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Abstract

We consider a crossing symmetric dispersion relation (CSDR) for CFT four point correla-
tion with identical scalar operators, which is manifestly symmetric under the cross-ratios
u, v interchange. This representation has several features in common with the CSDR for
quantum field theories. It enables a study of the expansion of the correlation function
around u = v = 1/4, which is used in the numerical conformal bootstrap program. We
elucidate several remarkable features of the dispersive representation using the four
point correlation function of Φ1,2 operators in 2d minimal models as a test-bed. When

the dimension of the external scalar operator (∆σ) is less than
1
2 , the CSDR gets con-

tribution from only a single tower of global primary operators with the second tower
being projected out. We find that there is a notion of low twist dominance (LTD) which,
as a function of ∆σ, is maximized near the 2d Ising model as well as the non-unitary
Yang-Lee model. The CSDR and LTD further explain positivity of the Taylor expansion
coefficients of the correlation function around the crossing symmetric point and lead to
universal predictions for specific ratios of these coefficients. These results carry over to
the epsilon expansion in 4− ε dimensions. We also conduct a preliminary investigation
of geometric function theory ideas, namely the Bieberbach-Rogosinski bounds.
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1 Introduction

Dispersion relations in the context of 2-2 scattering in quantum field theories have provided
new insight about the structure of effective field theories [1–4]. Two sided bounds on the
Taylor expansion coefficients of the scattering amplitudes follow from general considerations
such as causality, unitarity and importantly, crossing symmetry. Crossing symmetric dispersion
relations in [5] have led to establishing such bounds using elegant mathematical theorems
arising from Geometric Function Theory [6–8].

In CFT, dispersive representations in d ≥ 2 have been explored in [9–12]. In [9], the CFT
analog of fixed-t dispersion relation was considered. In this, the single discontinuity in the
CFT s-channel plays a role. Crossing symmetry is not guaranteed and needs to be imposed
by hand. In [10], sum rules have been derived using several equivalent dispersion relations.
In this case, in the position space approach, one gets the so-called null constraints or odd-
spin constraints on imposing crossing symmetry. This approach has yielded several interesting
results numerically. Dispersive representations for CFT correlation functions have also been
considered in Mellin space (see [13] for discussion). In [14], a systematic study was carried out
establishing the nonperturbative existence of these amplitudes. A fixed-t dispersion relation
was written down and a study of the sum rules arising from this was initiated. In [15], the
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crossing symmetric dispersion relation1 for these amplitudes was considered and a derivation
of the Polyakov bootstrap [17] was given.2

Motivated by the CSDR in QFT, one can ask if writing down a position space CSDR for CFT
leads to new insights. We will show in this paper that the answer is yes. We will use 2d-CFT
minimal models as a test bed [20–23]. This includes the diagonal unitary minimal models
denoted by M(m + 1, m) as well as the Yang-Lee non-unitary model M(5, 2). In particular,
following [20, 25], the external operator will be the Φ1,2 primary operator, which we will
denote by σ. In the σ×σ, OPE, the leading scalar operator is the Φ1,3 operator which we will
denote by ε with twist τε. In the σ×σ OPE, there are two towers of operators with twists 4k
and 4k+τε, where k = 0,1, 2 · · · . We list out here some of the main advantages of the CSDR
considered in this paper:

• The discontinuity involved is the single discontinuity as in [9]. However, we will ex-
ploit the better fall-off for minimal models which will lead to a different phase factor
(1−exp(−πiτ)), where τ is the twist of the exchanged operator in the OPE. This would
mean that the τ = 4k tower gets projected out! This leads to better convergence using
the CSDR. When the dimension of the external operator is more than 1

2 or when we are
in d > 2, the phase factor becomes (1−exp(−πi(τ−2∆σ)) as in [9], which projects out
the generalized free field operators.

• We are interested in the Taylor expansion coefficients around the crossing symmetric
point u= v = 1/4. This point played a role in the numerical CFT bootstrap [26]. In sec-
tion 2, we will show a surprising positivity property of the Taylor expansion coefficients
for both the unitary M(m + 1, m) minimal models as well as the non-unitary M(5, 2)
Lee-Yang model. The CSDR will enable us to explain this feature using low twist dom-
inance (LTD) (see fig.(3)), where in the calculation of the Taylor coefficients using the
CSDR, the operator that dominates is simply the ε operator! In this sense, the expansion
around u = v = 1/4 is like having an EFT expansion in quantum field theory with low
spin dominance [27].

• We will derive an approximate formula for the Taylor coefficients (eq.6.6). Using the
s-channel OPE, this leads to relations between such coefficients and the OPE coefficients
of the two towers mentioned above. Moreover, we will be able to explain the positivity
of the Taylor coefficients as well as universality of the ratios of specific coefficients that
will be pointed out in the next section. These observations and predictions carry over to
the epsilon expansion where the expression up to O(ε2) for the correlator was worked
out in [9].

• Finally, we will initiate a study of GFT bounds via the Bieberbach conjecture (de Branges
theorem). This will enable us to distinguish the non-unitary Yang-Lee model from the
unitary models (see fig(6)).

Another main advantage of considering CSDRs in the CFT context is that the minimal
models provide an infinite family of crossing symmetric functions to study. In QFT, many as-
sumptions have to be made about the analyticity and crossing symmetry. Some of these are
more firmly established in CFT [28]. Furthermore, we do not have to be restricted to consid-
ering a weak coupling, as is often assumed in the QFT studies to avoid discussing logarithmic
branch points. One of the main goals in the future will be to extend the ideas in this paper to
the 3d Ising model and the ε−expansion beyond O(ε2) considered here. We do not envisage
any conceptual difficulty in this.

1See [16] for an application.
2The Polyakov bootstrap in d = 1 was considered in [18,19].
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The paper is organized as follows. In section 2, we discuss the diagonal unitary Minimal
models and point out several intriguing features. In section 3, we turn to the crossing sym-
metric dispersive representation. We begin with a general discussion and then focus on the
Minimal models. However, note that all the formulas for the locality constraints and φpq apply
more generally. In section 4, we consider the conformal block decomposition in the s-channel
of these Minimal models, keeping crossing symmetry in mind. In section 5, we use the CSDR
to demonstrate low twist dominance. In section 6, using the CSDR intuition, we explain the
intriguing features pointed out in section 2. In section 7, we briefly consider Geometric Func-
tion Theory bounds for Minimal models. We end with future directions in section 8. The
appendices contain useful supplementary calculations and details.

2 Positivity, clustering, universalityφ in Minimal models

We write the four point correlation function of identical scalar operators as

〈σ(x1)σ(x2)σ(x3)σ(x4)〉=
f (u, v)

x2∆σ
12 x2∆σ

34

. (2.1)

Associativity of the OPE implies

f (u, v) =
�u

v

�∆σ
f (v, u) . (2.2)

Often we use u= zz̄, v = (1− z)(1− z̄). Depending on the situation (Euclidean vs Lorentzian)
z, z̄ are either independent real variables (Lorentizan) or complex conjugate of one another
(Euclidean). Motivated by early numerical bootstrap, we want to expand this around the
crossing symmetric point z = 1/2, z̄ = 1/2 or u = 1/4, v = 1/4. For this reason we introduce
s1 = u− 1/4, s2 = v − 1/4. Let us now discuss for concreteness the 2d-Ising model. Here σ is
the Φ1,2 operator. We have

f (u, v) =

p

1+
p

u+
p

v
p

2v
1
8

, (2.3)

with ∆σ =
1
8 . We define the crossing symmetric (u, v interchange symmetric) object

F(u, v) = v∆σ f (u, v) , (2.4)

for example for the 2d Ising model we have

F(u, v) ==
1
p

2





√

√

√

1+

√

√

s1 +
1
4
+

√

√

s2 +
1
4



 . (2.5)

More general correlators can be found using eq.(A.1 ). We will be interested in the Taylor
expansion coefficients φp,q defined via

F(s1, s2) =
∑

p,q

φp,q x p yq , (2.6)

where x = s1 + s2, y = s1s2 are the two independent crossing-symmetric polynomials relevant
for our purpose. For notational convenience, and since we will restrict to single digit p, q, we
will use φpq ≡ φp,q. Following the parlance in the QFT literature, we will sometimes refer to
the φpq ’s as Wilson coefficients.
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Figure 1: Plots of Wilson coefficients for minimal models described in the text. We
have normalized appropriately as indicated in the legends for convenience.

We can consider the diagonal unitary minimal models in a similar manner. We will follow
the notation in [20, 25]. We will denote by σ the Φ1,2 operator and by ε the Φ1,3 operator.3

Following [29], we can show that for minimal models we have in terms of the Virasoro pri-
maries:

σ×σ = 1+ ε . (2.7)

This is consistent with our findings below that in terms of global primaries there are two infinite
families of operators. The scaling dimensions for σ,ε are given by

∆σ =
1
2
−

3
2(m+ 1)

, ∆ε = 2−
4

m+ 1
= 2

m− 1
m+ 1

, (2.8)

The central charge is c = 1− 6/(m(m+ 1)). The 2d Ising model corresponds to m = 3 while
m= 4 is the tricritical Ising model. When m→∞we have∆σ→ 1/2,∆ε→ 2 and c→ 1. For
later convenience, we tabulate some of the φpq ’s below while depicting the typical behaviour
of the φpq ’s in fig.(1).4

m ∆σ φ10 φ01 φ11 φ20 φ02

3 1
8 0.250 0.500 -1.625 -0.281 -2.625

4 1
5 0.365 0.616 -1.851 -0.340 -2.892

5 1
4 0.424 0.620 -1.762 -0.337 -2.688

6 2
7 0.457 0.591 -1.610 -0.318 -2.414

20 3
7 0.514 0.262 -0.587 -0.134 -0.816

50 8
17 0.509 0.114 -0.239 -0.058 -0.324

100 49
101 0.505 0.058 -0.120 -0.029 -0.161

We note the following observations:

• Let us define the level as p+ q. Then for a given p+ q, the plots indicate that φpq have
the same signs. In other words, (−1)p+q+1φpq are all positive.

3Note that σ,ε as denoted here are not the same as what is used in [29].
4φ10,max ≈ 0.5138 at ∆σ ≈ 0.429, while the maxima in φpq/φmpq for p + q ≥ 2 in the figures hover around

∆σ ≈ 0.16− 0.19.
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• As p + q increases, there is indication of “clustering”, meaning all the normalized φpq ’s
tend to lie on each other.

• There are further hidden patterns which are not evident. For instance φ02/φ40 ≈ 2,
φ21/φ40 ≈ −4 etc for any ∆σ. This is illustrated later in fig.(5) and will be referred to
as5 “universalityφ”.

We have checked these features up to level 6 and they persist. In fact, as we will see, these
persist even for non-unitary theories with ∆σ > −0.5. Our target in this paper is to find an
explanation for all these features. This will demonstrate a concrete application (as well as
show the advantage) of the CSDR. The bottom line is that these features are explained by
crossing symmetry and low twist dominance.

The terminology low twist dominance (LTD) is motivated by low spin dominance, which is
observed in EFTs [2,27]. Since this may be unfamiliar, let us expand on what we mean by this
in our context. First to use LTD, we have to specify what representation we are using. In our
case, we will be using the crossing symmetric dispersive representation. What we mean by
LTD is that the first few low twist operators contribute the most in the φpq ’s. As evidence, in
appendix B, we estimate the contribution from the higher twist tail of the correlator for unitary
theories [34]. We can make a drastic approximation and retain only the ε-operator, i.e., only
one operator. In the decomposition using s-channel blocks, we will not observe LTD, as we
demonstrate below. As will become clear, we will assume LTD to explain the features stated in
this section. In the appendix, will give a brief discussion as to how LTD could potentially be
proved using the CSDR.

3 CSDR in position space

3.1 General dimensions

We are interested in CSDR in two variables. This was considered in [7] motivated by the old
work [31] and revived in [5]. The problem being considered is the following. Let g(u, v) be
a function that satisfies crossing, namely g(u, v) = g(v, u). Further we will choose the u-cut
to be from −∞ to 0. In [7], CSDRs were considered with different fall-offs. The one we will
be interested in is the situation where g(u, v) in the |u| →∞, fixed v, falls off faster than |u|.
As we will discuss further below, this will enable us to consider both minimal models and the
epsilon expansion. Writing u= s1 +

1
4 and v = s2 +

1
4 , the CSDR becomes

g(s1, s2) = g(0, 0) +
1

2πi

∫ − 1
4

−∞

ds′1
s′1

A

�

s′1,
as′1

s′1 − a

�

H(s′1; s1, s2) , (3.1)

with the “absorptive part” defined as

A(s1, s2) = Disc
s1

g(s1, s2) = lim
ε→0+

[g(s1 + iε, s2)− g(s1 − iε, s2)] , (3.2)

and where the kernel H and the parameter a are given by6

H(s′1; s1, s2) =
s1

s′1 − s1
+

s2

s′1 − s2
, a =

s1s2

s1 + s2
. (3.3)

5We invented the terminology “universalityφ” to prevent abusing the usual meaning of universality!
6The kernel is reminiscent of the tree level amplitude for scalar scattering ψ1ψ2→ψ1ψ2 mediated by a scalar

φ of mass s′1. The interacting lagrangian will be s′1ψ1ψ2φ − (ψ1ψ2)2. It is as if we are “averaging” over such
theories.
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Similar to the crossing symmetric variables used in [5,31], we can write

s1 = a

�

1−
(1+ ζ)2

(1− ζ)2

�

, s2 = a

�

1−
(1− ζ)2

(1+ ζ)2

�

, (3.4)

so that
x ≡ s1 + s2 = −16ak(z̃) , y ≡ s1s2 = −16a2k(z̃) , (3.5)

where z̃ = ζ2 and k(z̃) is the Koebe function in GFT having extremal properties:

k(z̃) =
z̃

(1− z̃)2
= z̃ +

∞
∑

n=2

n z̃n . (3.6)

In the complex z̃ plane, the u-cut gets mapped to (portion of) the boundary of a unit disc.
Depending on the range of a, the cut on the boundary either closes up or does not. For the
range of a we will consider, the cut does not close up allowing for analytic continuation from
inside to outside. In terms of z̃, the kernel H works out to be

H

�

a
s′1

, z̃

�

= 16
a
s′1

�

2
a
s′1
− 1

�

z̃
1− 2ξz̃ + z̃2

= −α∂α ln [1+ 16α(1−α)k(z̃)]
�

�

�

�

α= a
s′1

, (3.7)

with ξ = 1 − 8 a
s′1
+ 8( a

s′1
)2. The kernel can be identified as the generating function of the

Chebyshev polynomials (in ξ) of the second kind and related to the Alexander polynomials of
the torus (2,2n+1) knots with knot parameter t defined via 2ξ= t+ 1

t as pointed out in [32].
As discussed below in section 3.3, for CFTs with identical scalars of dimension ∆σ, we

have for fixed s2, the large s1 behaviour for the absorptive part to be |s1|2∆σ . Therefore, for
the CSDR to be applicable in the above form with

g(u, v) = F(u, v) (3.8)

as in eq.(2.4), we will need ∆σ < 1/2. This will enable us to study the minimal models for
∆σ < 1/2. Using the notation in [9] we have the block decomposition

F(u, v) = v∆σ
∑

∆,ℓ

c∆,ℓg∆,ℓ(u, v)≡
∑

∆,ℓ

c∆,ℓF∆,ℓ(u, v) . (3.9)

In the small u limit, we have g∆,ℓ(u, v) ∼ u
∆−ℓ

2 . Then we find [9] that the discontinuity for
u< 0 is given by

Discu<0F∆,ℓ(u, v) =
�

1− exp
�

−2πi
∆− ℓ

2

��

F∆,ℓ(u, v) . (3.10)

Thus even integer twists will get projected out. If we want to study the Wilson-Fisher fixed
point e.g. the epsilon expansion, then we can define as in [9]

g(u, v) =
F(u, v)
(uv)∆σ

≡
∑

∆,ℓ

c∆,ℓbF∆,ℓ(u, v). (3.11)

This makes the large s1 limit of absorptive part to go like |s1|∆σ . For the epsilon expansion,
∆σ < 1 so the CSDR is applicable. Here, we find [9] that the discontinuity for u < 0 is given
by

Discu<0bF∆,ℓ(u, v) =
�

1− exp
�

−2πi
�

∆− ℓ
2
−∆σ
���

F∆,ℓ(u, v) . (3.12)

Thus generalized free field (GFF) type operators will get projected out. Using the block de-
composition in the absorptive part is justified in this case since (∆−ℓ)/2−∆σ > −1 and there
are no singularities introduced from the lower limit of the dispersive integral (see section 6.3).
The differences between the two cases will be discussed further below. When ∆σ > 1, we will
need to use the higher subtracted dispersion relation discussed in [7].
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3.2 CSDR for minimal models

We will now focus on minimal models and for definiteness discuss the Ising model in eq.(2.4).
The discontinuity across z = 0 is given by

p
2Discz F(z, z̄) =

Ç

1+
p

zz̄ +
Æ

(1− z)(1− z̄)−
Ç

1−
p

zz̄ +
Æ

(1− z)(1− z̄) . (3.13)

In the variables s1, s2 introduced above, s1 = 0, s2 = 0 is equivalent to expanding around
z = 1

2 , z̄ = 1
2 . It is clear that for |s1| →∞, fixed s2, F → |s1|2∆σ =

p

|s1| and hence the CSDR
applies. The CSDR for F then reads

F(s1, s2) = F(0,0)
︸ ︷︷ ︸

=1

+
1

2πi

∫ − 1
4

−∞

ds′1
s′1

A

�

s′1,
as′1

s′1 − a

�

H(s′1; s1, s2) , (3.14)

where A(s1, s2) is given by

p
2 A(s1, s2) =

√

√

√

1+

√

√

s1 +
1
4
+

√

√

s2 +
1
4
−

√

√

√

1−

√

√

s1 +
1
4
+

√

√

s2 +
1
4

, (3.15)

The CSDR given in eq.(3.14) works when s1 > −
1
4 , s2 > −

1
4 as we have verified numerically

in a number of examples by comparing with the known answer.7 For other minimal models,
including the non-unitary Lee-Yang model, the analysis is similar.

The Ising model has two kinds of twists ∆ − ℓ = 4k, 4k + 1 where k ≥ 0 is an integer.
All minimal models discussed below have the first tower of operators. The discontinuity then
projects out these operators.8

3.3 Comments on convergence

We note here certain important points about the convergence of the conformal block expan-
sion. The following statements are true for eq.(3.14).

• Inside the integral, notice that the CFT z, z̄ are no longer complex conjugates of one
another. In fact one can check that in the limit s1 → −∞ with s2 = as1/(s1 − a), we
have

z̄ = 1+
4a+ 1

4s1
+O

�

1

s2
1

�

, (3.18)

z = s1 − a−
(2a+ 1)2

4s1
+O

�

1

s2
1

�

. (3.19)

7Using the known expression, we find that A(s′1, as′1/(s
′
1 − a)) > 0 in the integration range for −1/8 < a < 0.

Note that a
s′1
(2 a

s′1
− 1) < 0 in the range of integration for −1/8 < a < 0 and has a definite sign. Thus, together

with the A factor in the kernel, this has a definite sign similar to the discussion of GFT methods for scattering
amplitudes [6,7]. This is important to apply GFT techniques. In appendix E, we give an application of GFT.

8Although not directly relevant for the discussion of the dispersive integral, one can check that using eq.(3.12)
we can reproduce the Taylor expansion of the discontinuity. For instance retaining the 4k + 1 twist operators up
to spin 6 and kmax = 4 we get

0.292893+ 0.603554s1 − 0.103553s2 − 0.546419s2
1 − 0.239295s1s2 + 0.160674s2

2 + · · · , (3.16)

from the block expansion whereas the expected answer is

0.292893+ 0.603553s1 − 0.103553s2 − 0.546415s2
1 − 0.239277s1s2 + 0.160692s2

2 + · · · (3.17)

Increasing the spins to 10, the minor discrepancies go away.
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(a) (b)

Figure 2: (a) |ρ| vs s1. (b) |ρ̄| vs s1.

Thus z̄ → 1− while z →−∞ (or u→−∞, v → a + 1
4). The discussion of convergence

then follows that of [33]. In the variables

ρ =
z

(1+
p

1− z)2
, ρ̄ =

z̄

(1+
p

1− z̄)2
, (3.20)

in the integration domain we find that |ρ| ≤ 1, |ρ̄| ≤ 1 for any real a but |ρ|< 1, |ρ̄|< 1
for a > −1

8 as the plots below illustrate. In fig.2 we find that |ρ| = 1 for a range of s1
when a ≤ −1/8. Since we wish to work with the φ(x1) × φ(x2) OPE channel in the
dispersive integral, we will only focus on −1/8 < a < 0. This range ensures that the ξ
variable in the dispersive representation satisfies |ξ|< 1 so that there are no singularities
inside the unit disc z̃ ≤ 1. This will be needed to discuss the GFT bounds on the Taylor
expansion coefficients.9 General considerations [33] lead to | f (ρ, ρ̄)| < (1 − r)−4∆σ

where r = max(|ρ|, |ρ̄|). In the dispersive integral, this will translate to | f | < |s1|2∆σ
for large |s1|.

• With this fall-off, for the minimal models the integrand at large negative s′1 behaves like
O( 1
|s′1|2−2∆σ ). This means that the integral converges provided ∆σ < 1/2. If instead of

eq.(3.13), we use F(u, v)/(uv)∆σ , then the integrand in the dispersive integral would
behave like O( 1

|s′1|2−∆σ
) which would improve the range of ∆σ to ∆σ < 1. Now, we

would get the projection factor (1−exp (−2πi(τ/2−∆σ)) which would project out GFF
operators [9]. This would be relevant for Wilson-Fisher fixed points. Note that arbitrary
insertions of (uv)# in defining g(u, v) in the dispersive representation is problematic
since the lower limit of the dispersive integral (u = 0) could blow up. For the minimal
models and for the epsilon expansion, we do not encounter this problem.

3.4 Locality constraints

As in the QFT case [5], the penalty for keeping the s1↔ s2 symmetry manifest is the loss of
manifest “locality”. This means that while expanding the known answer around s1 = 0, s2 = 0
we get only polynomials in x , y defined in eq.(3.5), the combination AH in the dispersion
relation will have negative powers of x . The way to see this is to note that H on its own is
“local” in the above sense. However, A(s′1, as′1/(s

′
1 − a)) can be Taylor expanded around a = 0

to yield arbitrary powers of an. Since a = y/x , this would potentially need to arbitrarily neg-
ative powers of x . The cancellation of these negative powers are what were dubbed “locality”
constraints in [5, 15] and we will continue to use the same terminology. Negative powers of

9A more general discussion on the bounds allowing for singularities inside the unit disc is possible following
[7,35] but we will not do that in this work.
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x would correspond to poles in the correlation function when u + v = 1/2 which should be
absent in CFTs. We have checked with the known expressions that indeed all such potentially
negative powers of x cancel out. What is nontrivial, however, is to examine their cancellation
at the level of the block expansion.

Each block will lead to such negative powers of x and will be “non-local”. It is only when
the operators are summed over that these powers will cancel. In the fixed-t dispersion, one
imposes the constraints arising from crossing symmetry and finds the so-called “null con-
straints” [4]. The locality constraints are their counterpart. The challenge for us now is to
efficiently extract, block-wise, these negative powers of x . This we turn to next; the discus-
sion below is general and follows from eq.(3.1). Noting that inside the dispersive integral
v = as1

s1−a +
1
4 , we can write (anticipating that s1 will be integrated over; we drop the prime for

convenience)

A=
∞
∑

m=0

fm(s1)
�

a
s1

�m

. (3.21)

Now using eq.(3.7) we can write

H
�

a
s1

, z̃
�

=
∞
∑

n=1

k(z̃)ncn

�

a
s1

�

, cn(α) = 16α(2α−1) (−16α(1−α))n−1 ≡
2n
∑

k=0

χn,kα
k . (3.22)

When we consider the dispersive integral, the statement of locality is simply the following: For
k(z̃)n, after the dispersive integral, the maximum power of a should be a2n. It can be checked
that this translates into the condition

∫ − 1
4

−∞

ds′1
(s′1)r+1

µr,n(s
′
1) = 0 , ∀r ≥ 2n+ 1, ∀n≥ 1 , (3.23)

where

µr,n(s
′
1) =

2n
∑

k=0

χn,k fr−k(s
′
1) . (3.24)

For the 2d-Ising case, we have numerically checked that this indeed works. The story is similar
for the other minimal models as shown in appendix C.

For the 2d-Ising, we observe the following for the first null constraint n = 1, r = 3. As
mentioned above, only the 4k+ 1 twists contribute in the CSDR. So the statements below are
using these operators.

• The spin-0, leading twist dominates and together with the first 10 higher twists con-
tributes +0.335 to the sum. The subleading twists higher spins are very tiny and can be
neglected for this precision.

• The spin-2 leading twist does not contribute as its OPE coefficient is zero (this also hap-
pens for the Yang-Lee model). Spin-4 onwards contribute and all higher spins have
negative sign. The sum converges to the expected answer. For Lmax = 30, the contribu-
tion from non-zero spins is approximately −0.32 compared to the anticipated answer of
−0.335.
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3.5 φpq calculations

In this section, we will calculate Wilson coefficients using the CSDR eq.(3.1). This will enable
us to see which operators contribute the most to a certain coefficient. We write:

F(s1, s2) =
∞
∑

p=0,q=0

φpq x p yq =
∞
∑

p=0,q=0

φpq(−16ak(z̃))p(−16a2k(z̃))q

=
∞
∑

p=0,q=0

(−16)p+qap+2qk(z̃)p+qφpq .

(3.25)

Further, using the notation of the previous section we find that

F(a, z̃) = F(0,0) +
1

2πi

∞
∑

n=1

∫ − 1
4

−∞

ds′1
s′1
βn

�

a
s′1

�

k(z̃)n , (3.26)

where

βn

�

a
s′1

�

=
2n
∑

k=n

2n
∑

r=k

fr−k(s
′
1)χn,k

�

a
s′1

�r

, (3.27)

where f ’s are defined via eq.(3.21). Here we have used the locality constraints, which is why
the maximum degree of a for a given power of k(z̃) is restricted to 2n. Comparing we find:

φpq =
(−16)−p−q

2πi

q
∑

r=0

χp+q,p+q+r

∫ − 1
4

−∞

ds′1
(s′1)

p+2q+1
fq−r(s

′
1) , p+ q > 0 , (3.28)

φ00 = F(0, 0) which the CSDR cannot fix. Eq.(3.28) is one of the main formulas from the
CSDR and we have verified that it works very nicely in a number of examples. This formula
also gives the locality constraints discussed in the previous section. Namely

ψi ≡ φpq = 0 , ∀p ≤ −1, q > |p| . (3.29)

We can collectively denote these locality constraints by ψ. So for instance ψ1 will be the 1st
locality constraint, ψ2 the second one and so on in some chosen ordering. In appendix C, we
will show how the leading one works for the minimal models.

4 Conformal block decomposition of Minimal models

We would like to study the s-channel conformal block decomposition for minimal models and
understand its structure. With the proper normalisation, the four point function of identical
operators of dimension m−2

2(1+m) is given by

G(z, z̄) = ((1− z)(1− z̄))
m−1
m+1 H
�

1
m+ 1

,
m

m+ 1
,

2
m+ 1

�

(4.1)

−
Γ
� 2

m+1

�2
Γ
� m

m+1

�

Γ
�2m−1

m+1

�

((z − 1)(z̄ − 1))
m−1
m+1 (zz̄)

m−1
m+1

Γ
� 1

m+1

�

Γ
� 2m

m+1

�2
Γ
�2−m

m+1

�

H
�

m
m+ 1

,
2−m
m+ 1

,
2m

m+ 1

�

,

with H(a, b, c) = 2F1 (a, b, c, z) 2F1 (a, b, c, z̄). We would like to decompose it in global two
dimensional conformal blocks such as

G(z, z̄) = (1− z)
m−2

2(m+1) (1− z̄)
m−2

2(m+1)

∑

∆,ℓ

c∆,ℓg∆,ℓ(z, z̄) , (4.2)
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with the definition of the conformal block

g∆,ℓ(z, z̄) =
k∆+ℓ(z)k∆−ℓ(z̄) + k∆−ℓ(z)k∆+ℓ(z̄)

δ0,ℓ + 1
, (4.3)

with ka(x) = xa/2
2F1

� a
2 , a

2 , a, x
�

. From the decomposition, we notice that there are two tow-

ers of operators contributing with twist τ = 4n and τ′ = 2(m−1)
(1+m) + 4n respectively, and even

spin. The OPE coefficients for the first few operators with n= 0 are

c0,0 = 1 ,

c′0,0 = −
Γ
� 2

m+1

�2
Γ
� m

m+1

�

Γ
�2m−1

m+1

�

Γ
� 1

m+1

�

Γ
� 2m

m+1

�2
Γ
�2−m

m+1

�

,

c0,2 =
(m− 2)m

8 (m2 + 4m+ 3)
,

c′0,2 =
(m− 3)m(3m− 2)

8(m+ 1)(3m− 1)(3m+ 1)
c′0,0 ,

c0,4 =
3(m− 2)m2(3m− 2)

640(m+ 1)2(m+ 3)(3m+ 5)
,

c′0,4 =
m2(m(m(m(135m− 394) + 11) + 176) + 36)

128(m+ 1)2(3m+ 1)(5m+ 1)(5m+ 3)(7m+ 3)
c′0,0 , (4.4)

where we have introduced the notation cn,ℓ ≡ c4n+ℓ,ℓ and c′n,ℓ ≡ c′2(m−1)
(1+m) +4n+ℓ,ℓ

. Notice that these

coefficients c0,ℓ and c′0,ℓ are positive for any m > 2. From a numerical analysis, it is possible

to see that the first value of m for which c0,ℓ and c′0,ℓ are all, except c0,0, negative is m = 2
3

corresponding to the Yang-Lee model. This is consistent with the fact that the Yang-Lee model
is non-unitary.

We can use the spectrum as an input to relate the coefficient φpq of the Taylor expansion
in the x , y variables to the OPE data. In particular we can take

(1− z)
m−2

2(m+1) (1− z̄)
m−2

2(m+1)

� 4
∑

ℓ=0

κ0,ℓgℓ,ℓ(z, z̄) +
4
∑

ℓ=0

κ′0,ℓg 2(m−1)
(1+m) +ℓ,ℓ

(z, z̄)

�

(z,z̄)→(x ,y)
−−−−−−−→

2
∑

p,q=0

kpq x p yq , (4.5)

where the coefficients κ0,ℓ and κ′0,ℓ are arbitrary. The coefficient kpq are m-dependent linear
combination of the κ0,ℓ and κ′0,ℓ that we would like to equate to the results from the dispersive
representation to get an estimate of the OPE coefficients. For m= 3, we obtain for the leading
two operators

κ0,0 = 0.105k00 + 6.099k01 + 3.516k10 + 3.0195k11 + 3.11k20 + 0.488k21 , (4.6)

κ′0,0 = 1.358k00 − 7.961k01 − 4.322k10 − 3.9485k11 − 4.030k20 − 0.638k21 . (4.7)

This allows us to make contact with the CSDR approach. When inputing the φpq → kpq
we are able to get estimates for the OPE coefficients, as in (4.6). In particular, it is possible to
do this procedure up to generic ℓmax , by considering greater values of p and q.

Notice that when we expand in the x , y variables there are imaginary and half-integer
contributions, e.g. i y1/2. By comparing with the expansion of the known answer, we notice
that this series of terms should be absent. If we impose that these terms are negligible we can
find relations between κ0,ℓ and linear combinations of κ′0,ℓ. We will work out an example in
Appendix C.
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Table 1: φpq using the s-channel decomposition (4.2).

(m,ℓmax) φ10 φ01 φ11 φ20 φ02

(3, 0) 0.335 0.8096 -3.227 -0.465 -5.693
(3, 4) 0.2499 0.502 -1.640 -0.282 -2.675
(4.0) 0.511 1.141 -4.388 -0.628 -7.807
(4, 4) 0.365 0.624 -1.889 -0.344 -3.020
(5, 0) 0.611 1.291 -4.851 -0.688 -8.726
(5, 4) 0.423 0.633 -1.821 -0.344 -2.894
(29

30 , 0) 0.111 0.370 -1.739 -0.240 -3.205
(29

30 , 4) 0.1017 0.3408 -1.538 -0.212 -2.875
(2

3 , 0) 5.437 19.974 -95.587 -12.861 -182.895
(2

3 , 4) 5.682 21.271 -105.956 -13.744 -206.409

4.1 φpq from s-channel OPE

By doing the OPE decomposition, we can match the conformal block decomposition with the
expansion of the known correlator and then express it in x and y . We need to include both
towers of operators for convergence to the known answers. We obtain the table below: The
last two lines represent a non unitary theory, with negative∆σ. The agreement is comparable
to the one of the unitary counterparts. We can make two comments. The first one is that the
approximation is relatively good when we include up to spin 4, but not accurate when we only
include spin 0, differently from the results that can be obtained using the dispersive integral,
see table(3). Secondly, as already mentioned in addition to the φpq there are imaginary and
half-integer powers in y in the decomposition that we did not report in table(1). With the
approximation that we are working on, such contributions are small (approximatively 10−3)
but generically much larger than expected. One would expect that adding operators with
higher spins could solve improve the accuracy, but actually this is not the case. In order to
increase the precision, higher twists (n = 0,1) needs to be included. We refer to Appendix C
for an example.

If we include only one operator with twist 2m−2
1+m we get

Table 2: φpq ’s from s-channel representation, keeping only ε (c0,ℓ = 0).

(m,ℓmax) φ10 φ01 φ11 φ20 φ02

(3, 0) 0.146 0.074 -0.471 -0.097 -0.411
(3, 4) 0.125 0.073 -0.461 -0.097 -0.388
(4.0) 0.207 0.171 -0.899 -0.143 -1.296
(4, 4) 0.200 0.112 -0.610 -0.128 -0.568
(5, 0) 0.258 0.231 -1.14 -0.158 -1.927
(5, 4) 0.245 0.132 -0.625 -0.132 -0.601

It is clear that, from the s-channel OPE, considering only one tower of operators does not
give a good approximation and we need to consider both of them.

5 Low twist dominance in dispersive representation

Here we will tabulate for ℓmax = 0 and ℓmax = 4 the values ofφpq we obtain from the dispersive
integral. We retain only the leading twist k = 0 and only the τ= 2(m−1)/(m+1)+4k tower
since the τ= 4k tower is projected out.
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Table 3: φpq ’s using CSDR eq.(3.28). First line in each row is using only the ε oper-
ator.

(m,ℓmax) φ10 φ01 φ11 φ20 φ02

(3,0) 0.248 0.504 -1.626 -0.281 -2.621
(3,4) 0.249 0.502 -1.625 -0.281 -2.623
(4.0) 0.332 0.648 -1.847 -0.330 -2.843
(4,4) 0.356 0.630 -1.853 -0.339 -2.883
(5,0) 0.352 0.676 -1.755 -0.321 -2.611
(5,4) 0.399 0.650 -1.765 -0.336 -2.674
(29

30 , 0) 0.108 0.331 -1.556 -0.221 -2.936
(29

30 , 4) 0.102 0.341 -1.541 -0.212 -2.878
(2

3 , 0) 5.6708 21.3246 -106.056 -13.7349 -206.074
(2

3 , 4) 5.6805 21.2787 -106.025 -13.7456 -206.323

Figure 3: Fractional absolute error vs ∆σ. The black dashed lines indicate the Ising
model and Yang-Lee model.

The last row is for the Yang-Lee model. The table demonstrates that the CSDR represen-
tation for the φpq ’s converges faster than the s-channel decomposition. In the QFT context,
some evidence was provided in [36], although a general proof is lacking. Owing to the ex-
ponentially fast OPE convergence, low twist dominance (LTD) could have been anticipated,
but we emphasise that the CSDR was crucial to demonstrate this as the s-channel convergence
is not as dramatic as what is obtained from the dispersive representation. A comparison of
table (3) with table (2) demonstrates this. Furthermore, to satisfy the locality constraints, we
do need a large number of operators as show in appendix C. It is only for the positive Wilson
coefficients φpq, p, q ≥ 0, p+ q > 0 that LTD holds.

We can plot the absolute error defined via

εφpq
=

�

�

�

�

�

φεpq −φ
exact
pq

φexact
pq

�

�

�

�

�

, (5.1)

whereφεpq is obtained by putting in the dimension and OPE coefficient of the ε operator only in
eq.(3.28). For all the φpq shown, for ∆σ ≲ 0.3 the agreement is excellent, demonstrating low
twist dominance (LTD). Forφ10, LTD breaks down as∆σ approaches 0.5 but for the remaining
φpq the agreement is still good. Interestingly, all plots exhibit a minimum near the Ising model
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value as well as near the Yang-Lee model value. On adding more operators, the sharp feature
seen below gets washed out.

6 Positivity, clustering and universalityφ from CSDR

We begin by noting down an amazing property of the kernel. In the dispersive integrand, we
have the combination

I = 1
s′1

�

s1

s′1 − s1
+

s2

s′1 − s2

�

=
xs′1 − 2y

(s′1)2 − xs′1 + y
, (6.1)

where x = s1+s2, y = s1s2. We can write a = y/x , expand around a = 0 and replace a→ y/x
to obtain a series expansion in xm yn. We find10

I =
∑

m,n

(−1)m+n+1

(|s′1|)2n+m+1

(2n+m)Γ (n+m)
n!m!

xm yn . (6.2)

Now it is obvious that fixing m+ n= q, for each q we get the same sign for all the coefficients
multiplying the x , y powers!

To proceed, let us write the dispersive integral (in the z̃ variable as in eq.(3.5)) in terms of
two pieces. In the first piece the integration range is from −∞ to −5/4. In this piece we can
approximate a/s′1→ 0. Then we have

1
2πi

∫ − 5
4

−∞

ds′1
s′1

�

−16
a
s′1

�

z̃
(z̃ − 1)2

A(s′1, a) +
1

2πi

∫ − 1
4

− 5
4

ds′1
s′1

A

�

s′1,
as′1

s′1 − a

�

H(s′1; s1, s2) . (6.3)

Now notice that the first piece can only contribute to φ01 and φ10 since the kernel is now the
Koebe function and in a local theory, the only terms proportional to the Koebe function are x
and y whose coefficients are φ10 and φ01 respectively. This means that for the higher φpq ’s,
most of the contribution will come from the second integral. Let us focus on the second integral
which will control the sign of φpq for p+ q ≥ 2. It is clear that the dominant contribution will

be when A(s′1,
as′1

s′1−a ) ≈ A(s′1, a = 0) since terms involving derivatives w.r.t a will come with

higher powers of s′1 and between −1 < s′1 < −1/4 will be sub-leading. Next, we observe that
around s′1 = −1/4− ε, with ε > 0, we have for the minimal models, the lowest twist operator
with twist 2 m−1

m+1 contributing

A(s′1, a = 0) = ic′0,02
3

m+1ε
m−1
m+1 sin
�

π
m− 1
m+ 1

�

2F1

�

m− 1
m+ 1

,
m− 1
m+ 1

,2
m− 1
m+ 1

,
3
4

�

+ · · · (6.4)

Higher twist operators will be subleading in ε but to conclude that they are truly subleading
we will have to assume that their OPE coefficients do not overwhelm the smallness of the ε#

factor. Some evidence for this is presented in appendix B, using the results of [34]. The sin and

2F1 above are positive for m ≥ 2. Thus the imaginary part has a definite sign near s′1 ≈ −1/4.
It can be further confirmed numerically that for −5/4 ≤ s′1 ≤ −1/4, the imaginary part of
A(s′1, a = 0) has the same sign (this is not true in the full range of the dispersive integration).
Combined with the positivity property of the kernel mentioned above, we conclude that for
m+ n = q ≥ 2, the φmn’s have the sign (−1)q+1. This explains the observation pointed out in
section 2. For q = 1, we can check explicitly that the first term in eq.(6.3) does not change the
conclusion. Thus we have shown that low twist dominance and crossing symmetry can explain
the positivity of (−1)m+n+1φmn coefficients.

10In the sum we omit the x0 y0 term as it is absent.
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6.1 An approximate formula for φpq

Using the above arguments, we can come up with an approximate formula for φpq. Using
eq.(6.4) and assuming that the bulk of the integral for φpq comes from the lower end of the
dispersive integral, we can write11

φ̃pq ≈ (−1)p+q+1(2p+ q)
Γ (p+ q)

p!q!
A0

∫ ∞

1
4

ds1
(s1 −

1
4)

m−1
m+1

sp+2q+1
1

, (6.5)

where φ̃ denotes an approximation and A0 is a p, q independent but m dependent quantity.12

The integral can be done exactly leading to

φ̃pq ≈ (−1)p+q+1 (p+ 2q)Γ (p+ q)
p!q!

4p+2q−m−1
m+1 B
�

2m
m+ 1

, p+ 2q−
m− 1
m+ 1

�

A0(m) , (6.6)

= (−1)p+q+1 (p+ 2q)Γ (p+ q)
p!q!

4p+2q−∆ε2 B
�

1+
∆ε
2

, p+ 2q−
∆ε
2

�

A0(∆ε) , (6.7)

where B(x , y) = Γ (x)Γ (y)/Γ (x + y) is the Euler-Beta function. This makes a prediction for
the ratios of the Wilson coefficients. Defining an error

εpq =

�

�

�

�

�

�

�

φ̃pq

φ̃p+q,0
− φpq

φp+q,0

φpq

φp+q,0

�

�

�

�

�

�

�

, (6.8)

where φ̃pq is given in eq.(6.6), we obtain the plot shown in fig.(4). As is expected for lower
values of |∆σ| but not for higher values. Nevertheless, considering the drastic approximations
used, the formula is a reasonable approximation for a the φpq ’s especially for ∆σ > 0. The
explicit formula in eq.(6.6) also enables us to check the clustering phenomena in section 2.
Explicitly, notice that when we compute φ̃pq/φ̃pq,max most of the p, q dependence cancels out
except for Γ (p + 2q − m−1

m+1)/Γ (p + 2q − m̃−1
m̃+1) where m̃ is the value of m which maximizes

φ̃pq. This p, q dependence will approximately cancel as p, q become large. This explains the
clustering of the plots in fig.(1).

6.1.1 Connecting with critical exponents

The approximate formula eq.(6.6) leads to

φ̃10

φ̃01

≈
1

2(2−∆ε)
=
ν

2
=

m+ 1
8

, (6.9)

where ν is a standard critical exponent. For instance, we find ν = 1 for the 2d Ising model
(m = 3) which is exactly the expected answer, while for m = 4 the above approximation
gives ν = 1.26 while the expected answer is ν = 1.18. For Yang-Lee we find 0.42 while the
expected answer is 0.53. The approximate formula tells us that for positivity to hold, even for
non-unitary theories, we need ∆ε > −2 which leads to

ν >
1
4
=⇒

φ̃10

φ̃01

>
1
8

. (6.10)

11The replacement of the upper limit by∞ yields good agreement for all φpq ’s except φ10 for large m values

where the integrand goes like 1/s
1+ 2

m
1 and hence leads to poor convergence.

12Explicitly A0 =
c′0,0
2π 2

3
m+1 sin
�

πm−1
m+1

�

2F1

�

m−1
m+1 , m−1

m+1 , 2 m−1
m+1 , 3

4

�

.
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Figure 4: Comparison of eq.(6.6) with exact result.

Figure 5: Universalityφ in the ratios of the Wilson coefficients. The plots are using
the exact answers (solid) and match well with the LTD prediction (dashed). Fig.(4)
explains the small deviations from the universality.

This bound is respected for all the 2d scenarios discussed in this paper. We also find using
eq.(6.6) other approximate formulas such as

φ̃20

φ̃02

≈
3

2(∆ε − 4)(∆ε − 6)
>

1
32

, (6.11)

where the inequality holds for ∆ε > −2. For m = 3, 4,5, 6 we find the values
(0.100, 0.112,0.121, 0.128) while the answers from the exact expressions (table in section 2)
are (0.107,0.118, 0.125,0.132) respectively. For the Yang-Lee model, we get 0.053 while the
exact answer is 0.067. As is evident the agreement in all cases is very good.

6.2 Universalityφ from LTD

Eq.(6.6) leads to a very interesting prediction. The p, q dependence in the m dependent part of
the formula always appears in the combination p+2q. This means that if we hold p+2q fixed
then the ratios of φpq ’s will be universal, i.e., it will be independent of ∆σ or m. For instance
say p + q = 4. Then eq.(6.6) predicts that φ02/φ40 = 2, φ12/φ31 = −1, φ11/φ30 = −3 and
φ21/φ40 = −4. From the plot fig.(5) with the exact known answers, we find that indeed this
is respected.
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6.3 Higher dimensions

While eq.(6.6) was derived keeping the minimal models in mind, it is easy to anticipate qual-
itatively what happens in higher dimensions. The power of (s1 − 1/4) in eq.(6.5) will get
replaced by τm/2−∆σ as in higher dimensions we will have a different projection factor as
discussed earlier. For the lower limit of the dispersive integral to be finite, we will assume
τm/2−∆σ > −1 which holds for the epsilon expansion. This will change the ∆ε in eq.(6.6)
to ∆ε − 2∆σ without altering the p, q dependence; the A0(∆ε) factor will change but is not
relevant for our discussion here. Thus exactly the same prediction of universality as discussed
above can be anticipated when there is low twist dominance in higher dimensions. This could
be used as a test for low twist dominance for any theory. In [9], for the epsilon expansion the
expression for the correlator was worked out up to O(ε2). Using this, one can compute the
epsilon expansion for the φpq ’s. What is remarkable is that the φpq ’s respect the sign pattern13

that is predicted by LTD for any real ε! As an example we quote

φ11 ≈ 768− 1267.56ε+ 907.93ε2 , φ30 = −256+ 424.82ε− 304.96ε2 , (6.12)

using which it is easy to check that when ε is real φ11 > 0,φ30 < 0 and,

−3.01≲
φ11

φ30
≲ −2.98 , (6.13)

exactly as predicted by Universalityφ . The agreement for other ratios is equally impressive.14

It will be very interesting to carry out explicit checks of this using the numerical data for 3d
CFTs living on the boundary of the allowed region.

Another example that we checked is four-dimensional N=4 Super Yang-Mills theory in
the large N and strong coupling regime. The sign pattern for the φpq ’s is completely respected
in the coupling-dependent part of the correlator, and when considering only twist two, non
protected operators, also the same universality of the ratios of φpq ’s seen for the minimal
models carries over [41].

The punchline of this section is: LTD and crossing can explain the features of positivity,
clustering and universalityφ pointed out in section 2.

7 GFT bounds for Minimal models

Here we will briefly study the Bieberbach-Rogosinski bounds [7]. The idea is to come up with
a region in the a-parameter space where the correlator is typically real 15 inside the unit disc
and hence will obey the Bieberbach-Rogosinski bounds. For QFT pion scattering, axiomatic
arguments lead to the determination of this range of a [6], while for massless scattering in EFTs
one can determine this range numerically [8]. For CFTs however, at this point, we do not know
how to make the analogous argument. As such, we will restrict our attention to studying these
bounds with the known answers, rather than exploiting the bounds to constrain the theories
like what was done in [6–8]. Writing

F =
∞
∑

n=0

αn(a)z̃
n , (7.1)

13Here there is an extra (uv)−∆σ factor like discussed and the overall minus sign is due to the difference between
2d/4d blocks.

14One can reverse the logic and put bounds on the higher order terms in epsilon. For instance suppose the O(ε2)
term in φ11 was not known. Then using universality, demanding −3.05 ≤ φ11

φ30
≤ −2.95, we find that the O(ε2)

term in φ11 lies between 901.2 and 914.7.
15A typically real function is one that satisfies Im f (z)Im z > 0, see [7] for more details.
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(a) (b) (c)

Figure 6: (a) α2
α1

vs a. (b) α3
α1

vs a. (c) α4
α1

vs a. The black solid lines indicate the
Bieberbach-Rogosinski bounds [7]. The blue shaded regions are for unitary theories.
The red lines are for the non-unitary Yang-Lee edge singularity.

the Bieberbach conjecture says that for a typically real function the αn’s should obey the
Bieberbach-Rogosinski bounds which for n= 2,3 read:

−2≤
α2

α1
≤ 2 , −1≤

α3

α1
≤ 3 . (7.2)

The plots indicate that the Minimal models populate most of the regions near the upper
bound. The upper boundary is set by∆σ ≈ 1/2 while the lower boundary is set by∆σ ≈ 0. As
∆σ→ 1/2, F → 3/4+x/2. As a result, we get the upper bound following from the Bieberbach-
Rogosinski considerations to be saturated since x is proportional to the Koebe function. This is
exactly what the plots indicate. As discussed above, the range −1

8 < a < 0 ensures that there
are no singularities inside the unit |z̃| < 1 disc, so in this range, we expect the GFT bounds to
be respected. This is indeed verified and it is important to note that inside this range, αp/α1
is positive. In fact, the bounds are respected for a larger range of a and this happens also for
α5/α1 and α6/α1. This deserves a better explanation. The red solid lines are for the Yang-
Lee non-unitary model. This indicates that the unitary models satisfy αn positivity while the
non-unitary ones do not.

8 Future directions

We conclude with possible future directions.

• In this paper we wrote down dispersion relations in the u, v variables. It is also possible
to consider the CFT ρ, ρ̄ variables as in eq.(3.20) as the convergence is better in those
variables.

• It will be interesting to take the diagonal limit z→ z̄ and try to connect with the 1d work
of [18, 19, 37]. In the x , y variables, this corresponds to the restriction x2 − 2x = 4y
and hence the Taylor expansion can be written in terms of x only.

• In the future, it will be important to understand the locality constraints in more de-
tail, both analytically and numerically. In principle, it should be possible to derive the
low twist dominance from these constraints along the lines of [38]. We present more
evidence for this in appendix C. In appendix C, we also show how to use the locality con-
straints, when we have some idea about the spectrum, but leaving the OPE coefficients
undetermined. There is some evidence that the locality constraints from the CSDR are
identical to the “null constraints” [4,47] which arise on imposing crossing symmetry in
the fixed-t approach [5,15]. This should continue to hold in the position space CFT case
considered in the present paper.
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• Extending our analysis to higher dimensions for general∆σ should be do-able, although
it will need higher subtracted dispersion relations [7]. It will be interesting to see what
additional restrictions lead to LTD or if the locality constraints are sufficient. We already
presented evidence that the universality property will hold for the epsilon expansion at
least to O(ε2). It will be fascinating to probe this at the next order, presumably using the
pure transcendentality ansatz used in [39]. Can universality hold at the next order? If
the answer is yes, then this could be pointing at a different way to constrain the epsilon
expansion order by order.

• Related to the previous point, it will be interesting to understand how to adapt this setup
in the case of superconformal field theories, for instance four dimensional N = 4 Super
Yang-Mills, in the limit of large rank of the gauge group N [41]. It would be interesting
to see if and when the positivity is maintained and if so, how to use it as a constraint in
the construction of [40], as hinted to for the epsilon expansion in the previous point.

This program is similar in spirit to [42,43], where by inputing the conformal dimensions
of the intermediate operators it is possible to compute the OPE coefficients using the
conformal bootstrap and a few other constraints. It would be very interesting to see,
when adapted to the suitable setup, how the results of this paper translates into explicit
conditions on OPE coefficients.

• Another interesting avenue to pursue is Minimal Model Holography [44]. Here we con-
sider coset CFTs SU(N)k×SU(N)1

SU(N)k+1
with 0≤ λ≡ N

k+N ≤ 1 in the N , k→∞ limit with central

charge c = N(1− λ2)≫ 1. The holographic duals are higher spin gauge theories cou-
pled to two complex scalar fields. The holographic four point functions for these complex
scalar fields of conformal dimensions ∆± = 1± λ were calculated in [45]. Since there
is large N -factorization [45], where GFF intuition kicks in, and hence the dominant ex-
change is the double-trace scalar with dimension 2∆±, it is expected that all the features
discussed in this paper will carry over; a preliminary check for the∆− operator confirms
this. A more thorough check using the techniques in [46] for non-identical operators is
desirable. What will be interesting to study is what happens for moderate values of N ,
keeping λ fixed.

• In [14], it was pointed out that in order to consider Mellin amplitudes for minimal mod-
els, one needs to subtract off an infinite number of contributions. This is analogous to
the projection of the twist 4k operators which was in-built in our analysis. The Polyakov-
Mellin bootstrap [15], is based on the measure factor in the Mellin transform leading
to projecting out the GFF operators. For minimal models, our analysis suggests that a
different measure factor which projects out the twist 4k operators should be possible.
This will make the Mellin space analysis more efficient.
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Figure 7: Estimate of∆>∆∗ contributions toφpq. The smallest value of∆∗ we have
considered is 0.2.

A Formulas for correlators

For convenience, we give here the formula for the correlators of four σ ≡ Φ1,2’s in minimal
models [29,30]:

f4 =N (t)u
t
2 v

t
2 2F1(3t − 1, t, 2t, z)2F1(3t − 1, t, 2t, z̄)

+ u1− 3t
2 v

t
2 2F1(t, 1− t, 2− 2t, z)2F1(t, 1− t, 2− 2t, z̄) , (A.1)

F = u∆σ v∆σ f4 , (A.2)

where N (t) = − Γ
2(2−2t)Γ (t)Γ (3t−1)
Γ 2(2t)Γ (1−t)Γ (2−3t) , and t = p/q is in terms of the p, q labeling the minimal

model M(q, p). In terms of t,∆σ = 3t/2−1,∆ε = 4t−2. The 2d Ising model is M(4,3) while
the Yang-Lee model [24] is M(5,2). For Yang-Lee, ∆σ =∆ε = −2/5.

B Estimating the contribution from large twist tails

In [34], it was shown that for unitary theories, the contribution to the four point function of
identical scalar operators from operators with ∆>∆∗ is bounded. Namely

| f∆>∆∗ |≲
∆

4∆σ
∗

Γ (4∆σ + 1)

�

�

�

�

z

(1+
p

1− z)2

�

�

�

�

∆∗

. (B.1)

Using this, we can find an estimate on the contribution of operators with ∆>∆∗ on φpq. The
strategy is to split the contributions to the absorptive part into two pieces,∆≤∆∗ and∆>∆∗.
Then we use Imf ≤ | f | and the rhs of eq.(B.1 ), in the formulas for φpq in eq.(3.28) which
arise from the crossing symmetric dispersion relation to estimate the contribution from the tail
to φpq ’s. Let us write the contribution from∆>∆∗ by δφpq. Then we find the following plots
for the 2d Ising value ∆σ = 1/8:

This shows that the contribution from large twists is indeed small. In numbers, for∆∗ ≥ 4,
we find |δφ11|≲ 0.0012, |δφ20|≲ 0.01, |δφ02|≲ 0.008.

Interestingly, for∆∗ = 1, we find δ10 ≈ 0.247,δ01 ≈ 0.596,δφ11 ≈ −1.82,δφ20 ≈ −0.30,
δφ02 ≈ −2.884, while the expected answers are 0.25, 0.50,−1.625,−0.281,−2.625 respec-
tively. Our analysis in this section may be taken as evidence for LTD. Note however, that the
arguments here do not extend to non-unitary theories and hence will not explain our findings
for the Yang-Lee model.

C Yang-Lee model

The Yang-Lee model corresponds to the M(5, 2) minimal model and we can study the four
point function of operators of dimension −2/5, eg. using eq.(A.1 ). This correlator reduces to
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the one discussed in Eq.(4.1) with m = 2/3, thus it can be decomposed in conformal blocks.
There are two towers of operators, with twist τ= 4n and τ′ = 4n−2/5, with OPE coefficients
as in Eq. (4.4), provided that m= 2/3. This theory is non-unitary, and this is reflected by the
fact that the corresponding OPE coefficients are non positive. We can read off the coefficient
φpq by doing the same as in Table 1, and we get

φ10 = 5.6825 , φ01 = 21.2708 , φ11 = −105.956 . (C.1)

where as the exact values are: φ10 = 5.6832 , φ01 = 21.2624 , φ11 = −106.017 .
Let us now consider the imaginary and half-integer terms in the x , y expansion. If we

include only operators with n = 0 and ℓ = 0,2, 4 in both towers, we get that for instance the
term i y is 0.001596, and the other first few terms are of the same order of magnitude. As
already mentioned, if we insist on considering only operators with n = 0, we improve only
mildly the convergence to zero. Instead, if we retain n= 0, 1,2 with ℓ= 0, 2,4 we get that the
first imaginary contributions is of order 10−6.

We can now use this example as an illustration of what we discuss in Section 4, namely
how to use the absence of the imaginary and half-integer powers to find a relation between
the OPE coefficients of the two towers of operators. Due to the excellent accuracy that our
approximation has in this case (when ℓmax = 0,2, 4,6 and n= 1), we can force these unwanted
terms to be strictly equal to zero. By doing so, we get a set of linear equations which can be
simply solved. This gives

κ′0,0 = −3.65273 , κ′0,2 = −0.0000337402 ,

κ′0,4 = −0.000480083 , κ′0,6 = −0.0000198372 , (C.2)

which are in excellent agreement with

c′0,0 = −3.65312 , c′0,2 = 0, c′0,4 = −0.000492998 , c′0,6 = −0.0000160889 . (C.3)

Notice that the operators with n have c′1,ℓ = 0 and we have κ′1,ℓ ∼ 10−7. This procedure can
be done for arbitrarily large n and ℓmax .

D Locality constraints

Here we will examine some of the locality constraints and show that they are indeed satisfied
when more operators are included. Consider the locality constraint φ−1,2 = 0. To have evi-
dence that it works, we will put in all leading twist (k = 0) operators up to some ℓ = Lmax .
The plot gives evidence that the locality constraints will get satisfied. It is curious to note that
the locality constraints become harder to satisfy beyond ∆σ < −0.4, which is the Yang-Lee
value.

D.1 Motivating LTD

Here we will briefly motivate the Low Twist Dominance effect starting from the locality con-
straint φ−1,2. Let us assume the tower of operators ∆ − ℓ = ∆ε + 4k and focus on k = 0,
retaining the first 8 spins for definiteness. We will let the OPE coefficients be arbitrary. Let us
first examine the constraints for m= 3.16 We find

−0.054c′0,0 + 19.996c′0,2 + 329.23c′0,4 + 3775.09c′0,6 + 42719.3c′0,8 + · · ·= 0 . (D.1)

16We assume here only one tower of operators in the spectrum and the dimension of the external operator for
the specific value of m. We do not input the specific structure of the full correlator.
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Figure 8: The locality constraint φ−1,2.

Thus we observe a pattern of signs whereby the higher spins all have the same sign. This
automatically implies a chain of inequalities, for instance:17

−0.054c′0,0 + 19.996c′0,2 < 0 =⇒
c′0,2

c′0,0

< 0.0027 , (D.2)

−0.054c′0,0 + 329.23c′0,4 < 0 =⇒
c′0,4

c′0,0

< 1.65× 10−4 . (D.3)

Thus the OPE coefficients of higher spin operators are suppressed as expected, and the first
locality constraint already leads to interesting bounds on the same. In the Taylor coefficients
φpq, c′0,0 contributes the most. As an example we present

φ11 = −6.503c′0,0 − 4.053c′0,2 + 31.774c′0,4 + 260.309c′0,6 + · · · (D.4)

From here it is clear that the contribution from c′0,0 will be ∼ O(103) times bigger than the
higher spin contributions. As another example, consider the Yang-Lee model. Here repeating
the same steps as outlined above, we find18

c′0,2

c′0,0

< 0.0019 ,
c′0,4

c′0,0

< 1.85× 10−4 , (D.5)

again indicating LTD. As we increase∆σ, there is a change in pattern where the spin-0, spin-2
are of one sign and the rest of the opposite sign. For instance, for ∆σ = 0.4, we find

−0.386c′0,0 − 0.582c′0,2 + 47.009c′0,4 + 769.70c′0,6 + 10358.2c′0,8 + · · ·= 0 . (D.6)

Repeating the logic presented above, we would now keep both the spin-0 and spin-2 operators
and conclude that the rest of the OPEs are suppressed compared to these two. This is perfectly
consistent with our findings in fig. 3, where for increasing ∆σ → 0.5, retaining only the ε
operator led to poor agreement for φ10,φ01 coefficients. To promote the logic presented here
to a full fledged derivation of LTD, we can retain other locality constraints in order to constrain
the spectrum in addition to the OPE. We leave this for future work.

17The known answers for 2d Ising are
c′0,2

c′0,0
= 0,

c′0,4

c′0,0
≈ 6.1× 10−5.

18The known answers for Yang-Lee are
c′0,2

c′0,0
= 0,

c′0,4

c′0,0
≈ 1.3× 10−4.
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D.2 Constraining OPE using locality constraints

In most of the paper, our approach has been to come up with explanations for features
observed in section 2. If we did not know the correlator to begin with, the locality con-
straints can be used to obtain new results with a minimal set of assumptions. As in the
previous subsection, let us assume the same tower of operators with all unknown OPE coeffi-
cients. For illustrative purpose, consider m = 3. Now let us consider the locality constraints
φ−1,2,φ−1,3,φ−1,4,φ−2,3,φ−2,4. Let us list these out. φ−1,2 was already given above.

φ−1,3 =− 0.08268c′0,0 + 35.0115c′0,2

+ 745.226c′0,4 + 7334.46c′0,6 + 57313.1c′0,8 + · · ·= 0 , (D.7)

φ−1,4 =− 0.40752c′0,0 + 128.049c′0,2

+ 3530.51c′0,4 + 40378.3c′0,6 + 311081.0c′0,8 + · · ·= 0 , (D.8)

φ−2,3 =0.2068c′0,0 − 65.4162c′0,2

− 1242.95c′0,4 − 14903.8c′0,6 − 167821.0c′0,8 − · · ·= 0 , (D.9)

φ−2,4 = 0.41822c′0,0 − 148.596c′0,2

− 3557.23c′0,4 − 38870.3c′0,6 − 321490.0c′0,8 − · · ·= 0 . (D.10)

Notice the definite sign pattern: spin-0 is of one sign and the higher spins of opposite signs.
These give

0≤
c′0,2

c′0,0

≤ 2.4× 10−3 , 0≤
c′0,4

c′0,0

≤ 1.1× 10−4 , (D.11)

0≤
c′0,6

c′0,0

≤ 1.0× 10−5 , 0≤
c′0,8

c′0,0

≤ 1.2× 10−6 . (D.12)

These are expectedly stronger than what we obtained using φ−1,2 above. These can then be
used to obtain bounds on φpq ’s. For instance, if we put in c′0,0 = 0.25, then we find

−1.626≤ φ11 ≤ −1.625 , −0.2817≤ φ20 ≤ −0.2810 , (D.13)

which are in excellent agreement with the known answers. If we did not put in c′0,0 we would
get projective bounds in terms of ratios of φpq ’s. Thus putting in some information about the
spectrum, one can derive LTD using the locality constraints.

E A simple application of GFT techniques

A simple application is the following. Consider expanding F(a, z̃) for 2d Ising around a = 0.
We readily find

F(a, z̃) = 1− 4ak(z̃)− 8a2
�

k(z̃) + 9k(z̃)2
�

+O(a3) , (E.1)

which means that (F(a, z̃) − 1)/(−4a) is just the Koebe function to leading order and will
saturate the Bieberbach upper bound. Namely writing (F(a, z̃)− 1)/(−4a) = z̃ +

∑∞
n=2 cnz̃n,

we will find that for a→ 0−, the cn’s will obey

cn→ n . (E.2)

This explains the saturation of the bounds near a ∼ 0 in fig.(6). Note that the highest power
of k(z) multiplying an is n and further there is a minimum power of k(z) at each order in an.
This is a statement of “locality”; in other words we only find positive powers of x , y in the
expansion.
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