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Abstract

A family of two-dimensional (2D) spin-1/2 models have been constructed to realize Ki-
taev’s sixteen-fold way of anyon theories. Defining a one-dimensional (1D) path through
all the lattice sites, and performing the Jordan-Wigner transformation with the help of
the 1D path, we find that such a spin-1/2 model is equivalent to a model with ν species
of Majorana fermions coupled to a static Z2 gauge field. Here each species of Majorana
fermions gives rise to an energy band that carries a Chern number C = 1, yielding a total
Chern number C = ν. It has been shown that the ground states are three (four)-fold
topologically degenerate on a torus, when ν is an odd (even) number. These exactly
solvable models can be achieved by quantum simulations.
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1 Introduction

Topological order [1–3] is a novel organizing principle for gapped quantum matters that is
beyond the classic Landau-Ginzburg-Wilson paradigm. Instead of the spontaneous symmetry
breaking in the classic paradigm, the long-range quantum entanglement plays an essential
role in topological orders [4]. In a pioneer work [5], Kitaev proposed a systematic method,
dubbed “sixteen-fold way”, to characterize and classify topological orders in two dimensional
(2D) quantum systems that consist of weakly interacting fermions. The basic idea is that the
topological properties of a 2D gapped state can be uniquely characterized by the topological
properties of its fractional quasi-particle excitations, “anyons”, in bulk: namely, the distinct
classes of anyons, and the statistics and the fusion rule among them. These bulk topological
properties of anyons also encode information about possible chiral gapless edge states inher-
ently.

The simplest example for topological order is a Z2 gauge theory [3], on which a gas of free
(Majorana) fermions is coupled to a static Z2 gauge field. It was suggested by Kitaev that the
crucial bulk parameter for the anyon statistic is the topological spin of a vortex, θσ = eiπν/8,
where ν is the total Chern number of Majorana fermions. So that the topological properties
depend only on ν mod 16, rather than the Chern number ν itself. The topological orders of
Kitaev’s sixteen-fold way are closely related to a wide range of topological phases of matter [6],
including fractional quantum Hall insulators [7], topological superconductors, and quantum
spin liquids [8–12]. In particular, Kitaev proposed an exactly solvable spin-1/2 model defined
on a honeycomb lattice that can harbor ν= 0 and ν= ±1 topologically ordered states [5].

Besides the exact solution via the elegant four Majorana fermion decomposition method,
which was proposed by Kitaev himself, the honeycomb spin-1/2 model can be exactly solved
with the help of Jordan-Wigner transformation as well [13–16]. The Jordan-Winger trans-
formation enables a fermionization of the spin model without redundant degrees of freedom
(that are unavoidable in the four Majorana decomposition and can be removed by imposing a
Gutzwiller projection), and allows us to map the original spin-1/2 model to a p-wave-spinless
BCS pairing model. Thus, the weak pairing gives rise to the ν= ±1 non-Abelian phase, while
the strong pairing leads to the ν= 0 Abelian phase [10].

Moreover, the Jordan-Wigner transformation also provides a topological characterization
of quantum phases and quantum phase transition by itself: As long as a one-dimensional (1D)
path has been properly chosen to “lace” all the sites on the 2D honeycomb lattice, which is the
prerequisite for the Jordan-Winger transformation, a nonlocal string order parameter can be
defined in one of the two phases (ν = 0 and ν = ±1) [14,16]. These string order parameters
become local order parameters after some singular transformation. In appropriate dual repre-
sentations in the two phases, a description of the phase transition in terms of Landau’s theory
of continuous phase transitions becomes applicable [14].

Due to the significance of the exactly solvable honeycomb model, great theoretical efforts
have been devoted to searching for its generalizations. The generalizations to other 2D and
3D lattice models can be found in Ref. [17–21] and Ref. [22–29], respectively. There are
also some generalized models with multiple-spin interactions [30,31]. The generalizations to
higher spin models have been achieved in a Γ matrix representation [32–35]. Recently, a class
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of generalized Kitaev spin-1/2 models have been constructed in arbitrary dimensions, which
can be solved exactly with the aid of the Jordan-Wigner transformation [31].

One of the most important issues on 2D topological orders is to find exactly solvable models
for |ν| ≥ 2 classes. Indeed, some examples have been demonstrated in Ref. [36–38]. Moreover,
a full construction of explicit lattice models for all ν mod 16 has been achieved in Ref. [39]
very recently, on which a series of Γ matrix models [17,33] have been proposed on honeycomb
(square) lattice to realize odd (even) Chern number ν = 2q − 1 (ν = 2q − 2). However, a
systematic construction for exactly solvable spin-1/2 models for all νmod 16 is still in demand.

In this paper, we construct a family of quantum spin-1/2 models to realize Kitaev’s sixteen-
fold way for 2D topological orders that can be solved exactly via the Jordan-Wigner transfor-
mation. We have proposed two kinds of models on a 2D lattice which consists of 2q sites in
each unit cell in accordance with even and odd Chern number ν. By defining the ordering
of lattice sites and performing the Jordan-Wigner transformation, we are able to map these
spin-1/2 models to a Z2 gauge theory that consists of ν species of free Majorana fermions and
a static Z2 gauge field. Since each species of Majorana fermions contributes a Chern number
C = 1, the whole system has a total Chern number C = ν.

The rest of this paper is organized as follows. We begin with revisiting the Kitaev honey-
comb model and the Jordan-Wigner transformation in Section 2, which is the major technique
used in the present work. Then a family of exactly solvable quantum spin-1/2 models have
been constructed for odd and even Chern numbers in Section 3. In Section 4, we solve these
spin model on a torus and study the ground state degeneracy that characterizes the topological
orders. Section 5 is devoted to conclusions and discussions, where the equivalence relationship
between our ν= 2 model and the Yao-Zhang-Kivelson (YZK) model [32] has been discussed.

2 Solve the Kitaev honeycomb model via Jordan-Wigner transfor-
mation

The original Kitaev honeycomb model is defined by the following Hamiltonian,

H = −J1

∑

〈i j〉x

σx
i σ

x
j − J2

∑

〈i j〉y

σ
y
i σ

y
j − J3

∑

〈i j〉z

σz
iσ

z
j , (1)

where i and j label the sites on a honeycomb lattice as plotted in Fig. 1. σαi (α= x , y, z) is the
Pauli matrix at site i, 〈i j〉α denotes the nearest neighbor (NN) bond in the α direction, and Jλ
(λ = 1, 2, 3 for α = x , y, z) is the corresponding coupling constant. In order to be consistent
with the models constructed in Section 3, we use Jλ rather than Jα here, which is different
from the notation in Kitaev’s original work.

As mentioned before, the Kitaev honeycomb model defined in Eq. (1) can be solved exactly
by using the Jordan-Wigner transformation [13]. The exact solution can be done on different
geometries, with either open boundary condition [14–16] or periodic boundary condition [18,
40] (PBC). To do this, we introduce the brick-wall representation of the honeycomb lattice [14,
15], and label each lattice site by the unit cell vector r⃗ = l1n⃗1 + l2n⃗2 (l1, l2 ∈ N+) and the
sublattice index β = A, B, where n⃗1 and n⃗2 are the primitive vectors for the brick-wall lattice
[as shown in Fig. 1 (c)]. Notice that the primitive vectors that we choose here are slightly
different from those in previous works. Then the Hamiltonian in Eq. (1) can be written as

H = −
∑

r⃗

�

J1σ
x
r⃗, Aσ

x
r⃗, B + J2σ

y
r⃗, Aσ

y
r⃗−n⃗1, B + J3σ

z
r⃗, Aσ

z
r⃗−n⃗1−n⃗2, B

�

. (2)

In order to perform the Jordan-Wigner transformation, we define a 1D path through all
the lattice sites as follows: for two sites l and m, (1) if l2 < m2, then l < m; (2) if l2 = m2
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Figure 1: (a) A honeycomb lattice on which the Hamiltonian in Eq. (1) is defined.
(b) The terms in Hamiltonian (1). (c) Brick-wall representation of the honeycomb
lattice. A site is labeled by the unit cell vector r⃗ = l1n⃗1 + l2n⃗2 (l1, l2 ∈ N+) and the
sublattice index β = A, B, where n⃗1 and n⃗2 are the primitive vectors. White and black
circles represent sublattices A and B, respectively. The ordering of sites is indicated
by numbers that defines a 1D path for the Jordan-Wigner transformation.

(d) The terms in Hamiltonian (2).

Figure 2: A plaquette where the flux operator φ̂p,r⃗ in Eq. (5) is defined.

and l1 < m1, then l < m; (3) if l2 = m2, l1 = m1, and l ∈ A, m ∈ B, then l < m. By this
definition of site ordering, we are able to solve the Hamiltonian defined in Eq. (2) with the
help of the Jordan-Wigner transformation, which is given by

σ+m = f †
meiπ

∑

l<m n̂l , (3a)

σz
m = 2n̂m − 1 , (3b)

where σ+m =
1
2

�

σx
m + iσ y

m
�

is the spin raising operator, f †
m is the creation operator for the

spinless fermion at site m, and n̂m = f †
m fm is the fermion occupation number operator. We

further decompose each complex fermion fm into two Majorana fermionsηm and γm as follows:
(1) for m ∈ A, ηm = f †

m + fm and γm = i( f †
m − fm); (2) for m ∈ B, ηm = i( f †

m − fm) and
γm = f †

m+ fm. After the Jordan-Wigner transformation, the Hamiltonian (2) takes the form of

H = i
∑

r⃗

�

J1γr⃗, Aγr⃗, B + J2γr⃗, Aγr⃗−n⃗1, B + J3D̂r⃗−n⃗1−n⃗2
γr⃗, Aγr⃗−n⃗1−n⃗2, B

�

, (4)

where D̂r⃗ = iηr⃗, Bηr⃗+n⃗1+n⃗2, A. It is easy to verify that D̂r⃗ commute with each other and with the
Hamiltonian (2), and D̂2

r⃗ = 1. So we can replace the operator D̂r⃗ by its eigenvalues Dr⃗ = ±1,
which can be viewed as a static Z2 gauge field. To characterize the Z2 gauge field, an alter-
native and gauge-invariant way is to define a flux operator φ̂p, r⃗ on each plaquette, which is a
specific product of 6 spin operators [as shown in Fig. 2],

φ̂p, r⃗ = σ
x
r⃗, Bσ

y
r⃗+n⃗1+n⃗2, Aσ

z
r⃗+n⃗1+n⃗2, Bσ

x
r⃗+2n⃗1+n⃗2, Aσ

y
r⃗+n⃗1, Bσ

z
r⃗+n⃗1, A

= D̂r⃗ D̂r⃗+n⃗1
.

(5)
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It is easy to see that φ̂2
p, r⃗ = 1. So that the Hilbert space can be divided into subspaces in

accordance with the sets of eigenvalues {φp, r⃗ = ±1}.
According to Lieb’s theorem [41], the ground state of the Hamiltonian (2) is in the sector of

Hilbert space on which φ̂p, r⃗ = 1 everywhere, i.e., the zero-flux sector. Thus we set all Dr⃗ = 1
to solve Eq. (4) in the ground state sector and obtain the following energy dispersion,

ϵ
�

k⃗
�

= ±2
�

�

�J1 + J2e−ik⃗·n⃗1 + J3e−ik⃗·(n⃗1+n⃗2)
�

�

� . (6)

As pointed out by Kitaev [5], the energy dispersion in Eq. (6) will be gapped if one of the three
|Jλ| is greater than the sum of the remaining two and will be gapless otherwise. The gapped
phase yields a Chern number ν = 0. In the gapless phase, a time-reversal-symmetry (TRS)
breaking perturbation will open the gap at the Dirac cones of Eq. (6), and give rise to a Chern
number ν= ±1.

3 Exactly solvable spin-1/2 models for arbitrary Chern number

In the spirit of the separation of the degrees of freedom as discussed in the previous section,
we generalize Kitaev honeycomb model to obtain exactly solvable spin-1/2 model for arbitrary
Chern number ν. First, we notice that there are two types of Majorana fermions in the Jordan-
Wigner transformed Kitaev honeycomb model, i.e., “gauge Majorana fermions” and “itinerant
Majorana fermions” [η- and γ- Majorana fermions in Eq. (4)]. Gauge Majorana fermions are
localized on the vertical bonds of the brick-wall lattice [see z-z bonds on Fig. 1] and give rise
to the static Z2 gauge field D̂r⃗ , while the itinerant Majorana fermions are non-interacting and
coupled to D̂r⃗ . Second, the honeycomb or brick-wall lattice can be divided into two sublattices,
such that each unit cell consists of two (or an even number of) Majorana fermions on each
sublattice (A or B), namely, one is η and the other is γ.

It is sufficient to consider non-negative ν≥ 0, since the topological order of Chern number
C = −ν is the Kramers counterpart of the C = ν one. To realize the topological order with
C = ν ≥ 1, it is natural to make ν copies of itinerant Majorana fermions that are all coupled
to a single static Z2 gauge field on a brick-wall-type lattice. Thus, we need ν pairs of itinerant
Majorana fermions and at least one pair of gauge Majorana fermions per unit cell. When
ν = 2q − 1 (q = 1, 2, · · · ) is an odd number, only one pair of gauge Majorana fermions are
required, and each unit cell consists of 2q = ν + 1 physical spins; while for an even Chern
number ν = 2q − 2 (q = 2, 3, · · · ), we need four gauge Majorana fermions, and there are
2q = ν+ 2 physical spins per unit cell.

The above idea can be illustrated by the Kitaev honeycmb model itself: There are 4 Majo-
rana fermions (γA, γB, ηA andηB) per unit cell in Kitaev honeycomb model. The Jordan-Wigner
transformed Hamiltonian (4) contains a pair of itinerant Majorana fermions γA and γB that
are coupled to a static Z2 gauge field described by D̂r⃗ = iηr⃗, Bηr⃗+n⃗1+n⃗2, A. So that Kitaev hon-
eycomb model is able to host topologically ordered ground states in the vortex free sector up
to |ν|= 1.1

Indeed, a “ν copies of itinerant Majorana fermions” construction has been proposed for
higher Chern number ν ≥ 2 by Chulliparambil et al. in Ref. [39], which is a generalization
of Kitaev’s four-Majorana construction. They defined odd number ν = 2q − 1 models on a
honeycomb lattice and even number ν= 2q−2 models on a square lattice, where both square
and honeycomb lattices are bipartite and have two sites per unit cell. To be specific, they

1Here a small time-reversal symmetry breaking perturbation can be added to open an energy gap. It is also
worth mentioning that for large time-reversal symmetry breaking term, the ground-state is in the vortex full sector
has a Chern number ν= 2 [42].
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Figure 3: (a) A 2D lattice where the Hamiltonian (7) is defined. Each unit cell consists
of 2q sites and dashed lines represent the abbreviated q − 2 sites between the sites
µ = 1 and µ = q. Each unit cell is labeled by r⃗ = l1n⃗1 + l2n⃗2 (l1, l2 ∈ N+), where n⃗1
and n⃗2 are the primitive vectors for the lattice. The sites in a unit cell are divided into
two sublattices, A and B. White circles and black circles represent sites in sublattice
A and B, respectively. In each set, the index µ (µ= 1, 2, . . . , q) is used to distinguish
different sites. (b), (c) and (d) denotes the terms in Hodd

a , Hodd
b and Hodd

c , respectively.
Blue stars represent the product of σz ’s on corresponding abbreviated sites.

defined models by Γ matrices [17, 33] that are 2q-dimensional representation of the Clifford
algebra, say, a set of Hermitian matrices Γα (α = 1, · · · , 2q + 1) satisfying {Γα, Γ β} = 2δαβ ,
together with their commutators Γαβ = i

2[Γ
α, Γ β]. For the purpose of solving these Γ -matrix

models, 2q+2 Majorana fermions have been introduced to represent the 2q-dimensional Clif-
forda agebra, i.e., Γαj = i bαj c j and Γαβ = i bαj bβj (α, β = 1, · · · , 2q + 1). Note that the 2q + 2

Majorana fermions double the local Hilbert space, so the local constraint ic j
∏2q+1
α=1 bαj = 1 has

to be imposed to restore the 2q-dimensional physical Hilbert space. The coordinate number of
a honeycomb (square) lattice is z = 3(4). So that z species of Majorana fermions are localized
to form a static Z2 gauge field, and the remaining 2q + 2− z species Majorana fermions are
mobile and give rise to a Chern number C up to ν = 2q + 2 − z, namely, ν = 2q − 1 on the
honeycomb lattice and ν= 2q− 2 on the square lattice.

In the rest part of this section, we shall construct spin-1/2 models for odd and even Chern
numbers, say, ν= 2q−1 and ν= 2q−2 (q = 2, 3, · · · ), respectively. These spin-1/2 models can
be exactly solved by the Jordan-Wigner transformation without redundant degrees of freedom.

3.1 Odd Chern number ν= 2q− 1

To realize ν= 2q− 1 (q ≥ 2) topological orders, we shall construct spin-1/2 models on brick-
wall lattices consisting of 2q sites per unit cell, such that the Jordan-Wigner will map these 2q
spins to 4q Majorana fermions. Divide all the lattice sites into two sets (A and B) and choose
one species of Majorana fermions (η-Majorana fermions) on each sublattice (A or B) to form a
static Z2 gauge field, we are able to utilize the remaining 4q−2 itinerant Majorana fermions to
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construct 2q−1 copies of ν= 1 Majorana fermion band whose Hamiltonian takes the pairing
form of Eq. (4). Note that the 2q − 1 copies of itinerant Majorana fermions are couple to the
same static Z2 gauge field that arises from gauge Majorana fermions. In order to lift possible
local degeneracy, as pointed out in Ref. [31], the coupling between two Majorana fermions on
different sites can be achieved by introducing a spin-1/2 string operators connecting the two
sites.

We define our models on a L1 × L2 × 2q brick-wall lattice as plotted in Fig. 3 (a), which
can be divided into two sublattices, A and B. Introducing a basis index µ, one can label a
lattice site as (r⃗, β , µ), where r⃗ is the Bravais lattice vector, β = A, B, and µ = 1, 2, · · · , q.
The Hamiltonian Hodd takes a form of

Hodd = Hodd
a +Hodd

b +Hodd
c . (7a)

Here the three parts in Hodd: Hodd
a , Hodd

b and Hodd
c can be written as follows,

Hodd
a =(−1)q

∑

r⃗

∑

µ

�

J a
1,µσ

x
r⃗, A,µ

 

∏

µ+1⩽ρ⩽q

σz
r⃗, A,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗, B,ρ

!

σx
r⃗, B,µ

+ J a
2,µσ

y
r⃗−n⃗1, B,µ

 

∏

µ+1⩽ρ⩽q

σz
r⃗−n⃗1, B,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗, A,ρ

!

σ
y
r⃗, A,µ

+J a
3,µσ

y
r⃗−n⃗1−n⃗2, B,µ

 

∏

µ+1⩽ρ⩽q−1

σz
r⃗−n⃗1−n⃗2, B,ρ

!

σ
y
r⃗−n⃗1−n⃗2, B, qσ

y
r⃗, A, 1

 

∏

2⩽ρ⩽µ−1

σz
r⃗, A,ρ

!

σ
y
r⃗, A,µ

�

,

(7b)

Hodd
b =(−1)q+1

∑

r⃗

∑

µ

′
�

J b
1,µσ

y
r⃗, A,µ

 

∏

µ+1⩽ρ⩽q

σz
r⃗, A,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗, B,ρ

!

σ
y
r⃗, B,µ

+ J b
2,µσ

x
r⃗−n⃗1, B,µ

 

∏

µ+1⩽ρ⩽q

σz
r⃗−n⃗1, B,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗, A,ρ

!

σx
r⃗, A,µ

+J b
3,µσ

x
r⃗−n⃗1−n⃗2, B,µ

 

∏

µ+1⩽ρ⩽q−1

σz
r⃗−n⃗1−n⃗2, B,ρ

!

σ
y
r⃗−n⃗1−n⃗2, B, qσ

y
r⃗, A, 1

 

∏

2⩽ρ⩽µ−1

σz
r⃗, A,ρ

!

σx
r⃗, A,µ

�

,

(7c)

Hodd
c =

∑

r⃗

�

J c
1σ

y
r⃗, A, qσ

y
r⃗, B, 1 + J c

2σ
x
r⃗−n⃗1, B, 1

 

∏

2⩽ρ⩽q

σz
r⃗−n⃗1, B,ρ

! 

∏

1⩽ρ⩽q−1

σz
r⃗, A,ρ

!

σx
r⃗, A, q

+J c
3σ

x
r⃗−n⃗1−n⃗2, B, 1

 

∏

2⩽ρ⩽q−1

σz
r⃗−n⃗1−n⃗2, B,ρ

!

σ
y
r⃗−n⃗1−n⃗2, B, qσ

y
r⃗, A, 1

 

∏

2⩽ρ⩽q−1

σz
r⃗, A,ρ

!

σx
r⃗, A, q

�

,

(7d)

where σαr⃗l ,βl ,µl
(α = x , y, z) is the Pauli matrix at site l. The coupling constant J a(b)

λ,µ

(λ = 1, 2, 3) in Hodd
a(b) is associated with a string of operators that connects two sites sharing

the same µ index. The J c
λ

terms in Hodd
c couple two sites with indices (A, q) and (B, 1) via a

string of operators. The summations
∑

µ =
∑q
µ=1 and

∑′
µ =

∑q−1
µ=2, respectively. Two conven-

tions have been adopted in Eq. (7): (i)
�

∏

l⩽ρ⩽mσ
z
r⃗,β ,ρ

�

≡ 1 if m ≤ l and

(ii) σ y
r⃗, A, 1

�

∏

2⩽ρ⩽µ−1σ
z
r⃗, A,ρ

�

σ
y
r⃗, A,µ ≡ −σ

z
r⃗, A, 1 if µ= 1. Hodd

a and Hodd
b consist of (q+ 1)-spin

interactions only and the terms in Hodd
c are of different lengths.

7

https://scipost.org
https://scipost.org/SciPostPhys.14.5.087


SciPost Phys. 14, 087 (2023)

Figure 4: A plaquette where the flux operator φ̂odd
p, r⃗ in Eq. (8) is defined.

The Hamiltonian (7) has flux operators as local integrals of motion, which is similar to
those in Kitaev honeycomb model. The flux operator φ̂odd

p, r⃗ is defined as follows [see Fig. 4],

φ̂odd
p, r⃗ =σ

x
r⃗, B, qσ

y
r⃗+n⃗1+n⃗2, A, 1

 

∏

2⩽ρ⩽q

σz
r⃗+n⃗1+n⃗2, A,ρ

! 

∏

1⩽ρ⩽q

σz
r⃗+n⃗1+n⃗2, B,ρ

!

×σx
r⃗+2n⃗1+n⃗2, A, 1σ

y
r⃗+n⃗1, B, q

 

∏

1⩽ρ⩽q

σz
r⃗+n⃗1, A,ρ

! 

∏

1⩽ρ⩽q−1

σz
r⃗+n⃗1, B,ρ

!

.

(8)

Because all flux operators φ̂odd
p, r⃗ commute with each other and with the Hamiltonian (7), and

�

φ̂odd
p, r⃗

�2
= 1. The eigenvalues of φ̂odd

p, r⃗ compose a set of good quantum numbers
¦

φodd
p, r⃗

©

, where

φodd
p, r⃗ = ±1 is the eigenvalue of the flux operator φ̂odd

p, r⃗ .
The Jordan-Wigner transformation will be exploited to solve the model defined in Eq. (7) in

accordance to the sets of good quantum numbers
¦

φodd
p, r⃗

©

. To implement it, we keep the three
sort rules given in Section 2 unchanged and add a fourth sort rule associated with the basis
index µ: (4) if l1 = m1, l2 = m2, βl = βm and µl < µm, then l < m. The way to decompose
complex fermion fm depends on the sublattice index βm: (1) for βm = A, ηm = f †

m + fm and
γm = i( f †

m− fm); (2) for βm = B, ηm = i( f †
m− fm) and γm = f †

m+ fm. The Hamiltonians Hodd
a, b, c

are mapped to be

Hodd
a = i

∑

r⃗

∑

µ

�

J a
1,µγr⃗, A,µγr⃗, B,µ + J a

2,µγr⃗, A,µγr⃗−n⃗1, B,µ + J a
3,µD̂r⃗−n⃗1−n⃗2

γr⃗, A,µγr⃗−n⃗1−n⃗2, B,µ

�

, (9a)

Hodd
b = i

∑

r⃗

∑

µ
′�J b

1,µηr⃗, A,µηr⃗, B,µ + J b
2,µηr⃗, A,µηr⃗−n⃗1, B,µ + J b

3,µD̂r⃗−n⃗1−n⃗2
ηr⃗, A,µηr⃗−n⃗1−n⃗2, B,µ

�

, (9b)

Hodd
c = i

∑

r⃗

�

J c
1ηr⃗, A, qηr⃗, B, 1 + J c

2ηr⃗, A, qηr⃗−n⃗1, B, 1 + J c
3 D̂r⃗−n⃗1−n⃗2

ηr⃗, A, qηr⃗−n⃗1−n⃗2, B, 1

�

, (9c)

where D̂r⃗ = iηr⃗, B, qηr⃗+n⃗1+n⃗2, A, 1 commute with each other and with the Hamiltonian Hodd,
and D̂2

r⃗ = 1. It can be seen from Eqs. (9) that the two Majorana fermions ηr⃗, A, 1 and ηr⃗, B, q

constitute a static Z2 gauge field. The corresponding Z2 flux is given by φ̂odd
p, r⃗ = D̂r⃗ D̂r⃗+n⃗1

.
For each sublattice A or B, there exist q species of itinerant Majorana fermions [γA,µ and

γB,µ (µ = 1, 2, . . . , q)] in Hodd
a , q − 2 species of itinerant Majorana fermions [ηA,µ and ηB,µ

(µ = 2, 3, . . . , q − 1)] in Hodd
b , and one species of itinerant Majorana fermions [ηA, q or ηB, 1]

in Hodd
c , respectively. All the 2q− 1 species of itinerant Majorana fermions are coupled to the

same Z2 gauge field. Moreover, the pairing of each species of itinerant Majorana fermions is
of the same form as that in Eq. (4). Therefore, the ground state of Hodd must be a zero flux
state on which all the Z2 fluxes φodd

p, r⃗ = 1. The energy dispersion in the ground state sector
reads

ϵodd
a(b),µ

�

k⃗
�

= ±2
�

�

�J a(b)
1,µ + J a(b)

2,µ e−ik⃗·n⃗1 + J a(b)
3,µ e−ik⃗·(n⃗1+n⃗2)

�

�

� , (10a)

ϵodd
c

�

k⃗
�

= ±2
�

�

�J c
1 + J c

2e−ik⃗·n⃗1 + J c
3e−ik⃗·(n⃗1+n⃗2)

�

�

� . (10b)
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To obtain a topologically ordered state with an odd Chern number ν = 2q − 1, we tune
the coupling constants in the Hamiltonian Hodd to make each filled bands in Eqs. (10) to
have two Dirac cones as the gapless phase in the original Kitaev model [5]. Then a TRS
breaking perturbation H ′odd will be introduced to gap out all the Dirac cones. As long as the
2q− 1 species of itinerant Majorana fermions remain decoupled in the presence of H ′odd, the
total Chern number can be obtained by the sum over all the 2q − 1 filled bands, resulting in
ν= 2q− 1. To simplify the discussion, we set all the coupling constants in Hodd to be a single
value J , and define the perturbation

H ′odd = H ′a +H ′b +H ′c , (11a)

that is composed of three parts as follows:

H ′a =κ
∑

r⃗

∑

µ

�

σx
r⃗−n⃗1, A,µ

 

∏

µ+1⩽ρ⩽q

σz
r⃗−n⃗1, A,ρ

! 

∏

1⩽ρ⩽q

σz
r⃗−n⃗1, B,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗, A,ρ

!

σ
y
r⃗, A,µ

+σ y
r⃗−n⃗1, B,µ

 

∏

µ+1⩽ρ⩽q

σz
r⃗−n⃗1, B,ρ

! 

∏

1⩽ρ⩽q

σz
r⃗, A,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗, B,ρ

!

σx
r⃗, B,µ

�

,

(11b)

H ′b =−κ
∑

r⃗

∑

µ

′
�

σ
y
r⃗−n⃗1, A,µ

 

∏

µ+1⩽ρ⩽q

σz
r⃗−n⃗1, A,ρ

! 

∏

1⩽ρ⩽q

σz
r⃗−n⃗1, B,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗, A,ρ

!

σx
r⃗, A,µ

+σx
r⃗−n⃗1, B,µ

 

∏

µ+1⩽ρ⩽q

σz
r⃗−n⃗1, B,ρ

! 

∏

1⩽ρ⩽q

σz
r⃗, A,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗, B,ρ

!

σ
y
r⃗, B,µ

�

,

(11c)

H ′c =−κ
∑

r⃗

�

σ
y
r⃗−n⃗1, A, q

 

∏

1⩽ρ⩽q

σz
r⃗−n⃗1, B,ρ

! 

∏

1⩽ρ⩽q−1

σz
r⃗, A,ρ

!

σx
r⃗, A, q

+σx
r⃗−n⃗1, B, 1

 

∏

2⩽ρ⩽q

σz
r⃗−n⃗1, B,ρ

! 

∏

1⩽ρ⩽q

σz
r⃗, A,ρ

!

σ
y
r⃗, B, 1

�

.

(11d)

Note that all the terms in H ′odd are of (2q+ 1)-spin interactions. The Jordan-Wigner transfor-
mation will map H ′odd to a quadratic form of Majorana fermions as follows,

H ′odd = iκ
∑

r⃗

�

∑

µ

�

γr⃗, A,µγr⃗−n⃗1, A,µ − γr⃗, B,µγr⃗−n⃗1, B,µ

�

+
∑

µ

′ �
ηr⃗, A,µηr⃗−n⃗1, A,µ −ηr⃗, B,µηr⃗−n⃗1, B,µ

�

+
�

ηr⃗, A, qηr⃗−n⃗1, A, q −ηr⃗, B, 1ηr⃗−n⃗1, B, 1

�

�

.

Therefore the perturbed system Hodd+H ′odd remains exactly solvable, and leads to gapped
energy dispersions:

ϵodd
a(b),µ

�

k⃗
�

= ϵodd
c

�

k⃗
�

= ±2
r

J2
�

�1+ e−ik⃗·n⃗1 + e−ik⃗·(n⃗1+n⃗2)
�

�

2
+∆2(k⃗) , (12)

where ∆(k⃗) = 2κ sin
�

k⃗ · n⃗1

�

. Each filled band in Eq. (12) gives rise to a Chern number
ν= sgn(κ), and the total Chern number is ν= (2q− 1)sgn(κ) = ±(2q− 1).

It is remarkable that such a single-value choice of coupling constants leads to a model on
which the SO(2q − 1) symmetry is respected [39]. Nevertheless, we can adjust the couplings
J a(b)

1(2,3),µ and J c
1(2,3) in Hodd, such that some of the 2q−1 species of Majorana fermions remain
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Figure 5: (a) A 2D lattice where the Hamiltonian (13) is defined. A bond in brown
is added to connect the sites r⃗, A, q and r⃗ + n⃗2, B, 1 in each plaquette of the former
2D lattice. (b) and (c) denotes the J a

4,µ terms and J b
4,µ terms in Heven

a and Heven
b ,

respectively. Blue stars represent the product of σz ’s on corresponding abbreviated
sites.

gapless with Dirac cones, meanwhile other species are fully gapped by Hodd itself, i.e. in the
Abelian phase [5]. A small TRS breaking perturbation can open an energy gap at each Dirac
cone, resulting in a non-Abelian state, on which each species of Majorana fermions gives rise to
a Chern number ν= ±1. Thus, we are able to realize ν= −2q+1, −2q+2, · · · , 2q−2, 2q−1
topological orders in different phases of a single exactly solvable model, while the SO(2q−1)
symmetry is no longer respected when |ν|< 2q− 1.

3.2 Even Chern number ν= 2q− 2

We proceed to construct spin-1/2 models that host ν = 2q − 2 topological orders and respect
SO(2q − 2) symmetry. The ν = 2q − 2 model will be defined on a similar brick-wall lattice as
the ν = 2q − 1 one, which consists of 2q sites per unit cell as well. The Major difference is
that we need two rather than one gauge Majorana fermions per sublattice and per unit cell for
ν = 2q − 2. Since gauge Majorana fermions are associated with vertical bonds, we need two
vertical bonds per unit cell for ν = 2q − 2. The ν = 2q − 2 brick-wall lattice can be found in
Fig. 5 (a), where additional vertical bonds connect sites (r⃗, A, q) and (r⃗+ n⃗2, B, 1). The model
Hamiltonian

Heven = Heven
a +Heven

b , (13a)

consists of two parts,

Heven
a =Hodd

a + (−1)q+1
∑

r⃗

∑

µ

J a
4,µσ

x
r⃗, A,µ

 

∏

µ+1⩽ρ⩽q−1

σz
r⃗, A,ρ

!

×σx
r⃗, A, qσ

x
r⃗+n⃗2, B, 1

 

∏

2⩽ρ⩽µ−1

σz
r⃗+n⃗2, B,ρ

!

σx
r⃗+n⃗2, B,µ ,

(13b)
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Figure 6: The plaquettes where the flux operators φ̂even
p, r⃗ and φ̂even

p′, r⃗ in Eqs. (14) are
defined.

Heven
b =Hodd

b + (−1)q
∑

r⃗

∑

µ

′
J b

4,µσ
y
r⃗, A,µ

 

∏

µ+1⩽ρ⩽q−1

σz
r⃗, A,ρ

!

×σx
r⃗, A, qσ

x
r⃗+n⃗2, B, 1

 

∏

2⩽ρ⩽µ−1

σz
r⃗+n⃗2, B,ρ

!

σ
y
r⃗+n⃗2, B,µ ,

(13c)

where extra terms with coupling constants J a(b)
4,µ have been added to Hodd

a(b), and if µ = 1,

σx
r⃗+n⃗2, B, 1

�

∏

2⩽ρ⩽µ−1σ
z
r⃗+n⃗2, B,ρ

�

σx
r⃗+n⃗2, B,µ ≡ −σ

z
r⃗+n⃗2, B, 1 . Note that each term in Heven is of

q+ 1-spin interaction.
As shown in Fig. 6, there are two types of fluxes, φ̂even

p, r⃗ and φ̂even
p′, r⃗ , that are local integrals

of motion of the Hamiltonian Heven. The operators φ̂even
p, r⃗ and φ̂even

p′, r⃗ can be defined as follows,

φ̂even
p, r⃗ =σ

x
r⃗, B, qσ

y
r⃗+n⃗1+n⃗2, A, 1

 

∏

2⩽ρ⩽q

σz
r⃗+n⃗1+n⃗2, A,ρ

!

σ
y
r⃗+n⃗1+n⃗2, B, 1σ

x
r⃗+n⃗1, A, q

 

∏

1⩽ρ⩽q−1

σz
r⃗+n⃗1, A,ρ

!

, (14a)

φ̂even
p′, r⃗ =σ

y
r⃗, A, qσ

x
r⃗+n⃗2, B, 1

 

∏

2⩽ρ⩽q

σz
r⃗+n⃗2,B,ρ

!

σx
r⃗+n⃗1+n⃗2, A, 1σ

y
r⃗, B, q

 

∏

1⩽ρ⩽q−1

σz
r⃗, B,ρ

!

. (14b)

All the flux operators φ̂even
p, r⃗ and φ̂even

p′, r⃗ commute with each other and with Heven, whose eigen-
values φeven

p(p′), r⃗ = ±1. So that the total Hilbert space for Heven can be factorized into a direct

product of sectors that are eigenspaces of φ̂even
p, r⃗ and φ̂even

p′, r⃗ .

Keeping the same ordering of sites as that for Hodd, we apply the same Jordan-Wigner
transformation to Heven. Thus, the spin Hamiltonian Heven in Eqs. (13) can be expressed in
terms of Majorana fermions as follow,

Heven
a = i

∑

r⃗

∑

µ

�

J a
1,µγr⃗, A,µγr⃗, B,µ + J a

2,µγr⃗, A,µγr⃗−n⃗1, B,µ

+ J a
3,µD̂r⃗−n⃗1−n⃗2

γr⃗, A,µγr⃗−n⃗1−n⃗2, B,µ + J a
4,µD̂′r⃗γr⃗, A,µγr⃗+n⃗2, B,µ

�

,
(15a)

Heven
b = i

∑

r⃗

∑

µ

′�
J b

1,µηr⃗, A,µηr⃗, B,µ + J b
2,µηr⃗, A,µηr⃗−n⃗1, B,µ

+ J b
3,µD̂r⃗−n⃗1−n⃗2

ηr⃗, A,µηr⃗−n⃗1−n⃗2, B,µ + J b
4,µD̂′r⃗ηr⃗, A,µηr⃗+n⃗2, B,µ

�

,
(15b)

where D̂′r⃗ = iηr⃗, A, qηr⃗+n⃗2, B, 1. In parallel with the analyses for ν = 2q − 1, bond operators
D̂r⃗ and D̂′r⃗ commute with each other and with Heven, whose eigenvalues are Dr⃗ , D′r⃗ = ±1.
Thus D̂r⃗ and D̂′r⃗ constitute as a static Z2 gauge field together. The corresponding Z2 fluxes
can be characterized by the flux operators defined in Eqs. (14) that read φ̂even

p, r⃗ = D̂r⃗ D̂′r⃗+n⃗1
and

φ̂even
p′, r⃗ = D̂r⃗ D̂′r⃗ . It is easy to verify that φ̂odd

p, r⃗ = φ̂
even
p, r⃗ φ̂

even
p′, r⃗+n⃗1

, which is implied in Fig. 6.
It can be seen from Eqs. (15) that Heven

a describes q species of itinerant Majorana fermions
γA,µ and γB,µ (µ= 1, 2, . . . , q) and Heven

b describes q−2 species of itinerant Majorana fermions
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ηA,µ and ηB,µ (µ = 2, 3, . . . , q − 1), respectively. All the 2q − 2 species of itinerant Majorana
fermions are coupled to the same Z2 gauge field. Besides, the Hamiltonian for each species
of the itinerant Majorana fermions is equivalent to a Hamiltonian defined on a square lattice
whose unit cell consists of two sites (r⃗, A, µ) and (⃗r, B, µ). Thus the Lieb’s theorem [41] for
square lattice is applicable to Heven as well: the ground state of Heven is in the flux sector where
all the eigenvalues of φeven

p, r⃗ = φ
even
p′, r⃗ = −1 (π-flux sector). So that we can choose Dr⃗ = 1 and

D′r⃗ = −1 everywhere to obtain the energy dispersion of in the ground state sector,

ϵeven
a(b),µ = ±2

�

�

�J a(b)
1,µ + J a(b)

2,µ e−ik⃗·n⃗1 + J a(b)
3,µ e−ik⃗·(n⃗1+n⃗2) − J a(b)

4,µ eik⃗·n⃗2

�

�

� . (16)

The energy dispersion for each band in Eq. (16) will be gapped if one of the four |J a(b)λ,µ |
is greater than the sum of the remaining three, while will be gapless with two Dirac cones
otherwise. A model characterized by an even Chern number ν= 2q− 2 can be obtained from
Heven by adding a perturbation H ′even = H ′a +H ′b to open gaps in the Dirac spectra, similar as
what we did for ν = 2q − 1. Here H ′a and H ′b are defined in Eqs. (11). In terms of Majorana
fermions, H ′even reads

H ′even = iκ
∑

r⃗

�∑

µ

�

γr⃗, A,µγr⃗−n⃗1, A,µ − γr⃗, B,µγr⃗−n⃗1, B,µ

�

+
∑

µ

′ �
ηr⃗, A,µηr⃗−n⃗1, A,µ −ηr⃗, B,µηr⃗−n⃗1, B,µ

�

�

.

The perturbed system Heven + H ′even remains exactly solvable since H ′even commutes with D̂r⃗
and D̂′r⃗ . The energy dispersion of Heven +H ′even takes a form of

ϵeven
a(b),µ

�

k⃗
�

= ±2
r

J2
�

�1+ e−ik⃗·n⃗1 + e−ik⃗·(n⃗1+n⃗2) − e−ik⃗·n⃗2
�

�

2
+∆2(k⃗) , (17)

where we have set all the coupling constants in the Hamiltonian Heven to be a single value J
for simplicity.

With the help of parallel analyse to those for ν = 2q − 1, we are able to obtain the
ν = 2q − 2 topologically ordered phase that respects the SO(2q − 2) symmetry, and other
ν= −2q+ 2, · · · , 2q− 2 topological phases that break the SO(2q− 2) symmetry.

3.3 Alternative construction for even Chern numbers

In this subsection, we would like to provide alternative construction for ν = 2q − 2 model,
where each unit cell consists of 2q−1 (q ≥ 2) rather than 2q sites. In this approach, we define
our models on a L1 × L2 × (2q − 1) 2D lattice as plotted in Fig. 7 (a), on which each site is
labeled by (r⃗, µ), i.e., the unit cell vector r⃗ and a basis index µ (µ = 1, 2, . . . , 2q − 1). The
Hamiltonian H̃even takes a three-part form:

H̃even = H̃even
a + H̃even

b + H̃even
c , (18a)

with

H̃even
a =(−1)q

∑

r⃗

Ý

∑

µ

�

J̃ a
1,µσ

x
r⃗,µ

 

∏

µ+1⩽ρ⩽q−2+µ

σz
r⃗,ρ

!

σ
y
r⃗, q−1+µ

+ J̃ a
2,µσ

x
r⃗−n⃗1, q−1+µ

 

∏

q+µ⩽ρ⩽2q−1

σz
r⃗−n⃗1,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗,ρ

!

σ
y
r⃗,µ

−J̃ a
3,µσ

x
r⃗−n⃗1−n⃗2, q−1+µ

 

∏

q+µ⩽ρ⩽2q−2

σz
r⃗−n⃗1−n⃗2,ρ

!

σx
r⃗−n⃗1−n⃗2, 2q−1σ

y
r⃗, 1

 

∏

2⩽ρ⩽µ−1

σz
r⃗,ρ

!

σ
y
r⃗,µ

�

,

(18b)
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Figure 7: (a) A 2D lattice on which the Hamiltonian (18) is defined. Each unit cell
consists of 2q−1 sites and dashed lines represent the abbreviated 2q−3 sites between
the sites µ = 1 and µ = 2q − 1. Each unit cell is labeled by r⃗ = l1n⃗1 + l2n⃗2 (l1, l2
∈ N+), where n⃗1 and n⃗2 are the primitive vectors for the lattice. (b), (c) and (d)
denotes the terms in H̃even

a , H̃even
b and H̃even

c , respectively. Blue stars represent the
product of σz ’s on corresponding abbreviated sites.

H̃even
b =(−1)q+1

∑

r⃗

Ý

∑

µ

′�

J̃ b
1,µσ

y
r⃗,µ

 

∏

µ+1⩽ρ⩽q−2+µ

σz
r⃗,ρ

!

σx
r⃗, q−1+µ

+ J̃ b
2,µσ

y
r⃗−n⃗1, q−1+µ

 

∏

q+µ⩽ρ⩽2q−1

σz
r⃗−n⃗1,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗,ρ

!

σx
r⃗,µ (18c)

−J̃ b
3,µσ

y
r⃗−n⃗1−n⃗2, q−1+µ

 

∏

q+µ⩽ρ⩽2q−2

σz
r⃗−n⃗1−n⃗2,ρ

!

σx
r⃗−n⃗1−n⃗2, 2q−1σ

y
r⃗, 1

 

∏

2⩽ρ⩽µ−1

σz
r⃗,ρ

!

σx
r⃗,µ

�

,

H̃even
c =(−1)q

∑

r⃗

�

− J̃ c
1σ

x
r⃗, 1

 

∏

2⩽ρ⩽q−1

σz
r⃗,ρ

!

σx
r⃗, q + J̃ c

2σ
y
r⃗−n⃗1, q

 

∏

q+1⩽ρ⩽2q−1

σz
r⃗−n⃗1,ρ

!

σ
y
r⃗, 1

+ J̃ c
3σ

y
r⃗−n⃗1−n⃗2, q

 

∏

q+1⩽ρ⩽2q−2

σz
r⃗−n⃗1−n⃗2,ρ

!

σx
r⃗−n⃗1−n⃗2, 2q−1σ

z
r⃗, 1

�

,

(18d)

where J̃ a(b)
λ,µ and J̃ c

λ
(λ= 1, 2, 3) are coupling constants, and the summations e

∑

µ =
∑q
µ=2 and

e

∑′
µ =

∑q−1
µ=2, respectively.

As illustrated in Fig. 8, a flux operator ˆ̃φ
even

p, r⃗ can be defined as follows,

ˆ̃φ
even

p, r⃗ = −σ
y
r⃗, 2q−1σ

y
r⃗+n⃗1+n⃗2,1

 

∏

2⩽ρ⩽2q−1

σz
r⃗+n⃗1+n⃗2,ρ

!

σx
r⃗+2n⃗1+n⃗2, 1σ

x
r⃗+n⃗1, 2q−1

 

∏

1⩽ρ⩽2q−2

σz
r⃗+n⃗1,ρ

!

. (19)

Similarly, all the flux operators ˆ̃φ
even

p, r⃗ commute with each other and with the Hamiltonian (18),
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Figure 8: A plaquette where the flux operator ˆ̃φeven
p,r⃗ in Eq. (19) is defined.

and
�

ˆ̃φ
even

p, r⃗

�2
= 1. The eigenvalues of ˆ̃φ

even

p, r⃗ compose a set of good quantum numbers
¦

φ̃even
p, r⃗

©

,

where φ̃even
p, r⃗ = ±1.

Define the order of sites as follows: for two sites l and m, (1) if l2 < m2, then l < m; (2)
if l2 = m2 and l1 < m1, then l < m; (3) if l2 = m2, l1 = m1, and µl < µm, then l < m. We
can perform the Jordan-Wigner transformation to fermionize the spin-1/2 model Hamiltonian
H̃even, resulting in,

H̃even
a = i

∑

r⃗

Ý

∑

µ

�

J̃ a
1,µγr⃗,µγr⃗, q−1+µ + J̃ a

2,µγr⃗,µγr⃗−n⃗1, q−1+µ + J̃ a
3,µ

ˆ̃Dr⃗−n⃗1−n⃗2
γr⃗,µγr⃗−n⃗1−n⃗2, q−1+µ

�

,

(20a)

H̃even
b = i

∑

r⃗

Ý

∑

µ

′
�

J̃ b
1,µηr⃗,µηr⃗, q−1+µ + J̃ b

2,µηr⃗,µηr⃗−n⃗1, q−1+µ + J̃ b
3,µ

ˆ̃Dr⃗−n⃗1−n⃗2
ηr⃗,µηr⃗−n⃗1−n⃗2, q−1+µ

�

, (20b)

H̃even
c = i

∑

r⃗

�

J̃ c
1γr⃗, 1ηr⃗, q + J̃ c

2γr⃗, 1ηr⃗−n⃗1, q + J̃ c
3

ˆ̃Dr⃗−n⃗1−n⃗2
γr⃗, 1ηr⃗−n⃗1−n⃗2, q

�

, (20c)

where the complex fermions f †
m have been decomposed into two Majorana fermions in the

same way: ηm = f †
m + fm and γm = i( f †

m − fm). Here two Majorana fermions ηr⃗, 1 and ηr⃗, q

constitute the gauge field ˆ̃Dr⃗ = iηr⃗, 2q−1ηr⃗+n⃗1+n⃗2, 1, which commutes with each other and with

the Hamiltonian H̃even, and ˆ̃D2
r⃗ = 1. The corresponding Z2 flux reads ˆ̃φeven

p, r⃗ =
ˆ̃Dr⃗

ˆ̃Dr⃗+n⃗1
.

Note that H̃even
a , H̃even

b and H̃even
c are composed of q−1 [γr⃗ µ and γr⃗, q−1+µ (µ= 2, 3, . . . , q)],

q − 2 [ηr⃗,µ and ηr⃗, q−1+µ (µ = 2, 3, . . . , q − 1)] and 1 [γr⃗, 1 and ηr⃗, q] species of itinerant
Majorana fermions, respectively. All the 2q − 2 species of itinerant Majorana fermions are
decoupled to each other and coupled to the same Z2 gauge field. Since the pairing form of
each species of itinerant Majorana fermions takes the same form as that in Eq. (4), the ground
state of H̃even must be in the zero flux sector on which φ̃even

p, r⃗ = 1 everywhere. The energy
dispersion in the ground state sector reads

ϵ̃even
a(b),µ

�

k⃗
�

= ±2
�

�

�J̃ a(b)
1,µ + J̃2,µe

−ik⃗·n⃗1 + J̃ a(b)
3,µ e−ik⃗·(n⃗1+n⃗2)

�

�

� , (21a)

ϵ̃even
c

�

k⃗
�

= ±2
�

�

�J̃ c
1 + J̃ c

2e−ik⃗·n⃗1 + J̃ c
3e−ik⃗·(n⃗1+n⃗2)

�

�

� . (21b)

To obtain a model characterized by an even Chern number ν= 2q−2, we tune the coupling
constants in the Hamiltonian (18) to set all the 2q−2 filled bands in Eqs. (21) gapless at first.
Then we introduce the following perturbation Hamiltonian,

H̃ ′even = H̃ ′a + H̃ ′b + H̃ ′c , (22a)
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which is made of three parts,

H̃ ′a =κ
∑

r⃗

Ý

∑

µ

�

−σx
r⃗−n⃗1,µ

 

∏

µ+1⩽ρ⩽2q−1

σz
r⃗−n⃗1,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗,ρ

!

σ
y
r⃗,µ

+σx
r⃗−n⃗1, q−1+µ

 

∏

q+µ⩽ρ⩽2q−1

σz
r⃗−n⃗1,ρ

! 

∏

1⩽ρ⩽q−2+µ

σz
r⃗,ρ

!

σ
y
r⃗, q−1+µ

�

,

(22b)

H̃ ′b =κ
∑

r⃗

Ý

∑

µ

′�

σ
y
r⃗−n⃗1 µ

 

∏

µ+1⩽ρ⩽2q−1

σz
r⃗−n⃗1,ρ

! 

∏

1⩽ρ⩽µ−1

σz
r⃗,ρ

!

σx
r⃗ µ

−σ y
r⃗−n⃗1 q−1+µ

 

∏

q+µ⩽ρ⩽2q−1

σz
r⃗−n⃗1,ρ

! 

∏

1⩽ρ⩽q−2+µ

σz
r⃗,ρ

!

σx
r⃗ q−1+µ

�

,

(22c)

H̃ ′c =− κ
∑

r⃗

�

σx
r⃗−n⃗1, 1

 

∏

2⩽ρ⩽2q−1

σz
r⃗−n⃗1,ρ

!

σ
y
r⃗, 1

+σ y
r⃗−n⃗1, q

 

∏

q+1+µ⩽ρ⩽2q−1

σz
r⃗−n⃗1,ρ

! 

∏

1⩽ρ⩽q−1

σz
r⃗,ρ

!

σx
r⃗, q

�

.

(22d)

The Jordan-Wigner transformation will fermionize the Hamiltonian H̃ ′even to be

H̃ ′even = iκ
Ý

∑

r⃗

�

∑

µ

�

γr⃗,µγr⃗−n⃗1,µ − γr⃗, q−1+µγr⃗−n⃗1, q−1+µ
�

+Ý
∑

µ

′
�

ηr⃗,µηr⃗−n⃗1,µ −ηr⃗, q−1+µηr⃗−n⃗1, q−1+µ
�

+
�

γr⃗, 1γr⃗−n⃗1, 1 −ηr⃗, qηr⃗−n⃗1, q

�

�

.

The perturbed system H̃even+ H̃ ′even remains exactly solvable, since H̃ ′even commutes with ˆ̃Dr⃗ .
The perturbation H̃ ′even opens energy gaps in the spectra, yielding

ϵ̃odd
a(b),µ

�

k⃗
�

= ϵ̃odd
c

�

k⃗
�

= ±2
r

J2
�

�1+ e−ik⃗·n⃗1 + e−ik⃗·(n⃗1+n⃗2)
�

�

2
+∆2(k⃗) , (23)

where ∆(k⃗) = 2κ sin
�

k⃗ · n⃗1

�

and we have set all the coupling constants equal J . Each filled
band in Eq. (23) gives rise to a Chern number ν= sgn(κ), and we obtain the ν= 2q−2 topolog-
ically ordered phase that respects the SO(2q−2) symmetry, and other ν= −2q+2, · · · , 2q−2
topological phases that break the SO(2q−2) symmetry, following the parallel analyse to those
for ν= 2q− 1.

4 Topologically degenerate ground states

The topological order can manifest itself via the ground state degeneracy on a manifold with
nonzero genus [2]. In this section, we study exactly solvable spin-1/2 models under PBC,
which allows global Z2 fluxes along two directions. To do this, we shall treat the physical
boundary condition for the Jordan-Wigner transformation properly [18,40].
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4.1 Periodic boundary condition, boundary terms, and local and globalZ2 fluxes

Without loss of generality, we consider a L1× L2×2q lattice with (PBC) along both n⃗1 and n⃗2
directions. To be simple, L1 and L2 will be chosen to be even numbers hereafter. Under PBC,
there will appear additional boundary terms in Hamiltonian (7) and (13) [18]. In terms of
Majorana fermions, these additional boundary terms read

(−1)qJ a
2,µσ

y
(L1, l2), B,µ

 

∏

µ+1⩽ρ⩽q

σz
(L1, l2), B,ρ

! 

∏

1⩽ρ⩽µ−1

σz
(1, l2), A,ρ

!

σ
y
(1, l2), A,µ

= iJ a
2,µγ(1, l2), A,µγ(L1, l2), B,µ F̂l2 ,

(−1)qJ a
3,µσ

y
(L1, l2), B,µ

 

∏

µ+1⩽ρ⩽q−1

σz
(L1, l2), B,ρ

!

σ
y
(L1, l2), B, qσ

y
(1, l2+1), A, 1

 

∏

2⩽ρ⩽µ−1

σz
(1, l2+1), A,ρ

!

σ
y
(1, l2+1), A,µ

= iJ a
3,µD̂(L1, l2)γ(1, l2+1), A,µγ(L1, l2), B,µ F̂l2 ,

(−1)q+1J b
2,µσ

x
(L1, l2), B,µ

 

∏

µ+1⩽ρ⩽q

σz
(L1, l2), B,ρ

! 

∏

1⩽ρ⩽µ−1

σz
(1, l2), A,ρ

!

σx
(1, l2), A,µ

= iJ b
2,µη(1, l2), A,µη(L1, l2), B,µ F̂l2 ,

(−1)q+1J b
3,µσ

x
(L1, l2), B,µ

 

∏

µ+1⩽ρ⩽q−1

σz
(L1, l2), B,ρ

!

σ
y
(L1, l2), B, qσ

y
(1, l2+1), A, 1

 

∏

2⩽ρ⩽µ−1

σz
(1, l2+1), A,ρ

!

σx
(1, l2+1), A,µ

= iJ b
3,µD̂(L1, l2)η(1, l2+1), A,µη(L1, l2), B,µ F̂l2 ,

J c
2σ

x
(L1, l2), B, 1

 

∏

2⩽ρ⩽q

σz
(L1, l2), B,ρ

! 

∏

1⩽ρ⩽q−1

σz
(1, l2), A,ρ

!

σx
(1, l2), A, q

= iJ c
2η(1, l2), A, qη(L1, l2), B, 1 F̂l2 ,

J c
3σ

x
(L1, l2), B, 1

 

∏

2⩽ρ⩽q−1

σz
(L1, l2), B,ρ

!

σ
y
(L1, l2), B, qσ

y
(1, l2+1), A, 1

 

∏

2⩽ρ⩽q−1

σz
(1, l2+1), A,ρ

!

σx
(1, l2+1), A, q

= iJ c
3 D̂(L1, l2)η(1, l2+1), A, qη(L1, l2), B, 1 F̂l2 ,

where (l1, l2) denotes the unit cell r⃗ = l1n⃗1 + l2n⃗2, F̂l2 = eiπN̂l2 and N̂l2 =
∑

l1,β ,µ n̂(l1, l2),β ,µ
are fermion parity and occupation number in the l2-th row respectively. Note the coupling
constant J a(b)

4,µ is absent in these additional boundary terms. Thus every boundary term in

Heven is a boundary term in Hodd too. The fermion parity F̂l2 will also appear in the flux
operators on the edge,

φ̂odd
p, (L1, l2)

= D̂(L1, l2)D̂(1, l2) F̂l2 ,

φ̂odd
p, (L1−1, l2)

= D̂(L1−1, l2)D̂(1, l2) F̂l2+1 ,

φ̂even
p, (L1, l2)

= D̂(L1, l2)D̂
′
(1, l2)

F̂l2 ,

φ̂even
p′, (L1, l2)

= D̂(L1, l2)D̂(L1, l2) F̂l2+1 .
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In addition to the local flux operators, we can define two extra Z2 global flux operators:

Φ̂1 = F̂l2=1 ,

Φ̂2 =
∏

l2

D̂(1, l2) .

These two global fluxes commute with each other and with φ̂odd
p, r⃗ , φ̂even

p, r⃗ and φ̂even
p′, r⃗ as well as

Hodd and Heven under PBC. It is easy to see that Φ̂2
1(2) = 1, and the corresponding eigenvalue is

Φ1(2) = ±1.Thus we can divide the total Hilbert space of Hodd (Heven) into subspaces according

to the sets of eigenvalues
¦

φodd
p, r⃗ ,Φ1,Φ2

©

or
¦

φeven
p, r⃗ , φeven

p′, r⃗ ,Φ1, Φ2

©

.

4.2 Topologically degenerate ground states on a torus

To study the topological degeneracy of spin-1/2 models, let us count the degrees of freedom
at first. For a spin-1/2 model defined on an L1 × L2 × 2q lattice, there are 22qL1 L2 physical
spin states. On the other hand, we consider the degrees of freedom arising from fermions that
are subject to a constraint Πr⃗φ

odd
p, r⃗ = 1 or Πr⃗φ

even
p, r⃗ φ

even
p′, r⃗ = 1 under the PBC on a torus: (1)

for a ν = 2q − 1 model, there are (L1 L2 + 2) Z2 fluxes and (4q − 2)L1 L2 itinerant Majorana
fermions, giving rise to 2L1 L2+2× 1

2 ×2(2q−1)L1 L2 = 22qL1 L2+1 states; (2) for a ν= 2q−2 model,
there are (2L1 L2 + 2) Z2 fluxes and (4q − 4)L1 L2 itinerant Majorana fermions, resulting in
22L1 L2+2 × 1

2 × 2(2q−2)L1 L2 = 22qL1 L2+1 states as well. Therefore the degrees of freedom in
the Fock space composed of Majorana fermions have been enlarged by a factor of two. This
unphysical redundancy can be removed by a projection P̂ = (1+F F̂)/2 [40], where F̂ =

∏

l2
F̂l2

is the total fermion number parity and F is its eigenvalue for a given set of
¦

φodd
p, r⃗ , Φ1, Φ2

©

�¦

φeven
p, r⃗ , φeven

p′, r⃗ , Φ1, Φ2

©�

for Hodd (Heven).

In the Majorana fermion representation, the ground states of Hodd and Heven lie in the
subspace where the eigenvalues of local flux operators have been determined. The unde-
termined eigenvalues of global flux operators Φ̂1 and Φ̂2 leads to four-fold topologically de-
generate ground states |ΨG(Φ1, Φ2)〉 on the torus, characterized by Φ1 = ±1 and Φ2 = ±1.
Indeed, Φ1(2) = 1 and Φ1(2) = −1 give rise to periodic and anti-periodic boundary condi-
tions for itinerant Majorana fermions along the n⃗1(2) direction, respectively. For Φ1(2) = 1,
the n⃗1(2)-component of the wave vector k⃗ is determined by k1(2) ≡ k⃗ · n⃗1(2) = 0, ±2π/L1(2),
±4π/L1(2), · · · , ±(L1(2) − 2)π/L1(2),π; while for Φ1(2) = −1, the corresponding value is given
by k1(2) = ±π/L1(2), ±3π/L1(2), · · · , ±(L1(2) − 1)π/L1(2). On the other hand, in the gapless
phase of the original Kitaev model, the quadratic form in Eq. (4) leads to a p-wave pair-
ing term around each Dirac cone. Moreover, a TRS breaking perturbation will result in a
p ± ip pairing term and open an energy gap at the Dirac cone. Thus, when Φ1 = Φ2 = 1,
the p ± ip pairing term vanishes at k1 = k2 = 0, which gives rise to unpaired fermions at
the Fermi level and a sign change of the presumed value F in each filled band, resulting in
(1 + F F̂) |ΨG(Φ1 = 1, Φ2 = 1)〉 = 0 [40]. By contrast, the fermions are fully paired in other
three topological sectors, on which either Φ1 = −1 or Φ2 = −1. Note that the fermions are
fully paired in the gapped ν= 0 phase too, whatever Φ1 and Φ2 are.

As mentioned before, the models in Eqs. (9) and (15) can be viewed as ν copies of itinerant
Majorana fermions in Eq. (4) that are coupled to a single static Z2 gauge field. When there are
ν topologically non-trivial (i.e., p ± ip pairing) bands filled, an extra sign (−1)ν will appear
in the projector, yielding (1 + F F̂) |ΨG(Φ1 = 1, Φ2 = 1)〉 = [1 + (−1)ν] |ΨG(Φ1 = 1, Φ2 = 1)〉.
Consequently, the fermionic ground state withΦ1 = Φ2 = 1 will be eliminated by the projection
P̂, when ν is an odd number. Then we draw the conclusion that the physical ground states of
Hodd and Heven are three- and four-fold topologically degenerate, respectively.
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Table 1: xactly solvable models toward Kitaev’s sixteen-fold way: comparison
between our models (Hodd, Heven, and H̃even) and those presented in previous
works [36–39].

lattice Chern number C = ν vortex sector local degrees of freedom

Ref. [36] square-octagon lattice ν= 0, ±1, ±2, ±3, ±4 zero-flux a spin-1
2 per site

Ref. [37] honeycomb lattice ν= 0, ±1, ±2, ±3, ±4, ±8
ground state:
fractional-flux

(or 1-flux)
a spin-1

2 per site

Ref. [38] honeycomb lattice
ν= 0, ±1, ±2, ±3,
±4, ±5, ±6, ±8

triangular vortex
configurations and

their dual
a spin-1

2 per site

Ref. [39]
honeycomb

(square) lattice for
odd (even) ν

ν= 2q− 1 or ν= 2q− 2
ground state:

zero-flux (π-flux) for
odd (even) ν

(2q+ 1)
2q-dimensional Γ
matrices per site

Hodd
brick-wall

lattice: 2q sites
per unit cell

ν= 2q− 1
ground state:

zero-flux a spin-1
2 per site

Heven
brick-wall

lattice: 2q sites
per unit cell

ν= 2q− 2
ground state:
π-flux a spin-1

2 per site

H̃even
brick-wall lattice:
2q− 1 sites per

unit cell
ν= 2q− 2

ground state:
zero-flux a spin-1

2 per site

5 Conclusions and discussions

In summary, we proposed a family of 2D quantum S = 1/2 spin models to realize Kitaev’s
sixteen-fold way of anyon theories. With the help of Jordan-Wigner transformation, all these
spin models can be fermionized and mapped to quadratic form of Majorana fermions, thereby
are exactly solvable. These exact solutions allow us to study the ground state degeneracy of
these models on a torus. It turns out that the ground states are three- (four-) fold topologically
degenerate, when the total Chern number ν of Majorana fermion bands is an odd (even)
number.

For better understanding of our exactly solvable models on 2D brick-wall lattices, it is
worthwhile to compare them with existing models hosting the sixteen Kitaev topological or-
ders. In Table 1, we list some exactly solvable models in literature [36–39], and compare them
with ours.

(i) We would like to point out the close relation between our ν = 2 model and the
spin-3/2 Yao-Zhang-Kivelson (YZK) model [32] that host algebraic spin liquid states. The
spin-1/2 Hamiltonian Heven in Eq. (13) can be fermionized via the Jordan-Wigner transforma-
tion, resulting in Eq. (15). When ν = 2 (or q = 2), the latter Majorana fermion form can be
explicitly written as follows,

Hν=2 = i
∑

r⃗

2
∑

µ=1

�

J a
1,µγr⃗, A,µγr⃗, B,µ + J a

2,µγr⃗, A,µγr⃗−n⃗1, B,µ

+ J a
3,µD̂r⃗−n⃗1−n⃗2

γr⃗, A,µγr⃗−n⃗1−n⃗2, B,µ + J a
4,µD̂′r⃗γr⃗, A,µγr⃗+n⃗2, B,µ

�

,

where two species of itinerant Majorana fermions γr⃗, A, 1 (γr⃗, B, 1) and γr⃗, A, 2 (γr⃗, B, 2) appear in
the sublattice A(B). In order to compare with the YZK model, we add a new term Hcouple to
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Figure 9: (a) The q = 2 version of the brick-wall lattice in Fig. 5 (a). (b) Combine
two sites A, 1 and A, 2 (B, 1 and B, 2) into a single site A (B). (c) The lattice in (a) is
transformed into a square lattice via the site combination shown in (b). Here open
and solid squares form two sublattices A and B respectively.

couple these two species of Majorana fermions with each other,

Hcouple =−
∑

r⃗

J5

�

σx
r⃗, A, 1σ

y
r⃗, A, 2 −σ

y
r⃗, B, 1σ

x
r⃗, B, 2

�

=− i
∑

r⃗

J5

�

γr⃗, A, 1γr⃗, A, 2 + γr⃗, B, 1γr⃗, B, 2

�

. (24)

Then we choose J a
1,1 = J a

2,1 = Jx , J a
3,1 = J a

4, 1 = Jy , J b
1, 2 = J b

2,2 = J ′x and J b
3,2 = J b

4,2 = J ′y ,

such that the Hamiltonian Hν=2
total ≡ Hν=2 +Hcouple becomes

Hν=2
total = i

∑

r⃗

�

Jxγr⃗, A, 1(γr⃗, B, 1 + γr⃗−n⃗1, B, 1) + Jyγr⃗, A, 1(D̂r⃗−n⃗1−n⃗2
γr⃗−n⃗1−n⃗2, B, 1 + D̂′r⃗γr⃗+n⃗2, B, 1)

+ J ′xγr⃗, A, 2(γr⃗, B, 2 + γr⃗−n⃗1, B, 2) + J ′yγr⃗, A, 2(D̂r⃗−n⃗1−n⃗2
γr⃗−n⃗1−n⃗2, B, 2 + D̂′r⃗γr⃗+n⃗2, B, 2)

− J5(γr⃗, A, 1γr⃗, A, 2 + γr⃗, B, 1γr⃗, B, 2)
�

.

(25)

Note that φ̂even
p, r⃗ and φ̂even

p′, r⃗ remain integrals of motion of Hν=2
total, and serve as static Z2 fluxes

as well. It is straightforward to examine that the energy dispersion of Eq. (25) takes the same
form as that in the YZK model [32]. Indeed, this equivalence can be understood as follows:
As shown in Fig. 9, the q = 2 version of brick-wall lattice in Fig. 5 (a) can be transformed into
a square lattice via coarse-graining [see Fig. 9 (b)]. The direct product of the Hilbert spaces
of two S = 1/2 spins is associated with the four-dimensional representation of the Clifford
algebra that composed of five 4 × 4 Γ matrices and their commutators. On the other hand,
the spin-3/2 representation of the SU(2) algebra are formulated in a four-dimensional Hilbert
space too. Furthermore, all the five 4×4 Γ matrices can be represented by symmetric bilinear
combinations of the three SU(2) generators in the spin-3/2 representation. These allow us to
establish the equivalence between these two models.

(ii) It is worth mentioning that Eqs. (9) is not the unique choice to divide the 4q − 2
Majorana fermions into 2q − 1 pairs. The way that we choose in Eqs. (9) keeps the index µ
for each pair the same except for the pair, ηA, q and ηB, 1. This choice is convenient for our
discussion, while leaves a long spin string operator of length 2q in Hodd

c . To reduce the length
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of the longest spin string operator in Hodd, alternative pairing scheme is applicable: changing
the pairing of η Majorana fermions to ηA,µ+1ηB,µ (µ = 2, 3, . . . , q − 1). The corresponding
spin-1/2 Hamiltonian contains up to (q+ 2)-spin interactions.

(iii) As mentioned in Section 3, some particular choice of the coupling constants will lead
to an SO(|ν|) internal symmetry, which is absent in generic models. This enlarged symmetry
will give rise to the same velocity of chiral Majorana fermions on the boundary, and featured
entanglement spectra that are depicted by corresponding conformal field theories.

(iv) Finally, we would like to emphasize that our spin-1/2 models is easier to realize than
those of higher spins via quantum simulation by various types of qubits. In particular, the
long-range interacting terms in our models can be simulated, since the all-to-all interactions
are feasible in cutting-edge quantum device techniques [43,44].
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