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Abstract

We provide an efficient approximation for the exponential of a local operator in quantum
spin systems using tensor-network representations of a cluster expansion. We bench-
mark this cluster tensor network operator (cluster TNO) for one-dimensional systems,
and show that the approximation works well for large real- or imaginary-time steps. We
use this formalism for representing the thermal density operator of a two-dimensional
quantum spin system at a certain temperature as a single cluster TNO, which we can then
contract by standard contraction methods for two-dimensional tensor networks. We ap-
ply this approach to the thermal phase transition of the transverse-field Ising model on
the square lattice, and we find through a scaling analysis that the cluster-TNO approx-
imation gives rise to a continuous phase transition in the correct universality class; by
increasing the order of the cluster expansion we find good values of the critical point up
to surprisingly low temperatures.
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1 Introduction

In quantum-many body systems, the exponential of the many-body Hamiltonian H often plays
a fundamental role. Indeed, for quantum systems at finite temperature, the thermal density
operator

__1 —pm _ o (a—BH
p(B) MR Z(B)="Tr(ePH), (1)

contains all static information, whereas the time evolution of a quantum state is dictated by
the time-evolution operator
U(t) =eHE, 2)

Efficient numerical schemes for representing such exponentials are therefore crucial for sim-
ulating many-body systems. The most common approach is the use of a Trotter-Suzuki ex-
pansion [1, 2], which breaks up the exponential operator into a sequence of local gates. This
approach is size-extensive, a crucial property for simulating uniform systems directly in the
thermodynamic limit [3]. As a downside, the Trotter-Suzuki expansion breaks translation
symmetry and is necessarily limited to local interactions and small steps in (real or imaginary)
time. For one-dimensional (1-D) systems an alternative approach [4] uses the formalism of
matrix product operators [5], which preserves all symmetries, is size-extensive and works for
long-range interactions; here, the downside is that the MPO is correct only up to first order, and
going to higher orders is not straightforward. Finally, in the context of quantum Monte-Carlo
simulations, the use of series expansions [6, 7] has proven very useful, but such an approach
is not size-extensive.

In Ref. [8], it was realized how a series expansion can be encoded in the language of
tensor networks in a way that is size-extensive and can, therefore, be naturally formulated
directly in the thermodynamic limit. Motivated by the formal results on the representability
of thermal states as tensor network operators [9-11], the tensor-network construction was re-
cently improved [12] by considering clusters instead of the bare terms in the series expansion.
Here, a cluster is essentially a regrouping of many different terms that act non-trivially on a
small patch of the lattice, including many higher-order terms that a truncated series expan-
sion would neglect. In Ref. [12], it was indeed realized that such a cluster expansion can be
encoded as a tensor network operator (TNO) with moderate bond dimension, in a way that
is size-extensive, preserves all spatial and internal symmetries and works in any dimension.
It was shown that such a “cluster TNO” is a very efficient numerical tool for (i) simulating
simulating the real-time evolution of a global quench in a 1-D spin chain, or (ii) optimizing a
ground-state approximation with a projected entangled-pair state. In both cases, the ability to
take large real- or imaginary-time steps proved to be a very efficient feature of the cluster-TNO
approach.

Motivated by these results, in this paper we use the cluster-TNO approach for simulating
thermal density operators of two-dimensional quantum spin systems. In Sec. 2, we first reit-
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erate the general idea of an extensive cluster expansion, and how tensor networks provide a
natural expression. We further elaborate on different constructions in one and two dimensions.
In Sec. 3, we benchmark these different constructions by comparing to the exact exponential
on finite clusters, by checking to what extent a cluster-TNO approximation for the real-time
evolution operator is a unitary operator and how a cluster TNO allows us to compute the den-
sity of states. Finally, in Sec. 4 we apply cluster TNOs to simulate the thermal phase transition
of the quantum transverse-field Ising model in two dimensions.

2 Construction

2.1 General idea

Let us first explain the general idea of a cluster expansion, and how we can encode this effi-
ciently as a tensor network operator. We consider a completely general lattice with spins on
every site, directly in the thermodynamic limit, and a translation-invariant operator that is the

sum of local terms,
H=>h, (3)

where h,, is a local operator that only acts on finite region n. The exponential of this operator
can be written down as a series expansion of the form

reenr ) =525 (3]

p=0

where A is thought to be a small parameter. In such a series expansion, the different terms
in p-th order are not extensive: when applying the p-th order term to a uniform state, the
state is no longer normalizable in the thermodynamic limit. Therefore, we propose a specific
regrouping of the terms in the series expansion,

T =i7;, (5)
n=1

where the 7, contains all terms in the expansion in Eq. (4) that have maximum cluster size n.
Here, the maximum cluster size of a given term in the series expansion is the largest region of
the lattice on which there are operators acting non-trivially, and which cannot be decomposed
as a tensor product of smaller clusters. So, each 7, contains terms in the series expansion of
all orders. Below, using tensor networks we will indicate how a truncated series expansion
indeed leads to a size-extensive operator.’

Let us make things concrete for a 1-D chain. A one-site cluster S; is of the form

S=[(r)=0,-1, (©6)

and contains all terms in the exponentiated Hamiltonian T [Eq. (4)] that act non-trivially on a
single site. O is thus the exponentiated Hamiltonian acting on a 1-site system; in general, we
define O,, as the exponential of the Hamiltonian, restricted to a patch of n sites. The two-site
cluster S, is given by taking all terms that act non-trivially on two sites, and subtracting all

In this work, our discussion of a cluster expansions and its extensivity is situated on an intuitive and practical
level, but we refer to the more formal results [9-11] for a more rigorous discussion.
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terms that can be decomposed into one-site clusters,

02_ﬂ282+51®81 (7)

-2+ ). ®

Similarly, the three-site cluster S5 is given by summing all terms that act non-trivially on three
sites and subtracting all contributions that can be decomposed into one- and two-site clusters,

O3—1=85+8505+505,+5,05,05; )
-7 A AT
10y

This procedure can be extended to increasing cluster size m: we compute all terms that act
non-trivially on m sites and we subtract all terms that can be decomposed into smaller clusters.

The 7, introduced in Eq. (5) is then made up of the superposition of all possible tensor
products of S,,, with m < n and at least one cluster of size n.

This cluster expansion can be straightforwardly generalized to two dimensions. We take
regions of increasing size, compute the non-trivial terms in T on this region, and subtract all
terms that can be decomposed into clusters of smaller size. As an example, the cluster on a
two-by-two region is defined as

onams- L7112, DE
* 40" e
/)
m
/ /+
A~
+nn
A (2~ //’

where the last operator is the four-site cluster we need, and all previous terms are decompo-
sitions into smaller clusters.

As such the cluster expansion is a formal tool for grouping terms that appear in T, but now
we use tensor networks to represent such a cluster expansion in a natural way. Suppose we
want to represent a term in the cluster expansion of the form

+

(11

(12)
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We can encode such a configuration into a tensor network by associating to every site a six-leg
tensor, with two legs that correspond to the physical action of the tensor network operator and
four virtual legs that encode the cluster configuration:

(13)

Here, the level ‘0’ on the virtual legs is of dimension one, and is used between disconnected
clusters. The higher virtual levels are used within the clusters, and arise from the tensor
decomposition of the clusters — the specific method for finding these tensor entries will be the
subject of the following subsections. The dimension of these higher virtual levels will generally
be larger than one.

As such, the tensor network in Eq. (13) represents a single term in the cluster expansion.
We can now sum up all terms in the cluster expansion by incorporating all tensor entries that
appear in the above network into a single tensor, and repeating this tensor on every site in the
lattice

(14)

The tensor network operator (TNO) that we construct in this way now represents the sum of
all of the above configurations.

One important feature of this “cluster TNQO?” is its extensivity, which reproduces the exten-
sivity of the exponential. Concretely, this means that if the cluster TNO contains a term with a
certain cluster on region A and a term with another cluster on a non-overlapping region B, it
also contains the term with both non-overlapping clusters. This implies that the cluster-TNO
with clusters up to a certain size contains all terms in T with non-trivial clusters, including the
terms that are direct products of clusters on non-overlapping regions.

2.2 One-dimensional models

This general idea of encoding a cluster expansion into a tensor-network operator is made
clear by working out the case of a local translation-invariant Hamiltonian in one dimension.
We want to approximate the exponentiated Hamiltonian by a matrix product operator (MPO),
which we can represent directly in the thermodynamic limit as

exp (AZhn) N (15)

It appears that a cluster TNO is not unique; here, we explain three different constructions.
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2.2.1 TypeA

In the type-A construction, the clusters are encoded in the MPO as follows. The one-site cluster
is encoded as a simple on-site operator with the virtual level ‘0’ on both sides,

Si= & +1. (16)

The virtual level ‘0’ is not drawn in this and following figures. Next, we introduce a single
virtual level ‘1’ for encoding the two- and three-site clusters

S= o+, 17)
Sy= ool (18)

Here, the tensor entries 0—1 and 1—0 are found by, e.g., performing a singular-value decom-
position (SVD) of the two-site cluster S,. The 1 —1 entry is then found by solving a linear
problem.? We go on to the four- and five-site clusters, for which we introduce a new virtual
level 2’

Si= ool (19)
Ss= oo ollol (20)

Obviously, this construction can be continued to include larger clusters. The bond dimension
of the virtual levels, however, increases exponentially with the cluster size: the levels ‘1’ and
‘2’ have a dimension of d? and d*, resp., with d physical dimension. For larger clusters, we
can choose to lower the bond dimension by truncating the singular values.

One important feature of the type-A construction involves the diagonal entries such as the
1 —1 entry that we have included for the three-site cluster. Indeed, this entry does not only
include the three-site cluster into the MPO, but also gives rise to longer strings of the form

ol (21)

We can correct for this contribution by redefining the 1 —2 and 2 — 1 entries as

84— 2¢1 2¢1 2¢1 2)/ — 2ﬁ1 2ﬁ2 2ﬁ1 2/ ) (22)

In general, we can correct for the longer strings in the definition of the next virtual levels. If
the bond dimension of these next virtual levels becomes too high, we can no longer correct
for the longer strings. It is, a priori, unclear what are the effects of these contributions on the
accuracy of the cluster TNO.

2It is important for numerical stability to solve the linear problem imposed by, e.g., Eqs.(18) and (20) rather
than inverting the tensor entries 0 — 1 and 1 — O directly. For the larger clusters, the inversion problem can be
written as the inversion of a a direct product of matrices; here, for numerical stability it is advised to first perform
a singular-value decomposition of each matrix separately, and constructing a suitable pseudoinverse, instead of
solving the linear problem directly.
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2.2.2 TypeB

The MPO encoding can be adapted to avoid inclusion of these strings of diagonal entries. Type
B has the following entries

Si= O +1, (23)
S,= (24)
Sy= I, (25)
S4= I HA (26)
Ss= O FEFS 27)

where the primed levels are entirely new levels, thus avoiding any diagonal entries. The
primed levels and unprimed levels can only meet in the middle of the patch, and hence longer
chains such as eq. (21) are excluded by this encoding. This comes at the numerical cost of
twice the total bond dimension in comparison to the type-A construction.

2.2.3 Type C

Both the type-A and type-B construction requires us to solve linear problems for finding some
entries, which can become ill-conditioned. In order to avoid this issue, we propose the type-C
construction

Si= & +1, (28)
oo+ o, (29)
Sy= FIT (30)
Sa= FIESS v SIS 31)
Ss= SFESEHFS (32)

The unprimed entries that we have introduced are arbitrary unitary tensors (up to a constant
factor), and form the least squares solution to the problem, whereas the primed entries make
sure we reproduce the clusters of even size. The ill-conditioning of the linear problems is now
avoided since it reduces to inverting these unitary tensors. The downside is that the type-C
constructions requires twice the bond dimension of the type-A construction.

Of course, the type-C construction can be combined with the type-A or type-B one: we can
switch to the type-C prescription for the larger clusters, whenever the linear problem becomes
ill-conditioned.

g
I

2.3 Two-dimensional models

For the 2-D case, we can make a distinction between two types of clusters: linear clusters
(including branchings) and loops. For the former, we can straightforwardly extend the 1-
D constructions, but the latter requires extra ingredients for representing them in terms of
TNOs. In the following, we will consider the square lattice only, but our discussion also applies
to other 2-D lattices
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2.3.1 Linear clusters and branchings

The one and two-site clusters are simply encoded as

o, ot i (33)

where these entries are again found by taking singular-value decompositions of the two-site
clusters. There are six different three-site clusters,

i, ., o, (34)

and their rotations; these diagonal entries are, again, found by solving simple linear problems.
We can add larger clusters of the form

(35)

> (36)

we need to include extra virtual levels. Clearly, we can again continue this construction to
include larger and larger clusters. We have to take care that for before including a new cluster,
we have included all smaller clusters that fit within the new one.

Here, we have chosen the type-A construction with diagonal TNO entries, that give rise to
longer strings in the TNO. We could avoid these longer strings by resorting to the 2-D version
of the type-B and type-C constructions.

2.3.2 Loops

Starting with the two-by-two cluster, we can also have clusters that contain loops; for these
clusters, we cannot simply perform the simple growing of the TNO as we did for the 1-D case.
Instead, we need to introduce a new virtual level, such that we can represent the two-by-two
cluster

«

G—
« aa , (3 7)
—

where we use Greek letters for labeling the virtual levels that give rise to loops. Finding these
entries can be done by a sweeping algorithm, similar to a variational optimization of a periodic
matrix product state [ 13]. Additionally, we can add linear parts to these loop clusters, such as

(38)
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Figure 1: Relative error € of the cluster-MPO for the 1-D spin-1/2 Heisenberg model
on a periodic chain of 11 sites. Top panel shows e for the unnormalized thermal
density operator p = e P as a function of inverse temperature 3. Bottom panel
shows € of the real-time evolution operator U(t) = e ¢, as a function of time t. We
show results of the cluster-MPO of types A,B and C with cluster sizes ¢ = 2,3,4,5.

3 Benchmarks for 1-D models

In this section, we investigate how accurate these cluster TNOs are for representing exponen-
tials of nearest-neighbour spin-chain Hamiltonians. In particular, we will compare the different
types of MPO constructions that we have introduced in the previous section.

3.1 Accuracy on finite chains

As a first benchmark, we compare the cluster TNO with the exact matrix exponential on a
finite periodic system. We will compute the relative 2-norm error €

€= ||Uexact - UTNO||2 ) (39)

| | Uexact| |2



https://scipost.org
https://scipost.org/SciPostPhys.14.4.085

Scil SciPost Phys. 14, 085 (2023)

/V:...'. |
10~ 100 AS
t

Figure 2: Relative error € of the cluster-expansion TNO for the real-time evolution
operator U(t) = e It of the 1-D transverse-field Ising model at g = 1 on a periodic
chain of 11 sites. We show results of the cluster-expansion TNO of type A,B and C
with cluster size ¢ = 2, 3,4, 5, as a function of time t.

In Fig. 1, we first consider the spin-1/2 Heisenberg Hamiltonian,

H=) ofof, +o]0), +oiot,, (40)
1

and show the accuracy of the cluster MPO for both the thermal density operator at inverse
temperature 3 and the real-time evolution operator as a function of time t. Clearly, all the
expansions improve when the order is increased. One would expect the type-B construction to
be the better one of the three, as it avoids the presence of longer strings in the MPO. Evidently,
this is not the case for the two examples that we consider. This implies that the terms corre-
sponding to the longer strings provide an approximation of the larger clusters. Moreover, type
A outperforms type C by quite some margin for sufficient low temperatures. As the type-A con-
struction also has a lower bond dimension, this is clearly the better choice. For completeness,
in Fig. 2 we also show the accuracy of the cluster MPO for the transverse-field Ising model
with Hamiltonian

HZ—Zafcrl’.ﬂrl +goi, (41)
i
with similar results as for the Heisenberg model.

3.2 Unitarity of the cluster expansion

One could wonder to what extent the cluster expansion represents a unitary operator. To assess

this, we calculate the 1-site reduced density matrix of the operator p = UU" = e Hte7Ht n [,
directly in the thermodynamic limit. The unitarity error € is defined as
e=|lp—1Ills- (42)

The results for the Heisenberg model are shown in Fig. 3. The expansions become in general
more unitary with increasing cluster expansion order. Once again, type-A outperforms the
others by quite some margin and scales better with cluster-expansion order.

10
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C:5

Figure 3: Unitarity error € as a function of time t for the 1-D spin-1/2 Heisenberg
model. We show results of the cluster-expansion TNO of type A,B and C with clus-
tersize ¢c=2,3,4,5.

3.3 Spectral Energy Density

As a final benchmark, we will consider the spectral energy density. For a generic spin Hamil-
tonian H of N sites with local dimension d, this quantity is defined as

1
mw) = =5 > 6(E;—x), (43)
J

where E; are the eigenvalues of H. It can be computed directly from the trace of the time-
evolution operator [14] as

1 de —iwt i
w)=— | —etU(t), U(t)=Tr(e't). 44
u()deM (0, U()=Te(e") (44)
Using the cluster expansion, we can obtain an efficient tensor-network representation of U(t)
up to a certain time T. In order to avoid cutting of the approximate U(t) too sharply, we
multiply it with a Gaussian window function

() = — &L oty (reim (45)
dv | 2m¢ ’
resulting in a smeared-out spectral density function fi with a resolution O(T™1).
We consider the 1D Ising model with transverse field g = 1 and longitudinal field h =1

Hz—Zofal’.‘H +goi+ho}, (46)
1

on a system of 10 sites with periodic boundary conditions; we present the results in Fig. 4.
In the top panel, we have plotted the accuracy of the cluster-expansion approximation for
U(t), by comparing it to the exact result. We observe that the cluster expansion is a good
approximation for t < 3. In the bottom panel, we show the spectral densities, convoluted
with a Gaussian. We observe that the cluster-TNO provides an accurate simulation of the
density of states, up to the fine-grained features that require longer times in U(t).

11
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Figure 4: Results for the density of states of the longitudinal-field Ising model
[Eq. (46)] with g = 1 and h = 1 on a ring of 10 sites. In the left panel, the red
lines show the real and imaginary parts of U(t) = Tr(e_iﬁ t); the blue line shows the
deviation between the exact result and the TNO. The right panel shows the smeared
(w) calculated exactly (T = 2) and with TNO (T = 0.6).

3.4 Discussion

We have found that the cluster expansion TNO indeed approximates the Hamiltonian expo-
nentials well. Surprisingly, we have also found that the type-A construction outperforms the
others. This implies that the -unwanted- strings of 1-1 and 2-2 discussed in Section. 2 are actu-
ally lowering the error. Note, however, that this is most likely a feature only found for nearest
neighbour interacting models, where the 1-1 strings are suppressed by a power in t/f. This
would not be the case for further neighbour interactions. We therefore anticipate type-B to be
superior, if not necessary, for such models.

Note also that while the error goes down when including higher order clusters, it always
tends to saturate around t/ff ~ O(1), as can be clearly seen in Fig. 1,2, and 3, which is not
unreasonable since the cluster expansion is also an expansion in powers of t/f. This should
be taken into account when attempting to use this construction for low temperatures or long
times.

4 Application: thermal density operators
Let us now consider two-dimensional quantum spin systems at finite temperature. Using the

cluster expansion, we can represent the model’s thermal density operator at inverse tempera-
ture  =1/T,

p(B)= 2P, () =Tr(e "), “7)

as a tensor network operator of the form

p()= - - (48)

Here, the bond dimension D of this tensor network operator is determined by the order of the
cluster expansion; we expect that the approximation becomes better as we increase D. Note

12
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that obtaining this tensor network comes at negligible numerical cost.
The partition function Z is then obtained by tracing over the physical degrees of freedom,
such that we obtain a simple two-dimensional tensor network

Z(B)= - o (49)

This tensor network can be efficiently contracted using standard methods such as the varia-
tional uniform MPS (VUMPS) algorithm [15-17], the corner transfer matrix renormalization
group (CTMRG) [18-20] or real-space renormalization-group approaches [21, 22]; in this
work, we use the first option. Here, the bond dimension y of the boundary MPS enters as
a control parameter. The leading computational complexity of both the above methods scales
as y3D?, where D is determined by the order of the cluster expansion and the appropriate
scale of y depends on the entanglement in the system. Performing this contraction yields a
direct calculation of A, the scaling of the partition function with system size in the infinite-size
limit, such that we obtain the free energy density f

Z(B) oc AN<Ny | f(B)=—logA. (50)

In addition, using the boundary MPS we have direct access to the local reduced density matrix

which allows us to compute local observables directly in the thermodynamic limit.
As an illustration of the power of this method, we study the thermal phase transition in
the transverse-field Ising model on a square lattice, defined by the Hamiltonian

H=—Zofa}‘+g20f. (52)
(ij) i

The thermal phase diagram is plotted in Fig. 5, showing a line of thermal second-order phase
transitions between an ordered ferromagnetic phase and a disordered paramagnetic phase.
In the classical limit (g = 0) there is the phase transition of the classical Ising model at
B =log(1 + v/2)/2 ~ 0.44, whereas in the zero-temperature limit (3 — 00) we find a quan-
tum phase transition at g ~ 3.044. For any non-zero temperature, the phase transition falls
within the 2-D classical Ising universality class.

First we focus on the phase transition at a fixed value of the field, g = 2.5. We represent
the density operator as a tensor network operator of dimension D = 27 by a cluster expansion
of order five and loop correction. In Fig. 6 we plot the results from VUMPS simulations at
different values of y. First we plot the magnetization as a function of T that we have obtained
for different values of y. We clearly see the Ising phase transition, but the critical point is
shifted due to finite- ¥ effects. In order to get an accurate simulation of the phase transition, we

13
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Figure 5: The phase diagram of the 2- transverse-field Ising model: the ordered fer-
romagnetic phase is separated from the disordered paramagnetic phase by a second-
order phase transition. We show the lines of constant T = 2.5, g =0.5 and g = 1.5
that are used in Figs. 6 and 7. The data for the transition line is taken from the
Monte-Carlo data in Ref. [23].

can employ a finite-entanglement scaling approach [24]: We extract an effective length scale
6 from the spectrum of the boundary-MPS transfer matrix, and apply the scaling hypothesis

m(e67Y") =m(t,6)57F, (53)

with t =T —T, and (8, v) the known Ising critical exponents. We can optimize the value of T,
such that we get a good collapse of the scaling function /i [24]. The optimized data collapse is
plotted in (b), where we have obtained a value of the critical temperature of T, = 1.2736(0).
This value should be compared to the quantum Monte-Carlo estimate T. = 1.2737(6) [23] and
a PEPS estimate T, = 1.2737(2) [25]. This good agreement for T, illustrates the fact that our
fifth-order cluster-TNO is an extremely good approximation of the partition function. Finally,
in the right panel of Fig. 6 we also show the data collapse for the correlation lengths that we
extract from the boundary MPS, using a similar scaling hypothesis [24]

E(ts7Y")=&(¢,8)5. (54)

Again, we find a collapse of the data.

Note that the PEPS method [25] must contract the square of the partition function (p'p),
making the contraction much more costly. Additionally, one has to optimize the tensors first,
which has a non-negligible numerical cost as well.

Of course, the truncated cluster expansion is expected to break down when decreasing
the temperature. In order to illustrate this, we have simulated the phase transition for two
fixed values of the temperatures, and for different orders of the cluster expansion. In Fig. 7
we plot the magnetization as a function of the field, again showing that the Ising criticality is
always found, but where the value of the critical field is shifted. For T = 1.5 we find that the
critical point approaches the exact value to a high precision, whereas for T = 0.5 the order-six
cluster-TNO yields a value of the critical point that is significantly shifted with respect to the
exact value.

14
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Figure 6: Results for 2-D transverse-field Ising model at g = 2.5, obtained by the
VUMPS contraction of an order-six cluster TNO. The left panel shows a direct calcu-
lation of the magnetization as a function of T for different values of y. The middle
panel shows the rescaled magnetization, according to the scaling hypothesis, where
we have optimized T, to yield the best collapse of the data. The right panel shows
the rescaled data for the correlation length extracted from the boundary MPS. The

data set is sampled at values of y = 11,16,23,32,45,64,91,128 with roughly 65
data points for each value of y.

To study this regime with tensor networks, one might use several layers of cluster expansion
TNO’s, the PEPS method referred to earlier, or indeed some optimal hybrid of the two.

5 Outlook

In this paper, we have explained how to represent cluster expansions as tensor-network op-
erators, which can be used efficiently in tensor-network simulations for real- and imaginary
time evolution of local Hamiltonians. We have shown that the cluster-TNO construction yields
an extremely simple way of representing the partition function of 2-D quantum spin systems
at non-zero temperature, which despite its simplicity gives accurate results for relatively low
temperatures. This approach should be compared to the standard tensor-network approach,
where the thermal density operator is represented as a projected entangled-pair operator, and

evolved by imaginary-time evolution through a Trotter-Suzuki decomposition of the density
operator [26-28].
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Figure 7: Results for the 2-D transverse-field Ising model at fixed T = 1.5 (top) and
T = 0.5 (bottom). The magnetisation is calculated for MPS bond dimension y=45.
The figures show the magnetisation curve for different orders O of the cluster-TNO.
For order O = 6, virtual level ‘3’ is truncated at bond dimension 20. The black lines
denote the “exact” critical temperatures, taken from Ref. [23].

As our benchmarks for the 1-D case have shown, the cluster expansion breaks down for
small temperatures. In that case, however, we can think of splitting up the thermal density
operator into a sequence of cluster TNOs. Since the bond dimension of this TNO would grow
exponentially with the number of layers, intermediate truncation steps will be necessary here
— a variational truncation scheme seems to be the best option. Here, again, we believe that the
cluster-TNO will be better suited than a Trotter-Suzuki decomposition of the density operator,
since the former allows us to take much larger imaginary time steps.
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