
SciPost Phys. 14, 084 (2023)

Integrable Floquet systems related
to logarithmic conformal field theory

Vsevolod I. Yashin1⋆, Denis V. Kurlov2,3, Aleksey K. Fedorov2,3 and Vladimir Gritsev4,2

1 Steklov Mathematical Institute of Russian Academy of Sciences,
Gubkina str., 8, Moscow 119991, Russia

2 Russian Quantum Center, Skolkovo, Moscow 143025, Russia
3 National University of Science and Technology “MISIS”,

Moscow 119049, Russia
4 Institute for Theoretical Physics, Universiteit van Amsterdam,

Science Park 904, Postbus 94485, 1090 GL Amsterdam,
The Netherlands

⋆ viyashin@protonmail.com

Abstract

We study an integrable Floquet quantum system related to lattice statistical systems in
the universality class of dense polymers. These systems are described by a particular
non-unitary representation of the Temperley-Lieb algebra. We find a simple Lie algebra
structure for the elements of Temperley-Lieb algebra which are invariant under shift by
two lattice sites, and show how the local Floquet conserved charges and the Floquet
Hamiltonian are expressed in terms of this algebra. The system has a phase transition
between local and non-local phases of the Floquet Hamiltonian. We provide a strong indi-
cation that in the scaling limit this non-equilibrium system is described by the logarithmic
conformal field theory.
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1 Introduction

Integrable systems play a tremendous role in our understanding of many-body statistical
classical and quantum systems. A great number of conceptual insights had emerged from the
notable examples of exactly solvable models. For instance, solution of the two-dimensional
(2D) Ising model by Onsager [1] has eventually led to the concepts of scaling and universality.
In addition, the 2D Ising model became a benchmark for the renormalization group technique
and various numerical methods. Later on, a multi-state generalization of the Ising model, the
so-called Potts model, has been solved in some cases [2] and has revealed a great amount of
interesting mathematics, e.g., Tutte and chromatic polynomials from graph theory and the
Temperley-Lieb algebras [3], just to mention a few. A particular case of the latter one is the
central object of this paper.

The Temperley-Lieb (TL) algebra (formally defined below in Section 3) has one free pa-
rameter β which eventually defines its representations. Many different realizations of the TL
algebra in terms of physically-interesting objects can have the same value of β . In particu-
lar, for β =

p
2 there is a representation related to the quantum Ising chain, while for the

representation that corresponds to the isotropic Heisenberg spin-1/2 chain (XXX model) one
has β = 2. Here we are concerned with the case of β = 0. The TL generators in this case have
a representation in terms of the supersymmetric spin chain related to the gl(1|1) algebra [4]. It
is a well-known fact [4,5] that the continuum limit of this spin chain provides a realization
for the logarithmic conformal field theory (LOG-CFT) with the central charge c = −2. This
field theory appears in the scaling limit of critical dense polymers [6,7]. This LOG-CFT is also
a theory of the so-called symplectic fermions introduced in Refs. [8,9]. The structure of the
TL algebra at β = 0, its continuum limit, and the algebraic structure of the continuum theory
have been intensively studied in a series of works [10–14], see also [15] and [16] for a nice
overview of these developments.

Motivated by the historical line of thoughts on the importance of integrable models, we
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introduce an integrable quantum Floquet dynamics [17] (see also [18] for the recent devel-
opments) with the aim to understand periodically driven many-body systems exactly. The
two-step protocol described below in Section 2 has a very close resemblance with integrable
lattice models in the brick-wall-like representation of Baxter [19]. Indeed, after an appropriate
analytic continuation, the logarithm of the transfer matrix can be identified with a quantum
Floquet Hamiltonian, defined below (Section 2). Obviously, the transfer matrix of a classical
lattice model is a non-local object. This preclude an immediate writing down of analytic
expression for the Floquet Hamiltonian. Using the map outlined above the Floquet Hamiltonian
can be expressed in terms of an infinite number of conserved charges.

The problem of finding all the conserved charges for a generic integrable Floquet protocol
based on the TL algebra seems to be intractable.1 In the recent paper [20] the conserved
charges for anisotropic Heisenberg model have been computed in terms of the TL generators
(in the basis of irreducible words on the algebra). To construct a logarithm of the transfer
matrix one should sum up these charges with powers of a formal parameter, but this seems
intractable at the moment. We note that our construction presented in this paper is different
and is motivated by the Floquet construction and by application of Lie-algebraic techniques.

In the present work we demonstrate that for β = 0 the conserved charges and the Floquet
Hamiltonian can be computed in the closed form. Furthermore, we show that conserved
charges lie inside an infinite dimensional sl(2) loop algebra, which could be useful to better
understand the LOG-CFT at c = −2. For the representation in terms of symplectic fermions
one can diagonalize the Floquet Hamiltonian exactly, see Section 4. In addition, we find some
sort of a phase transition, which is related to the convergence of the series defining the Floquet
Hamiltonian. We are tempted to interpret it in terms of the locality-nonlocality transition,
similar to the case of the Floquet X Y model [21].

2 Integrable Floquet dynamics

We study systems with periodic alteration between two Hamiltonians He and Ho that act for
duration T1 and T2, correspondingly. The total period of the system is T = T1 + T2. This (the
so-called two-step) protocol is a quite generic setup describing a Floquet (time-periodic) driven
many-body quantum system,

H(t) =
¨

He , nT ≤ t ≤ nT + T1 ,

Ho , nT + T1 ≤ t ≤ nT + T1 + T2 ,
n ∈ Z . (1)

The two-step protocol (1) can be pictorially represented as shown in Fig. 1 (see also Ref. [17]).
The stroboscopic time evolution of the system (1) is then governed by the operator UF , given
by

UF = exp(−iT1He)exp(−iT2Ho)≡ exp(−iTHF ) , (2)

where HF is the effective time-independent Floquet Hamiltonian. In order to compute the
Floquet Hamiltonian, one can use the Baker-Campbell-Hausdorff (BCH) formula:

log
�

eX eY
�

= X + Y +
1
2
[X , Y ] +

1
12

�

�

X , [X , Y ]
�

+
�

Y, [Y, X ]
�

�

+ . . . (3)

However, in most cases it is impossible to sum the BCH series in a closed operatorial form. In
this paper we present one of the rarest examples when this task can be accomplished.

1However, several lowest charges can be obtained quite easily. We would like to thank Prof. Jesper Lykke
Jacobsen for interesting communications on this point.
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Lattice site
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Figure 1: Brick-wall protocol. A space-time picture of the lattice version of the
integrable two-step Floquet protocol for the Floquet dynamics. System evolves for time
T1 with a Hamiltonian He (for the layer V ) and for the time T2 with a Hamiltonian Ho
(for the layer W ). Layers V and W correspond to the evolution operators exp(−iT1He)
and exp(−iT2Ho) respectively. Here X denotes an operator acting between two
neighboring lattice cites while satisfying the Yang-Baxter equation. A particular case
of the latter is provided by the TL algebra, e.g. by the TLN (0) .

We remind that the operator Q is called a conserved charge if it commutes with the Hamilto-
nian H, thus being a time-independent quantity. One of the definitions of quantum integrability
(see Ref. [22] for extensive discussion on the notions of integrability in quantum systems) is that
the Hamiltonian system is considered to be integrable if it wields the complete set of mutually
commuting charges {Qn}. In this case it is possible to fully characterize the evolution of a sys-
tem, namely to find its eigensystem. Similarly, the Floquet-system is called Floquet-integrable, if
it contains the full set of (a sufficient number of) operators {Qn} that commute with the Floquet
Hamiltonian HF (equivalently, with the Floquet evolution operator UF ). These operators have
stroboscopic-time conservation: they form conserving family at times mT , where m ∈ Z. Some
general considerations about Floquet integrable models may be found in [17].

We should mention here that our two-step Temperley-Lieb algebraic Floquet protocol is
conjectured to be integrable for some special points in the T1−T2 parameter space, in particular
for T1 = T2 for generic β [18]. However, in this paper we show that for β = 0 the two-step
protocol is integrable regardless of what the values of T1 and T2 are.

3 Temperley-Lieb algebra and commuting Floquet charges

In this Section we first define our construction in terms of the TL algebra. Then we establish an
infinite-dimensional loop algebra for the charges that commute with the Floquet Hamiltonian
and each other.

3.1 Floquet protocol in terms of the Temperley-Lieb algebra

The Temperley-Lieb algebra TLN (β) is an associative algebra that appears frequently in the
context of various integrable models [23]. The algebra contains a free parameter β ∈ C and is
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generated by the elements {ei}N−1
i=1 that satisfy the relations:

e2
i = βei ,

eiei±1ei = ei ,

eie j = e jei , |i − j|> 1 .

(4)

We are interested in the case of β = 0 that is related to the dimer representations of the
Temperley-Lieb algebra [23,24]. In order to impose periodic boundary conditions and deal
with translationally invariant systems, we include an additional generator e0 ≡ eN that satis-
fies e2

0 = βe0 = 0 and the additional relations

e0eJ e0 = e0 , eJ e0eJ = eJ , J ∈ {1, N − 1} . (5)

The resulting algebra generated by {ei}N−1
i=0 is called the periodic Temperley-Lieb algebra and

denoted by pTLN (0), see e.g. Refs. [25–27] for review. The systems we are interested in are
often invariant under the shift by two sites, therefore we require that N is even. Also note that
we aim to consider the thermodynamic limit, N →∞.

In terms of pTLN (0), the Hamiltonians He and Ho from Eq. (1) are written as

He =
(N−2)/2
∑

i=0

e2i ≡
∑

i even

ei , Ho =
(N−2)/2
∑

i=0

e2 j+1 ≡
∑

i odd

ei , (6)

and the Floquet evolution operator is given by Eq. (2). In this identification the Floquet time
evolution looks like a brick-wall protocol, see Fig. 1.

Note that the algebraic structure of pTLN (0) (here, β = 0 is essential) is preserved under
the following automorphisms

ei 7→

¨

tei , for i even ,

t−1ei , for i odd ,
t ∈ C \ {0} . (7)

Let us denote
τ=
p

T1T2 , z = −iτ . (8)

The number τ can be understood as the “averaged” period of the protocol, and z is its Wick
rotation. Thus, for later convenience we redefine the generators ei using the automorphism (7)
with the parameter t =

p

T2/T1. Therefore, we are interested in examining the Floquet
evolution operator of form

UF (z) = exp(zHe)exp(zHo) = exp(zHF (z)) . (9)

Let us also mention that the average Hamiltonian H equals HF in the Trotter limit

H =He +Ho = lim
z→0

HF (z) . (10)

3.2 Lie algebraic structure of Temperley-Lieb algebra at β = 0

The algebra pTLN (0) has a number of nice properties. In particular, it turns out to have a rather
convenient Lie algebra of commutators, see Appendix A for further details. We denote the Lie
algebra of commutators as

tl= Lie
�

pTLN (0)
�

. (11)

Let us introduce the generators qm
i , which correspond to the Lie polynomials of degree m

labelled by the lattice site i:

q0
i = 1 , q1

i = ei , qm
i = [ei , [ei+1, · · · , [ei+m−2, ei+m−1] · · · ]] . (12)
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The generators qm
i span the algebra tl. One should be careful with the fact that qm

i are defined
only for m< N . However, in the case N →∞ that we are interested in, this does not lead to
confusion.

Then, let us consider the subalgebra tl± ⊂ tl of generators invariant under the shift by two
lattice sites. It consists of generators qm

+ and qm
− defined as

qm
+ =
∑

i

qm
i , qm

− =
∑

i

(−1)iqm
i . (13)

For our purposes, it is also convenient to use the following basis:

qm
e =

1
2
(qm
+ + qm

− ) =
∑

i even

qm
i , qm

o =
1
2
(qm
+ − q

m
− ) =
∑

i odd

qm
i . (14)

Indeed, in terms of the operators (14) the Hamiltonians H,He,Ho are given by

H = q1
+ , He = q1

e , Ho = q1
o . (15)

One can check (see Appendix A) that the following identities hold

[He,Ho] = q2
− , [Hα,q2s

+ ] = 0 , [Hα,q2s+1
α ] = 0 ,

[He,q2s+1
o ] = q2s+2

− + q2s
− , [Ho,q2s+1

e ] = −(q2s+2
− + q2s

− ) ,

[He,q2
−] = −2(q3

e + 2q1
e) , [Ho,q2

−] = 2(q3
o + 2q1

o) ,

[He,q2s
− ] = −2(q2s+1

e + q2s−1
e ) , [Ho,q2s

− ] = −2(q2s+1
o + q2s−1

o ) ,

(16)

where s > 0 and α ∈ {e, o}. Let us then introduce additional operators

q̃m
β =

⌊m−1
2 ⌋
∑

l=0

�

m− 1
m− 1− l

�

qm−2l
β , β ∈ {e, o,+,−} . (17)

The operators (17) are very convenient for examining the structure of Lie algebra tl± (see
Appendix A). Note that the subalgebra {q̃2s+2

+ }s is a center, i.e. these operators commute with
all elements in tl±. One can also check that the three subalgebras {q̃2s+1

e }s, {q̃2s+1
o }s, {q̃2s+2

− }s
are commutative and maximal. Now, let us define

H c = q̃2c
− , Ea = q̃2a+1

e , F b = q̃2b−1
o , (18)

where a = 0, 1, . . . and b, c = 1, 2, . . . . Quite remarkably, the operators (18) turn out to satisfy
the relations for the sl(2) loop algebra:

[Hn, Hm] = 0 , [En, Em] = 0 , [F n, F m] = 0 ,

[Hn, Em] = 2En+m , [Hn, F m] = −2F n+m , [En, F m] = Hn+m ,
(19)

which is a central result of this subsection. Thus, we have obtained that the Lie algebra tl± is
decomposed into a center {q̃2s+2

+ }s and an algebra Lie(He,Ho), which is a subalgebra of the
sl(2) loop algebra (a subalgebra of elements with positive loop parameters), and one has

He = E0 , Ho = F1 . (20)

Finally, the loop algebra relations (19) may be expressed in terms of {qn
±}n so as to give

[q̃n
+, q̃m

+ ] = 0 , for any n, m ,

[q̃n
+, q̃m
− ] = 0 , for even n and any m ,

[q̃n
+, q̃m
− ] = −2q̃n+m

− , for odd n and any m ,

[q̃n
−, q̃m
− ] = 0 , for n, m both even or both odd ,

[q̃n
−, q̃m
− ] = 2q̃n+m

+ , for even n and odd m .

(21)
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3.3 Floquet conserved charges

Using the commutation relations presented in Eqs. (16)–(19) here we find the set of local
charges for the Hamiltonian H and the evolution operator UF .

3.3.1 Charges of the average Hamiltonian

Eq. (21) directly implies that the set of commuting charges for the average Hamiltonian H = q1
+

in Eq. (10) is given by2

Qm = qm
+ . (22)

The charges Qm are referred to as higher Hamiltonians in Ref. [10].

Remark 1. Note that if we disregard the boundary conditions, then this system has a boost operator
B =
∑

j je j , such that
[Qm,B] = mQm+1 + (m− 2)Qm−1 . (23)

3.3.2 Charges of the evolution operator

Proposition 1. There is a set of local charges3 for the evolution operator UF (z), given by

Qm = q̃m
+ , if m even ,

Qm = q̃m
+ +

z
2
q̃m+1
− , if m odd .

(24)

Proof. First, it is trivial to show that UF commutes with Qm for even m. Indeed, we know
[see Eq. (21)], that the even charges Qm = q̃m

+ commute with any element in the algebra,
which obviously includes UF . Now, suppose m is odd. Clearly, the requirement [UF ,Qm] = 0 is
equivalent to

e−z adHe Qm = ez adHo Qm . (25)

Using Eqs. (14), (18), and (24), one can easily see that in terms of the generators of the sl(2)
loop algebra the conserved charges read

Q2s+1 = Es + F s+1 +
z
2

Hs+1 . (26)

Then, keeping in mind that He = E0, Ho = F1, and using the following relations:

adE0 Q2s+1 = Hs+1 − zEs+1 , ad2
E0 Q2s+1 = −2Es+1 , ad3

E0 Q2s+1 = 0 ,

adF1 Q2s+1 = −Hs+1 + zF s+2 , ad2
F1 Q2s+1 = −2F s+2 , ad3

F1 Q2s+1 = 0 ,
(27)

from Eqs. (25) and (26) we immediately obtain

e−z adE0 Q2s+1 = ez adF1 Q2s+1 = Es + F s+1 −
z
2

Hs+1 , (28)

so that Eq. (25) is satisfied. It is also a straightforward check that all the charges Qm commute
with each other.

Note that in the Trotter limit z→ 0 the charges of the Floquet evolution operator and those
of the average Hamiltonian are equivalent to each other, as expected.

2Here, we equivalently could have taken q̃m
+ instead of qm

+ .
3We conjecture that this set is also complete.
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Remark 2. We note that the expression for the first commuting charge

Q1 = E0 + F1 +
z
2

H1 =
N−1
∑

j=0

e j −
iτ
2

N−1
∑

j=0

(−1) j
�

e j , e j+1

�

, (29)

as follows from Eq. (26), coincides 4 with the the β = 0 limit of the corresponding expression
derived for generic β and T1 = T2 = T [so that in Eq. (29) τ= T] in a recent paper [18].

3.4 Floquet Hamiltonian

Using the Baker-Campbell-Hausdorff (BCH) formula one can write the Floquet Hamiltonian HF
as the series expansion

log UF (z) = zHF (z) = log
�

ezHe ezHo
�

=
∞
∑

k=1

zkZk , (30)

where Zk are the Lie polynomials of degree k made of Hamiltonians He,Ho. Then, taking into
account the structure of the Lie algebra tl±, discussed in subsection 3.2, in particular its relation
to the sl(2) loop algebra, and using the symmetry

Zk(X , Y ) = (−1)k+1Zk(Y, X ) , (31)

we find that the polynomial Zk has explicit form given in Proposition 2.

Proposition 2. Lie polynomials Zk in the BCH expansion for the sl(2) loop algebra are explicitly
given by

Z2s+1 =
(−1)s

2s+ 1
1
�2s

s

� q̃2s+1
+ , Z2s+2 =

(−1)s

2s+ 2
1
�2s+1

s

� q̃2s+2
− , s = 0, 1, . . . (32)

Proof. One can show that for the sl(2) algebra with generators {H, E, F} the following holds [28–
30]:

log
�

ezEezF
�

=
4arcsinh z

2p
4+ z2

�

E + F +
z
2

H
�

. (33)

The series representation at z = 0 of this expression is

log
�

ezEezF
�

=
∞
∑

s=0

(−1)s
�

z2s+1

2s+ 1
1
�2s

s

�(E + F) +
z2s+2

2s+ 2
1
�2s+1

s

�H

�

. (34)

This gives us all Zk in BCH series of the algebra sl(2). Then, taking into account the integer
loop label of the generators, the BCH expansion for the sl(2) loop algebra takes the following
form

log
�

ezE0
ezF1
�

=
∞
∑

s=0

(−1)s
�

z2s+1

2s+ 1
1
�2s

s

�(Es + F s+1) +
z2s+2

2s+ 2
1
�2s+1

s

�Hs+1

�

. (35)

4Note that the expression for Q1 in Ref. [18] is derived for open boundary conditions, whereas here we are
dealing with the periodic ones. While the expressions for the first conserved charge are the same in both cases (up
to a trivial change of summation limits), this is no longer true for the higher order charges, since in the case of
open boundary conditions there are also boundary terms present. Also note that because we count the lattice sites
from zero, the term ∼

∑

j(−1) j[e j , e j+1] in Eq. (29) has a different sign from that in Ref. [18], where the sites are
counted from one.
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Therefore, we conclude that Floquet Hamiltonian has the following form

log UF (z) = zHF (z) =
∞
∑

s=0

(−1)s
�

z2s+1

2s+ 1
1
�2s

s

� q̃2s+1
+ +

z2s+2

2s+ 2
1
�2s+1

s

� q̃2s+2
−

�

. (36)

The first elements of the series (36) are given by

Z1 = q̃1
+ , Z2 =

1
2
q̃2
− , Z3 = −

1
6
q̃3
+, Z4 = −

1
12

q̃4
− ,

Z5 =
1
30

q̃5
+ , Z6 =

1
60

q̃6
− , Z7 = −

1
140

q̃7
+ , · · · ,

(37)

We also note that the Floquet Hamiltonian can be expressed in terms of the odd charges of the
Floquet evolution operator,

log UF (z) =
∞
∑

s=0

z2s+1

2s+ 1

�

2s
s

�−1

Q2s+1 . (38)

Remark 3. We note again that strictly speaking the charges Qm are defined only for m < N,
therefore the above sums should be understood as exact expressions only when N →∞.

Remark 4. We note that the series may have only the finite radius of convergence R. In the
example considered in section 4, one has R = 1. This is explained by the fact that the norm of the
operator Q2s+1 in equation (38) is approximately

∥Q2s+1∥ ∼
�

2s
s

�

. (39)

4 Charges and Floquet Hamiltonian in the representation of sym-
plectic fermions

In this section we specify the relations found above to the model of symplectic fermions related
to the gl(1|1) spin chain. Note that similar analysis can also be applied to the dimer model
representation [31] of the TLN (0).

4.1 Symplectic fermions representation of the Temperley-Lieb algebra

We study the gl(1|1) model with T1 = T2. The representation is defined as

ei = ( f
×
i + f ×i+1)( fi + fi+1) , (40)

where the operator fi ( f ×i ) annihilates (creates) a so-called symplectic fermion on the ith lattice
site. The operators fi , f ×i obey the following anticommutation relations

{ fi , f j}= { f ×i , f ×j }= 0 , { fi , f ×j }= (−1)iδi j . (41)

We emphasise that f j and f ×j are not Hermitian conjugates to each other. In terms of canonical

fermionic creation and annihilation operators c†
j and c j , symplectic fermions are given by

f j = i jc j , f ×j = i jc†
j , (42)

where i is the imaginary unit. One can show that any fermionic representation of the TL
algebra with β = 0 that is bilinear in fermionic creation and annihilation operators and acts
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nontrivially on two adjacent sites (i.e., e j acts only on sites j and j + 1) is equivalent to the
representation (40) in terms of symplectic fermions, see Appendix B for the proof.

For later convenience, let us introduce the operators

b j = f j + f j+1 , b×j = f ×j + f ×j+1 , (43)

which satisfy the following (non-canonical) anticommutation relations:

{bi , b j}= {b×i , b×j }= 0 , {bi , b×j }= (−1)i
�

δi, j+1 −δi, j−1

�

. (44)

Then, using Eqs. (40) and (44) we immediately obtain that in the representation (40) the
operators qm

i from Eq. (12) become

q1
i = b×i bi ,

q2s+1
i = (−1)s(b×i+2s bi + b×i bi+2s) , (s > 0) ,

q2s+2
i = (−1)s+i(b×i+2s+1 bi − b×i bi+2s+1) , (s ≥ 0) .

(45)

Therefore, for the operators (13) one has

q1
± =
∑

i

(±1)i b×i bi ,

q2s+1
± = (−1)s
∑

i

(±1)i(b×i+2s bi + b×i bi+2s) , (s > 0) ,

q2s+2
± = (−1)s
∑

i

(∓1)i(b×i+2s+1 bi − b×i bi+2s+1) , (s ≥ 0) .

(46)

Then, using the Fourier transform

b j =
1
p

N

∑

p∈BZ

eip j bp , b×j =
1
p

N

∑

p∈BZ

e−ip j b×p , (47)

where the sum is taken over Brillouin zone

BZ = {0,ϵ, . . . , 2π− ϵ} , ϵ =
2π
N

, (48)

and the momenta are defined modulo 2π, the charges qm
± in Eq. (46) can be written as

q1
+ =
∑

p

b×p bp , q2s+1
+ = 2(−1)s
∑

p

cos2sp b×p bp , (s > 0) ,

q2s+2
+ = 2(−1)s+1

∑

p

cos (2s+ 1)p b×p−πbp , (s ≥ 0) .
(49)

Likewise, for qm
− one obtains

q1
− =
∑

p

b×p−πbp , q2s+1
− = 2(−1)s
∑

p

cos2sp b×p−πbp , (s > 0) ,

q2s+2
− = 2i(−1)s+1

∑

p

sin (2s+ 1)p b×p bp , (s ≥ 0) .
(50)
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4.2 Floquet Hamiltonian in symplectic fermions representation

With the help of Eqs. (49) and (50), for the operators (17) we obtain

q̃2s+1
+ =
∑

p

(2 sin p)2s b×p bp , q̃2s+2
− = −i
∑

p

(2 sin p)2s+1 b×p bp , (s ≥ 0) . (51)

Therefore, using the general expression (36) of the Floquet Hamiltonian HF , in symplectic
fermions representation we obtain

HF (z) =
∞
∑

s=0

(−1)s
�

z2s

2s+ 1
1
�2s

s

� q̃2s+1
+ +

z2s+1

2s+ 2
1
�2s+1

s

� q̃2s+2
−

�

=
∑

p

φp(z)b
×
p bp , (52)

where the thermodynamic limit is assumed and we denoted

φp(z) =
�

1− iz sin p
1+ iz sin p

�1/2 arcsinh(z sin p)
z sin p

. (53)

Here φ0(z) = φπ(z) = 1, and Trotter limit corresponds to the average Hamiltonian H:

lim
z→0
φp(z) = 1 , lim

z→0
HF (z) =H . (54)

Note that despite its form, the Hamiltonian (52) is not diagonal, since [b×p bp, b×q bq] ̸= 0

for p ̸= q. Moreover, HF is not even diagonalisable since it is not normal, i.e. [H†
F ,HF ] ̸= 0.

Nevertheless, one can bring it to the Jordan normal form.

4.3 Jordan normal form of the Floquet Hamiltonian

Let us now proceed with reducing the Floquet Hamiltonian (52) to its Jordan normal form.
First of all, we rewrite the Floquet Hamiltonian (52) in terms of the Fourier components of
symplectic fermions fp and f ×p . The latter are related to the operators bp and b×p as

bp = (1+ eip) fp , b×p = (1+ e−ip) f ×p , (55)

where we used Eqs. (43) and (47). Thus, the Floquet Hamiltonian can be written as

HF (z) =
2π−ϵ
∑

p=0

2
z

arcsinh(z sin p) cot
� p

2

�

�

1− iz sin p
1+ iz sin p

�1/2

f ×p fp , (56)

where we took into account that the summation over momenta is taken over the Brillouin
zone (48).

Then, following Ref. [10] we introduce two fermionic modes [cf. Eq. (42)] which satisfy
canonical anticommutation relations

{ck,σ, cq,σ′}= {c
†
k,σ , c†

q,σ′}= 0 , {ck,σ, c†
q,σ′}= δk,qδσ,σ′ , (57)

where σ,σ′ ∈ {+,−} and k ∈ {0,ϵ, . . . ,π− ϵ}, i.e. the Brillouin zone is “halved” as compared
to Eq. (48). In the notations of Ref. [10] we have

ck,+ = χk , ck,− = ηk , (58)

which we are going to use below.
Note that the square root in Eq. (56) requires extra care: the argument inside of the root

may become negative in case |τ|> 1. For this reason we examine the Floquet Hamiltonian in
two separate regions.

11

https://scipost.org
https://scipost.org/SciPostPhys.14.4.084


SciPost Phys. 14, 084 (2023)

4.3.1 The region |τ| ≤ 1

The Floquet Hamiltonian HF in this case has a behaviour similar to a regular Hamiltonian H,
but with a deformed spectrum. In this region it holds that

1+τ sin(p)
1−τ sin(p)

≥ 0 , (59)

therefore the Floquet Hamiltonian (56) can be written as

HF =
π−ϵ
∑

p=ϵ

2
τ

arcsin[τ sin(p)]
¦

tp(τ) f
×
p fp + t−1

p (τ) f
×
p−π fp−π

©

+ 4 f ×0 f0 , (60)

where we separated zero modes, used τ= iz [see Eq. (8)], and introduced the coefficient

tp(τ) = cot
� p

2

�

√

√1+τ sin(p)
1−τ sin(p)

≥ 0 . (61)

The fermionic modes χp and ηp are related to the symplectic fermions in the following way

fp = t−1/2
p (τ)
�χp +ηp
p

2

�

, fp−π = t1/2
p (τ)
�χp −ηp
p

2

�

,

f ×p = t−1/2
p (τ)

�

χ†
p −η

†
p

p
2

�

, f ×p−π = t1/2
p (τ)

�

χ†
p +η

†
p

p
2

�

,

f0 = η0, f ×0 = χ
†
0 , fπ = χ0 , f ×π = η

†
0 .

(62)

The Floquet Hamiltonian (56) reduces to its Jordan normal form in terms of the canonical
fermions. Explicitly, it reads

HF =
π−ϵ
∑

p=ϵ

2
τ

arcsin[τ sin(p)]
�

c†
p,+cp,+ − c†

p,−cp,−
�

+ 4c†
0,+c0,− , (63)

where the operators cp,± are then related to χp and ηp via Eq. (58). Note that in the limit
τ→ 1 the spectrum is piecewise linear (see Fig. 2).

4.3.2 The region |τ|> 1

In this case, let us divide the momentum space into two intervals I1 = {p : |τ sin p|< 1} and
I2 = {p : |τ sin p| > 1}. Let us diagonalize the part of the Floquet Hamiltonian (56) with
momenta inside of I1 by defining the two fermionic modes just as in Eq. (62). Note that the
zero momentum mode always lies inside of I1.

For the part of Floquet Hamiltonian corresponding to the interval I2 some adjustment has
to be made. In this interval we choose the branch z = iτe−iϵ,ϵ → 0 corresponding to the
inverse Wick rotation. Then, we obtain

arcsin[τ sin(p)] =
π

2
− i arccosh[τ sin(p)] ,

√

√1+τ sin(p)
1−τ sin(p)

= −i

�

�

�

�

1+τ sin(p)
1−τ sin(p)

�

�

�

�

1/2

.
(64)

Therefore, the part of the Floquet Hamiltonian (52) is given by

∑

p∈I2

2
τ

arcsin[τ sin(p)]
¦

−i tp(τ) f
×
p fp + i t−1

p (τ) f
×
p−π fp−π

©

, (65)
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Figure 2: The Floquet Hamiltonian spectrum ϵ(p) = 1
τ arcsin[τ sin(p)] in the region

0< p < π, 0< τ < 1. In the Trotter limit τ→ 0 one has ϵ(p) = sin(p), while in the
limit τ→ 1 the spectrum is piecewise linear.

where this time the coefficient tp(τ) reads

tp(τ) = cot
� p

2

�

�

�

�

�

1+τ sin(p)
1−τ sin(p)

�

�

�

�

1/2

≥ 0 , (66)

and in the region I2 we define the χp,ηp fermions in the following way:

fp = t−1/2
p (τ)
�χp +ηp
p

2

�

, fp−π = t1/2
p (τ)
�

−i
χp −ηp
p

2

�

,

f ×p = t−1/2
p (τ)

�

i
χ†

p −η
†
p

p
2

�

, f ×p−π = t1/2
p (τ)

�

χ†
p +η

†
p

p
2

�

.
(67)

We therefore once again obtain a Hamiltonian of the form (63). However, note that inside the
interval I2 the spectrum becomes complex. We believe that this can be interpreted as a phase
transition associated with the fact that in this regime the series (38) fails to converge. The
question of analytic continuation is not considered here.

5 Discussion and outlook

We studied a particular realization of an integrable Floquet protocol corresponding to the case
of periodic Temperley-Lieb algebra pTLN (0). We found an underlying loop algebra structure
of conserved charges for the evolution operator and obtained closed form expression for the
Floquet Hamiltonian in terms of symplectic fermions.

The results of our analysis could perhaps be also interpreted in terms of nontrivial Floquet-
integrable logarithmic conformal field theory. Indeed, the average Hamiltonian of our protocol
is the LOG-CFT Hamiltonian discussed in the literature. Moreover the loop algebra structure of
conserved charges is consistent with the LOG-CFT. It was recently observed that a large class of
Floquet-driven CFTs are integrable in some sense [32–36]. It is therefore interesting to study
further generalizations of these results to Log-CFT case.
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We would like to emphasize that all previous studies of logarithmic CFTs were related to
equilibrium statistical problems. On the contrary, we propose for the first time a realization of
Log-CFT in the context of a non-equilibrium, Floquet driven system. The spectrum is linear at
the points q = 0,π, which, combined with the affine algebra, clearly indicates that the system
is a relativistic CFT. In addition, we propose an infinite family of conserved charges, which
to the best of our knowledge is a new information in the context of Log-CFT (whether it is
equilibrium or non-equilibrium).

Our results also point towards some sort of compact-noncompact phase transition in terms
spreading of a support for the Floquet Hamiltonian, which is related to the divergence of a
series expansion for the Floquet Hamiltonian.

It would be important also to generalize our approach to the case of the Temperley-Lieb
algebras with arbitrary loop parameter β , corresponding e.g to the spin-1/2 X X Z-model. Even
though we were not yet able to obtain the relations necessary for this type of analysis, some
numerical experiments as well as alternative analytic approaches [20,37] show some promise
in this direction.
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A Lie algebraic structure of the pTLN(0)

In this Appendix we investigate the properties of Lie algebra generated by the commutators of
pTLN (0).

A.1 Lie algebra of tl

Property 1. By definition, [ei , ei+1] = q2
i and [ei , e j] = 0 if |i − j|> 1.

Property 2. The second-order commutators act as

[[ei , ei+1], ei+1] = [ei+1, [ei+1, ei]] = −2ei+1 ,

[[ei+1, ei], ei] = [ei , [ei , ei+1]] = −2ei ,
(68)

therefore
ad3

ei
e j = 0 . (69)

Proof. Trivial computation. For example,

[[ei , ei+1], ei+1] = eiei+1ei+1 − ei+1eiei+1 − ei+1eiei+1 + ei+1ei+1ei = −2ei+1 . (70)
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Property 3. For any h ∈ pTLN (0) the following holds

ad2
ei

h= −2eihei , ad3
ei

h= 0 . (71)

Proof.
ad2

ei
h= ei(eih− hei)− (eih− hei)ei = 0− eihei − eihei + 0= −2eihei , (72)

ad3
ei

h= −2e2
i hei + 2eihe2

i = 0 . (73)

Property 4. There is some freedom in the ways how to set up the brackets in qm
i :

[[· · · [[ei , ei+1], ei+2], · · · ], ei+m−1] = [ei , [ei+1, · · · , [ei+m−2, ei+m−1] · · · ]] . (74)

Proof. Let us prove by induction on m. The cases m= 1 and m= 2 are trivial. The induction
step is

[ei , [ei+1, · · · , [ei+m−2, ei+m−1] · · · ]]
= [ei , [[· · · [[ei+1, ei+2], · · · ], ei+m−1]]

= /Jacobi rule and [ei , ei+s] = 0 if s > 1/

= [[· · · [[ei , ei+1], ei+2], · · · ], ei+m−1] .

(75)

Property 5. It is possible to calculate the commutators [e j ,q
m
i ].

[e j ,q
1
i ] = δ j,i−1q

2
i−1 −δ j,i+1q

2
i ,

[e j ,q
2
i ] = δ j,i−1q

3
i−1 − 2δ j,iq

1
i + 2δ j,i+1q1

i+1 −δ j,i+2q
3
i ,

[e j ,q
3
i ] = δ j,i−1q

4
i−1 +δ j,i+1(q

2
i+1 − q

2
i )−δ j,i+3q

4
i ,

[e j ,q
m
i ] = δ j,i−1q

m+1
i−1 +δ j,i+1q

m−1
i+1 −δ j,i+m−2q

m−1
i −δ j,i+mq

m+1
i , m> 3 .

(76)

A.2 Lie algebra of tl±

Property 6. By summation we conclude that

[e j ,q
1
+] = q2

j − q
2
j−1 ,

[e j ,q
2
+] = q3

j − q
3
j−2 ,

[e j ,q
m
+ ] = qm+1

j − qm+1
j−m + qm−1

j − qm−1
j−m+2 , m≥ 3 ,

[e j ,q
1
−] = (−1) j
�

−q2
j + q2

j−1

�

,

[e j ,q
2
−] = (−1) j
�

−q3
j − q

3
j−2 − 4q1

j

�

,

[e j ,q
m
− ] = (−1) j
�

−qm+1
j − (−1)mqm+1

j−m − q
m−1
j − (−1)mqm−1

j−m+2

�

, m≥ 3 .

(77)

Using this property, we obtain the relations (16).

Property 7. All elements {q2s+1
± ,q2s+2

− }s are generated as commutators of {He,Ho}, because

[He, q̃
2s
− ] = −2q̃2s+1

e , [Ho, q̃2s
− ] = 2q̃2s+1

o ,

[He, q̃
2s+1
e ] = 0 , [Ho, q̃2s+1

e ] = −q̃2s+2
− ,

[He, q̃
2s+1
o ] = q̃2s+2

− , [Ho, q̃2s+1
o ] = 0 .

(78)
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Proof. Directly follows from (16).

Property 8. If m is even, then qm
+ commutes with He and Ho, therefore also with all elements

generated by them.

Property 9. All the elements qm
+ commute.

Proof. It was proven earlier in [10,38].

Now, let us adopt the notation (18) and prove the relations (19).

Property 10. The loop algebra relations (19) hold.

Proof. Let us prove by induction in terms of the parameter l =min(n, m) for the commutators
of (19). The base case l = 0 and l = 1 is essentially proven in Property 7. Now, let us suppose
that relations (19) hold up to min(n, m) = l. The induction step is easily proven via Jacobi
relations. Let us give some examples: Suppose n≤ m, then

[Hn+1, Hm] =
�

[En, F1], Hm
�

=
�

[En, Hm], F1
�

+
�

En, [F1, Hm]
�

= −2[En+m, F1] + 2[En, F m+1] = −2Hn+m+1 + 2Hn+m+1 = 0 ,

[En+1, Em] =
1
2

�

[Hn, E1], Em
�

=
1
2

�

[Hn, Em], E1
�

= [En+m, E1] = 0 ,

[Hn+1, Em] =
�

[En, F1], Em
�

=
�

[Em, F1], En
�

= [Hm+1, En] = 2En+m+1 ,

[En+1, F m] =
1
2

�

[Hn, E1], F m
�

=
1
2

�

[Hn, F m], E1
�

+
1
2

�

Hn, [E1, F m]
�

= −[F n+m, E1] +
1
2
[Hn, Hm+1] = Hn+m+1 .

(79)

One can similarly verify the relations for all other cases.

B Symplectic fermions are unique

Let us consider some hypothetical representation ξ(e) of a TLN (0) (with open boundary
conditions) that satisfies the following set of conditions:

1. ξ(e) is quadratic in terms of fermionic operators,

2. ξ(e) is local, i.e. ξ(ei) acts only on sites i and i + 1,

3. ξ(e) is invariant under the shift by 2 sites.

We aim to prove that all representations satisfying the properties listed above lead to symplectic
fermions. We believe that the third condition is generally not essential, but we use is for
simplicity.

Let us denote
ci =
�

ci , c†
i , ci+1, c†

i+1

�T
. (80)

A generic form of quadratic representations is given by

ξ(ei) =
1
2

cT
i Geci + vT

e ci +χe , if i even ,

ξ(ei) =
1
2

cT
i Goci + vT

o ci +χo , if i odd ,
(81)

where Gα is some antisymmetric matrix corresponding to quadratic terms, vα is a vector for
linear terms, χα is a constant.

The commutativity relation eie j = e jei , |i − j|> 1 leads to ve = vo = 0. The relation e2
i = 0

leads to χe = χo = 0. The remaining set of the Temperley-Lieb relations leads to the following
two possible forms of Ge and Go:
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B.1 First case

Ge = αe







0 −1 0 −t−1
e

1 0 −te 0
0 te 0 1

t−1
e 0 −1 0






, Go = αo







0 −1 0 −t−1
o

1 0 −to 0
0 to 0 1

t−1
o 0 −1 0






,

αeαo = −1 .

(82)

The resulting generators of the TL factorize as

ξ(ei) = αe(c
†
i + t−1

e c†
i+1)(ci − teci+1) , if i even ,

ξ(ei) = αo(c
†
i + t−1

o c†
i+1)(ci − toci+1) , if i odd ,

αeαo = −1 .

(83)

Let us introduce the symplectic fermions as

fi = x ici , f †
i = (−1)i

1
x i

c†
i ,

x i+1

x i
=

¨

−te , if i even ,

−to , if i odd .

(84)

Here x i are some constants (depending on single variable x0). Then the representation is
expressed as

ξ(ei) = αe( f
†
i + f †

i+1)( fi + fi+1) , if i even ,

ξ(ei) =
1
αe
( f †

i + f †
i+1)( fi + fi+1) , if i odd .

(85)

The freedom of choosing the constants αe and 1/αe can be eliminated by using the symmetry (7).

B.2 Second case

Ge = αe







0 −1 −t−1
e 0

1 0 0 −te
t−1
e 0 0 −1
0 te 1 0






, Go = αo







0 1 −to 0
−1 0 0 −t−1

o
to 0 0 1
0 t−1

o −1 0






,

αeαo = −1 .

(86)

The resulting generators of the TL factorize as

ξ(ei) = αe(c
†
i + t−1

e ci+1)(ci − tec†
i+1) , if i even ,

ξ(ei) = αo(c
†
i + t−1

o ci+1)(ci − toc†
i+1) , if i odd ,

αeαo = −1 .

(87)

Let us introduce the symplectic fermions as

fi = x i

¨

ci , i even ,

c†
i , i odd ,

f †
i = (−1)i

1
x i

¨

c†
i , i even ,

ci , i odd ,

x i+1

x i
=

¨

−te , if i even ,

−to, if i odd .

(88)
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Here x i are some constants which depend on a single variable xo. The representation is given
by

ξ(ei) = αe( f
†
i + f †

i+1)( fi + fi+1) , if i even ,

ξ(ei) =
1
αe
( f †

i + f †
i+1)( fi + fi+1) , if i odd ,

(89)

and the coefficients αe, 1/αe can be eliminated using the automorphism (7).
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