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Abstract

We construct infinitely many new exactly solvable local commuting projector lattice
Hamiltonian models for general bosonic beyond group cohomology invertible topolog-
ical phases of order two and four in any spacetime dimensions, whose boundaries are
characterized by gravitational anomalies. Examples include the beyond group cohomol-
ogy invertible phase without symmetry in (4+1)D that has an anomalous boundary Z2
topological order with fermionic particle and fermionic loop excitations that have mu-
tual π statistics. We argue that this construction gives a new non-trivial quantum cellular
automaton (QCA) in (4+1)D of order two. We also present an explicit construction of
gapped symmetric boundary state for the bosonic beyond group cohomology invertible
phase with unitary Z2 symmetry in (4+1)D. We discuss new quantum phase transitions
protected by different invertible phases across the transitions.
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1 Introduction

Invertible phases of matter [1–5] are gapped phases with a unique vacuum, and they have
applications such as topological insulators or superconductors [6] and are useful in under-
standing the relation between symmetry and phases of matter. For instance, phase transitions
separated by invertible phases will be robust against perturbations; similarly, the interfaces
that separate different invertible phases are also stable against perturbations. A large class of
invertible phases of matter with symmetry is described by the cohomology of the symmetry
group [7]. These phases have lattice model realization. They can be understood by gauging
the symmetry, which results in Dijkgraaf-Witten gauge theories [8], and different invertible
phases can be distinguished from the topological property of non-local operators in the theory,
such as topological spin and braiding (see e.g. Ref. [9]).

On the other hand, not every invertible phase can be described by the cohomology of the
symmetry group, such as invertible phases without symmetry. While the phases transitions
separating different invertible phases with symmetry might not be robust against symmetry
breaking perturbations, the phase transition between different invertible phases without sym-
metry is always robust. These phases that are not described by group cohomology are known
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as beyond group cohomology invertible phases, and are classified in Refs. [7, 8]. While the
interfaces between different group cohomology invertible phases are protected by the ’t Hooft
anomaly of the unitary symmetry, the interfaces between different beyond group cohomol-
ogy invertible phases are protected by both the ’t Hooft anomaly of the unitary symmetry and
certain gravitational anomaly [10,11].

However, most condensed matter systems do not have exact Poincaré symmetry, and it is
difficult to study condensed matter systems on general curved spacetime. Thus to better under-
stand these beyond group cohomology invertible phases, it is desirable to describe such phases
using lattice Hamiltonians. The lattice model also provides a construction for the “anoma-
lous” boundary state for the invertible phase. For instance, the boundaries of invertible phases
without symmetry are expected to have a gravitational anomaly, and it might be interesting to
investigate how the gravitational anomaly, which relies on the emergent Poincaré symmetry
at low energy, manifests itself on the boundary of the lattice model. By modifying the lattice
model, one can also study possibly continuous quantum phase transitions between different
invertible phases.

Unlike the “group cohomology phases”, exactly solvable lattice models for beyond group
cohomology invertible phases have not been constructed in generality. An example of such
lattice model for the beyond group invertible phase with Z2 unitary symmetry in (4+1)D is
constructed in Ref. [12] using techniques from quantum cellular automata (QCA). See also
Ref. [13] for previous attempts of understanding such phases. However, such a lattice model
is not readily generalized to other beyond group cohomology invertible phases.

In this note we develop a method to construct exactly solvable Hamiltonian models for
general bosonic beyond group cohomology invertible phases, in any spacetime dimensions.
The models have the following features: (1) the Hamiltonian is a sum of local commuting
projectors and thus is exactly solvable, (2) the model can be defined on any triangulated lattice
or hypercubic lattice, (3) the dimension of the local Hilbert space is finite. We will focus on
the phases without time-reversal symmetry. Such invertible phases are classified by cobordism
groups Ωd+1

SO (BG) for unitary ordinary symmetry G [14–17]. We will focus on a particular
infinite subset of bosonic invertible phases with unitary G symmetry. These phases have order
2 or order 4 under stacking: two copies or four copies of the phases stacked on top of each
other can be smoothly connected to the trivial phase.1 Examples of such phases are discussed
in Refs. [14,15].

Some invertible phases can be expressed using invertible gauge theory, i.e. gapped gauge
theory with a unique ground state on any space.2 If we replace the dynamical gauge field with
background gauge field, we obtain the symmetry protected topological (SPT) phase with effec-
tive action given by the topological action of the gauge field, and the invertible gauge theory is
obtained from the SPT phase by gauging the symmetry, i.e. promoting the background gauge
field to be dynamical. Such invertible gauge theory has no reference to Poincaré symmetry and
in principle can be defined on the lattice. In particular, the invertible gauge theory obtained
by gauging symmetry in group cohomology invertible phases can be described by exactly solv-
able lattice models. For instance, the invertible phases with Z2 fermion parity symmetry in
(1+1)D can be described by dynamical Z2 gauge theory with certain topological action [22].

1In other words, this excludes the “chiral” bosonic beyond group cohomology invertible phases whose effective
actions depend on the Pontryagin classes pi(T M) but not through pi(T M)mod 4 (which can be expressed in terms
of the (higher-dimension) Pontryagin square of the Stiefel-Whitney classes [18]). An example of beyond group
cohomology SPT phase not discussed here is the SPT phase in (4+1)D with Z3 symmetry and the effective action
2π
3

∫

AZ3
∪ p1(T M), where AZ3

is the background Z3 gauge field.
2When the gauge field has fluxes, the topological action of the gauge field in invertible gauge theories attaches

the flux to electric excitation in one dimension higher by the generalization of the Witten effect, such that the flux
confines and the theory is invertible. An example is theZ2 two-form gauge theory in 3+1d with minimal topological
action, which is invertible because the flux particle is attached to an electric string and becomes confined (see e.g.
Ref. [19–21]).
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Similarly, the invertible phases with fermion parity symmetry in (2+1)D can be described by
Chern-Simons theory with gauge group SO(N) for integer N at Chern-Simons level one (see
e.g. Ref. [23,24]).3

In this note, we show that an infinite class of the bosonic beyond group cohomology invert-
ible phases can be described by invertible gauge theory: this includes all bosonic beyond group
cohomology invertible phases of order two and four in any spacetime dimension. Such theory
is obtained by gauging the symmetry in a “parent” group cohomology invertible phase. Since
the group cohomology invertible phases have exactly solvable lattice Hamiltonian model, this
provides a systematic lattice Hamiltonian model construction for the beyond group cohomol-
ogy invertible phases (at least for those of order two or four), by gauging the symmetry in
the exactly solvable lattice model for the corresponding “parent” group cohomology invertible
phase. The procedure of constructing the lattice model for the invertible phases is

(1) Construction of an exactly solvable Hamiltonian for the “parent” group cohomology in-
vertible phase.

(2) Gauging the symmetry (or a subgroup of the symmetry) in the above lattice model to ob-
tain the invertible gauge theory that describes the beyond group cohomology invertible
phase.4

(3) We obtain an “anomalous” boundary state by truncating the lattice model near the
boundary.

(4) We construct lattice Hamiltonians for new quantum phase transitions protected by “grav-
itational response” described by different invertible phases. This is the analogue of free
fermion critical point in (2+1)D protected by the change in the thermal Hall response
across the transition.

In Section 2 we will discuss the above procedure in detail. Examples of such constructions
have been discussed in Refs. [21,26].

The non-triviality of the invertible phase described by the bulk lattice model can be inferred
from the anomalous boundary topological order. In the main example considered in this work,
the boundary coincides with the known anomalous Z2 topological order [27], which implies
the bulk is a non-trivial invertible phase.

The gravitational anomaly on the boundary often manifests as non-trivial self-statistics and
mutual-statistics of excitations. For instance, if an excitation has non-trivial self-statistics, it
requires a framing to be defined on a curved spacetime. If it has mutual-statistics with another
excitation, the framing cannot be extended to the other excitation.5 If the other excitation also
has non-trivial self-statistics and itself requires a framing to be defined on the curved spacetime,
this will lead to inconsistency in defining both excitations on the curved spacetime since no
framing can be defined for both excitations. This is a gravitational anomaly, and it is a global

3More recently, the invertible phases in (3+1)D with one-form symmetry and time-reversal symmetry that forms
a “mixture” two-group is constructed using dynamical Z2 two-form gauge theory with certain topological action
in Ref. [21].

4In the Hamiltonian models, the Gauss law constraints are imposed energetically rather than exactly, and thus
the Hilbert space still has a tensor product structure. For instance, the Z2 toric code model in 2+1d [25] describes
Z2 gauge theory only at the low energy subspace.

5For instance, the expectation value of the line operator creating fermion is given by the local spin structure
on the line, which is a geometric object. If the line operator braids with another operator, the holonomy of the
local spin structure is a c-number multiple of the identity operator and cannot reproduce the braiding, and thus
the local spin structure cannot be defined near the other operator with which the line operator braids non-trivially.
We note that in this case, if the theory also has a local fermionic particle, then we can dress the line operator with
the local fermion to make it a boson, which no longer requires a framing, and the anomaly becomes trivial.
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anomaly since statistics is non-local. We will see such phenomena explicitly on the boundary
of the lattice models we constructed for invertible phases.

The work is organized as follows. In Section 2, we describe the general procedure of
constructing local commuting projector lattice models for general beyond group cohomology
invertible phases of order two and four in any spacetime dimension. In Section 3, we illus-
trate the construction using the example of invertible phase in (4+1)D without symmetry. In
Section 4, we apply the method to construct a new lattice Hamiltonian model for the beyond
group cohomology invertible phase with unitary Z2 symmetry in (4+1)D. In Section 5, we
discuss the results and some future directions.

There are several appendices. In Appendix A, we review the mathematical properties of
cochains and cup products used in the construction of lattice Hamiltonians. In Appendix B,
we discuss another approach to obtain boundary state in the Hamiltonian model by gauging
a symmetry both in the bulk and on the boundary. In Appendix C, we use (2+1)D toric code
model to illustrate the method of obtaining boundary theory by truncating the bulk Hamilto-
nian. In Appendix D, we give the details for the computation of the boundary Hamiltonian of
the invertible phase without symmetry in (4+1)D.

1.1 Summary of main examples

We use two examples to illustrate our construction for lattice Hamiltonian models of bosonic
beyond group cohomology invertible phases of order two and four in the general spacetime
dimension. The examples are in (4+1)D spacetime. The first example does not have symmetry,
and the second example has Z2 unitary symmetry. Both phases have order two.

1.1.1 Bosonic invertible phase without symmetry in (4+1)D

The (4+1)D beyond group cohomology SPT phases without symmetry have Z2 classifica-
tion [14], and the non-trivial phase is characterized by the effective action

π

∫

w2(T M)∪w3(T M) = π

∫

w2(T M)∪ Sq1w2(T M) , (1)

where we consider orientable spacetime manifolds.
This beyond group cohomology invertible phase has several known boundary states in

(3+1)D, including the all-fermion electrodynamics with heavy fermionic electric particles and
monopoles [28–32], and the anomalous Z2 topological order with fermionic particle and
fermionic loop excitations [30,32,33], and the SU(2) gauge theory with odd number of mass-
less fermion with isospin 3/2 [34]. All these boundary theories have fermionic loops and a
fermionic particle: they have fermion Wilson line due to the spin/charge relation, and also
have π flux monopole whose Dirac string is a fermionic string, since the 2π flux monopole is
a fermion.6

We describe the beyond group cohomology invertible phase using the invertible gauge
theory with Z2 two-form a2 and three-form b3 gauge fields, and the action

π

∫

a2 ∪ Sq1(a2) +π

∫

Sq2(b3) +π

∫

a2 ∪ b3 . (2)

The local commuting projector Hamiltonian for the invertible phase (1) described by the above
invertible gauge theory with dynamical gauge fields a2, b3 is as follows. We put Z2 qubits on

6This follow from the property that the 2π flux monopole is a fermion and thus attached to
∫

w2(T M), while
the Dirac string of the π flux monopole is attached to

∫

dw2(T M)/2 =
∫

w3(T M), which implies it is a fermionic
string (the property of fermionic string is that it is attached to

∫

w3(T M) [30]).
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Figure 1: The Hamiltonian for the boundary state obtained by truncating the Hamil-
tonian model of the beyond group cohomology invertible phase without symmetry in
(4+1)D. There are qubits on the edges and faces of the lattice, acted on by the Pauli
operators X e, Ye, Ze and X f , Yf , Z f , respectively. Solid lines in the figure are edges in
the cubic lattice, while dashed lines are edges in the dual lattice, i.e. faces in the orig-
inal lattice. The first row imposes the Gauss law energetically, and the second row
imposes the zero flux condition energetically, which are violated by the excitations
in Fig. 2. In the figure we omit the bulk terms. In the figure, K f = Z f

Æ

Ze1
Ze2

Ze3
Ze4

for the edges e1, e2, e3, e4 that bound the face f , and the square root takes value in
{1, i} in the eigenbasis of Ze1

Ze2
Ze3

Ze4
.

each two- and three-simplices, acted by Pauli matrices X f , Z f and X t , Zt .

Hw2w3
=−

∑

f

∏

t⊃ f

X t

∏

t ′
Zt ′

∫

t ′∪2δ f
∏

f ′
Z f ′

∫

f ′∪ f

−
∑

e

∏

f ⊃e

X f

∏

f ′
Z f ′

∫

f ′∪(e∪1δe)
∏

t

Zt

∫

e∪t
∏

f1, f2

C Z(Z f1 , Z f2)
∫

e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe)

−
∑

t

∏

f ⊂t

Z f −
∑

4-simplex p

∏

t⊂p

Zt ,

(3)

where e denotes the 1-cochain that takes value 1 on the edge e and zero on all other edges,
and similarly for 2-cochain f and 3-cochain t , and we introduced

C Z(a, b) =

¨

−1 , if (a, b) = (−1,−1) ,
1 , if (a, b) = (1, 1) , (1,−1) , (−1, 1) .

(4)

In the above formula, C Z(Zi , Z j) is the controlled-Z gate.

Boundary state By truncating the above bulk Hamiltonian on the boundary (Fig. 1), we find
fermionic particle and fermionic loop excitations (Fig. 2) on the boundary with π statistics,
in agreement with the expected anomalous boundary state for the beyond group cohomology
SPT phase (1) as discussed in Refs. [30, 33]. The fermionic loop excitation is characterized
by a T-junction process that involves orientation reversal (for more detail, see Section 3.4).
In an upcoming work [35] we show the statistics of the fermionic loop excitation can also be
described by a double commutator of the loop creation operator with a suitable choice of a
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Figure 2: The excitations in the boundary state of the beyond group cohomology
invertible phase without symmetry in (4+1)D.

branching structure, similar to the statistics of fermionic particles described by the commutator
of the fermion hopping operator.

We remark that such anomalous boundary state can also be obtained from the Higgs mech-
anism in the U(1)Maxwell theory with a Higgs scalar with the charge of two, and where both
the unit electric particle and the 2π-flux magnetic monopole are fermions. There are fermionic
loops from the Dirac string of the π flux monopole and the analogue of the Dirac string for the
half charge electric particle and dyon [35].

If we take two copies of the system, we can condense the boson made out of the fermion
in each copy and make the boundary completely trivial. Thus the invertible phase has order
two.

1.1.2 Bosonic invertible phase with Z2 unitary symmetry in (4+1)D

Another example we use to illustrate our construction is the beyond group cohomology invert-
ible phase with Z2 unitary symmetry in (4+1)D, with the effective action

π

∫

C1 ∪ Sq2(w2) , (5)

where C1 is the Z2 background gauge field for the Z2 symmetry. The theory can be described
by an invertible gauge theory with Z2 two-form a2 and three-form b3 gauge fields, and the
action

π

∫

C1 ∪ Sq2(a2) +π

∫

Sq2(b3) + a2 ∪ b3 . (6)

The Hamiltonian model for the beyond group cohomology SPT phase as described by the
above invertible gauge theory is as follows. We consider Euclidean lattice, and qubit on each
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vertex, face and cube:

HCw2
2
=−

∑

v

X v

∏

f1, f2

C Z(Z f1 , Z f2)
∫

v∪ f 1∪ f 2 −
∑

e

∏

f ⊃e

X f

∏

t

Zt

∫

e∪t
∏

v, f ′
C Z(Zv , Z f ′)

∫

δv∪( f ′∪1δe)

−
∑

f

∏

t⊃ f

X t

∏

t

Zt

∫

t∪2δ f
∏

f ′
Z f ′

∫

f ′∪ f −
∑

t

∏

f ⊂t

Z f −
∑

4-simplex p

∏

t⊂p

Zt . (7)

We remark that a different lattice Hamiltonian model for the same beyond group cohomology
invertible phase in (4+1)D was constructed in Ref. [12].

Boundary state The boundary state of the theory can be obtained by truncating the bulk
Hamiltonian, and is given by an anomalous Z2 topological order with fermionic particle and
bosonic loop excitations, but the Z2 symmetry realized anomalously on the loop excitation.
To be specific, the intersection of the loop excitation with the domain wall implementing the
Z2 symmetry has the statistics of a fermionic particle. A related symmetric gapped boundary
is also discussed in Ref. [12].

If we take two copies of the system, we can condense the boson particle made out of the
fermion in each copy and make the boundary completely trivial. Thus the invertible phase has
order two.

2 General construction of exactly solvable Hamiltonian models

2.1 Beyond group cohomology invertible phases from “parent” group cohomol-
ogy invertible phases

We will show that the bosonic invertible phases of order two and four can be obtained by gaug-
ing certain Z2 higher-form symmetry in a group cohomology invertible phase. Mathematically,
these invertible phases correspond to the elements of order 2 or 4 in

Hd+1(BG × BSO(d + 1), U(1))/{vk = 0 for k > (d + 1)/2} , (8)

where SO(d + 1) is the Lorentz group for the (d + 1)-dimensional spacetime with Euclidean
signature, vk is the kth Wu class [36] on BSO(d+1). A useful way to describe invertible phases
is using their low energy effective action in the presence of background probe gauge field for
the symmetry, and the elements in (8) corresponds to such effective action as follows. Let us
denote the background gauge field collectively by A (it can be the background gauge field for
internal symmetry, or some probe curved gravity background). It is a map from the spacetime
to BG × BSO(d + 1): for instance, it assigns a G element to each curve on the spacetime.
Then for element ω in (8), the effective action for the background gauge field is given by the
pullback A∗ω of ω by A.

We use the property that the bosonic beyond group cohomology SPT phases with finite
group G unitary symmetry have effective actions described in turns of the background gauge
field for the G symmetry and the Stiefel-Whitney classes wi(T M), Pontryagin classes pi(T M)
for the tangent bundle, as well as the higher-dimensional generalization of gravitational Chern-
Simons terms [14–16]. For the invertible phases of order two and four, the effective action
for the invertible phases only depend on the G background gauge field, and the Z2 valued
Stiefel-Whitney classes for the tangent bundle.

The Stiefel-Whitney classes can be described by dynamical higher-form Z2 gauge field in
invertible gauge theories. In d + 1 spacetime dimension, an n-form Z2 gauge field bn satisfies
the identity [36]

Sqd+1−n(bn) = vd+1−n(T M)∪ bn , (9)
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where vr(T M) is the rth Wu class of the tangent bundle T M . Then we can express the Wu
class using another Z2 (d + 1− n)-form gauge field ad+1−n that couples to bn, with the action

π

∫

Sqd+1−n(bn) + ad+1−n ∪ bn = π

∫

(vd+1−n(T M) + ad+1−n)∪ bn mod 2πZ . (10)

Then integrating out the Lagrangian multiplier bn implies

ad+1−n = vd+1−n(T M) , (11)

and thus the fluctuation of the dynamical gauge fields is suppressed, and the theory is invert-
ible.7 Thus we can express the rth Wu class for r ≤ d + 1 using the Z2 gauge fields ar . Note
the Wu classes are non-trivial for r ≤ (d + 1)/2. The Stiefel-Whitney classes can be obtained
from the Wu classes as [36]

wr(T M) =
[r/2]
∑

j=max(0,r−[(d+1)/2])

Sq j(vr− j(T M)) =
[r/2]
∑

j=max(0,r−[(d+1)/2])

Sq j(ar− j) , (12)

where the upper and lower bounds in the summation are imposed to exclude indices with
zero summands. Thus we can express the bosonic beyond group cohomology phases as an
invertible gauge theory for the n-form Z2 gauge fields bn and (d +1− n)-form Z2 gauge fields
ad+1−n for [(d + 1)/2] ≤ n ≤ d, in addition to the G background gauge field, with action
described by the group cohomology

Hd+1

 

BG ×
d
⊗

n=[(d+1)/2]

�

Bn+1Z(bn)
2 × Bd+1−nZ(ad+1−n)

2

�

, U(1)

!

. (13)

Thus, the Hamiltonian model for bosonic beyond group cohomology SPT phases can be
constructed by the following steps.

(1) First, construct the local commuting projector Hamiltonian model for the “parent” SPT
phase with 0-form symmetry G, (n − 1)-form and (d − n)-form Z2 symmetries with
[(d + 1)/2] ≤ n ≤ d, described by the group cohomology (13). The group cocycle
has the form

ω(g, {(ar , br)}) =ω0(g, {ar})
d
∏

n=[(d+1)/2]

(−1)
∫

Sqd+1−n(bn)+ad+1−n∪bn , (14)

where g ∈ G. We will discuss the construction in Section 2.2.

(2) Then, gauge the higher-form symmetry with gauge fields ad+1−n, bn. This then produces
a local commuting projector Hamiltonian model for the invertible gauge theory that
describes the beyond group cohomology SPT phase, since the Z2 n-form gauge field bn
is the Lagrangian multiplier that enforces ad+1−n = vd+1−n(T M). We will discuss the
explicit construction in Section 2.3.

(3) We obtain a boundary state of the beyond group cohomology SPT phase by truncating
the terms in the bulk Hamiltonian near the boundary. We will discuss in Section 2.4.

7In particular, if the above two terms are the only topological action, then the partition function on any closed
manifold equals one.
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(4) We add “transverse field term”
∑

s Zs to the lattice model, where Zs is the Pauli Z matrix
acting on the qubit on simplex s, to obtain a lattice model that is not a sum of commuting
projectors. If the new term has a large coefficient, it derives the new model to the
trivial phase, and at some finite coefficient it describes phase transitions protected by
the invertible phase.

We remark that a related but different construction is discussed in [37], which obtains
a gapped boundary for the bosonic beyond group cohomology SPT phases by introducing a
dynamical Z2 gauge field on the boundary that obeys twisted cocycle condition given by the
Stiefel-Whitney classes of the tangent bundle. This allows one to rewrite the bulk effective
action for the beyond group cohomology SPT phases as a topological boundary term for these
twisted dynamical boundary gauge fields. In our construction for the bulk invertible phases,
we introduce instead a bulk dynamical gauge field that is constrained dynamically to give the
Stiefel-Whitney classes of the tangent bundle. If there is a boundary, this allows us to discuss
different boundary conditions for such dynamical bulk gauge fields. We will focus on the rough
or Dirichlet boundary condition, and also briefly discussed the free boundary condition. The
gapped boundary in [37] corresponds to the Dirichlet boundary condition which will also be
discussed in our work.

2.2 Hamiltonian model for “parent” group cohomology SPT phases

Let us review a lattice model construction of group cohomology SPT phase with G 0-form sym-
metry and Z2 ni-form symmetries for collection of {ni}. The lattice is Zd for space dimension
d, or any triangulated manifold. The discussion follows the approach in Refs. [9, 23, 38–40].
The Hilbert space is labelled by g(v) ∈ G at each vertex v, λ(ni)(sni

) ∈ Z2 at each ni-simplex
sni

. The SPT phase can be describe by d + 1-dimensional topological action ωd+1(x , {c(ni+1)})
for background one-form x for G symmetry and (ni + 1)-form c(ni+1) for the Z2 ni-form sym-
metries. We have

ωd+1(x
g , {c(ni+1) +δλ(ni)})−ωd+1(x , {c(ni+1)}) = δω′d(x , {c(ni+1)}; g, {λ(ni)}) , (15)

where ω′d has degree d, and x g is the gauge transformation of x by g, i.e.,
x g(ei j) = g(vi)−1 x(ei j)g(v j). Denote ω′d with x , c(ni+1) = 0 as ω′0d .

We would like to construct a Hamiltonian with a unique ground state described by the bulk
wavefunction

|Ψ〉=
∑

g,{λ(ni )} in bulk

ei
∫

spaceω
′0
d (g,λ(ni ))|g, {λni)}〉 , (16)

where in the summand,ω′d(g,λ(ni)) is replaced by its eigenvalues on the eigenstate |g, {λni)}〉.
The summation is over all the configurations in the bulk. If the space has a boundary, the
wavefunction depends on the boundary configurations, which are not summed over.

A Hamiltonian for the SPT phase wavefunction can be obained by conjugating the param-
agnet H0 = −

∑

v

∑

h∈G X h
v −

∑

sn
Xsn

by ei
∫

ω′0d (g,λ(ni )):

HSPT = −
∑

v

∑

h∈G

X h
v ei

∫

ω′0d (ρhv g,{λ(ni )})−i
∫

ω′0d (g,{λ(ni )}) −
∑

sni

Xsni
ei
∫

ω′0d (g,{λ(ni )+sni })−i
∫

ω′0d (g,{λ(ni )}) , (17)

where ρhv g change the 0-cochain g(v) by left multiplication with h for the 0-cochain at vertex
v (as implemented by the operator X h

v ), and sni
is the ni-cochain with value 1 on the ni-simplex

sni
and 0 elsewhere. 8 This gives a local commuting projector Hamiltonian. Since the para-

magnet Hamiltonian H0 has the ground state given by superposition of all the configurations
with equal weight, the Hamiltonian HSPT = ei

∫

ω′0d H0e−i
∫

ω′0d has ground state given by |Ψ〉.
8λ(ni ) + sni

modifies the Z2 variable of λ(ni ) at the single ni-simplex sni
.
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2.3 Gauging a symmetry in Hamiltonian model

Let us gauge the ni-form symmetry in the above Hamiltonian. The discussion follows the
approach in Refs. [9,23,39–42]. We introduce qubits on each (ni +1)-simplex, acted by Pauli
matrices X sni+1

, Y sni+1
, Z sni+1

, and we denote c(ni+1)
sni+1

= (1− Zsni+1
)/2.

• We demand the new gauge fields c(ni+1) are flat in low energy subspace. Thus we add
flux terms in the Hamiltonian to penalize the configuration with δc(ni+1) ̸= 0 mod 2

Hflux = −
∑

sni+2

∏

Z sni+1
= −

∑

sni+2

(−1)
∫

sni+2
δc(ni+1)

, (18)

where the product is over all (ni + 1)-simplices sni+1 on the boundary of the (ni + 2)-
simplex sni+2.

• We impose the Gauss law constraint

Xsni

∏

X sni+1
= 1 , (19)

where the product is over all (ni + 1)-simplices sni+1 adjacent to the ni-simplex sni
. We

note the Gauss law constraint commutes with the flux terms Hflux.

• For the Hamiltonian to commute with the Gauss law constraint, the original Hamiltonian
must be modified to be invariant under λ(ni)→ λ(ni) + s ′ni

, c(ni+1)→ c(ni+1) + δs ′ni
. The

modification follows from the cocycle ωd+1 with nonzero c(ni+1) as

δω′d(x
g , {c(ni+1)}; g,λ(ni) + s ′ni

)−δω′d(x
g , {c(ni+1)}; g,λ(ni))

=
�

ωd+1(x
g , {c(ni+1) +δλ(ni) +δs ′ni

})−ωd+1(x
g , {c(ni+1)})

�

−
�

ωd+1(x
g , {c(ni+1) +δλ(ni)})−ωd+1(x

g , {c(ni+1)})
�

=δω′d(x
g , {c(ni+1) +δλ(ni)}; g, s ′ni

) . (20)

This gives a modification that is invariant under the transformation, since it depends on
c(ni+1),λ(ni) by the invariant combination c(ni+1) +δλ(ni).

In some cases, we also need to conjugate the Hamiltonian by the projector to the zero flux
sector of the introduced gauge fields to ensure the Hamiltonian is a sum of commuting
terms.

• We can use Gauss law constraint to perform gauge-fixing to set λ(ni) = 0 and replace
Xsni

by
∏

X sni+1
, where the product is over the (ni + 1)-simplices sni+1 adjacent to the

ni-simplex sni
.

This gives a local commuting projector Hamiltonian.

2.4 Boundary state from truncation of the bulk Hamiltonian

Let us discuss the boundary state of a bulk Hamiltonian. They can be obtained by looking at the
bulk terms near the boundary. In particular, we can also deduce operators on the boundary and
thus the boundary excitations. Examples of the truncating procedure for obtaining boundary
Hamiltonian are discussed in e.g. Refs. [40, 43, 44]. In this paper, we follow the boundary
construction in Refs. [26,42].

Consider space Md with boundary Nd−1 = ∂Md . We construct an auxiliary closed mani-
fold by introducing auxiliary simplices as follows. We first introducing a vertex v0, and then
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0

i

j

k

bulk

auxiliary
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Figure 3: Auxiliary simplices connected to auxiliary vertex 0.

introduce auxiliary simplices by connecting v0 to all vertices on the boundary Nd−1 = ∂Md ,
forming auxiliary edges 〈0i〉, auxiliary faces 〈0i j〉, with vertices i, j, · · · in N3, etc. See Figure
3. The space formed by these auxiliary simplices and Nd−1 is denoted as CNd−1, i.e., the cone
over topological space Nd−1. Gluing CNd−1 and Md gives a closed spatial 4-manifold:

eMd ≡ Md ⊔ CNd−1 , ∂ eMd = 0 . (21)

For simpicity, in the following we will take the space to have trivial topology. The state on eMd
is related to that on Md and its boundary as follows: for n-cochain cn,

|cn| eMd
〉= |cn; c0

n−1|∂Md
〉 , (22)

where c0
n−1 is the (n− 1)-cochain on the boundary Nd−1 = ∂Md such that

c0
n−1(v1v2 · · · vn−1) := cn(v0v1 · · · vn−1) . (23)

We will focus on configuration where cn is a n-form gauge theory, and obeys cocycle condition
δcn = 0. On space with trivial topology (or trivial topology near the boundary) such as Zd

we can then express cn = δφn−1. We will set φn−1 = 0 on all auxiliary (n− 1)-simplices. To
illustrate the procedure, in Appendix C we discuss the truncation for bulk Z2 toric code model
in (2+1)D [45], whose gapped boundaries are discussed in Ref. [46].

There are different kinds of truncation we can perform. In the one case, we introduce new
degrees of freedom on the auxiliary simplices. This is the analogue of the “rough” boundary
condition [46], or the Dirichlet boundary condition for the Z2 higher-form gauge fields. We
will focus on this boundary condition in the discussions. In another case, we do not introduce
new degrees of freedom and just keep original Hamiltonian terms in the bulk. This is the
analogue of the “smooth” boundary condition [46], or the free boundary condition for the Z2
higher form gauge fields.9

3 Beyond group cohomology SPT phase without symmetry
in (4+1)D

In this section, we construct a gauge theory model for the invertible phase in (4+1)D with
effective action π

∫

w2 ∪ w3. The gauge theory is a Z2 one-form and Z2 two-form gauge
theory, with non-trivial topological twist in the action.

9In this approach, we may need to impose extra boundary terms by hand. For example, Section III of Ref. [47]
uses this approach and finds all commuting terms on the boundary of the three-fermion Walker-Wang model.
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Let us start by considering the SPT phase for Z2 one-form and two-form symmetries with
the following effective ation

π

∫

B3 ∪1 B3 + A2 ∪ B3 + A2 ∪ (A2 ∪1 A2) , (24)

where A, B are Z2 cocycles obey δA2 = 0,δB3 = 0. They are the background gauge fields for
the one-form and two-form symmetries, respectively. The lattice Hamiltonian model will be
constructed in Section 3.1.

Next, we will gauge the one-form and two-form symmetries. In other words, we sum over
A, B. Using the Wu formula B3 ∪1 B3 = Sq2B3 = w2 ∪ B3 we can convert the first two terms
in (24) into (w2+A2)∪B3, and summing over B3 imposes A2 = w2, and via the last term in (24)
and using w2∪1 w2 = w3, the action reproduces the effective action π

∫

w2∪w3 of the beyond
group cohomology SPT phase. In Section 3.2 we will carry out this gauging procedure and
obtain an exactly solvable Hamiltonian for the w2w3 invertible phase, by gauging the one-form
and two-form symmetries in the Hamiltonian model for the SPT phase in Section 3.1.

3.1 “Parent” group cohomology SPT phase

The wavefunction of the SPT phase can be constructed as follows, using similar method as in
Ref. [40]. Denote φ5(A, B) = B3 ∪1 B3 + A2 ∪ B3 + A2 ∪ (A2 ∪1 A2),

φ5(A, B)
�

�

A=δa,B=δb = δφ4(a, b) , φ4(a, b) = b ∪ b+ b ∪1 δb+ a ∪ (δa ∪1 δa+δb) , (25)

where a ∈ C1(M4,Z2) and b ∈ C2(M4,Z2) are 1-cochains and 2-cochains on the space (φ5 is
defined on the spacetime, while φ4 is defined on the space). The bulk wavefunction is thus

|Ψ〉=
∑

a,b

eiπ
∫

φ4(a,b)|a, b〉 , (26)

where we assign Z2 elements to each edge e and face f by a(e), b( f ), and the integral is over
the space. The wavefunction can be written as

|Ψ〉= U |Ψ0〉 , (27)

with |Ψ0〉=
∑

a,b |a, b〉 being the ground state of the trivial Hamiltonian H0 = −
∑

e X e−
∑

f X f ,
and the operator U defined as

U |a, b〉 ≡ (−1)
∫

φ4(a,b) |a, b〉 . (28)

The Hamiltonian with |Ψ〉 as the ground state is H = UH0U†:

H = −
∑

e

X e(−1)iπ
∫

φ4(a+e,b)−φ4(a,b) −
∑

f

X f (−1)iπ
∫

φ4(a,b+ f )−φ4(a,b) , (29)

where e (respectively, f ) is the 1-cochain (respectively, 2-cochain) that takes value 1 on the
edge e (respectively, the face f ), and 0 elsewhere. More explicitly,

φ4(a, b+ f )−φ4(a, b) = δb ∪2 δ f +δa ∪ f +δφ3(b, f ) ,

φ3 = b ∪1 f +δb ∪2 f + a ∪ f ,

φ4(a+ e, b)−φ4(a, b) = δa ∪ (e ∪1 δe +δa ∪2 δe) + e ∪ (δa ∪1 δa+δb) +δφ′3(a, e) ,

φ′3 = a ∪ [(δa ∪2 δe) + e ∪1 δe] . (30)
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On closed space manifolds, the integral of δφ3 and δφ′3 can be dropped. One important
feature is that on a closed space manifold, the Hamiltonian depends on a, b only through δa
and δb. This is consistent with the one-form and two-form symmetry actions a→ a+λ1 and
b + λ2 for any λ1 ∈ Z1(M4,Z2) and λ2 ∈ Z2(M4,Z2), i.e., δλ1 = 0 and δλ2 = 0. The bulk
Hamiltonian can also be written as

Hbulk =−
∑

f

X f

∏

t

W
∫

t∪2δ f
t

∏

f ′
W
∫

f ′∪ f
f ′

−
∑

e

X e

∏

f

W
∫

f∪(e∪1δe)
f

∏

t

W
∫

e∪t
t

∏

f1, f2

C Z(Wf1 , Wf2)
∫

e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe) ,
(31)

where we introduced

Wt ≡
∏

f ⊂t

Z f , Wf ≡
∏

e⊂ f

Ze , C Z(i, j) =

¨

−1 , if (i, j) = (−1,−1) ,
1 , if (i, j) = (1, 1) , (1,−1) , (−1, 1) .

(32)

For the boundary Hamiltonian, we consider a special case with a→ a+δv , where v is a vertex
on the boundary. Since

∫

M4

φ4(a+δv , b)−φ4(a, b) =

∫

M4

δv ∪δ(a ∪ a+ a ∪1 δa+ b)

=

∫

∂M4

δv ∪ (a ∪ a+ a ∪1 δa+ b) ,
(33)

the boundary Hamiltonian contains

−
�

∏

e⊃v

X e

�

(−1)
∫

∂M4
δv∪(a∪a+a∪1δa+b)

. (34)

Similarly, for b→ b+δe with a boundary edge e, we have
∫

M4

φ(a, b+δe)−φ(a, b) =

∫

M4

δe ∪1 δb+ b ∪δe +δe ∪ b =

∫

∂M4

δe ∪1 b , (35)

and a boundary term

−

 

∏

f ⊃e

X f

!

(−1)
∫

∂M4
δe∪1 x

. (36)

The boundary parts φ3 and φ′3 in Eq. (30) and boundary terms Eq. (34), (36) will be de-
scribed as fermionic particles and fermionic strings after gauging the one-form and two-form
symmetries, described in Section 3.3.

3.2 Beyond group cohomology invertible phase by gauging symmetry

Next, we gauge the one-form and two-form Z2 symmetries. We introduce extra Z2 degrees of
freedom on each face f and tetrahedron τ. They can be acted by Pauli matrices X A, X B and
similar for Y, Z . Denote A= (1− ZA

f )/2 and B = (1− ZB
t )/2. The Hamiltonian for the gauged

model can be constructed by the following steps.
First, we add a term that correlates the gauge transformations for a, b and A, B at low

energy
−
∑

e

X e

∏

f ⊃e

X A
f −

∑

f

X f

∏

t⊃ f

X B
t , (37)
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where the first product is over all faces sharing the common edge e, and the second product is
over all tetrahedral sharing the common face f . The above term with large coefficient imposes
the Gauss law

low energy subspace : X e

∏

X A
f = 1 , X f

∏

X B
t = 1 . (38)

Then, we minimally couple the original Hamiltonian to A, B such that the system is invariant
under the combined gauge transformation i.e. commute with the Gauss law constraint

a→ a+λ1 , A→ A+δλ1 , b→ b+λ2 , B→ B +δλ2 , (39)

for general Z2 1-cochain λ1 and 2-cochain λ2. This amounts to replacing δb → δb + B,
δa→ δa+ A. We also add the flux terms to the Hamiltonian

−
∑

t

∏

f ⊃t

ZA
f −

∑

4-simplex p

∏

t⊂p

ZB
t . (40)

They impose the flat condition energetically

low energy subspace :
∏

f ⊂t

ZA
f = 1 ,

∏

t⊂p

ZB
t = 1 . (41)

They are equivalent to the flat condition δA = 0,δB = 0. Mathematically, the condition
δA= 0,δB = 0 is required for gauge fields A, B to obey the cocycle conditions on overlaps of
multiple coordinate patches.10

To sum up, the bulk Hamiltonian for the beyond group cohomology SPT phase w2w3 is

Hgauged =−
∑

f

X f

∏

t

(ZB
t Wt)

∫

t∪2δ f
∏

f ′
(ZA

f ′Wf ′)
∫

f ′∪ f

−
∑

e

X e

∏

f

(ZA
f Wf )

∫

f∪(e∪1δe)
∏

t

(ZB
t Wt)

∫

e∪t

×
∏

f1, f2

C Z(ZA
f1

Wf1 , ZA
f2

Wf2)
∫

e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe)

−
∑

e

X e

∏

f ⊃e

X A
f −

∑

f

X f

∏

t⊃t

X B
t −

∑

t

∏

f ⊂t

ZA
f −

∑

p

∏

t⊂p

ZB
t .

(43)

We can enforce the Gauss law constraint Eq. (38) strictly, and use the gauge transformation
to fix a = 0, b = 0 (Ze = Z f = 1), which implies Wf =

∏

Ze = 1 and Wt =
∏

Z f = 1, and
replace

X e→
∏

f ⊃e

X A
f , X f →

∏

t⊃ f

X B
t . (44)

Then we arrive at the effective Hamiltonian

Hw2w3
=−

∑

f

∏

t⊃ f

X B
t

∏

t ′
ZB

t ′

∫

t ′∪2δ f
∏

f ′
ZA

f ′

∫

f ′∪ f

−
∑

e

∏

f ⊃e

X A
f

∏

f

ZA
f

∫

f∪(e∪1δe)
∏

t

ZB
t

∫

e∪t
∏

f1, f2

C Z(ZA
f1

, ZA
f2
)
∫

e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe)

−
∑

t

∏

f ⊂t

ZA
f −

∑

p

∏

t⊂p

ZB
t .

10To enforce the zero flux condition, we can also conjugate each Hamiltonian term by a local projector onto the
zero flux subspace in the vicinity of the term. That is, for a Hamiltonian term whose support11 is contained in the
bounded region R, we conjugate by a projector:

P0-flux
R ≡

∏

t∈R

(1+Wt)
2

, (42)

where the product is over tetrahedra in R. In the examples we discussed, the flux term will commute with the
Hamiltonian, and thus this is not necessary.
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Table 1: In the process of gauging the one-form symmetry in 4d, the generators of
local, 1-form symmetric operators are mapped according to the duality above. The
symmetry operators AΣ, the product of X e on all edges intersecting with a closed
codimension-1 surface Σ, are mapped to the identity in the dual theory. The system
on the right-hand side has a Z2 two-form symmetry, generated by membrane opera-
tors Mσ, where σ is a closed 2d surface on the direct lattice.

Model with Z2 Model with dual Z2

one-form symmetry two-form symmetry

X e

∏

f ⊃e

X A
f

Wf =
∏

e⊂ f

Ze ZA
f

AΣ =
∏

e⊥Σ

X e, δΣ= 0 1

1 Mσ =
∏

f ⊂σ
ZA

f , ∂ σ = 0

The gauging procedure as an operational replacement is summarized in Table 1 and Table 2.
Now, we give the ground state wavefunction for the w2w3 phase. The operational replace-

ment in Table 1 and Table 2 corresponds to the following transformation on states:

|a, b〉 → |δa,δb〉 , (45)

where the entries δa and δb. From the one-form and two-form SPT wavefunction Eq. (26),
the w2w3 wavefunction is simply

�

�Ψw2w3

�

=
∑

a,b

eiπ
∫

φ4(a,b)|δa,δb〉 . (46)

Thus the wavefunction is a sum of closed surfaces and closed loops weighted by suitable minus
signs. One can verify the ground state is unique.12

3.3 Boundary state

As discussed in Section 3.2, the theory on a closed space after gauging the one-form and two-
form symmetries has the bulk Hamiltonian Eq. (45):

Hw2w3
=−

∑

f

∏

t⊃ f

X t

∏

t ′
Zt ′

∫

t ′∪2δ f
∏

f ′
Z f ′

∫

f ′∪ f

−
∑

e

∏

f ⊃e

X f

∏

f ′
Z f ′

∫

f ′∪(e∪1δe)
∏

t

Zt

∫

e∪t
∏

f1, f2

C Z(Z f1 , Z f2)
∫

e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe)

−
∑

t

∏

f ⊂t

Z f −
∑

p

∏

t⊂p

Zt , (47)

where we have dropped the superscripts A, B for simplicity. For the boundary Hamiltonian,
one strategy is to study the amplitudes of wavefunction, such as Eq. (30), (34), (36). In

12One way to see this is that φ5(A, B) fixes an optimal configuration of A, B with minimal energy and any other
configuration of A, B will violate the equation of motion and therefore has an energy cost.
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Table 2: In the process of gauging the one-form symmetry in 4d, the generators of lo-
cal, one-form symmetric operators are mapped according to the duality above. The
symmetry operators AΣ, the product of X e on all edges intersecting with a closed
codimension-2 surface Σ, are mapped to the identity in the dual theory. The system
on the right-hand side has a Z2 three-form symmetry, generated by membrane oper-
ators Mσ, where σ is a closed 3d surface on the direct lattice.

Model with Z2 Model with dual Z2

two-form symmetry three-form symmetry

X f

∏

t⊃ f

X B
t

Wt =
∏

f ⊂t

Z f ZB
t

AΣ =
∏

f⊥Σ

X f , δΣ= 0 1

1 Mσ =
∏

t⊂σ
ZB

t , ∂ σ = 0

this section, we will instead focus on the Hamiltonian level, which is more straightforward
to visualize the gauging procedure near the boundary. At the end, we show that these two
approaches give the same boundary terms.

We are going to consider the case with boundary N3 = ∂M4 ̸= 0. Our strategy follows
the auxiliary vertex approach in Ref. [42], which is reviewed below. To apply our bulk for-
malism to the case with boundary, we construct a closed manifold by introducing auxiliary
simplices: these simplices are given by first introducing a vertex v0, and then introducing aux-
iliary simplices by connecting v0 to all vertices on the boundary N3 of M4, forming auxiliary
edges 〈0i〉 ∀i ∈ N3, auxiliary faces 〈0i j〉 ∀〈i j〉 ∈ N3, etc... The space formed by these auxiliary
simplices and N3 is denoted as CN3, i.e., the cone over topological space N3. Gluing CN3 and
M4 gives a closed spatial 4-manifold:

eM4 ≡ M4 ⊔ CN3 , ∂ eM4 = 0 . (48)

We can apply our formalism on this new manifold. For every a ∈ C1(M4,Z2), we can ex-
tend it to C1( eM4,Z2) by simply taking a(e) = 0 for auxiliary edges e. Similarly, we extend
b ∈ C2(M4,Z2) to C2( eM4,Z2) by setting b( f ) = 0 for auxiliary faces f . After gauging the
one-form and two-form symmetries, the state |a|

eM4
, b|

eM4
〉 is mapped to:

|δa|
eM4

,δb|
eM4
〉= |δa|M4

,δb|M4
, a|N3

, b|N3
〉 , (49)

where (· · · )|S means the cochain is restricted to space S and we project δa(〈0i j〉) on the auxil-
iary face 〈0i j〉 to the edge degree of freedom a(〈i j〉) on N3 (since we have taken a(〈0i〉) = 0).
The similar story holds for δb|

eM4
and b|N3

. We define the Pauli matrices acting on four entries
of (49) as Z f , Zt ,Ze,Z f .

Now, we are going to study the terms in (47) near N3:

1. f = 〈0i j〉 is the auxiliary face: let e = 〈i j〉 be the corresponding boundary edge.

∏

t⊃ f

eX t

∏

t

eZ
∫

eM4
t∪2δ f

t

∏

f ′

eZ
∫

eM4
f ′∪ f

f ′ =
∏

f | f ∈N3,
f ⊃e

X f

∏

f ′∈N3

Z
∫

N3
δe∪1 f ′

f ′ , (50)
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where we have used

t ∪2 δ f (01234) =t (0123)δ f (1234) + t (0134)δ f (1234)

+ t (0123)δ f (0134) + t (0234)δ f (0124)

= f ′(123)δe(134) + f ′(234)δe(124) = δe ∪1 f ′(1234) .
(51)

2. e = 〈0i〉 is the auxiliary edge: let v = 〈i〉 be the corresponding boundary vertex.

∏

f ⊃e

eX f

∏

f ′

eZ
∫

eM4
f ′∪(e∪1δe)

f ′

∏

t

eZ
∫

eM4
e∪t

t

∏

f1, f2

C Z(eZ f1 , eZ f2)
∫

eM4
e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe)

=
∏

e|e∈N3,
e⊃v

Xe

∏

t∈N3

Z
∫

N3
v∪t

t

∏

f1, f2∈N3

C Z(Z f1 , Z f2)
∫

N3
v∪( f 1∪1 f 2)

=
∏

e|e∈N3,
e⊃v

Xe

∏

f ∈N3

Z
∫

N3
v∪δ f

f

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
v∪(δe1∪1δe2)

=
∏

e|e∈N3,
e⊃v

Xe

∏

f ∈N3

Z
∫

N3
δv∪ f

f

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
δv∪(e1∪e2+e1∪1δe2) .

(52)

3. f = 〈i jk〉 is the boundary face:

∏

t⊃ f

eX t

∏

t

eZ
∫

eM4
t∪2δ f

t

∏

f ′

eZ
∫

eM4
f ′∪ f

f ′

=






X f

∏

t|t∈M4,
t⊃ f

X t







 

∏

f ′∈N3

Z
∫

N3
f∪1 f ′+ f ′∪2δ f

f ′

∏

t∈M4

Z
∫

M4
t∪2δ f

t

!

×

 

∏

e′∈N3

Z
∫

N3
e′∪ f

e′

∏

f ′∈M4

Z
∫

M4
f ′∪ f

f ′

!

,

(53)

where we have used

t ∪2 δ f (01234) =t (0123)δ f (1234) + t (0134)δ f (1234)

+ t (0123)δ f (0134) + t (0234)δ f (0124)

=( f ′(123) + f ′(134))δ f (1234)

+ f ′(123) f (134) + f ′(234) f (124)

=( f ′ ∪2 δ f + f ∪1 f ′)(1234) .

(54)

Using f ′ ∪2 δ f + f ∪1 f ′ = δ( f ′ ∪2 f ) +δ f ′ ∪2 f + f ′ ∪1 f , we have

∏

f ′∈N3

Z
∫

N3
f∪1 f ′+ f ′∪2δ f

f ′ =
∏

f ′∈N3

Z
∫

N3
f ′∪1 f+δ f ′∪2 f

f ′ . (55)

The boundary term (53) becomes

X f

∏

f ′∈N3

Z
∫

N3
f ′∪1 f+δ f ′∪2 f

f ′

∏

e′∈N3

Z
∫

N3
e′∪ f

e′ × bulk terms , (56)

where the bulk terms only involve X t , Zt and X f , Z f in M4.
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4. e = 〈i j〉 is the boundary edge:

∏

f ⊃e

eX f

∏

f ′

eZ

∫

eM4
f ′∪(e∪1δe)

f ′

∏

t

eZ
∫

eM4
e∪t

t

∏

f1, f2

C Z(eZ f1 , eZ f2)
∫

eM4
e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe)

(57)

=






Xe

∏

f | f ∈M4,
f ⊃e

X f







 

∏

e′∈N3

Z
∫

N3
e′∪(e∪1δe)

e′

∏

f ∈M4

Z
∫

M4
f∪(e∪1δe)

f

! 

∏

t∈M4

Z
∫

M4
e∪t

t

!

×

 

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
e1∪(δe2∪2δe)

∏

f1, f2∈M4

C Z(Z f1 , Z f2)
∫

M4
e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe)

!

= Xe

∏

e′∈N3

Z
∫

N3
e′∪(e∪1δe)

e′

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
e1∪(δe2∪2δe) × bulk terms , (58)

where we have used e(0 · · · ) = 0 and

f 1 ∪ ( f 2 ∪2 δe)(01234) = f 1(012) f 2(234)δe(234)

= e1(12) f 2(234)δe(234)

= e1 ∪ ( f 2 ∪2 δe)(1234) .
(59)

We observe that the bulk term on the boundary gives the open version of the fermionic
loop creation operator U M

e .

To summarize, the boundary Hamiltonian is

Hboundary =−
∑

e∈N3

∏

f | f ∈N3,
f ⊃e

X f

∏

f ′∈N3

Z
∫

N3
δe∪1 f ′

f ′

−
∑

v∈N3

∏

e|e∈N3,
e⊃v

Xe

∏

f ∈N3

Z
∫

N3
δv∪ f

f

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
δv∪(e1∪e2+e1∪1δe2)

−
∑

f ∈N3

 

∏

e⊃ f

Ze

!

Z f −
∑

t∈N3

 

∏

f ⊃t

Z f

!

Zt (60)

−
∑

f ∈N3

X f

∏

f ′∈N3

Z
∫

N3
f ′∪1 f+δ f ′∪2 f

f ′

∏

e′∈N3

Z
∫

N3
e′∪ f

e′ × bulk terms

−
∑

e∈N3

Xe

∏

e′∈N3

Z
∫

N3
e′∪(e∪1δe)

e′

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
e1∪(δe2∪2δe) × bulk terms ,

where we only show the part involving Xe,Ze and X f ,Z f on 3d space boundary N3 = ∂M4.
Notice that the first and the second lines above correspond to Eq. (36) and Eq. (34) after gaug-
ing the one-form and two-form symmetries. The

∏

e⊃v X e and
∏

f ⊃e X f parts in Eqs. (34), (36)
contain X e, X f in the bulk (overlapping with the boundary partially). After gauging the sym-
metries, the bulk terms cancel out and the remaining terms completely live on the boundary,
as shown in Eq. (60). The last two lines correspond to φ3 and φ′3 in Eq. (30):

φ3 = b ∪1 f +δb ∪2 f + a ∪ f ,

φ′3 = a ∪ [(δa ∪2 δe) + e ∪1 δe] ,
(61)

where we have identified Ze = (−1)a(e) and Z f = (−1)b( f ).
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𝑓!

𝑓"

𝑓#

Figure 4: It can be checked that for any set of faces f1, f2, f3 on a tetrahedron, there
is always a minus sign in U f1 U f2 U f3 = −U f3 U f2 U f1 [42]. Therefore, we conclude that
U f is the hopping operator of a fermionic particle.

When we drop the bulk terms, the boundary Hamiltonian is not a sum of commuting terms.
By defining

Av =
∏

e|e∈N3,
e⊃v

Xe

∏

f ∈N3

Z
∫

N3
δv∪ f

f

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
δv∪(e1∪e2+e1∪1δe2), B f =

 

∏

e⊃ f

Ze

!

Z f ,

Ae =
∏

f | f ∈N3,
f ⊃e

X f

∏

f ′∈N3

Z
∫

N3
δe∪1 f ′

f ′ , Bt =

 

∏

f ⊃t

Z f

!

Zt ,

the commuting projector Hamiltonian on the boundary N3 is

H∂ = −
∑

v

Av −
∑

f

B f −
∑

e

Ae −
∑

t

Bt , (62)

and we treat the last two lines of Eq. (60) as excitation operators:

U f ≡ X f

∏

f ′∈N3

Z
∫

N3
f ′∪1 f

f ′

∏

e′∈N3

Z
∫

N3
e′∪ f

e′ ,

Ue ≡ Xe

∏

e′∈N3

Z
∫

N3
e′∪(e∪1δe)

e′

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
e1∪(δe2∪2δe) ,

(63)

where we have dropped Z
∫

N3
δ f ′∪ f

f ′ in the definition of U f since we
∏

f ′∈t Z f ′ = Zt can be
consider as the bulk.

The operator U f on a face f anti-commutes with two Bt operators on its adjacent tetrahe-
dra t, creating two point-like excitations. Thus, we interpret this U f as the hopping term of a
particle. On the other hand, The operator Ue on an edge e anti-commutes B f on faces around
the edge e, which creates a loop excitation surrounding e.

In the following, we will discuss the statistics of the particle and loop excitations on the
(3+1)D boundary. We will first show that they have π mutual statistics, and the particle is a
fermion. In the next section 3.4, we will argue that the loop excitation is also fermionic in the
sense of Ref. [30,33,48].

Mutual π statistics The operators Ue, U f satisfy

UeU f = U f Ue(−1)
∫

N3
e∪ f . (64)

Thus the particle excitation created by U f and the loop excitation created by Ue have mutual
π statistics.
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Figure 5: The operator Ue on the cubic lattice.

fermionic particle π self-statistics We can detect the fermionic statistic of U f operator by
calculating its commutation relation [49,50]:

U f1 U f2 =(−1)
∫

N3
f 1∪1 f 2+ f 2∪1 f 1 U f2 U f1 . (65)

In Ref. [49], this operator is shown to have the statistic as the fermionic hopping operator
S f ≡ iγL( f )γ

′
R( f ) (L( f ) and R( f ) are two tetrahedra adjacent to f ), where the Majorana

fermions live at the centers of tetrahedra. Another way to show fermionic statistic is to com-
pute the T -junction process [51] directly. Let f1, f2, f3 be faces on a tetrahedron t. Using
Eq. (65), we can check

U f1 U f2 U f3 = −U f3 U f2 U f1 , (66)

shown in Fig. 4. This minus sign is independent of the choice for branching structures on the
tetrahedron [42]. We conclude that the particle excitation is fermionic.

Fermion loop self-statistics In section 3.4 we will discuss a T-junction process for the
“fermionic” loop excitation created by Ue.

We remark that an alternative approach to obtain the boundary state is starting from the
boundary state of the Hamiltonian model (29) for the “parent” group cohomology phase, and
then gauging the one-form and two-form symmetry on the boundary and in the bulk. We leave
the detail in Appendix B.

3.4 Statistics of fermionic loop excitations on the boundary

In this section, we will discuss a T shape process on the lattice that can describe whether a loop
excitation is fermionic. We will use the following property of the fermionic loop excitation.
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Figure 6: Interface on the membrane operator
∏

Ue with the orientation reversed on
one side of the interface. We use the ordering convention in the product of operators
such that the operators that are diagonal in the Z eigenbasis (the Z and C Z operators
in the figure) appear on the right of the X operators, and the product takes the form
∏

X
∏

Z
∏

C Z .

The worldsheet of the fermionic loop excitation depends on the volume V that bounds the
worldsheet by

∫

V w3(T M) =
∫

V
dw2(T M)

2 , where we need to take a lift of w2(T M) from Z2 to
Z4. In the discussion, we will take the lift to be the value 0, 1 in Z4. We note that if we reverse
the orientation of (the tangent bundle of) V ,

∫

V

dw2(T M)
2

→−
∫

V

dw2(T M)
2

=

∫

V

dw2(T M)
2

−
∫

∂V
w2(T M) . (67)

The last term describes a fermionic particle: the world line of a fermionic particle depends on
the surface Σ that bounds the worldline by

∫

Σ
w2(T M). Thus when we reverse the orienta-

tion on the worldsheet of the loop excitation, the fermionic loop has an additional fermionic
particle. We can then use the statistics of the fermionic particle, which can be described by a
T -junction process as in Ref. [51], to describe the statistics of the fermionic loop.13

First, the explicit form of Ue on the cubic lattice is shown as Fig. 5, which follows directly
from the definition of higher cup products on the cubic lattice [26,49]. The product of Ue on
edges perpendicular to a plane is shown in Figs. 6, 7. We can see that in the bulk of the plane,
there is only a product X e on perpendicular edges, which is the same as the magnetic membrane
operator in the (3+1)D toric code. However, the operator Ue here has order 4 (U4

e = 1), and
therefore we can consider the domain wall between opposite orientations

∏

e Ue and
∏

e U−1
e ,

shown in Figs. 6, 7. In this circumstance, there is an additional Z string along the domain wall
in the bulk of the plane. This additional Z string represents that this is actually the fermionic
hopping operator on the (2+1)D domwain wall [52]

On 2d domain wall D: Se = X eZr(e) , SeSe′ = Se′Se(−1)
∫

D e∪e′+e′∪e , (68)

13A related process that describes fermionic loops is proposed in Ref. [27] using Klein bottle, which also involves
orientation reversal.
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Figure 7: The interface on the membrane operator
∏

Ue with the orientation re-
versed on one side of the interface. We use the ordering convention in the product
of operators such that the operators that are diagonal in the Z eigenbasis (the Z and
C Z operators in the figure) appear on the right of the X operators, and the product
takes the form

∏

X
∏

Z
∏

C Z .

where r(e) means the edge starting from the end of e and pointing in the right direction, and
2d means two spatial dimensions. The T-junction process [51] in Fig. 8 also shows the particle
is a fermion. To simplify the discussion, we take the planes to be semi-infinite, and all other
parts in the figure commute.

3.5 Lattice Model for phase transitions

Starting from the Hamiltonian that describes the invertible phase, we can construct a lattice
model which is not exactly solvable, but in various limits it can be solved and give differ-
ent phases. Let us start with the Hamiltonian that described the beyond group cohomology
invertible phase

HInvertible =−
∑

f

∏

t⊃ f

X t

∏

t

Z
∫

t∪2δ f
t

∏

f ′
Z
∫

f ′∪ f
f ′

−
∑

e

∏

f ⊃e

X f

∏

f

Z f∪(e∪1δe)
f

∏

f1, f2

C Z(Z f1 , Z f2)
∫

e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe)
∏

t

Z
∫

e∪t
t

−
∑

t

∏

f ⊂t

Z f −
∑

p

∏

t⊂p

Zt .

(69)

We add transverse field terms that do not commute with the above Hamiltonian for the invert-
ible phase

H = HInvertible −κ1

∑

t

Zt −κ2

∑

f

Z f . (70)

The phase diagram is depicted in Figure 9:

• In the limit κ1 →∞, while κ2 = 0, Zt = 1 on all tetrahedral, and Hamiltonian is left
with terms in the second and third lines that contain operators acting on faces. In the
Euclidean action, setting the three-form gauge field to zero gives a two-form Z2 gauge
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domain	wall
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𝐶𝑍

𝑋

𝑋
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𝑍

𝐶𝑍

𝑋

𝑋

𝑋

𝑍

𝑍
a

b
c

𝑉! ≡

𝑉" ≡

≡ 𝑉#

Figure 8: T junction process for the fermion hopping operator on the domain wall
as in Ref. [51], where we compare VaVcVb with VbVcVa and find a minus sign. This
shows the loop excitation is fermionic. We use the ordering convention in the product
of operators such that the operators that are diagonal in the Z eigenbasis (the Z and
C Z operators in the figure) appear on the right of the X operators, and the product
takes the form

∏

X
∏

Z
∏

C Z .

theory in (4+1)D with fermionic magnetic loop, fermionic dyonic loop, and bosonic
electric loop excitations.

• In the limit κ2→∞, while κ1 = 0, Z f = 1 on all faces, and the Hamiltonian is left with
terms in the first and third lines that contain operators acting on tetrahedral. In the
Euclidean action, setting the two-form gauge field to zero gives a three-form Z2 gauge
theory in (4+1)D with fermionic particle, which is also equivalent to Z2 one-form gauge
theory, but the gauge field is “dynamical spin structure” that is summed over in the path
integral.

• In the limit κ1,κ2 → ∞, while all other coefficients are tuned to zero, all degrees of
freedoms are frozen and we are left with trivial bulk phase.

Thus there must be one or multiple phase transitions at finite κ1,κ2. In particular, the phase
transition separating κ1,κ2 = 0 and κ1,κ2 → ∞ is protected by the non-trivial invertible
phase with effective action π

∫

w2 ∪ w3. This is the analogue of free fermion critical point
in (2+1)D protected by the jump in the thermal Hall response when varying the mass from
positive to negative. Here, κ1,κ2 play the analogue role of the fermion mass parameter. The
robustness of the transition does not rely on the presence of symmetries. This represents new
phase transitions in (4+1)D. We will revisit such transitions in the future.

The phase transitions across κ1 = 0 and κ1→∞ at fixed κ2 = 0, and the phase transitions
across κ2 = 0 and κ2 → ∞ at fixed κ1 = 0, are ordered-disordered transitions associated
with non-invertible and invertible topological orders. There are also phase transitions along
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κ2

κ1

Invertible TO

w2w3

Trivial

???

Z2 fermion particle TO

Z2 fermionic loop TO

Figure 9: Sketch of the phase diagram of the Hamiltonian model (70) in (4+1)D.
The phase transition(s) along the 45 degree line κ1 = κ2 are protected by the non-
trivial invertible topological order on the lower left corner. The Z2 fermionic loop
topological order in (4+1)D has three non-trivial basic excitations: electric loop,
magnetic loop, and dyonic loop, where the magnetic and dyonic loop excitations
are fermionic while the electric loop excitation is bosonic (similar theory with only
bosonic loop excitations is discussed in Ref. [53]).

κ1 = −κ2 that are associated with changing the topological order from fermionic particles to
fermionic loop excitations.

We note that the invertible phase has boundaryZ2 topological order with fermionic particle
and fermionic loop excitations in (3+1)D, and they have mutual statistics. The boundary
of (4+1)D Z2 fermionic particle topological order can also have fermionic particle on the
gapped boundary where the magnetic membrane excitation condenses. The Z2 fermionic
loop topological order in (4+1)D also has gapped boundary with Z2 fermionic loop, where
the magnetic loop excitation condenses.

3.6 Application: non-trivial quantum cellular automaton in (4+1)D

A quantum cellular automaton (QCA) is an automorphism on the algebra of local operators
acting on the Hilbert space of an infinite quantum system. It is still an open question to classify
non-trivial QCAs above 3+1 dimensions.14 It has many applications to topological phases of
matter, see e.g. Refs. [12,47,54–56].15

In this section, we explicitly construct a new quantum cellular automaton from the bulk
w2w3 Hamiltonian (45) in the (4+1)D hypercubic lattice. We will study this w2w3 Hamiltonian
and show that it can be transformed to locally flippable separators, which is equivalent to a
QCA [47].

14A non-trivial QCAs means that it is not simply a translational operation or conjugation by a finite-depth local
unitary quantum circuit.

15For instance, Ref. [47] uses non-trivial QCA to disentangle the ground state of invertible phases with non-trivial
boundary state.
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The non-triviality of the QCA can be argued as follows. We have shown that the boundary
theory of this w2w3 Hamiltonian contains fermionic particle and fermionic loop excitations
with π mutual statistic. Based on the framing argument at the end of Section 1, this theory
can not be consistently defined in strictly (3+1)D lattices. This corresponds to the anoma-
lous (3+1)D Z2 topological orders in Ref. [33]. Following the same reasoning in Ref. [47],
suppose this QCA were trivial, i.e. a finite-depth local unitary quantum circuit, we would
have a commuting projector Hamiltonian for the anomalous (3+1)D topological order, which
is contradicted with the previous arguments. Therefore, this (4+1)D QCA from the w2w3
Hamiltonian should be a non-trivial QCA.

We note that the above argument is based on the assumption that the boundaries for the
bulk invertible phase with a boundary gravitational anomaly, such as the boundary Z2 gauge
theory in (3+1)D with fermionic particles and fermionic strings with π mutual statistics, can-
not be realized by a local commuting projector Hamiltonian that can be defined in purely
(3+1)D fashion.

First, to simplify the bulk Hamiltonian Eq. (45), we define the shorthand notation (to
simplify the notations, we have omitted the superscripts A, B on the Pauli operators that act on
the degrees of freedom living on faces and tetrahedrons, respectively)

G f ≡
∏

t⊃ f

X t

∏

t ′
Zt ′

∫

t ′∪2δ f . (71)

Then, we rewrite the Hamiltonian Eq. (45) on hypercubic lattice as the following Hamiltonian
that has the same ground state:16

H ′w2w3
=−

∑

f ′
Z f ′

∏

f

G
∫

f ′∪ f
f (72)

−
∑

t

Zt

∏

e





∏

f ⊃e

X f

∏

f ′
Z
∫

f ′∪(e∪1δe)
f ′

∏

f1, f2

C Z(Z f1 , Z f2)
∫

e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe)





∫

e∪t

,

where we have modified the stabilizers to contain single Z f or Zt . Next, we substitute Z f as
the product of G f ′ in the second term

H ′w2w3
=−

∑

f ′
Z f ′

∏

f

G
∫

f ′∪ f
f −

∑

t

Zt

∏

e





∏

f ⊃e

X f

∏

f ′
(
∏

f ′′
G
∫

f ′∪ f ′′

f ′′ )
∫

f ′∪(e∪1δe)

×
∏

f1, f2

C Z(
∏

f ′1

G
∫

f1∪ f ′1
f ′1

,
∏

f ′1

G
∫

f2∪ f ′2
f ′2

)
∫

e∪( f 1∪1 f 2)+ f 1∪( f 2∪2δe)





∫

e∪t

≡−
∑

f

bZ f −
∑

t

bZt .

(73)

For this Hamiltonian, we can easily find the flippers as

bX f ≡ X f , bX t ≡ X t

∏

t ′
Z
∫

t∪2 t ′

t ′ . (74)

16On the hypercubic lattice, the Hamiltonian H ′w2w3
can be obtained by rearranging the first two terms in Eq. (45)

using the property that the pairing of two faces f , f ′ that have non-trivial cup product
∫

f ∪ f ′ ̸= 0 gives a one-
to-one correspondence between f and f ′. In particular, the Z flux terms are dropped, since they are generated by
the first two terms of H ′w2w3

.
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Notice that bX t commute with all G f ′ , so the commutation relations are simply

bX f bZ f ′ =(−1)δ f , f ′ bZ f ′ bX f , bX t bZt ′ = (−1)δt,t′ bZt ′ bX t ,

[bX f , bX t] =[bX f , bZt] = [bZ f , bX t] = [bZ f , bZt] = 0 .
(75)

We remark that although the discussion in this subsection is on the hypercubic lattice, since
the H ′w2w3

can also be defined on arbitrary triangulated lattice, we expect the model also gives
a non-trivial QCA on any triangulated lattice of spatial dimension four.

4 Beyond group cohomology SPT phase with Z2 symmetry
in (4+1)D

In this section we will apply our construction to the beyond group cohomology bosonic SPT
phase with Z2 unitary symmetry in (4+1)D. It has the following effective action

π

∫

C1 ∪w2
2 = π

∫

(C1 ∪w2)∪w2 , (76)

where C1 is a Z2-valued one-form background field for the Z2 symmetry. Note other effective
actions of the background fields belong to the “cohomology SPT phases”, since they can be
expressed in terms of the background C1 of the Z2 symmetry.17

A lattice Hamiltonian model for such beyond group cohomology SPT phase has been con-
structed in Ref. [12]. It uses the property that the domain wall generating the Z2 symmetry
is decorated with π

∫

w2
2 = −

1
24π

∫

Tr R ∧ R mod 2π, which can be written as a gravitational
Chern-Simons term on the boundary, and thus the boundary of the domain wall has thermal
Hall conductance characterized by chiral central charge c = 4 mod 8. An example with such
chiral central charge is the three-fermion theory, and the domain wall in the model of Ref. [12]
is described by the three-fermion Walker Wang model. However, in general there is no sim-
ple description of chiral central charge from the lattice Hamiltonian (there are expressions for
the change of chiral central charge), and the construction in Ref. [12] cannot be generalized
to other beyond group cohomology SPT phases in an obvious way. Thus we will revisit the
problem using the general construction of the lattice Hamiltonian described in Section 2.

4.1 “Parent” group cohomology SPT phase

The SPT phase can be constructed similar to Section 3. Here we start with the SPT phase with
Z2 0-form, one-form, and two-form symmetries with the effective action π

∫

φ5 with

φ5(C1, A2, B3) = B3 ∪1 B3 + A2 ∪ B3 + C1 ∪ A2 ∪ A2 . (77)

Integrating out B3 imposes A2 = w2 (since B3 ∪1 B3 = w3 ∪ B3), and thus we recover the
effective action π

∫

C1 ∪w2 ∪w2. We note that φ5 satisfies

φ5(δc,δa,δb) = δφ4(c, a, b) , φ4(c, a, b) = b ∪ b+ b ∪1 δb+ a ∪δb+ c ∪δa ∪δa . (78)

We introduce Z2 degrees of freedom on each vertex, edge and face. They are acted by the Pauli
matrices X v , X e, X f , and similarly for Y, Z , respectively. The Hamiltonian for the SPT phase is
then

Hparent =−
∑

v

X v(−1)
∫

φ4(c+v ,a,b)−φ4(c,a,b) −
∑

e

X e(−1)
∫

φ4(c,a+e,b)−φ4(c,a,b)

−
∑

f

X f (−1)
∫

φ4(c,a,b+ f )−φ4(c,a,b) . (79)

17Explicitly, w3 ∪ C2
1 = 0 due to C2

1 = Sq1C1, w3 = Sq1w2, and
∫

C3
1 ∪w2 =

∫

Sq2(C3
1) =

∫

C1 ∪ (C2
1)

2 =
∫

C5
1 .
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Explicitly,

φ4(c + v , a, b)−φ4(c, a, b) = v ∪δa ∪δa ,

φ4(c, a+ e, b)−φ4(c, a, b) = e ∪δb+δc ∪ (δa ∪1 δe) +δ[c ∪ (δa ∪1 δe)] ,

φ4(c, a, b+ f )−φ4(c, a, b) = δb ∪2 δ f +δa ∪ f +δφ3 ,

φ3 = b ∪1 f +δb ∪2 f + a ∪ f . (80)

We note that the phase factor in the Hamiltonian depends on c, a, b only through δc,δa,δb.
This will be important when we gauge the symmetries.

4.2 Beyond group cohomology SPT phase by gauging symmetry

Let us proceed to gauge the one-form and two-form symmetries. We introduce new Z2 degrees
of freedom on each face and tetrahedron. Denote the Pauli matrices by X A

f , X B
t and similarly

for Y, Z . Following the procedure in Section 3.2, the effective Hamiltonian after gauging the
symmetry is

HCw2
2
=−

∑

v

X v

∏

f1, f2

C Z(ZA
f1

, ZA
f2
)
∫

v∪ f 1∪ f 2 −
∑

e

∏

f ⊃e

X A
f

∏

t

ZB
t

∫

e∪t
∏

v, f ′
C Z(Zv , ZA

f ′)
∫

δv∪( f ′∪1δe)

−
∑

f

∏

t⊃ f

X B
t

∏

t

ZB
t

∫

t∪2δ f
∏

f ′
ZA

f ′

∫

f ′∪ f

−
∑

t

∏

f ⊂t

ZA
f −

∑

4-simplex p

∏

t⊂p

ZB
t . (81)

The Hamiltonian is a sum of local commuting projectors. The 0-form symmetry is
∏

v X v . We
will drop the superscripts A, B for simplicity.

4.3 Boundary states

4.3.1 Anomalous Z2 topological order with Z2 symmetry

We will discuss an anomalous Z2 topological order in (3+1)D with Z2 0-form symmetry, which
can be a boundary state for the beyond group cohomology invertible phase.

Consider Z2 gauge theory in (3+1)D with the action

π

∫

a ∪δb+π

∫

a ∪w2 ∪ C1 +π

∫

w2 ∪ b , (82)

where a is Z2 1-cochain, b is Z2 2-cochain. Equivalently, we turn on background w2∪A for the
Z2 two-form symmetry that acts on

∮

b, and background w2 for the Z2 one-form symmetry
that acts on

∮

a. The equation of motion of a gives δb = w2 ∪ C1. This implies that under a
background gauge transformation of the Z2 symmetry,

C1→ C1 +δλ , b→ b+w2 ∪λ , (83)

where λ = 0,1 is Z2 0-cochain. In particular, if we perform non-trivial transformation λ = 1
on half of

∫

b2, where b2 on this half is shifted by extra w2, then the interface in the middle
that separates the regions with λ= 0 and with λ= 1 lives on the boundary of

∫

w2. Thus the
interface describes the worldline of a fermionic particle bound to

∫

b2.
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4.3.2 New boundary theory from lattice Hamiltonian model

We use the same boundary construction as Section 3.3. The original manifold M4 has boundary
N3 = ∂M4. We introducing an auxiliary vertex v0, connecting to all vertices on the boundary.
The union of M4 and this cone of N3 is a closed manifold eM4 ≡ M4 ⊔ CN3, and we can define
the Cw2

2 Hamiltonian on this closed manifold. We can further project faces and tetrahedra in
CN3 to edges and faces in N3, such as Eq. (49). Therefore, the total degrees of freedom are
Zv , Z f , Zt ∀v, f , t ∈ M4, and Ze,Z f ∀e, f ∈ N3, with additional Zv0

at the auxiliary vertex
(the global symmetry is Xv0

∏

v X v = 1 and Zv0
can be fixed to +1 by applying the symmetry

action, so we can get rid of the dependence on v0). We now study the terms in (81) near N3:

1. v = 〈0〉 is the auxiliary vertex:

−Xv0

∏

f1, f2

C Z(eZ f1 , eZ f2)
∫

eM4
v0∪ f 1∪ f 2 = −

∏

v∈M4

X v

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
e1∪δe2 . (84)

Notice that we have used the property Xv0
=
∏

v∈M4
X v by the global symmetry con-

straint.

2. e = 〈0i〉 is the auxiliary edge: let v = 〈i〉 be the corresponding boundary vertex.

∏

f ⊃e

eX f

∏

t

eZ
∫

eM4
e∪t

t

∏

v, f ′
C Z(eZv , eZ f ′)

∫

eM4
δv∪( f ′∪1δe) =

∏

e|e∈N3,
e⊃v

Xe

∏

t∈N3

Z
∫

N3
v∪t

t . (85)

3. f = 〈0i j〉 is the auxiliary face: let e = 〈i j〉 be the corresponding boundary edge.

∏

t⊃ f

eX t

∏

t

eZ
∫

eM4
t∪2δ f

t

∏

f ′

eZ
∫

eM4
f ′∪ f

f ′ =
∏

f | f ∈N3,
f ⊃e

X f

∏

f ′∈N3

Z
∫

N3
δe∪1 f ′

f ′ , (86)

which is the same as Eq. (50).

4. v = 〈i〉 is the boundary vertex:

−eX v

∏

f1, f2

C Z(eZ f1 , eZ f2)
∫

eM4
v∪ f 1∪ f 2 =− X v

∏

f1, f2

C Z(Z f1 , Z f2)
∫

M4
v∪ f 1∪ f 2

=− X v × bulk terms .

(87)

5. e = 〈i j〉 is the boundary edge:

∏

f ⊃e

eX f

∏

t

eZ
∫

eM4
e∪t

t

∏

v, f ′
C Z(eZv , eZ f ′)

∫

eM4
δv∪( f ′∪1δe)

=






Xe

∏

f | f ∈M4,
f ⊃e

X f







 

∏

t∈M4

Z
∫

M4
e∪t

t

!

×

 

∏

v,e′∈N3

C Z(Zv ,Ze′)
∫

N3
v∪(δe′∪1δe)

∏

v, f ′∈M4

C Z(Zv , Z f ′)
∫

M4
δv∪( f ′∪1δe)

!

= Xe

∏

v,e′∈N3

C Z(Zv ,Ze′)
∫

N3
v∪(δe′∪1δe) × bulk terms .

(88)
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6. f = 〈i jk〉 is the boundary face:

∏

t⊃ f

eX t

∏

t

eZ

∫

eM4
t∪2δ f

t

∏

f ′

eZ

∫

eM4
f ′∪ f

f ′

=






X f

∏

t|t∈M4,
t⊃ f

X t







 

∏

f ′∈N3

Z
∫

N3
f∪1 f ′+ f ′∪2δ f

f ′

∏

t∈M4

Z

∫

M4
t∪2δ f

t

!

×

 

∏

e′∈N3

Z
∫

N3
e′∪ f

e′

∏

f ′∈M4

Z

∫

M4
f ′∪ f

f ′

!

=X f

∏

f ′∈N3

Z
∫

N3
f ′∪1 f+δ f ′∪2 f

f ′

∏

e′∈N3

Z
∫

N3
e′∪ f

e′ × bulk terms ,

(89)

which is the same as Eq. (56).

Similar to the discussion in Section 3.3, we interpret Eqs. (84), (85), (86) as the stabilizers
in the boundary Hamiltonian, while Eqs. (87), (88), (89) are treated as the operators for
boundary excitation. We are going to study these boundary excitations.

𝑒𝑋

𝑍
𝑍 𝑍
𝑍

𝑒𝑋
𝑍

𝑍 𝑍
𝑍

𝑍

𝑍
𝑍

𝑍
𝑒𝑌

𝑍

𝑍! = 1 𝑍! = −1𝑍! = −1𝑍! = 1

𝑍 𝑌

𝑍

ℤ" domain	wall

string operator

Figure 10: The intersection of the membrane and the domain wall is a fermion hop-
ping operator.

As shown before, Eq. (89) corresponds to the hopping operator of fermionic particles. For
the global Z2 symmetry, we consider it as a background since we didn’t gauge this symmetry.
Eq. (87) simply means changing the background configuration of Zv . Eq. (88) is the most
interesting operator corresponding to a loop excitation. We are going to demonstrate this
operator on the cubic lattice and show that intersection points between the oop excitation
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ℤ! domain	wall

𝑒𝑋 𝑒𝑋
𝑍

𝑍
𝑍𝑍

𝑍
𝑍

𝑍𝑍

𝑒𝑌

𝑍

𝑍
𝑍

𝑍𝑍

𝑍

𝑍

𝑌

𝑍

𝑍
𝑍

𝑍 string operator

𝑍" = 1 𝑍" = −1𝑍" = −1𝑍" = 1

Figure 11: The intersection of the membrane and the domain wall is a fermion hop-
ping operator.

and the Z2 domain wall have fermionic statistic. Some explicit expressions of the operator

U ′e ≡ X e
∏

v,e′∈N3
C Z(Zv , Ze′)

∫

N3
v∪(δe′∪1δe) are shown in Figs. 10, 11. In the region with all

Zv = 1, the C Z part in U ′e doesn’t contribute and it is simply U ′e = X e. In the region with all

Zv = −1, we have U ′e = X e
∏

e′ Z
∫

e∪δe′+δe′∪e
e′ . Notice that this corresponds to the Hamiltonian

for Z2 one-form with the topological action S = π
∫

B2∪B2 [40,42,57]. For U ′e on the domain
wall between Zv = 1 and Zv = −1, it is drawn in the middle of Figs. 10, 11. We can see this
operator creates two excitations on the intersection points between the loop excitation and
the Z2 domain wall. Based on the T-junction process in Fig. 12, this point-like excitation has
fermionic statistic.

4.4 Comparison with the lattice Hamiltonian model in literature

Let us compare with the lattice Hamiltonian model in Ref. [12]. The lattice models are dif-
ferent, with different degrees of freedom and different Hamiltonian. Ref. [12] constructs
the Hamiltonian by decorating the domain wall that generates the Z2 symmetry with three-
fermion Walker Wang model, which has effective action π

∫

w2
2. On the other hand, here

we construct the Hamiltonian model using a different invertible gauge theory in (4+1)D.18

Ref. [12] also discussed a gapped symmetric boundary state by introducing ancilla bosonic
degrees of freedom on the boundary that contains a fermion, and condensing the composite
boson made out of the extra fermion and a fermion in the three-fermion topological order on
the 3d boundary of the domain wall generating the Z2 symmetry, which is decorated with the
three-fermion Walker-Wang model. Here, we directly obtain the related gapped symmetric
boundary state by truncating the bulk Hamiltonian.

18The three-fermion Walker Wang model can also be described by an invertible gauge theory with action
π
∫

(A2 ∪ A2 + A2 ∪ B2 + B2 ∪ B2) [21,26], but the theory differs from what we discuss here, where the background
C1 for the Z2 0-form symmetry couples to the domain wall π

∫

A2 ∪ A2.
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Figure 12: The T junction process for the fermion hoppping operator on the intersec-
tion of the loop creation operator and the domain wall: V ′a V ′c V ′b = −V ′bV ′c V ′a , which
implies that the loop excitation is fermionic.

5 Conclusion and future directions

In this note, we describe a general method to construct exactly solvable lattice Hamiltonian
model for bosonic beyond group cohomology invertible phases that have order two or order
four, in any spacetime dimension. We illustrate the procedure using two examples in (4+1)D:
one without symmetry, and the other has Z2 unitary symmetry.

Let us comment on several generalizations and future questions. Some of them are inves-
tigated in future work.

Short-range entangled phases The construction generalizes with minor modifications to
invertible phases with higher-form symmetry and/or time-reversal symmetry instead of unitary
ordinary symmetry.19

One future direction is to study the topological invariant associated with the lattice model.
Such invariant can be characterized by an anomalous boundary state. In the example of the
invertible phase without symmetry in (4+1)D, we can take the invariant to be single pair of
fermionic particles and fermionic loop excitation with π mutual statistics. Can we compute
the numerical topological invariant in terms of the given Hamiltonian, which specifies which
invertible phase the Hamiltonian belongs to? This can be similar to the formula for the chiral
central charge for gapped Hamiltonian given by Kitaev in Ref. [58].20

19The invertible phases with time-reversal symmetry have effective action that can be probed by non-orientable
spacetime whose tangent bundle has non-trivial first Stiefel-Whitney class w1(T M), which can be represented by
the invertible gauge theory

π

∫

Sq1(vd) + u1 ∪ vd , Sq1(vd) = vd ∪d−1 vd , (90)

with Z2 1-cocycle u1 and d-cocycle vd in (d +1) dimensional spacetime. The first term equals π
∫

w1(T M)∪ vd by
the Wu formula [36], and thus the equation of for vd implies u1 = w1(T M).

20See also more recent works [59,60].
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While in this note we describe the beyond group cohomology invertible phases using lattice
Hamiltonian model, one can also describe the phases using the ground state wavefunctions as
in Ref. [61]. For instance, one can study the invertible phase using the entanglement property
of the wavefunction, such as in Ref. [62].

The construction of the lattice Hamiltonian for beyond group cohomology phases can also
be applied to construct new “beyond group cohomology” phases with subsystem symmetry.

We can also generalize the lattice models for the beyond group cohomology invertible
phases to include foliation structure, and explore the analogue of gravitational anomaly for
possible excitations with restricted mobility on the boundary.21 For instance, is there an ana-
logue of the anomalous Z2 topological order with fermionic particles and fermionic loop exci-
tations?

Quantum cellular automata (QCA) can characterize non-trivial topological phases of mat-
ter [47,54,55], such as the Floquet topological phases [55,56]. In Section 3.6 we argue that
our lattice model of invertible phase without symmetry in (4+1)D gives a new non-trivial QCA.
It might be interesting to explore the connection between general invertible phases constructed
using our method and new non-trivial QCA that can be applied to investigate other phases.

Long range entangled phases and gapless phases We can also couple the invertible gauge
theory to models with topological order or gapless models to change the statistics of excita-
tions.22 This changes not only the bulk but also changes the gapped boundaries, since only
excitations with trivial statistics can condense on the boundary [66–72].

One can also explore the lattice process to describe the statistics of the extended excitations
such as loops and membranes when they are no longer bosonic excitations with trivial statistics.

The coupling to invertible gauge theory can also change the low energy dynamics; for
instance, the statistics of excitations is related to the anomaly of the symmetry generated by
the corresponding creation operator [20]. If we change the statistics, the one-form symmetry
can become anomalous, and the model cannot be in confining phase with unbroken one-form
symmetry.

Quantum phase transitions Another direction is to better understand models with phase
transitions obtained by including transverse field terms, in analogue to the toric code in the
transverse field studied in Ref. [73]. When the invertible phases do not have symmetry, these
are quantum phase transitions robust to any perturbations. Are there continuous phase tran-
sitions? Are there deconfined quantum phase transitions? Are there critical points protected
by “beyond group cohomology” invertible phases with subsystem symmetry?
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Note Added Near the completion of this work, we learned of another work in preparation
[74] that also constructs an exactly solvable lattice Hamiltonian model for the beyond group
cohomology invertible phase without symmetry in (4+1)D. In [35]we show that the fermionic
loop creation operator can be shown to produces (−1) statistics using the process in [74] that
detects loop self statistics.

A Review of cochains and cup products

In this appendix, we will review some mathematical properties of cochains and cup products.
For more details, see e.g. Refs. [36] and [75]. For a review of cochains and higher cup products
on the hypercubic lattice Zd , see Ref. [26,49].

A.1 Cochain and cup products on triangulation

We triangulate the spacetime manifold M with simplicies, where a p-simplex is the
p-dimensional analogue of a triangle or tetrahedron (for p = 0 it is a point, p = 1 it is an
edge, etc). The p-simplices can be described by its vertices (i0, i1, · · · ip) where we pick an
ordering i0 < i1 < · · · ip.

A simplicial p-cochain f ∈ C p(G,A) is a function on p-simplices taking values in an Abelian
group A (we use additive notation for Abelian groups). For simplicity, we will take A to be
a field (an Abelian group endowed with two products: addition and multiplication). In the
following we will take A to be integers.

The coboundary operation on the cochains δ : C p(M ,A)→ C p+1(M ,A) is defined by

(δ f )(i0, i1, · · · ip+1) =
p+1
∑

j=0

(−1) j f (i0, · · ·bi j , · · · ip+1) , (91)

where the hatted vertices are omitted. The coboundary operation is nilpotent δ2 = 0. When
a cochain x satisfies δx = 0, it is called a cocycle.

The cup product ∪ for p-cochain f and q-cochain g gives a (p+ q)-cochain defined by

( f ∪ g)(i0 · · · ip+q) = f (i0, · · · ip)g(ip · · · ip+q) . (92)

It is associative but not commutative.
The higher cup products can be defined in a similar way [76]. For p cochain f and q

cochain q, the higher cup product f ∪i g is a (p+ q− i) cochain. The definition for ∪1 is

f ∪1 g(0, 1, · · · , (p+q−1)) =
p−1
∑

j=0

(−1)(p− j)(q+1) f (0, · · · j, j+q, · · · p+q−1)g( j, · · · j+q) . (93)

For instance, for an 1-cochain a and 2-cochains u, v

u∪1 v(0123) = u(023)v(012)− u(013)v(123) ,

a ∪1 u(012) = −a(02)u(012) , u∪1 a(012) = u(012)a(01) + u(012)a(12) . (94)

A.2 Cochain and cup product on hypercubic lattice

In this section, we review the definition of higher cup products on the cubic lattice in Refs. [26,
49]. We follow the convention used in Ref. [49]. We assume that all cochains are Z2-valued.
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The cup products on squares □ (faces in Fig. 13) are defined as

λ∪λ′(□0123) = λ(01)λ′(13) +λ(02)λ′(23) ,

λ∪λ′(□0145) = λ(01)λ′(15) +λ(04)λ′(45) ,

λ∪λ′(□0246) = λ(02)λ′(26) +λ(04)λ′(46) ,
(95)

where λ,λ ∈ C1(M3,Z2) are 1-cochains and all other faces are defined using the translational
symmetry.

x

y
z

0 1

4

2 3

5

6 7
U

D

RL

F

B

Figure 13: There are six faces for each cube c. U,D,F,B,L,R stand for faces
on direction “up”,“down”,“front”,“back”,“left”,“right”. We assign the face U,
F, R to be inward and D, B, L to be outward. The ∪1 product on two
2-cochain is defined by β ∪1 β

′(c) = β(L)β ′(B) + β(L)β ′(D) + β(B)β ′(D)
+ β(U)β ′(F) + β(U)β ′(R) + β(F)β ′(R).

If λ and β are a 1-cochain and a 2-cochain, the corresponding cup products are on the
cubic lattice are defined as follows:

λ∪ β(c) = λ(01)β(□1357) +λ(02)β(□2367) +λ(04)β(□4567) ,

β ∪λ(c) = β(□0123)λ(37) + β(□0145)λ(57) + β(□0246)λ(67) ,
(96)

where c is a cube whose vertices are labeled in Fig. 13. For a cup product involving 0-cochains
α, the definition is straightforward:

α∪ β(□0123) = α(0)β(□0123) ,

β ∪α(□0123) = β(□0123)α(3) ,

α∪λ(01) = α(0)λ(01) ,

λ∪α(01) = λ(01)α(1) ,

(97)

with other faces defined similarly.
For cup-1 products, we first define between a 1-cochain λ and a 2-cochain β:

λ∪1 β(□0123) =[λ(02) +λ(23)]β(□0123) ,

β ∪1 λ(□0123) =[λ(01) +λ(13)]β(□0123) ,
(98)

with the same formula for other two faces by replace numbers (0,1, 2,3) with (0, 1,4, 5) and
(0, 2,4, 6). The cup-1 product between two 2-cochains β ,β ′ is shown in Fig. 13. The cup-1
product between an 1-cochain λ and a 3-cochain γ is

λ∪1 γ(c) =[λ(04) +λ(46) +λ(67)]γ(c) ,

γ∪1 λ(c) =[λ(01) +λ(13) +λ(37)]γ(c) .
(99)
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A.3 Identities for cup products

We summarize some formulas for manipulating cup products. They hold for any lattice geom-
etry. For a p-cochain f and q-cochain g:

f ∪i g = (−1)pq−i g ∪i f + (−1)p+q−i−1 (δ( f ∪i+1 g)−δ f ∪i+1 g − (−1)p f ∪i+1 δg) ,

δ( f ∪i g) = δ f ∪i g + (−1)p f ∪i δg + (−1)p+q−i f ∪i−1 g + (−1)pq+p+q g ∪i−1 f . (100)

Consider 1-cochain supports on a single edge e, denoted by e, which takes value 1 on edge
e and 0 otherwise. Then from the definition of cup product, we have

e ∪ F(e, x) = 0= F(e, x)∪ e , (101)

where F is any cochain-valued function that vanishes for e = 0 i.e. F(0, x) = 0. This general-
izes to any cochain en that supports on basic simplex of degree n≥ 1.

Similarly, from the definition of ∪1 product we have

f ∪1 F( f , x) = 0= F( f , x)∪1 f , (102)

where F is any cochain-valued function that vanishes for f = 0 i.e. F(0, x) = 0. This general-
izes to any cochain en that supports on basic simplex of degree n≥ 2.

B Boundary state of invertible gauge theory from gauging symme-
tries

In this appendix, we obtain the boundary state of invertible gauge theory for the invertible
phase without symmetry in (4+1)D, from the boundary state of the “parent” group cohomology
SPT phase with Z2 one-form and two-form symmetries by gauging the symmetries in the bulk
and on the boundary.23

B.1 Boundary action

Boundary action for “parent” group cohomology SPT phase The bulk effective action for
the “parent” group cohomology SPT phase is equivalent to

π

∫

(w2 ∪ B3 + A2 ∪ B3 + A2 ∪w3) , (103)

where we have used the Wu formula, and the fields are background fields. Let us derived a
gapped boundary action by anomaly inflow. Consider the transformation

A2→ A2 +δa1 , B3→ B3 +δb2 , w2→ w2 +δa′1 , w3→ w3 +δb′2 . (104)

The action produces the boundary term

π

∫

(a1 ∪δb2 +w2 ∪ b2 + a1 ∪w3 + a1 ∪ B3 + A2 ∪ b2)

+π

∫

�

A2 ∪ b′2 + a′1 ∪ B3 +δa1 ∪ b′2 + a′1 ∪δb2

�

. (105)

23A similar method for one-form symmetry SPT phases in 3+1d is discussed in Ref. [20].

36

https://scipost.org
https://scipost.org/SciPostPhys.14.5.089


SciPost Phys. 14, 089 (2023)

The redefinition a′1 → a′1 + a1 implies that the boundary action describes the product of an
ordinary Z2 gauge theory and Z2 gauge theory with fermionic particle (“dynamical spin struc-
ture”)

π

∫

�

δa1 ∪ b′2 + A2 ∪ b′2 + a1 ∪w3

�

+π

∫

�

a′1 ∪δb2 + a′1 ∪ B3 + A2 ∪ b2 +w2 ∪ b2

�

, (106)

where the first term describes the ordinary Z2 gauge theory [35]. We note that in the Z2
gauge theory with fermionic particle, the loop excitations that braid with the fermion are
bosonic [35]. In the ordinary Z2 gauge theory bosonic particle, the fermionic loop excitation
[35] braids with boson instead of fermion. Thus the boundary does not have gravitational
anomaly.

Gauging the symmetries When we gauge the one-form and two-form symmetries by pro-
moting A2, B3 to be dynamical fields, the equation of motion for B3 sets a′1 = 0, the equation
of motion for A2 sets b′2 = b2, and we recover the action for the anomalous Z2 gauge theory
with fermionic particle and fermionic string with mutual braiding:

π

∫

(δa1 ∪ b2 + a1 ∪w3 +w2 ∪ b2) . (107)

B.2 Lattice model

Boundary Hamiltonian model for “parent” group cohomology SPT phase The symmetry
generator on the boundary is given by

U(v) =

�

∏

e⊃v

X e

�

(−1)
∫

M4
φ4(a+δv ,b)−φ4(a,b)

, U ′(e) =

 

∏

f ⊃e

X f

!

(−1)
∫

M4
φ4(a,b+δe)−φ4(a,b)

,

(108)
where the products in U(v), U ′(e) denote edges met at the vertex v and faces met at the edge
e, respectively. From Eq.(34), (36), they equal to

U(v) =

�

∏

e⊃v

X e

�

(−1)
∫

∂M4
δv∪(a∪a+a∪1δa+b)

, U ′(e) =

 

∏

f ⊃e

X f

!

(−1)
∫

∂M4
δe∪1 b

, (109)

where phase factors only depend on degrees of freedom on the boundary ∂M4 = N3. If the
vertex v and the edge e are in the bulk, the symmetry generators are

U(v) =
∏

e⊃v

X e , U ′(e) =
∏

f ⊃e

X f . (110)

As Ref. [40], we restrict Eq. (109) on the boundary and obtain:

U∂ (v) =
∏

e|e∈N3,
e⊃v

X e

∏

f

Z
∫

N3
δv∪ f

f

∏

e1,e2

C Z(Ze1
, Ze2
)
∫

N3
δv∪(e1∪e2+e1∪1δe2) ,

U ′∂ (e) =
∏

f | f ∈N3,
f ⊃e

X f

∏

f ′
Z
∫

N3
δe∪1 f ′

f ′ .
(111)

A symmetric gapped boundary state is given by the Hamiltonian

Hboundary = −
∑

v

U∂ (v)−
∑

e

U ′∂ (e)−
∑

f

∏

e⊂ f

Ze −
∑

t

∏

f ⊂t

Z f , (112)
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where we added the last two terms to penalize configurations with nonzero δa,δb. They
commute with the first two terms. We will call the first two terms in the Hamiltonian (112)
the “electric terms”, since the operators that anti-commute with such terms transform under
the one-form and two-form symmetries, while the second two terms in the Hamiltonian (112)
the “flux terms”.24

We note that
∫

δv ∪ b2 =
∫

v ∪ δb2 and
∫

δv ∪ (a ∪ a+ a ∪1 δa) =
∫

v ∪ (δa ∪1 δa) can
be expressed in terms of the flux terms, where a(e) = (1− Ze)/2, b( f ) = (1− Z f )/2, and thus
we can rewrite the boundary Hamiltonian as

H ′boundary = H(1)boundary +H(2)boundary ,

H(1)boundary = −
∑

v

∏

X e −
∑

f

∏

Ze ,

H(2)boundary = −
∑

e

∏

f

X f

∏

f ′
Z
∫

N3
δe∪1 f ′

f ′ −
∑

t

∏

f ⊂t

Z f , (113)

where H(1)boundary is the ordinary Z2 toric code model and H(2)boundary is the Z2 gauge theory with
fermionic particle and bosonic string.

In the upcoming work [35] we show that the ordinary 3+1d Z2 gauge theory with boson
particle has bosonic “electric loop”, bosonic magnetic flux loop and fermionic “dyonic loop”
given by the fusion of the electric and magnetic loops. The non-anomalous Z2 gauge theory
with fermionic particle has fermionic “electric loop”, bosonic magnetic loop and bosonic “dy-
onic loop”. In the anomalous Z2 gauge theory with fermionic particles, all three loops are
fermionic. In [35] we show the “electric loop” belongs to the trivial superselection sector, and
thus the “dyonic loop” belongs to the same superselection sector as the magnetic loop, but
their creation operators have different correlation functions.

Gauging symmetry After we gauge the one-form and two-form symmetries, the symmetry
generator acts on the Hilbert space as the identity operator, and we look for operators that
commute with the symmetry generators U∂ (v) and U∂ (e). There are the following fermionic
loop creation operator and fermionic particle hopping operator, which haveπmutual statistics:

U M
e = X e(−1)

∫

N3
a∪(δa∪2δe+e∪1δe) , U M

f = X f (−1)
∫

N3
a∪ f+b∪1 f ,

U M
e U M

f = U M
f U M

e (−1)
∫

N3
e∪ f . (114)

Thus we recover the anomalous boundary Z2 topological order.

C Boundary state of Toric code model from truncation

To illustrate the truncation of bulk Hamiltonian, let us consider the toric code model in (2+1)D
[45]. There are two gapped boundaries [77]: the smooth boundary and the rough boundary,
where the magnetic and the electric charge condenses on the boundary, respectively.

The bulk theory has qubit on each edge, with Hamiltonian

H = −
∑

v

∏

X e −
∑

f

∏

Ze . (115)

24The construction of symmetry gapped boundary is similar to that in Ref. [40] for one-form symmetry SPT
phase in (3+1)D, where the boundary has zero framing anomaly.
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We introduce an auxiliary vertex 0, and Z0v = eZv , X0v = eX v for boundary vertex v. The
boundary terms are

eX vX v,v−1X v,v+1X v,b , eZv−1eZv+1Zv,v+1 , Zv−1,bZv+1,bZv,v+1 , (116)

where v − 1, v, v + 1 denote consecutive boundary vertices, and b denote bulk vertex. We
note Zv , X v do not commute with the boundary terms and thus the excitations have energy
cost. The construction above corresponds to the rough boundary condition (condensation of e
particles). This can be seen from that a Ze string terminated on the boundary with an addition
eZv operators on the endpoints commute with all terms in Eq. (116). This operator creates two
e particles without energy costs, and thus e condensed on the boundary.

We can consider another boundary construction without introducing new degrees of free-
dom eX v , eZv:

X v,v−1X v,v+1X v,b , Zv−1,bZv+1,bZv,v+1 . (117)

This corresponds to the smooth boundary condition (condensation of m particles). The X e
string on the dual lattice terminated on the boundary commutes with all terms in the Hamil-
tonian. Therefore, two m particles created on the boundary have zero energy costs, and m
condenses on the boundary.

D Explicit expression of boundary Hamiltonian on the 3d cubic
lattice

In this appendix, we explicitly derive the boundary Hamiltonian Eq. (60) on the 3d cubic lattice
by truncating the bulk Hamiltonian model for the invertible phase without symmetry in 4+1d.
We will show that terms in Eq. (60) can be drawn as Fig. 1 and Fig. 2.

The first term in Eq. (60) is

∏

f | f ∈N3,
f ⊃e

X f

∏

f ′∈N3

Z
∫

N3
δe∪1 f ′

f ′ ,
(118)

which corresponds to the first three terms in Fig. 1, using the definition of higher cup products
in Appendix A.2.25

The second term in Eq. (60) is

∏

e|e∈N3,
e⊃v

Xe

∏

f ∈N3

Z
∫

N3
δv∪ f

f

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
δv∪(e1∪e2+e1∪1δe2)

=
∏

e|e∈N3,
e⊃v

Xe

∏

f ∈N3

(−1)
∫

N3
δv∪(a∪a+a∪1δa+b) ,

(119)

where we have labelled Ze = (−1)a(e) and Z f = (−1)a( f ).
Now, we are going to use the following identity:

1
2
([δa]2 −δa) = (a ∪ a+ a ∪1 δa) (mod 2) , (120)

25This term is the same as the gauge constraint in the 3d bosonization discussed in Ref. [49], which enforces the
particle excitations in the gauge-invariant low energy subspace to be fermionic.
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Figure 14: “Electric” string operator.

where a(e) = 0,1 is Z2-valued, δa(□0123)≡ a(01) + a(13)− a(02)− a(23) is the coboundary
operator on a square □0123 in Fig. 13 (same for □0145 and □0246), and [· · · ]2 = 0,1 is the mod
2 residue of · · · . By the definition of higher cup products, we have

[a ∪ a+ a ∪1 δa](□0123) =a(02) + a(23) + a(01)a(13) + a(01)a(02) + a(01)a(23)

=+ a(13)a(02) + a(13)a(23) + a(02)a(23) (mod 2) ,
(121)

where (−1)a(e) corresponds to the gate Ze and (−1)a(e)a(e
′) corresponds to the controlled-Z gate

C Z(e, e′), which are shown in the left side of Fig. 14. The identity Eq. (120) can be checked
straightforwardly in Table 3. From Eq. (120), we have

Table 3: The table enumerates all cases of (a01, a13, a02, a23) and verifies that all of
them satisfy Eq. (120).

a01 a13 a02 a23 δa [δa]2 a ∪ a+ a ∪1 δa
0 0 0 0 0 0 0
0 0 0 1 -1 1 1
0 0 1 0 -1 1 1
0 0 1 1 -2 0 1
0 1 0 0 1 1 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 -1 1 1
1 0 0 0 1 1 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 -1 1 1
1 1 0 0 2 0 1
1 1 0 1 1 1 0
1 1 1 0 1 1 0
1 1 1 1 0 0 0

(−1)a∪a+a∪1δa(□0123) = (−1)
[δa]2(□0123)

2 − δa(□0123)
2 =

p

Z01Z13Z02Z23S02S23S01S13 , (122)

where the square root gives 1, i and the S gate is

S =

�

1 0
0 i

�

, (123)
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and S is the complex conjugation of S. This operator is shown in the right side of Fig. 14.
Therefore, Eq. (119) contains the product of a ∪ a + a ∪1 δa + b over 6 faces on a cube and
becomes the last diagram in the first row of Fig. 1.

The third line in Eq. (60) contains

−
∑

f ∈N3

 

∏

e⊃ f

Ze

!

Z f −
∑

t∈N3

 

∏

f ⊃t

Z f

!

Zt , (124)

which become the “flux terms” in the second raw of Fig. 1. We have omitted Z f and Zt since
we only focus on auxiliary degrees of freedom Xe,Ze,X f ,Z f .

The fourth line of Eq. (60) is

−
∑

f ∈N3

X f

∏

f ′∈N3

Z
∫

N3
f ′∪1 f+δ f ′∪2 f

f ′

∏

e′∈N3

Z
∫

N3
e′∪ f

e′ × bulk terms , (125)

which can be considered as the hopping term for fermionic particles. We use
∏

f ′⊂t Z f ′ = Zt
and keep only X , Z degrees of freedom, the hopping term becomes

U f = X f

∏

f ′∈N3

Z
∫

N3
f ′∪1 f

f ′

∏

e′∈N3

Z
∫

N3
e′∪ f

e′ , (126)

which is drawn in the first row of Fig. 2 using the definition of higher cup products.
The last term in Eq. (60) is

−
∑

e∈N3

Xe

∏

e′∈N3

Z
∫

N3
e′∪(e∪1δe)

e′

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
e1∪(δe2∪2δe) × bulk terms , (127)

and we extract the auxiliary degrees of freedom as

Ue =
∏

e′∈N3

Z
∫

N3
e′∪(e∪1δe)

e′

∏

e1,e2∈N3

C Z(Ze1
,Ze2
)
∫

N3
e1∪(δe2∪2δe) , (128)

which is the fermionic loop excitation. Ue is drawn in the last of raw of Fig. 2. Notice that we
have omitted the bulk part of Eq. (60) in the figures.
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