (1978), doi:10.1007/BF01202525.

[49] J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three-
dimensions, Nucl. Phys. B 500, 163 (1997), doi:10.1016/s0550-3213(97)00328-3.

[50] T. M.W. Nye and M. A. Singer, An L2-index theorem for Dirac operators on S1×R3, J. Funct.
Anal. 177, 203 (2000), doi:10.1006/jfan.2000.3648.

[51] E. Poppitz and M. Ünsal, Index theorem for topological excitations on R3 × S1 and
Chern-Simons theory, J. High Energy Phys. 03, 027 (2009), doi:10.1088/1126-
6708/2009/03/027.

[52] C. Csáki, M. Martone, Y. Shirman, P. Tanedo and J. Terning, Dynamics of 3D SUSY
gauge theories with antisymmetric matter, J. High Energy Phys. 08, 141 (2014),
doi:10.1007/JHEP08(2014)141.

[53] A. Amariti, C. Csáki, M. Martone and N. R.-L. Lorier, From 4D to 3D chiral theories: Dress-
ing the monopoles, Phys. Rev. D 93, 105027 (2016), doi:10.1103/PhysRevD.93.105027.

44

https://scipost.org
https://scipost.org/SciPostPhys.14.4.081
https://doi.org/10.1016/0370-2693(84)91899-9
https://doi.org/10.1016/0370-2693(84)91899-9
https://doi.org/10.1016/0370-2693(84)90561-6
https://doi.org/10.1016/0370-2693(84)90227-2
https://doi.org/10.1103/PhysRevLett.52.1677
https://doi.org/10.1016/0550-3213(85)90408-0
https://doi.org/10.1016/0550-3213(85)90408-0
https://doi.org/10.1016/0370-1573(88)90182-2
https://doi.org/10.1016/0370-1573(88)90182-2
https://doi.org/10.1016/0370-2693(95)01427-6
https://doi.org/10.1016/0370-2693(95)00744-6
https://doi.org/10.1016/0370-2693(95)01260-5
https://doi.org/10.1103/physrevd.57.6799
https://doi.org/10.13140/RG.2.1.4621.4884
https://doi.org/10.1007/BF01202525
https://doi.org/10.1016/s0550-3213(97)00328-3
https://doi.org/10.1006/jfan.2000.3648
https://doi.org/10.1088/1126-6708/2009/03/027
https://doi.org/10.1088/1126-6708/2009/03/027
https://doi.org/10.1007/JHEP08(2014)141
https://doi.org/10.1103/PhysRevD.93.105027


SciPost Phys. 14, 081 (2023)

[54] B. J. Harrington and H. K. Shepard, Periodic Euclidean solutions and the finite-temperature
Yang-Mills gas, Phys. Rev. D 17, 2122 (1978), doi:10.1103/PhysRevD.17.2122.

[55] B. J. Harrington and H. K. Shepard, Thermodynamics of the Yang-Mills gas, Phys. Rev. D
18, 2990 (1978), doi:10.1103/PhysRevD.18.2990.

[56] D. J. Gross, R. D. Pisarski and L. G. Yaffe, QCD and instantons at finite temperature, Rev.
Mod. Phys. 53, 43 (1981), doi:10.1103/RevModPhys.53.43.

45

https://scipost.org
https://scipost.org/SciPostPhys.14.4.081
https://doi.org/10.1103/PhysRevD.17.2122
https://doi.org/10.1103/PhysRevD.18.2990
https://doi.org/10.1103/RevModPhys.53.43

	Introduction
	Results
	Monopoles of SU(5)
	Warm-up Example: SU(5) with 0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt 
	Chiral SU(5) on R3S1
	SU(5) with F=3: 0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+ 3  0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+40.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt
	SU(5) with F=2: 0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+ 2  0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+30.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt
	F=2, B2 B1 M
	F=2, B2 M B1

	SU(5) with F=1: 0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+  0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+20.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt
	F=1, Baryon Branch, B2 B1
	F=1, Baryon Branch, B1 B2
	F=1, Lifted Meson Branch


	SUSY Breaking: SU(5) with 0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+ 0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt
	Conclusions
	Zero Mode Conditions on Monopoles
	Coulomb Branches and Operators
	Dynamics in other Weyl chamber regions
	SU(5) with F=2: 0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+ 2  0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+30.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt
	F=2, MB2 B1

	SU(5) with 0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+  0.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt+20.4pt6.5pt6.5pt0.4pt[6.5pt]6.5pt0.4pt[6.5pt]0.4pt0.4pt0.4pt6.5pt

	Other Hierarchical Patterns for F=2
	F=2, B1 B2 M
	F=2, B1 M B2
	F=2, M B1 , B2

	References

