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Abstract

In strongly correlated quantum materials, the behavior of charge carriers is dominated
by strong electron-electron interactions. These can lead to insulating states with spin
order, and upon doping to competing ordered states including unconventional super-
conductivity. The underlying pairing mechanism remains poorly understood however,
even in strongly simplified theoretical models. Recent advances in quantum simulation
allow to study pairing in paradigmatic settings, e.g. in the t − J and t − Jz Hamiltoni-
ans. Even there, the most basic properties of paired states of only two dopants, such as
their dispersion relation and excitation spectra, remain poorly studied in many cases.
Here we provide new analytical insights into a possible string-based pairing mechanism
of mobile holes in an antiferromagnet. We analyze an effective model of partons con-
nected by a confining string and calculate the spectral properties of bound states. Our
model is equally relevant for understanding Hubbard-Mott excitons consisting of a bound
doublon-hole pair or confined states of dynamical matter in lattice gauge theories, which
motivates our study of different parton statistics. Although an accurate semi-analytic es-
timation of binding energies is challenging, our theory provides a detailed understanding
of the internal structure of pairs. For example, in a range of settings we predict heavy
states of immobile pairs with flat-band dispersions – including for the lowest-energy d-
wave pair of fermions. Our findings shed new light on the long-standing question about
the origin of pairing and competing orders in high-temperature superconductors.
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1 Introduction

The history of physics has repeatedly taught us that nature tends to realize richer structures
than one might first suggest. The most important example, by far, is constituted by the theory
of atoms which has evolved from Thomson’s featureless plum pudding model to our current
picture of precisely quantized energy shells and a nucleus with structures down to the level
of individual quarks. The only way to reveal such structures is to perform increasingly more
precise measurements, or, with the benefit of hindsight and a microscopic Hamiltonian at hand,
perform increasingly more precise numerical simulations. Here we address the question how
much, and which, structure paired charge carriers in correlated quantum matter may have.

To date, important aspects of strongly correlated electrons remain poorly understood. Part
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of the reason is that the nature and microscopic structure of the emergent charge carriers is not
fully understood. Among the most famous puzzles is the origin of pairing in high-temperature
superconductors [1, 2], but similar questions arise in heavy-fermion compounds [3], organic
superconductors [4] and most recently twisted bilayer graphene [5]. However the problems
are not limited to paired states of matter: the nature of charge carriers in the exotic normal
phases of these strongly correlated systems is likewise debated and subject of active research.

Remarkably, the prevailing picture of quantum matter is one with more-or-less featureless
charge carriers, with little or no rigid internal structure taken into account in calculations.
Some theoretical approaches assume fractionalization of quantum numbers, which leads to
rich and interesting physics, but short-range spatial fluctuations are rarely considered in de-
tail. Among the reasons for this restriction is the difficulty to directly experimentally visualize
spatial structures of quickly fluctuating charges. While ultracold atoms in optical lattices [6,7]
have taken very promising steps in this direction [8, 9], they too have not managed to fully
visualize the internal structure of doped charge carriers yet. Another reason may be the lasting
influence of Anderson’s RVB theory of high-Tc superconductivity [10], which assumes point-
like charge carriers moving in a surrounding spin-liquid – in some sense the antithesis of any
theory assuming spatial structures of charge carriers.

On the other hand, it is not for a lack of ideas which kinds of internal structures could
emerge: Even before the discovery of high-Tc superconductors, Bulaevksii et al. proposed
the existence of string-like states with internal vibrational excitations [11], a view taken up
by Brinkman and Rice to understand dynamical properties of charge carriers [12]; in 1988,
Trugman applied this idea to pairs of holes [13] and in the same year Shraiman and Siggia
analyzed two-hole string states in greater detail [14]. Their conclusions at the time were
mixed: while they found mechanisms supporting pairing, they also identified unfavorable ef-
fects such as frustration of the pair-kinetic energy due to the underlying Fermi-statistics of the
holes. Today these works stand out as being among the few and first attempting a descrip-
tion starting from the strong coupling antiferromagnetic (AFM) Mott limit (large Hubbard-U).
But it appears that the community then focused more on approaches inspired by the weak-
coupling (small Hubbard-U) limit of the theoretical models [2], which more naturally led to
the magnon-exchange picture [15]. There, magnetic fluctuations provide the glue between
point-like charge carriers, and the theoretical framework shares more similarities with the
successful BCS theory of conventional superconductors. As almost all ideas in the field, this
picture has been debated [16].

Nevertheless, over time the idea that charge carriers have a pronounced spatial structure
was reclaimed several times. In 1996, Laughlin and co-workers proposed a phenomenolog-
ical parton theory of doped holes, including a confining linear string tension [17, 18]; dif-
ferent kinds of spatial strings, termed phase-strings, were introduced in 1996 by Weng and
co-workers [19, 20], and their effect on pairing was recently analyzed [21]; signatures for
the more traditional Sz-string fluctuations were reported in large-scale DMRG simulations by
White and Affleck in 2001 [22]; in 2007 Manousakis proposed a string-based interpretation of
one-hole ARPES spectra and in the same work envisioned a pairing mechanism of holes con-
stantly exchanging fluctuating strings [23]; in 2013 exact numerical simulations by Vidmar
et al. in truncated bases, closely related to the string picture, have also revealed signatures
for pairs with a rich spatial structure [24] (these results are consistent with subsequent varia-
tional studies of hole pairing larger systems [25]); already in 2000 and 2001 large-scale Monte
Carlo simulations by Brunner et al. [26] and Mishchenko et al. [27] have revealed long-lived
vibrational excitations of individual doped holes; and in the past few years, the present au-
thors have added new evidence for the existence of long-lived rotational and vibrational string
states of individual charge carriers [28–30]; Vibrational peaks have also long been known to
exist and recently further confirmed in linear-spin wave models of doped holes [31–34]. Fi-
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nally, Hubbard-Mott excitons formed by a bound pair of a doublon and a hole [35] have been
proposed to have a rich internal structure [36,37].

In this article, we revisit the idea that mobile dopants, the charge carriers in doped AFM
Mott insulators, can form bound states with a rich spatial structure. Specifically, we derive a
semi-analytical theory of pairs of holes connected by a confining string which fluctuates only
through the motion of the charges at its ends. Our approach is very similar in spirit to the
much earlier work by Shraiman and Siggia mentioned above [14]; in fact we confirm several
of their predictions and discuss them in the context of three decades worth of new results
including from far advanced numerics. This includes one of their most exciting – though often
overlooked – prediction that two fermionic holes can form infinitely heavy pairs with a flat-
band dispersion at very low energies. In fact, we find that that these flat bands have d-wave
character. This result sheds new light on the wealth of competing ordered states observed in
cuprates and numerically found in the closely related t−J and Fermi-Hubbard models [38–40].

Back-to-back with this article, we are publishing a separate work focusing on a numerical
analysis of rotational two-hole spectra in the t − Jz and t − J models [41]. There we achieve
full momentum resolution on extended four-leg cylinders, and compare our numerical results
to the semi-analytic calculations performed in the present article. The focus of the present
article is on the semi-analytical method itself, including its formal derivation. Moreover, the
calculations we perform here are applicable in a larger class of models: as explained below, our
main assumption is that two partons on a square lattice are connected by a rigid stringΣwhich
creates a memory of the parton’s motion in the wavefunction. In the case of mobile holes doped
into an AFM Mott insulator, the string directly encodes the prevalent spin-charge correlations.
But similar situations can be found in lattice gauge theories in a strongly confining regime
where the dynamics of the corresponding electric field strings is dominated by fast charge
fluctuations.

The goal of our present work is primarily to understand the properties of pairs of mobile
dopants, i.e. their spatial structure and energy spectrum, including their rotational quantum
numbers and effective mass. Previously much emphasis has been on the question whether the
dopants pair up; i.e. about the magnitude and sign of the binding energy

Ebdg = 2(E1 − E0)− (E2 − E0) , (1)

where En is the ground state energy in the presence of n dopants. While we also view this as
an important issue, we argue that it is often not a well-suited question for a semi-analytical
approach, since it strongly depends on details; e.g. addressing it requires precise knowledge
of the one-hole energy. In this article we take the view that the structure of the paired state
can be very different from the structure of one-dopant states. Our goal is to understand the
former, and we leave the question of how and when excited (or ground) states of pairs can
decay into individual single-dopant states to future analysis (only a brief discussion within our
model will be provided). Moreover, we note that the question of pairing is not identical to a
question about the existence superconductivity: instead of condensing into a superconductor,
pairs of holes may also crystalize and form a pair-density wave at finite doping [42].

Nevertheless, we will address the origins of pairing within our semi-analytical framework.
To this end we identify competing effects which tend to increase or decrease the binding energy.
Our results shed new light on earlier predictions [13,14]: (i) fermionic statistics of the dopants
frustrates the pair’s kinetic energy, which is unfavorable for pairing; (ii) the most detrimental
effect for pairing comes from the hard-core property of two dopants, which cannot occupy the
same site; Moreover, we reveal (iii) a geometric spinon-chargon repulsion in dimensions d ≥ 2
which enhances the one-dopant energy E1 [43] and thus favors pairing. In addition to all of
these, further contributions stemming from low-energy spin-fluctuations in the background
are expected, whose quantitative effects are more challenging to predict and will thus be left
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to future work to explore. Finally, we note that in specifically tailored settings our simplifying
assumptions become quantitatively accurate: In Ref. [44] we proposed a mixed-dimensional
bilayer model with strong rung singlets where we demonstrated strong string-based pairing of
doped holes with a binding energy scaling as Ebdg ≃ t1/3J2/3, when the hole tunneling t ≫ J
exceeds the rung super-exchange J . Recently, in a closely related mixed-dimensional two-leg
ladder, ultracold fermions directly observed strong hole binding [45], realizing a decades old
toy model of pairing [46,47]. The internal structure of hole pairs in these models can also be
described by the theoretical model we develop here.

This article is organized as follows. In Sec. 2 we briefly discuss the microscopic models
motivating our analysis. Sec. 3 constitutes the main body of our article: there we develop the
effective string model to describe bound states of two mobile partons connected by a strongly
confining string. Our focus is on two holes, but as we discuss in detail in Appendix A, the
formalism we develop is also applicable to pairs of more general partons, in particular spinon-
chargon pairs [30]. In the second main part of the article, Sec. 4, we present results from
our analytical formalism and discuss possible implications for general pairing mechanisms in
doped AFMs. We close with a summary and outlook in Sec. 5.

2 Microscopic models

In this article we introduce and solve an effective theory describing bound states of holes. As
described in detail in Sec. 3, we will make approximations on the level of both the Hilbert
space and the Hamiltonian. Nevertheless, our starting point are microscopic models of doped
AFM Mott insulators to which, we argue, our results apply within some approximations. Crit-
ical minds should simply view these models as motivating our effective theory, although our
numerical analysis in Ref. [41] indicates remarkable similarities with the semi-analytical pre-
dictions derived here.

The system most closely related to our effective theory is constituted by the 2D t−Jz model
on a square lattice, with Hamiltonian

Ĥt−Jz
= −t P̂
∑

〈i,j〉

∑

σ

�

ĉ†
i,σ ĉj,σ + h.c.
�

P̂ + Jz

∑

〈i,j〉

Ŝz
i Ŝz

j −
Jz

4

∑

〈i,j〉

n̂in̂j . (2)

Here ĉj,σ defines the underlying particles, with spin-indexσ =↑,↓ and density n̂j =
∑

σ ĉ†
j,σ ĉj,σ;

the tunneling amplitude t describes hopping of these particles, and P̂ projects on a sector with
a given total number of doublons, holes and singly-occupied sites. Jz > 0 is an AFM Ising
coupling between the spins Ŝz

j =
∑

σ(−1)σ ĉ†
j,σ ĉj,σ which we assume to be antiferromagnetic

throughout.
In principle the Hamiltonian in Eq. (2) can be defined with particles ĉj,σ of any exchange

statistics, bosonic or fermionic. While this makes no difference for zero and one mobile dopant,
the statistics plays an important role if two dopants of the same type are considered. Since the
fermionic case is more closely related to the celebrated Fermi-Hubbard model with its AFM
ground state at half filling, it usually takes center stage. However, we find it instructive to
consider the bosonic version – without any direct connection to a Hubbard Hamiltonian – as
well. In fact, quantum simulators using ultracold atoms have been proposed which allow the
realization of both cases in experiments [48–51].

Likewise, we can consider the AFM t − J model in a 2D square lattice with arbitrary un-
derlying statistics. Its Hamiltonian is given by

Ĥt−J = −t P̂
∑

〈i,j〉

∑

σ

�

ĉ†
i,σ ĉj,σ + h.c.
�

P̂ + J
∑

〈i,j〉

Ŝi · Ŝj −
J
4

∑

〈i,j〉

n̂in̂j . (3)
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Figure 1: We work in an effective Hilbertspace consisting of pairs of dopants (red and
blue) connected by a string Σ on a square lattice. Every state |x1,Σ〉 avoiding double
occupancies of any site with two dopants is associated with a unique state |Ψ(x1,Σ)〉
in the microscopic model. (a) A typical example with string length ℓΣ = 3. (b)
Rare loop configurations leading to double-occupancies of dopants have no corre-
spondence in the microscopic model.

Now J > 0 is the strength of antiferromagnetic SU(2)-invariant Heisenberg interactions be-
tween spins Ŝj =

∑

α,β ĉ†
j,α

1
2σαβ ĉj,β .

In both the t − J and t − Jz models, different types of dopants can be considered. The
most often studied case, which is also our primary focus, constitutes pairs of two indistin-
guishable holes; owing to the particle-hole symmetry of the models, one can interchangeably
consider two indistinguishable doublons however. A second, closely related case corresponds
to Hubbard-Mott excitons [36], where pairs of doublons and holes can form. In this case, ex-
change statistics again plays no role on the level of the t− J(z) model, since the dopants define
distinguishable conserved particles. Experimentally, all these situations can be addressed by
state-of-the-art ultracold atom experiments [6,7].

3 Effective string model

In this section, we introduce an effective string model to describe tightly bound pairs of two
holes. Our approach is motivated by considering two dopants moving in a Néel state, modeled
by the 2D t − J z or t − J model. To make analytical progress, we perform approximations on
the effective Hilbert space (see Fig. 1) as well as the effective Hamiltonian. While we expect
our approximate description to be most accurate for the t − J z model, it should also capture
the essential physics of related models, such as the t − J model, as long as charge fluctuations
dominate, t ≫ J , and they feature strong local AFM correlations at zero doping; We do assume
throughout, however, that t/J ≲ 25 before the Nagaoka ferromagnetism arises for even larger
values of t/J [22]. In these cases, the geometric string approach, developed originally for
single dopants, can be applied [8,11,12,14,28].

In the subsequent sections, we will always talk about paired holes and consider different
kinds of statistics. However, as discussed in Sec. 2, these can interchangeably be considered
as general types of dopants, or even more generally as two partons.

3.1 String Hilbert space and effective Hamiltonian

In a perfect Néel state the motion of a hole leaves behind a string Σ of displaced spins, which
allows to associate distinct hole trajectories with orthogonal states |Ψ(Σ)〉 in the quantum
many-body system (Fig. 1); here strings denote hole trajectories with all self-retracing com-
ponents removed. Exceptions, where two different strings Σ1 ̸= Σ2 correspond to identical
many-body states |Ψ(Σ1)〉= |Ψ(Σ2)〉, are associated with so-called Trugman loops [13]. Since
the number of Trugman loops is small compared to the exponentially growing number of string
states in the range of string lengths relevant to low-energy states (Tab. 1), their effect is gener-

6

https://scipost.org
https://scipost.org/SciPostPhys.14.5.090


SciPost Phys. 14, 090 (2023)

Table 1: Imperfections of the string model. The string basis with two distinguish-
able holes includes states |x1,Σ〉 corresponding to unphysical double-occupancies of
holes in the associated microscopic states |Ψ(x1,Σ)〉. Their relative fraction of all
string states N(ℓΣ) of a given length ℓΣ is indicated. The relative number of Trug-
man loop configurations [13] is also shown.

ℓΣ no. of states d(ℓΣ) double-occupancies Trugman loops
1 4 0 0
2 12 0 0
3 36 0 0
4 108 7.4% 0
5 324 0 0
6 972 2.5% 0
7 2,916 0 0.55%
8 8,748 0.91% 1.3%

ally found to be small [13,28]. Although in exceptional cases the small effect of loops can still
dominate, e.g. for the very narrow center-of-mass dispersion of a single hole in the 2D t − J z

model [13,52], we neglect such loops in the following and study only the dominant effects of
string formation. Loop effects can be re-introduced perturbatively in the end [28].

3.1.1 Hilbert space

While the set of string states {|Ψ(Σ)〉} defines an over-complete basis, we approximate our
Hilbertspace and formally define a set of two-hole string states:

|x1,Σ〉 , x1 ∈ Z2, Σ ∈ BL . (4)

Here x1 denotes the location of the first hole in the 2D square lattice, and Σ is the string which
connects x1 to x2 = x1 +RΣ at its opposite end (Fig. 1). The strings Σ can be represented by
the sites of a Bethe lattice (BL), or Cayley tree, with coordination number z = 4, see Fig. 2 (a).
Similar to the construction of the celebrated Rokhsar-Kivelson quantum dimer model [53], we
postulate that the new basis states are orthonormal,

〈x′1,Σ′|x1 ,Σ〉= δΣ,Σ′δx1,x′1
. (5)

Every new basis state is associated with a unique microscopic two-hole state |Ψ(x1,Σ)〉 in
the original t − J z or t − J model. Some states in the new model describe unphysical double
occupancies with holes: in this case the associated state becomes |Ψ(x1,Σ)〉 = 0 (Fig. 1).
The fraction of such strings is relatively small, however, and decreases with increasing string
lengths (Tab. 1).

So far we work in first quantization and assign separate labels to the two holes. Later
(see 3.4) we will generalize our approach to situations with indistinguishable holes, with
bosonic or fermionic statistics.

3.1.2 Effective Hamiltonian

Next we define the effective Hamiltonian Ĥeff in the approximated Hilbert space of the string
model. To this end we require that the matrix elements satisfy:

〈x′1,Σ′|Ĥeff|x1,Σ〉= 〈Ψ(x′1,Σ′)|Ĥ|Ψ(x1,Σ)〉 , (6)
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Figure 2: The hopping part of the effective Hamiltonian Ĥeff
t describes NN tunneling

of holes 1 (t1) and 2 (t2) on the square lattice. The string Σ from hole 1 to 2 changes
accordingly. We illustrate a typical initial state (a), which is coupled to neighboring
string states on the Bethe lattice by t2 (b). The coupling t1 creates a string state
Σ(1) which is a further neighbor of Σ on the Bethe lattice, either by re-tracing (b) or
extending (d) the first string segment.

where Ĥ corresponds to the respective microscopic model Hamiltonian (t − J z , t − J ,...).
As a result of the microscopic nearest-neighbor (NN) hopping t2 of hole 2 at site x2 on the

lattice, we obtain NN hopping on the Bethe lattice (Fig. 2 (b)):

Ĥeff
t,2 = t2

∑

x1

|x1〉〈x1| ⊗
∑

〈Σ′,Σ〉

|Σ′〉〈Σ|+ h.c. . (7)

The NN hopping t1 of hole 1 gives rise to a correlated NN tunneling of x1 and a simultaneous
change of the first string segment of Σ→ Σ(1)(x′1,x1,Σ):

Ĥeff
t,1 = t1

∑

〈x′1,x1〉

∑

Σ

|x′1〉〈x1| ⊗ |Σ(1)(x′1,x1,Σ)〉〈Σ|+ h.c. . (8)

If the first string segment in Σ points along x′1 − x1, it is removed to obtain Σ(1) (Fig. 2 (c));
otherwise, the string is extended by adding a new string segment pointing along x′1−x1 at the
beginning of Σ to obtain Σ(1) (Fig. 2 (d)).

Similarly, we obtain the potential terms Ĥeff
J in the effective Hamiltonian. They do not

change the positions x1,2 of the holes, and we neglect off-diagonal matrix elements (6) for
which Σ′ ̸= Σ. Hence, formally we can write:

Ĥeff
J =
∑

x1

∑

Σ

VΣ |x1,Σ〉〈x1,Σ| , (9)

where VΣ is a function of Σ on the Bethe lattice only. Note that Trugman loops correspond
to local minima in the Bethe lattice potential VΣ, which allows for a systematic tight-binding
treatment of Trugman loops within our model so far, even when t1,2≫ J or Jz [28].

The complete effective Hamiltonian we consider is

Ĥeff = Ĥeff
t,1 + Ĥeff

t,2 + Ĥeff
J . (10)

3.1.3 Linear string approximation

Since the dimension of the string Hilbert space grows exponentially with the maximum string
length ℓmax,

dtot(ℓmax) =
ℓmax
∑

ℓΣ=1

4× 3ℓΣ−1
︸ ︷︷ ︸

=d(ℓΣ)

, (11)
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further approximations are required to make analytical progress. For a general string potential
VΣ, all states in the string Hilbert space are coupled to each other by the tunneling terms. Next,
by simplifying the potential VΣ, many symmetry sectors emerge which are only weakly coupled
and can be described by a simpler effective Hamiltonian that will be derived.

Since we are mostly interested in the regime t ≫ J , we expect that inhomogeneities of VΣ
on the scale of J play a sub-dominant role. Such fluctuations of VΣ from string to string (or
site to site on the Bethe lattice) result from string-string interactions [54], and appear like a
weak disorder potential. We can include their effect on a mean-field level by averaging the
potential over all strings of a given length:

V (ℓ) =
1

d(ℓ)

∑

Σ:ℓΣ=ℓ

VΣ . (12)

The resulting problem is highly symmetric since all branches on the Bethe lattice corresponding
to the same string length are equivalent.

As a further approximation, we can estimate the string-length potential V (ℓ) ≈ VLST(ℓ)
by considering only straight strings in Eq. (12). Since string-string interactions are always
attractive, this linear string theory (LST) estimate also defines an upper bound for the averaged
potential:

V (ℓ)≤ VLST(ℓ) =
dE
dℓ
× (ℓΣ − 1) + g(0)cc δℓΣ,1 +µcc . (13)

Here dE/dℓ denotes the linear string tension, g(0)cc is a nearest-neighbor hole-hole interaction,
and µcc an overall energy shift. The overall energy of the two holes is measured relative to the
undoped parent antiferromagnetic state.

In the case of a microscopic t − J z model, we obtain:

dE
dℓ
= J z , g(0)cc = −

J z

2
, µcc = 4J z . (14)

More generally, we can derive the LST potential by applying the frozen spin approximation
and expressing the potential in terms of local spin-spin correlations of the undoped parent
antiferromagnet, see Refs. [28, 43]. For a doped J1 − J2 spin model on a square lattice, with
NN hopping of the holes, this yields:

dE
dℓ
= 2J1 (C2 − C1) + 2J2

�

C1 + C4 − 2C2

�

, (15)

g(0)cc = J1C1 −
J
4

, (16)

µcc = −8
�

J1C1 + J2C2 −
J
4

�

. (17)

Here J1 and J2 denote the NN and diagonal NNN Heisenberg couplings on the square lattice;
J denotes the strength of the local attraction −J/4n̂in̂j in Eq. (3) and is treated as an inde-
pendent parameter here. The correlators are C1 = 〈ŜiŜi+ex

〉 (NN), C2 = 〈ŜiŜi+ex+ey
〉 (NNN),

C3 = 〈ŜiŜi+2ex
〉 and C4 = 〈ŜiŜi+2ex+ey

〉; they depend on the ratio J1/J2 [55].

3.1.4 Momentum basis

So war we have defined the string model in the real-space basis. Because of the overall trans-
lational symmetry of the model, [Ĥeff, T̂] = 0 where the operator T̂ translates both holes and
the string by a discrete lattice vector, we can also work in the momentum-space basis. We
define the following total momentum states,

|k,Σ〉=
1
p

V

∑

x1

eik·x1 |x1,Σ〉 , (18)
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x
y

Figure 3: The rotational basis consists of superpositions of string states on the Bethe
lattice, defined around a rotational center. There is (a) one m4 quantum number
around the central site, and (b) one m3 quantum number per every node except the
center. Angles νπ/2 are measured relative to the x-axis and λπ/2 relative to the
preceding string segment. Note that in (b) only one branch of the Bethe lattice, with
fixed ν, is shown.

where V = L2 denotes the total area of the square lattice.
By the symmetry, the effective Hamiltonian is block-diagonal, with entries

Ĥeff(k) =
∑

Σ,Σ′
〈k,Σ′|Ĥeff|k,Σ〉 |Σ′〉〈Σ| , (19)

and we can calculate the bound state properties independently at different total momenta k.

3.2 Rotational excitations and truncated basis

In the simplified string potential V (ℓΣ) all strings of a given length are equivalent. This sym-
metry is conserved by the hopping term t2 of the second hole, which leads to delocalization
on the Bethe lattice. Hence, as long as the first hole cannot tunnel, i.e. for t1 = 0, our problem
with an exponentially large Hilbert space can be mapped to a single particle problem on a
semi-infinite one-dimensional lattice ℓΣ = 1,2, ....,∞ in a central potential V (ℓΣ), see [28].
This situation is of great relevance for describing spinon-chargon bound states in an effective
string basis [28,56], as will be discussed further in 3.3.1.

In general, the tunneling of the first hole,∝ t1, will break the symmetry between the string
states, because some couple to longer, others to shorter strings depending on their orientation.
Nevertheless, we find it useful to work in a basis of string states which takes into account the
equivalence of strings when t1 = 0: As we show later, for C4-rotation invariant total momenta
kC4IM (C4IM), even t1 ̸= 0 keeps the symmetry intact. Away from the C4IM, t1 introduces weak
couplings between the symmetric eigenstates, which we will explicitly take into account.

The quantum numbers characterizing the symmetric model correspond to one discrete
rotational eigenvalue for each node in the Bethe lattice [28]. At the first node, around the
central site ℓΣ = 0 in the Bethe lattice, one obtains a discrete C4 rotational symmetry with
eigenvalues exp(im4π/2)where m4 = 0, 1,2, 3. The symmetric states with string length ℓΣ = 1
are

|k,ℓΣ = 1, m4〉=
1
2

3
∑

ν=0

eim4νπ/2|k,ℓΣ = 1,ν〉 , (20)

where νπ/2 denotes the angle of the string segment Σ with the x-axis, see Fig. 3 (a).
Each higher node, around sites on the Bethe lattice corresponding to string length ℓ≥ 1, is

associated with a discrete C3 rotational symmetry. The corresponding eigenvalues are
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...

Figure 4: The truncated basis consists of rotational states with m4 and m(1)3 ≡ m3
quantum numbers only, defined around the first hole (asymmetric approximation).
Later we will symmetrize this basis to treat both chargons on an equal footing. Solid
lines indicate non-zero matrix elements which preserve the rotational symmetries in
a linear string model. The state with ℓΣ = 0 can be formally added, but should be
removed to describe cases where two holes cannot occupy the same site.

exp(im(ℓ)3 2π/3), with m(ℓ)3 = 0, 1,2. The corresponding symmetric states are defined as

|k,ℓΣ, m(ℓ)3 〉=
1
p

3

3
∑

λ=1

eim(ℓ)3 λ2π/3|k,ℓΣ − 1,λ〉 , (21)

where λπ/2 denotes the angle between the previous and last string segment, see Fig. 3 (b).
The most general states are defined by an entire set of angular momentum quantum num-

bers,
m= (m4, m(1)3 , m(2)3 , ...) . (22)

I.e. instead of the original basis states |x,Σ〉, we work in the basis: {|k,ℓΣ,mΣ〉}.
As a final step, we simplify our problem further by working with a truncated set of basis

states. We discard non-trivial m3 rotational excitations on nodes higher than one, i.e. we only
take into account the quantum number m(1)3 and set all m(n)3 = 0 for n ≥ 2. The truncated
basis consists of the states

{|k,ℓΣ, m4, m(1)3 〉} truncated basis , (23)

and allows us to work with very large cut-offs in the string length, see Fig. 4.
The main motivation for discarding higher rotational states is their higher energy in the

purely symmetric limits (at kC4IM or when t1 = 0). By studying the importance of the m(1)3
states within our reduced basis, we obtain an estimate for the effect of higher rotational man-
ifolds in general.

We note that for cases with distinguishable holes, or more generally distinguishable par-
tons, one should place the heavier parton (corresponding to a weaker hopping element) in the
center. Around this first hole, labeled by n = 1, the rotational states can then be defined. In
the case of spinon-chargon pairs in the context of the t − J [30] or t − Jz model [28], which
we discuss in more detail below, this is typically the spinon since t < J(z) [17].

We emphasize that for t1 = t2, by choosing to define rotational states around parton n= 1,
the symmetry between the two partons is explicitly broken in the truncated basis; we will
refer to this ansatz as the asymmetric approximation. Below, in Sec. 3.4, we will show how
(anti-) symmetrization of both cases, with parton n = 1 and n = 2 in the center respectively,
leads to a more accurate truncated basis in the case t1 = t2, going beyond the asymmetric
approximation.
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3.3 Distinguishable partons: Mott-Hubbard excitons

Now we are in a position to further simplify the effective string problem, still assuming distin-
guishable holes and working in the asymmetric approximation. The first step is to calculate
all required matrix elements in Eq. (19) for the truncated basis from Eq. (23).

The string potential is completely diagonal, and we simply get

〈k,ℓ′Σ, m′4, m′3|Ĥeff
J |k,ℓΣ, m4, m3〉= V (ℓΣ) δℓ′Σ,ℓΣδm′4,m4

δm′3,m3
. (24)

The tunneling of the second hole, ∝ t2, is diagonal in the rotational quantum numbers by
construction [28] but changes the string length by one unit. For ℓΣ ≥ 2 we obtain

〈k,ℓ′Σ, m′4, m′3|Ĥeff
t,2|k,ℓΣ, m4, m3〉=

p
3t2

�

δℓ′Σ,ℓΣ−1 +δℓ′Σ,ℓΣ+1

�

δm′4,m4
δm′3,m3

, (25)

where the pre-factor
p

3 =
p

z − 1 related to the coordination number z = 4 of the square
lattice appears. The states with ℓΣ = 1 only have an m4 quantum number and couple to
ℓ′Σ = 2 states, i.e.

〈k,ℓ′Σ, m′4, m′3|Ĥeff
t,2|k, 1, m4〉=

p
3t2 δℓ′Σ,2 δm′4,m4

δm′3,0 , (26)

note that ℓΣ = 0 states are not included here since we assume hard-core holes. Overall, we
obtain for the hopping amplitude J (2)− of the second hole from ℓΣ to ℓΣ − 1,

J (2)− (k; m′4, m′3; m4, m3)≡ 〈k,ℓΣ − 1, m′4, m′3|Ĥeff
t,2|k,ℓΣ, m4, m3〉=

p
3t2 δm′4,m4

δm′3,m3
, (27)

and J (2)+ = (J
(2)
− )
∗ for the reverse process, ℓΣ→ ℓΣ + 1.

More complicated matrix elements∝ t1 are generated by the hopping of the first hole,
which may change both angular momenta m4 and m3. We only need to calculate the matrix
elements going from ℓΣ to ℓ′Σ = ℓΣ − 1, which reduces the calculational workload since the

final state must have m′3 = 0. The remaining non-zero matrix elements J (1)+ = (J
(1)
− )
∗ describe

the reverse process, going from ℓΣ to ℓ′Σ = ℓΣ + 1, and are directly obtained from the former
by complex conjugation. We find from a detailed calculation

J (1)− (k; m′4, m′3; m4, m3)≡ 〈k,ℓΣ − 1, m′4, m′3|Ĥeff
t,1|k,ℓΣ, m4, m3〉

= δm′3,0
t1

4

3
∑

ν=0

ei π2 ν(m4−m′4)χm4,m3
(ν,k) , (28)

where we worked in the string configuration basis to obtain

χm4,m3
(ν,k) =

eiπm4

p
3

3
∑

ν′=1

e−iν′ π2 m4+i 2π
3 m3ν

′−ik·eν−ν′+2 . (29)

In the last expression, we defined the unit vector eλ for λ = 0,1, 2,3 mod 4 to point along
λπ/2 relative to the x-axis, i.e. e0 = ex , e1 = ey , e2 = −ex and e3 = −ey .

Summarizing, we obtain an effective Hamiltonian with the matrix elements calculated
above,

Ĥeff(k) =
∑

ℓΣ

�

∑

m

V (ℓΣ) |ℓΣ,m〉〈ℓΣ,m|

+
∑

m,m′

∑

n=1,2

�

J (n)− (ℓΣ;k;m′;m)× |ℓΣ − 1,m′〉〈ℓΣ,m|+ h.c.
�

�

. (30)

Here the summation over m, m′ is restricted to m4, m(1)3 in our truncated basis; for later pur-

poses we also formally included an ℓΣ-dependence in J (n)− , although we found the expressions
above to be independent of ℓΣ. This Hamiltonian can be easily diagonalized using exact nu-
merical techniques, with large cut-offs for the maximum string length ℓmax.
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3.3.1 Soft-core holes and spinon-chargon pairs

Before proceeding, we note that the formalism introduced above for distinguishable holes is
very general and can be extended to describe string-bound states of any two different partons.
Examples of particular relevance include strongly bound holes in mixed-dimensional bilay-
ers [7,44,45] and one-hole spinon-chargon pairs [17,28–30]. An accurate description of the
latter is important, since their energy relative to the two-hole chargon-chargon string states
determines whether tightly-bound pairs of holes are energetically favorable in an antiferro-
magnet.

In both examples we mentioned, the two partons may occupy the same site. While we
already made an approximation and included states with two partons on one site in the ef-
fective string basis for string lengths ℓΣ > 0, we have not included the ℓΣ = 0 state with two
partons on the same site and without a string. To treat more general parton models, the ℓΣ = 0
state can be easily included in our formalism, however. This leaves the form of the effective
Hamiltonian Eq. (30) unchanged, but the hopping elements now include couplings to ℓΣ = 0
and the potential term V (ℓΣ = 0)|ℓΣ = 0〉〈ℓΣ = 0| has to be added as well.

Still assuming that both partons n= 1, 2 can only tunnel between NN sites on the physical
square lattice, we obtain hopping elements from ℓΣ = 1 to ℓΣ = 0. For the first, central parton
(n= 1) we get

J (1)− (k; m4)|ℓΣ=1→ℓΣ=0 =
t1

2

3
∑

ν=0

eiνπ2 m4 e−ik·eν . (31)

Note that only one rotational index m4 appears since the state |k,ℓ = 0〉 has no rotational
quantum numbers, and the states |k,ℓ= 1, m4〉 at ℓ= 1 have one m4 number.

For the second, orbiting parton (n= 2) we obtain

J (2)− (k; m4)|ℓΣ=1→ℓΣ=0 = 2t2δm4,0 . (32)

In contrast to the other hopping elements, see Eq. (27), this matrix element has strength
2=
p

4 instead of
p

3. This is a consequence of the enhanced connectivity of the ℓΣ = 0 state,
which couples to 4 instead of the usual 3 longer string states [11,28].

Finally, for the spinon-chargon case in an antiferromagnet, it is natural to assume NNN
hopping of the spinon due to spin-exchange processes in the Hamiltonian. An extension of
our formalism to this case has been used in [30], and a self-contained derivation is provided
in Appendix A of this article (see also [56]).

3.4 Indistinguishable holes (partons)

To use the effective parton theory for describing doped holes in the t − J or t − Jz model, we
next consider the case of indistinguishable partons. I.e. the string states must be invariant,
up to an overall sign, if holes n = 1 and n = 2 are exchanged. To treat both partons on equal
footing, we need to go beyond the asymmetric approximation made earlier, where rotational
basis states were defined around parton n= 1.

The required (anti)-symmetrization procedure further complicates the use of the truncated
basis. In this section we will show that a suitable generalization of the truncated basis allows
to keep the rotational quantum numbers, and derive effective Hamiltonians separately for
fermions and bosons. As a result, m4 remains a good quantum number at C4IM.

Together, the obtained fermionic and bosonic eigenstates span the space of distinguishable
partons. When t1 = t2, any bosonic (fermionic) eigenstate we identify also constitutes an
eigenstate of distinguishable partons – however, the use of the (anti-) symmetrized truncated
basis leads to an improved variational energy going beyond the asymmetric approximation
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from Sec. 3.3; there, the rotational basis was defined around just one of the two partons,
breaking the symmetry implied by t1 = t2.

The results of our approach will be presented in the subsequent section 4, which can be
understood without following the technical details derived in the remainder of this section.
However, subsection 3.4.5 may be of interest, where we discuss the relation between effective
bosonic / fermionic string states and the microscopic AFM t− J(z) models composed of bosons
or fermions, respectively.

3.4.1 First quantization formalism

We start by defining the permutation operator which exchanges the labels of the holes,

P̂ |x1,Σ〉= |x2,Σ〉 , (33)

where Σ describes the same string as Σ but starting from the opposite end.
If we consider the case t1 = t2 = t in our model, the Hamiltonian Ĥeff in Eq. (10) com-

mutes with the permutation operator, [Ĥeff, P̂] = 0. Hence every eigenstate belongs to one of
two classes, either fermionic (with P̂-eigenvalue −1) or bosonic (with P̂-eigenvalue +1).

Making use of this symmetry is still challenging, however, due to the exponential size of
the string Hilbert space. Moreover, the string states |k,ℓΣ,m〉 introduced above in general do
not have well-defined exchange statistics, i.e. they are not eigenstates of P̂ . We will discuss
below how this problem can be avoided and proper string-states can be defined.

String-length ℓΣ = 1 states.– The high-symmetry states at the shortest string length ℓΣ = 1
are of particular importance for defining quasiparticle weights of pairs [41] later on. At the
C4IM kC4IM (for the considered square lattice these are kC4IM = 0 and kC4IM = (π,π)) one
obtains

P̂ |kC4IM,ℓΣ = 1, m4〉= (−1)m4 × ei(ex+ey )·kC4IM/2 |kC4IM ,ℓΣ = 1, m4〉, (34)

i.e. these states are purely fermionic / bosonic respectively. Concretely, at kC4IM = 0 the states
m4 = 0, 2 (m4 = 1, 3) are bosonic (fermionic) respectively. Vice-versa, at kC4IM = (π,π) the
states m4 = 0, 2 (m4 = 1,3) are fermionic (bosonic).

It may seem counter-intuitive at first to have (spin-less) fermionic pairs of holes with s-wave
pairing symmetry at k= (π,π). However, the center of mass momentum k= (π,π) effectively
leads to an anti-symmetric wavefunction under exchange of the A and B sublattices. This
ensures correct overall fermionic statistics even in the presence of an s-wave pairing symmetry,
in the effective string model. We will discuss in Sec. 4.1.2 how this relates to pairs in the
microscopic Néel state, which breaks the discrete translational symmetry of the square lattice.

General string states.– For general string states, some additional insights can be gained at
C4IM. For example, we find that the rotational ground states with m= 0 satisfy: (i) all k= 0
states are bosonic,

P̂ |k= 0,ℓΣ,m= 0〉= |k= 0,ℓΣ,m= 0〉 , (35)

and, (ii), the statistics of states at k= π= (π,π) alternates with the string length,

P̂ |k= π,ℓΣ,m= 0〉= (−1)ℓΣ |k= π,ℓΣ,m= 0〉 . (36)

3.4.2 (Anti-) symmetrized truncated basis

As explained above, the rotational basis states generally do not have proper exchange statistics.
To enforce the latter, we can explicitly (anti-) symmetrize the basis states by defining new basis
states:

|k,ℓΣ,m,µ〉= (1+µP̂) |k,ℓΣ,m〉 . (37)
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Here µ = ±1 denotes bosonic (fermionic) states when µ = +1 (µ = −1, respectively). By
restricting states in Eq. (37) to the lowest rotational quantum numbers m, a new truncated
basis with well-defined exchange statistics is obtained. However, the new states are no longer
orthonormal, and we use a Gram-Schmidt procedure to construct an orthonormal basis (ONB)
in the linear space spanned by states in Eq. (37).

Gram-Schmidt procedure.– For each given set of good quantum numbers k, ℓΣ and µ we
use the standard Gram-Schmidt method to construct ONB states by mixing different rotational
states m. Denoting the new ONB states by m̃, we have the general representation

|k,ℓΣ, m̃,µ〉=
∑

m

C̃m,m̃(k,ℓΣ,µ) |k,ℓΣ,m,µ〉 , (38)

with coefficients determined by the matrix C̃(k,ℓΣ,µ). Specifically, we choose

|m̃= 0〉=N0|m= 0〉 ,
...

|m̃〉=Nm̃

�

|m〉 −
∑

M̃<m̃

|M̃〉〈M̃|m〉
�

,

where we dropped all labels k and ℓΣ for simplicity and Nm̃ denotes normalization constants.

Calculating overlaps of string states.– To calculate overlaps between the old and new basis
states, we use the following explicit expression for overlaps between the symmetrized states
defined in Eq. (37):

〈ℓ, m′4, m′3| ℓ, m4, m3

�

= 2δm′4,m4
δm′3,m3

+
µ

4× 3ℓ−1
×

4
∑

ν,ν′=0

ei π2 (νm4−ν′m′4)
3
∑

λ,λ′=1

ei 2π
3 (λm3−λ′m′3)

×
�

∑

Σ: ℓΣ=ℓ
ϕΣ=

π
2 ν
′, ϑΣ=

π
2 λ
′

ϕΣ=
π
2 ν, ϑΣ=

π
2 λ

eik·RΣ +
∑

Σ: ℓΣ=ℓ
ϕΣ=

π
2 ν, ϑΣ=

π
2 λ

ϕΣ=
π
2 ν
′, ϑΣ=

π
2 λ
′

e−ik·RΣ

�

,

(39)

again dropping k and µ labels for simplicity; here we only included m4 and m(1)3 rotational
states. In the last line we sum over all string configurations Σ whose length ℓΣ = ℓ equals the
length ℓ in the considered string sector, and with constraints on the last string segments (see
Fig. 5): ϕΣ denotes the angle of the first string segment starting at the central hole (n = 1)
measured relative to the x-axis; ϑΣ denotes the angle of the second string segment starting
at the central hole (n = 1) measured relative to first string segment; RΣ = x2 − x1 denotes
the vector in the 2D square lattice connecting the first hole at x1 to the second hole at x2; the
angles ϕΣ and ϑΣ are defined like ϕΣ and ϑΣ but starting from the other hole (n = 2), as
shown in Fig. 5.

For maximum string lengths up to around ℓ≃ 13 or slightly larger, the overlaps in Eq. (39)
can be calculated by an exact summation over all string states. For larger maximum string
lengths, Metropolis Monte-Carlo sampling over string configurations can be used to obtain
good estimates for the overlaps.
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Figure 5: The orientations of the first two string segments starting from hole 1 in (a)
(hole 2 in (b)) are labeled by the angle ϕΣ (ϕΣ) relative to the x-axis, and the angle
ϑΣ (ϑΣ) measured relative to the preceding string segment.

3.4.3 Effective Hamiltonian

To obtain the Hamiltonian in the Gram-Schmidt ONB basis |k,ℓΣ, m̃〉, we project the effective
Hamiltonian to the symmetrized subspace,

H̃ = P̃ Ĥeff P̃ , (40)

where P̃ =
∑

ℓΣ

∑

m̃ |ℓΣ, m̃〉〈ℓΣ, m̃|, and directly calculate its matrix elements 〈ℓ′Σ, m̃′|H̃|ℓΣ, m̃〉.
To this end, we first use Eq. (38) to express the ONB vectors in terms of the non-ONB

states. The action of the Hamiltonian on the latter, Ĥeff|k,ℓ,m,µ〉, is known from the case of
distinguishable holes, noting that the (anti-) symmetrization (1 + µP̂) is a linear operation.
This leads to the processes∝ J (n)± (k;m′,m) and V (ℓΣ).

Thus we obtain an expression for H̃|k,ℓ, m̃,µ〉 as a sum over the non-ONB basis states
|k,ℓ,m,µ〉 weighted by coefficients C̃ and couplings J (n)± or V (ℓΣ). This allows us to express
the non-ONB states in terms of ONB states again by

P̃|k,ℓΣ,m,µ〉=
∑

m̃

Cm̃,m(k,ℓΣ,µ) |k,ℓΣ, m̃,µ〉 , (41)

with overlaps
Cm̃,m(k,ℓΣ,µ) = 〈k,ℓΣ, m̃| k,ℓΣ,m〉 . (42)

Finally, this leads to the effective Hamiltonian in the ONB basis. It is most conveniently
expressed by starting from the distinguishable-hole Hamiltonian in square matrix form:

H = V +
�

J− + J+

�

, (43)

where V is a diagonal matrix with entries V (ℓΣ)⊗ 1m. Moreover, J± are upper (lower) block-

band matrices connecting states at ℓΣ and ℓΣ−1 (ℓΣ+1) respectively, and mixing m quantum
numbers in the truncated basis; i.e. the matrix elements of J± are given by J (1)± +J (2)± . Defining

block-diagonal matrices C and C̃ with rectangular blocks Cm̃,m(ℓΣ) and C̃m,m̃(ℓΣ) at each block

of states with string length ℓΣ, we obtain for indistinguishable holes in the ONB basis:

H̃ = C H C̃ . (44)

Note that through the matrices C and C̃ the Hamiltonian H̃ depends on the particle statistics

µ; i.e. different Hamiltonians are obtained for bosonic, fermionic and distinguishable holes.

3.4.4 Quasiparticle weights

For the eigenstates |ψn(k,µ)〉 of the Hamiltonian (44) in the ONB basis, we define the corre-
sponding quasiparticle weights by their overlaps squared with (anti-) symmetrized states at
string length ℓΣ = 1:

Zn(k, m4,µ) = |〈ψn(k,µ)| k, 1, m4,µ
�

|2 . (45)
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This result can be expressed conveniently in terms of the matrices C̃m,m̃ and Cm̃,m and projec-
tors Pm4

ℓ=1 to the string-length ℓ= 1 states with rotational quantum number m4. We obtain:

Zn(k, m4,µ) = 〈ψn(k,µ)|C Pm4
ℓ=1 C†|ψn(k,µ)〉 . (46)

3.4.5 Exchange statistics in microscopic and effective models

So far, our discussion of exchange statistics was only on the level of the effective string model,
where particle exchange is defined through the application on the permutation operator P̂ ,
see Eq. (33). On the other hand, the effective string states |x,Σ〉 can be directly related to
two-hole states |Ψ(x,Σ)〉 in a classical Néel background composed of constituents ĉj,σ, see
Secs. 2 and 3.1. To this end, one starts from the classical Néel state |N〉. Next, the first hole
is created at site x and the second hole is created next to x at R2 = x+δ1 along the direction
of the first string segment in Σ, by applying ĉx+δ1,σ2

ĉx,σ1
|N〉. Then the second hole is moved

around, along the directions δn of subsequent string segments inΣ, by applying hopping terms
∑

σ ĉ†
Rn+δn,σ ĉRn

, where Rn+1 = Rn +δn.
To understand how the exchange statistics µ in the effective string model relates to the

statistics of the microscopic constituents ĉj,σ of the Néel AFM, we start from a parton con-
struction representing the underlying spins as ĉj,σ = ĥ†

j f̂j,σ, subject to the local constraints
∑

σ f̂ †
j,σ f̂j,σ + ĥ†

j ĥj = 1. One can choose different combinations of parton statistics µ f ,h = ±1,
as long as µc = µ f µh, where µc = +1 (µc = −1) if ĉj,σ are bosons (fermions).

The simplest way to map effective string states |x,Σ〉 to microscopic two-hole states
|Ψ(x,Σ)〉 is to choose bosonic spinons µ f = +1, i.e. f̂j,σ are Schwinger bosons, and µh = µc .
The spinons f̂j,σ keep track of how the spin pattern is distorted by the hole motion creating the
string Σ, and since we chose bosonic spinons the order of the spins in the background is irrel-
evant. Exchanging the two chargons ĥx1

ĥx2
= µhĥx2

ĥx1
keeps track of additional minus signs

in case µh = −1. To reflect the resulting exchange statistics µh = µc correctly, the statistics of
the effective string states should equal µ= µc .

Making the opposite choice µ f = −1 and µh = −µc , i.e. choosing fermionic spinons f̂j,σ,
leads to the same result, µ= µc . However, in this case one has to keep track of exchange signs
µ f picked up when spin operators in the background are exchanged, which requires additional
book keeping.

4 Results

We compare the predictions by our string-based model of fermionic hole pairing to fully numer-
ically obtained two-hole spectra (from matrix product states) on four-leg cylinders in Ref. [41].
There we find good agreement for the t − Jz and t − J models, and we discuss how accurately
our string model is able to describe the numerical observations. The main focus in the present
article is on understanding the predictions of our effective model, the accuracy of the truncated
bases we use, and the analytical insights that can be gained from our calculations.

4.1 Two-hole spectra

We start by calculating the two-hole eigenstates along a high-symmetry cut through the Bril-
louin zone in Fig. 6. We compare our results for different statistics of the holes: fermionic
(relevant to pairing in the doped Hubbard model) and bosonic (as a theoretical reference);
the case of distinguishable dopants (relevant to Hubbard-Mott excitons [36]) corresponds to
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Figure 6: Two-hole eigenstates from the truncated string basis calculation. We com-
pare fermionic (red) and bosonic (blue) holes, and show results from the asymmet-
ric approximation (gray). The truncated basis used for the calculations includes all
m4 = 0, .., 3 and m(1)3 = 0,1, 2 sectors, and string lengths up to ℓmax = 11. We con-
sidered t/Jz = 3 and a string potential for an Ising background.t/Jz=3, lmax=13, k=0.99 Pit/Jz=3, lmax=13, k=0.01 Pi
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Figure 7: String-length distributions for fermionic (red) and bosonic (blue) holes
in (a) the ground state around k = 0 and (b) in the lowest-energy state around
k = (π,π). Predictions by the asymmetric approximation are also shown (gray).
The rotational quantum numbers of all states can be extracted by analyzing spec-
tral weights, and our results are indicated in the legend: s-wave (m4 = 0), p-wave
(m4 = 1), d-wave (m4 = 2). Note in (a) the bosonic prediction coincides with the
asymmetric approximation. Throughout we used the truncated basis including all
m4 = 0, .., 3 and m(1)3 = 0,1, 2 sectors, and string lengths up to ℓmax = 13. We con-
sidered t/Jz = 3 and a string potential for an Ising background.

the combined bosonic and fermionic eigenstates. As a theoretical reference, we also show
results from the less accurate asymmetric approximation, i.e. without (anti-) symmetrizing
rotational states in the truncated basis. Other parameters are identical, we assume t/Jz = 3
and calculate the string potential Eq. (13) for a t − Jz model i.e. using Eq. (14) for all cases.

We observe several striking features, discussed in more detail shortly: (i) in all cases, the
lowest energy state has zero momentum k= 0; (ii) the ground state of distinguishable holes is
bosonic and is captured by the asymmetric approximation; (iii) its energy is significantly below
the lowest-energy fermionic state; (iv) the lowest-energy states are highly dispersive, with an
effective mass scaling as Mhh∝ 1/t; (v) in addition to several strongly dispersing bands, we
observe numerous exactly flat bands; (vi) while their energy differs between different hole
statistics, they are always present; (vii) in the fermionic case, the flat band constitutes the
lowest-energy state over a significant portion of the Brillouin zone, except around k= 0.
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Figure 8: Two-hole spectra for distinguishable holes connected by a string, calcu-
lated using the asymmetric approximation, along a high-symmetry cut through the
Brillouin zone of the square lattice. The plots are obtained from a spectral decom-
position and using our semi-analytical theory with a truncated basis including all m4

and m(1)3 sectors, up to a maximum string length ℓmax = 11. We considered t/Jz = 3
and a string potential for an Ising background.

Some comments are in order: Regarding (i), we note that for the fermionic case, the
dispersive k= 0 band is only slight lower in energy than the lowest flat band. This competition
is found to be even more pronounced for smaller values of t/Jz (not shown). For t ≪ Jz we
find that the dispersive state becomes degenerate with the flat-band state at k= 0.

Regarding (ii), note that the lower variational energy at k ̸= 0 of the bosonic ground state
demonstrates higher accuracy of the (anti-) symmetrized states as compared to the asymmetric
approximation.

Regarding (iii), it has been pointed out previously by Trugman [13] that the fermionic sign
effectively frustrates the hopping Hamiltonian of two fermionic holes connected by a string.
We believe this explains the increase of their energy relative to the bosonic or distinguishable
holes, as observed in Fig. 6.

Regarding (iv), it has long been understood that the ability of one hole to follow the other
may lead to a highly mobile bound state with bandwidth∝ t in the t− Jz model. An estimate
for the effective mass, M−1

hh = t
p

3, was derived for t ≫ Jz from a string model in Ref. [44]. The
inclusion of quantum fluctuations in the t − J model is expected to cause additional polaronic
dressing of these states and a corresponding mass enhancement.

Regarding (v), the existence of flat bands corresponding to Mhh→∞ in an effective string
model has been predicted by Shraiman and Siggia [14], although they used a slightly different
procedure to truncate their string basis. This suggests that flat bands of hole pairs are not an
artifact but robust excitations of the system. Indeed, in our recent numerical work [41] we
found strong evidence for the existence of flat bands of hole pairs in the t − Jz model.

As in many flat-band systems, we believe that destructive quantum interference between
different paths underlies the formation of self-localized flat-band states. Notably, we checked
that this does not limit the string length of the pair: As shown in Fig. 7, the string-length
distribution of the dispersive bound state around k = 0 (a) is qualitatively similar – with a
broad peak around ℓΣ = 3 – to the flat-band bound state around k = (π,π). While different
statistics of the holes and m4 quantum numbers usually correspond to small differences in the
string-length histograms, their overall shape is always similar with an average string-length
〈ℓΣ〉 ≈ 3− 4 for t/Jz = 3.

Regarding (vii), we note that additional polaronic dressing by spin-waves [31] or phonons
in a solid is expected to lower the energy of the flat-band state further compared to the dis-
persive band, since the large recoil energy∝ t associated with the dispersive band suppresses
polaronic dressing. Moreover, strong interactions between the pairs may favor occupying the
self-localized flat-band states, where localization costs no kinetic energy while the interaction
energy can be minimized.
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Figure 9: Two-hole spectra as in Fig. 8, but for fermionic holes. Again, all m4 and
m(1)3 sectors were included and a maximum string length ℓmax = 11 was used. We
considered t/Jz = 3 and a string potential for an Ising background.

Figure 10: Two-hole spectra as in Figs. 8, 9, but for bosonic holes. Again, all m4 and
m(1)3 sectors were included and a maximum string length ℓmax = 11 was used. We
considered t/Jz = 3 and a string potential for an Ising background.

4.1.1 Spectral weights

So far we have only calculated the energies of string-paired eigenstates in Fig. 6. To reveal the
nature of different states, we calculate their spectral weights Zn(k, m4) for different hole statis-
tics, i.e. their overlaps squared with string-length ℓΣ = 1 states of the same symmetries, see
Eq. (45). For presentation purposes, the obtained spectral lines are broadened with a Gaus-
sian of width σ = Jz/5, and the integrated spectral weight per peak equals the corresponding
quasiparticle weight. Our results are shown as momentum cuts for different values of m4 in
Figs. 8-10.

Before we discuss our results, we emphasize that while the overlaps with string-length one
states of a given momentum k and rotational quantum number m4 are well-defined, the paired
eigenstates only have a well-defined rotational eigenvalue for C4IM. For general k /∈ C4IM, the
momentum k explicitly breaks the C4 symmetry and different rotational states can hybridize.
Moreover, the A- and B- sublattice degree of freedom on the square lattice allows to realize s/
d-wave states of indistinguishable fermions (p / f -wave states of indistinguishable bosons) at
general k, whose relation to microscopic states in a Néel AFM we discuss further in subsection
4.1.2.

In Fig. 8 we show our results for the case of distinguishable holes, relevant e.g. to models
of Mott excitons [36] or mixD bilayer pairing [44]. In the s-wave channel (a) we observe only
dispersive bands and a collapse of spectral weight at high energies around k = (π,π). The
latter effect was recently found numerically in a microscopic bilayer model [44]. In the other
channels m4 = 1,2, 3 shown in (b)-(d) we observe a mix of many flat and highly dispersive
bands, where d-wave states are flat around k = (π,π) and dispersive around the corners of
the Brillouin zone k= (0,π).

In Fig. 9 we show the same plot for fermionic holes. A first striking difference is the
complete suppression of spectral weight around k = 0 (for s- and d-wave pairs) and around
k = (π,π) (for p- and f -wave pairs). This follows directly from the fixed and alternating
statistics of the string-length ℓΣ = 1 states at those momenta, derived in Eq. (34). Moreover,
we find in (a) that the collapse of spectral weight at high energies in the s-wave channel around
k = 0 remains a robust feature for fermionic holes. This has been observed in earlier exact
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diagonalization calculations for the t − J model [57] and confirmed by our recent numerical
DMRG study [41] for the t − J and t − Jz models.

At low energies in Fig. 9 we only find spectral weight in the p-, d- and f -wave channels,
corresponding to the lowest-energy flat band. As we discuss further below, the prediction of
a flat band with d-wave character around k= (π,π) is consistent with earlier exact diagonal-
ization results reporting narrow d-wave and p-wave peaks at low energies [57], and further
corroborated in [41]. In addition we predict a strongly dispersive band at low energies around
k= 0 which contributes only little spectral weight, however.

In Fig. 10 we show spectra for bosonic holes. As in the fermionic case, some regions have
zero spectral weight owing to the nature of string-length one states, see Eq. (34). In the bosonic
case, as a consequence, no collapse of spectral weight at high energies can be observed. At low
energies, the spectral weight is dominated by the lowest dispersive band. At higher energies,
flat bands with p-, d- and f -wave character can be observed.

The spectrum for distinguishable holes, but with t1 = t2 = t equal, can be obtained by
the sum of the fermionic and bosonic spectrum. Qualitatively, this procedure matches our
results in Fig. 8; but note that the data in Fig. 8 is based on the less accurate asymmetric
approximation, which leads to some quantitative deviations.

4.1.2 Relation to pairs in a Néel-ordered state

To understand the relation of the two-hole spectra calculated in Figs. 8 - 10 to studies of
pairs in the t − J(z) or Hubbard models, see e.g. [57], note that we have so far worked in
an effective parton basis. Namely, the spin background was assumed to define a featureless
vacuum state and our starting point was the two-hole string basis |x1,Σ〉 defined in Eq. (4).
Since a proper two-hole spectral function should connect the undoped state (our vacuum) to
the paired eigenstates, the structure of the former matters.

To understand the effect of the spin background, we consider starting from a classical Néel
state |N〉, i.e. one of the symmetry-broken ground states of the 2D Ising model. We will assume
that ↑ (↓) spins occupy the A (B) sublattice and have bosonic or fermionic statistics charac-
terized by µ. This state breaks the lattice-translational symmetry, which leads to momenta
well-defined only within the 2-site magnetic Brillouin zone (MBZ). Nevertheless, within the
effective string model with its one-site unit-cell, Umklapp scattering from outside to within the
MBZ is not possible. Hence the two-hole bandstructure within the MBZ is obtained by simply
folding the full dispersion into the MBZ.

In this process the rotational quantum numbers remain unchanged. As a result we can
identify the following string-model states |k, m4〉 for any statistics µ

|k= (π,π), m4〉 ≡ 2|k= 0, m4〉N , (47)

with states |k, m4〉N in the Néel background (proof below). I.e. for fermions, where only
m4 = 0, 2 states exist at k = (π,π), we obtain the corresponding s- and d-wave peaks around
k = 0 in the MBZ; for bosons, where only m4 = 1,3 states exist at k = (π,π), we obtain the
corresponding p- and f -wave peaks around k= 0 in the MBZ.

To show Eq. (47), we note that the two-hole string state corresponds to

|k, m4〉=
1
p

V

∑

j

eik·jĥ†
j

∑

i:〈i,j〉

ei π2 m4ν〈i,j〉 ĥ†
i |N〉 , (48)

where π
2ν〈i,j〉 = arg(i− j) is the angle of i relative to j. The hole creation operator acts on the

Néel state as

ĥ†
j |N〉= ĉj,↑|N〉 , j ∈ A ,

ĥ†
j |N〉= ĉj,↓|N〉 , j ∈ B ,
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and the state |k, m4〉 becomes

|k, m4〉=
1
p

V

∑

j∈A

eik·j ĉj,↑

∑

i:〈i,j〉

ei π2 m4ν〈i,j〉 ĉi,↓|N〉+
µ
p

V

∑

i∈A

ĉi,↑

∑

j:〈i,j〉

eiπ2 m4(ν〈j,i〉+2)ĉj,↓e
ik·j|N〉 . (49)

In the second line we exchanged the order of the operators, which yields the exchange sign µ,
and used that ν〈i,j〉 = ν〈j,i〉 + 2 mod 4. At k= (π,π)≡ π we obtain

|π, m4〉=
1−µeiπm4

p
V

∑

j

ĉj,↑

∑

i:〈i,j〉

ei π2 m4ν〈i,j〉 ĉi,↓|N〉 , (50)

which directly yields the result in Eq. (47).

4.2 String-based pairing mechanism

Finally we discuss implications of our results for the binding energies Ebdg defined in Eq. (1).
Within the effective string model introduced in this article, we calculate the one-hole spinon-
chargon energy E1 and compare it to the energy E2 of two holes bound by a string. Throughout
we assume that the underlying Hamiltonian is of t−Jz type, with pure Ising interactions in the
background. As in the two-hole case we ignore (Trugman-) loop effects [13] or self-interactions
of the strings [54].

For more complicated microscopic models, such as the SU(2)-invariant t − J model, cor-
rections to the binding energy must be expected. While our quantitative predictions in this
case are of limited use, they nevertheless allow us to identify relevant competing processes
that tend to support or prevent pairs of holes from forming a tightly bound state.

4.2.1 Binding energy in t − Jz model

In Fig. 11 we show the negative binding energy −Ebdg in units of t, plotted as a function of
(Jz/t)2/3. When −Ebdg < 0, the bound state of two holes connected by a string is energetically
favorable and we predict pairing. This is the case for bosonic, distinguishable and fermionic
holes when Jz is sufficiently large. Indeed, in the t − Jz model, the asymptotic binding energy
in the tight-binding limit Jz ≫ t is Ebdg = Jz/2 (see discussion below). Within our approxi-
mations this value is closely approached for fermionic holes already at Jz = t, where bosonic
and distinguishable holes are predicted to be significantly more strongly bound. As shown in
Appendix B, see Fig. 19, all hole-types approach the asymptotic value Jz/2 when Jz/t ≳ 10.

Our effective theory clearly shows a significant increase of the binding energy for bosonic or
distinguishable holes, as compared to the case with fermionic statistics. We attribute this to the
frustrating effect of fermionic minus signs identified first by Trugman [13], which are picked
up when two indistinguishable fermionic holes are exchanged and the string is completely
reversed.

Bosonic and distinguishable holes have identical binding energies, which is correctly pre-
dicted by the asymmetric approximation. This is due to the bosonic nature of bound states
within the asymmetric approximation at the dispersion minimum around k = 0 which we
discussed above. Because all rotational quantum numbers m are conserved within the linear
string approximation introduced in Sec. 3.1.3, we can solve the case with distinguishable holes
at k = 0 for much larger cut-offs ℓmax within the asymmetric approximation (which is exact
in this case) and test how strongly Ebdg depends on the maximum string length ℓmax. To this

end in Fig. 11 we compare results formally including all m4 and m(1)3 sectors with variable
ℓmax up to 13 to exact results at m = 0 with ℓmax = 103. We find that for (Jz/t)2/3 > 0.2,
corresponding to Jz/t > 0.09 the finite-string length results with ℓmax = 13 are reasonably
well converged.
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Figure 11: Binding energy from the effective theory, predicted for the t − Jz model.
We used the truncated basis including all m4 = 0, .., 3 and m(1)3 = 0,1, 2 sectors,
and string lengths up to ℓmax (as indicated in the plot). The string potential was
calculated for an Ising background. Around k = 0 there is no coupling to rotational
states for the indistinguishable holes and a linear string theory allows to work with
much longer maximum string lenghts ℓmax = 103.
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Figure 12: Discussion of the underlying pairing mechanisms. (a) In the tight-binding
limit J(z) ≫ t, kinetic contributions can be ignored. In this case the distortion of
the Néel background can be minimized while also gaining maximal energy from the
nearest-neighbor attraction term in the t − J(z) model. (b) In the strong coupling
limit the hole’s kinetic energy dominates, leading to a powerful pairing mechanism
when one hole retraces the string of the other. This mechanism is supported by an
effective spinon-chargon (sc) repulsion with a geometric origin [29] and suppressed
by the hard-core chargon-chargon (cc) repulsion.

For fermionic holes in the strong coupling regime Jz ≪ t, we find that the binding energy
approaches zero within our effective theory. In this regime larger values of ℓmax would be
required to reach convergence, and thus we cannot draw a final conclusion whether holes are
bound or unbound for (Jz/t)2/3 > 0.2 (i.e. Jz/t > 0.09).

4.2.2 Pairing mechanisms for holes

For pairing to be energetically favorable one requires an intricate balance of different micro-
scopic effects influencing the one- and two-hole ground state energies E1,2 entering the expres-
sion for the binding energy (1). To shed more light on the underlying binding mechanism, we
highlight various microscopic processes that either support or prevent pairing.
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Tight-binding limit: J(z)≫ t.– In this case, hole motion can be ignored and the energeti-
cally most favorable locations of the holes can be determined, see Fig. 12 (a). On one hand,
the nearest-neighbor attraction −J(z)/4n̂in̂j in the microscopic models (2), (3) favors tightly
bound hole pairs. In addition, each hole breaks up antiferromagnetic bonds which contributed
an energy J(z)C1 in the undoped ground state. Ignoring any back-action of the localized holes
on their spin environment, one finds that neighboring holes feel an attractive binding energy
J(z)(1/4− C1). In the Ising case this result is exact, yielding Ebdg = Jz/2 as claimed above.

Strong coupling limit: Jz ≪ t.– In this case, the kinetic energy of the holes plays an im-
portant role. As long as string formation is energetically favorable and the Nagaoka effect is
suppressed [22], the leading order kinetic energy per hole is E(0)kin = −2teff. Here teff =

p
z − 1t

is the effective hopping constant between string states on the Bethe lattice, and z is the coor-
dination number of the underlying physical lattice [11, 28]. This asymptotic zero-point con-
tribution to the energy per hole is identical for spinon-chargon and chargon-chargon pairs,
hence canceling exactly in the binding energy Ebdg [44].

Since the string potential is assumed to be linear in the string length within our theory,
see Sec. 3.1.3, the next-to-leading order contribution to the energy En takes the universal
form [44]

En = −2teff +αn(nt)1/3J2/3
(z) +O(J(z)) , (51)

for n= 1,2-holes states. The factor of n= 2 renormalizing the tunneling in the two-hole state
reflects the reduced mass mred = m/2= 1/(2t) describing the relative motion of the hole pair
attached to the string. This result can be directly obtained from Eq. (30); or see Ref. [44] for a
simplified derivation. The pre-factors αn > 0 are non-universal constants, generally depending
on n, which are determined by the details of the string potential.

From Eq. (51) we obtain a powerful binding mechanism if we assume α1 ≈ α2 = α. In
this case,

Ebdg =
�

2− 21/3
�

α t1/3J2/3
(z) > 0 , (52)

asymptotically when t ≫ Jz , see also Ref. [44]. This binding energy scales with a non-trivial
power of t1/3 and thus can easily exceed J(z) deep in the strong coupling limit. Indeed, for
bosonic and distinguishable holes in Fig. 11 we confirm the scaling predicted by Eq. (52) for
Jz/t → 0, where Ebdg/t ∝ (Jz/t)2/3 as expected. Plotted on a linear scale over Jz/t, see
Fig. 19 in Appendix B, we find a clear curvature of Ebdg/t deep in the strong coupling regime.

In general, the coefficients α1 and α2 are not identical. For example, as discussed above
the fermionic statistics lead to an effective repulsion between holes, which can cause an in-
crease of α2. Indeed, for fermionic holes at strong coupling due to finite-size effects we cannot
identify a clear asymptotic behavior of the binding energy in Fig. 11. Over a significant range
of values Jz/t our results are consistent with Ebdg∝ Jz , see also Fig. 19 in Appendix B, which
corresponds to α1/α2 ≈ 2−2/3. In the following we discuss two further effects which influence
the coefficients αn, as summarized in Fig. 12 (b).

Hard-core repulsion of holes.– A single hole forming a spinon-chargon bound state can
realize the zero-length ℓΣ = 0 string state, corresponding to a spinon and a chargon on the
same lattice site. In our effective description of two holes, we explicitly excluded such states
to account for the hard-core nature of the holes. This effective chargon-chargon repulsion
generally leads to a larger value of α2 > α1, suppressing the tendency to pairing.

In Ref. [44] we proposed another microscopic model with two layers, which allows to
realize [45] distinguishable hole pairs with opposite layer indices. In this system, the hard-
core constraint of the holes is effectively removed and one can realize α1 = α2. By comparison
to numerical DMRG simulations we confirmed the strong pairing expected by Eq. (52) in that
model due to the hole’s gain in kinetic energy [44]. This demonstrates the importance of
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finding other mechanisms which allow to overcome the strong repulsion of hard-core holes,
either by increasing α1 or decreasing α2.

Spinon-chargon repulsion in dimensions d > 1.– One such mechanism is the geometric
spinon-chargon repulsion at strong coupling J(z)≪ t described in Ref. [29]. This effect is due
to a decreased zero-point kinetic energy around the string-length ℓΣ = 0 state, which leads
to a localized repulsive interaction of strength ∝ t. This in turn causes α1 to increase and
approach α2, mimicking the hard-core repulsion of two holes and thus supporting pairing in
the strong-coupling regime.

Quantitatively the spinon-chargon repulsion can be best understood by considering the ro-
vibrational ground state with m= 0. As shown in Sec. 3 (see also Appendix A), the latter can
be described by a hopping problem on a semi-infinite lattice ℓΣ = 0, 1,2, ... with an effective
hopping strength teff =

p
z − 1t in the bulk, and t0 =

p
zt between |ℓΣ = 0〉 and |ℓΣ = 1〉. To

capture edge effects around ℓΣ = 0, this problem can be mapped to the even-parity sector of
a hopping problem on an infinite one-dimensional lattice ℓ = ...,−2,−1,0, 1,2, ... [29], with
tunneling strength t1 =

p

z/2t between |ℓ = ±1〉 and |ℓ = 0〉 and teff otherwise. When
t ≫ J(z) this yields an effective repulsive interaction around ℓ= 0 with strength

gsc(z) =
�p

z − 1−
Æ

z/2
�

t , (53)

with gsc(z) > 0 for z > 2, i.e. in dimensions d ≥ 2. In one dimension, the effect is absent,
indicating a tendency to avoid pairing in d = 1.

Spinon dynamics.– Finally we note that spinon dynamics can also contribute to the energy
of the one-hole spinon-chargon state. In the t − Jz case the effective spinon hopping is due
to Trugman loops [13] which lead to a negligibly small spinon kinetic energy a small fraction
of Jz [28, 52] for any ratio t/Jz . In the t − J case, the spinon hopping can lead to a further
reduction of the spinon-chargon energy on the order J , which provides another mechanism
suppressing pairing for experimentally realistic ratios of t/J .

5 Summary and Outlook

In summary, we have studied an effective model of a pair of mobile dopants bound together
by a strongly confining string. Our work is motivated by the physics of holes moving in an
antiferromagnet, which is believed to be at the heart of many strongly-correlated electron
systems. While the model applies most directly to mobile dopants in an Ising antiferromagnet,
we believe it also has relevance upon including spin-flip terms or in entirely different settings
such as in a strongly confined regime of lattice gauge theories with dynamical matter where
the strings correspond to gauge fields. We also studied the effect of exchange statistics of
the charge carriers, which allowed us to extend our model to Hubbard-Mott excitons with
distinguishable dopants (a doublon bound to a hole) or a theoretical scenario with bosonic
spins featuring antiferromagnetic interactions.

To study the nature of the bound states predicted by the effective string model, we analyzed
their ro-vibrational excitation spectra with full momentum resolution. This allowed us not
only to reveal their binding energies, but more importantly gives access to the pair dispersion
relations. Of the latter we revealed two types of bands: One, strongly dispersive bands, where
one dopant retraces the string of the other giving rise to high-mobility of strongly bound pairs,
even in situations where an isolated single dopant would feature a strongly renormalized mass.
Second, flat bands, where the dopants still form a bound state with a strongly fluctuating
average distance, but where destructive quantum interference effects suppress any center-of-
mass motion of the pair. Such flat-band states of pairs have previously been mentioned [14]
but, to our knowledge, never been analyzed in greater detail.
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The main results of our work can be summarized as follows. For fermionic holes doped
into a Néel state, most directly related to the problem of high-Tc superconductivity in cuprates,
we reveal a low-lying flat band corresponding to a pair with d-wave symmetry. Only in the
direct vicinity of the Γ -point in the Brillouin zone we found a strongly dispersive paired state
with s-wave symmetry. While the fate of these states upon including fully SU(2)-invariant
spin-exchange terms remains to be clarified, the prospect of forming flat, or nearly-flat d-wave
pairs at low energies suggests that they may be relevant for understanding competing phases
featuring charge localization, such as stripe [58] and pair density wave [59] states. Thereby
our analysis sheds new light on the question about the origin of superconductivity and possible
connections to other systems, such as twisted bilayer graphene, believed to feature nearly flat
bands.

For bosonic and distinguishable pairs of dopants, most relevant to Hubbard-Mott excitons,
we found a stronger tendency towards pairing than in the fermionic case. We believe this is
due to the frustrating effect of the fermionic exchange sign on the charge’s kinetic energy [13].
In the spectra of bosonic and distinguishable dopants we revealed a strongly dispersive lowest-
energy state with s-wave pairing symmetry, at energies significantly below the first flat-band
bound state. We analyzed the underlying pairing mechanism in some detail, and predict a uni-
versal scaling of the binding energy |Ebdg| ∝ t1/3J2/3 for bosons and distinguishable charges
in the strong-coupling regime. For fermions, in contrast, we revealed a reduced tendency to-
wards pairing and due to finite-size effects the asymptotic behavior of Ebdg at strong couplings
remains to be clarified.

Our work sets the stage for future extensions. In particular, it will be important to in-
clude the effects of quantum fluctuations, i.e. spin-flip terms, in the surrounding antiferro-
magnet. Starting from the effective string model developed here, the so-called generalized
1/S-expansion technique [28] can be used to capture such effects as additional polaronic
dressing of the bound states with magnons. For the strongly dispersive bands we found here,
only relatively weak renormalization by magnon dressing can be expected to occur due to
the large recoil energy associated with magnon emission from a pair. On the other hand, the
flat band states with a localized center-of-mass are expected to be more strongly renormal-
ized by magnons, and we anticipate that a weak dispersion can be induced. This picture is
consistent with our recent DMRG results [41]. Another future direction includes the study of
next-nearest neighbor hopping terms t ′ in the microscopic Hamiltonians and how they affect
the bound states we describe: Recent numerical studies [60] suggest a strong influence of t ′

terms on the binding energies of holes, which warrants a microscopic theoretical explanation.
Another noteworthy assumption we have made is to focus on tightly bound pairs of charges

connected by a string. On the other hand, and as described in the text, individual charges can
also form spinon-chargon bound states. By including magnon dressing of the latter, long-range
effective interactions between these one-hole states can also be induced. Such effects were
studied using effective field theory methods and have been shown to give rise to other types of
bound states, with a character entirely different from the tightly-bound chargon-chargon pairs
described in this article [61]. Exploring such states, and their connection to the tightly-bound
string states discussed here, will be a worthy future endeavor.
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A Theory of spinon-chargon bound states

In this Appendix1 we present a string-based model of spinon-chargon bound states in a 2D AFM
described by the fermionic t−J Hamiltonian. We extend the formalism introduced in the main
text to include NNN spinon hopping terms. Although the following calculation largely follows
the treatment of parton pairs presented in the main text, we will provide a self-contained
discussion and derivation.

The formalism we develop includes the momentum dependence of the spinon-chargon
bound states, thus improving previous theoretical models based on geometric strings [28,43]
by including spinon dynamics beyond the strong-coupling limit. Our predictions based on the
theoretical model presented below have previously been shown to yield very good agreement
with fully numerically obtained rotational spectra of individual holes, see Ref. [30].

A.1 Model

We include strong spin-charge correlations by working in the effective Hilbert space obtained
by the geometric string construction [28]. The corresponding basis states are labeled by the po-
sition of the spinon xs in the 2D square lattice, and the stringΣ along which spins are displaced.
The chargon (spinon) is located at the end (beginning) of the stringΣ. HereΣ= {e1,e2, ...,eℓ}
denotes a sequence of steps en = ±ex ,y without direct re-tracing, i.e. en+1 ̸= −en; more con-
veniently, string states Σ can be represented by the sites of a Bethe-lattice, or Cayley tree, with
coordination number z = 4.

Every spinon-chargon basis state |xs,Σ〉 has a microscopic representation by a quantum
state |ψ(xs,Σ)〉 in the t − J model, defined by

|ψ(xs,Σ)〉= ĜΣ
∑

σ

ĉxs,σ|Ψ0〉 , (54)

where ĉj,σ is a microscopic fermion operator at site j with spin σ. Further, |Ψ0〉 denotes the
ground state of the undoped Heisenberg model and the operator ĜΣ displaces all spins along
the string Σ while simultaneously moving the hole [43].

The geometric string states |ψ(xs,Σ)〉 form an over-complete and non-orthogonal basis of
the one-hole t− J Hilbert space. However, to a good approximation we may assume that most
of the relevant string states are orthonormal [43]. This motivates our definition of the effective
spinon-chargon Hilbertspace, which is spanned by the set of orthonormal basis states |xs,Σ〉
with

〈xs,Σ|x′s,Σ
′〉= δΣ,Σ′δxs,x′s

. (55)

Note that our choice of the Hilbert space is similar to the non-retracing string approximation
proposed by Brinkman and Rice [12], but in addition we include the spinon degrees of freedom
xs.

The effective Hamiltonian Ĥ describing spinon-chargon bound states can be obtained by
calculating matrix elements of the microscopic t − J Hamiltonian, 〈ψ(xs,Σ)|ĤtJ |ψ(x′s,Σ

′)〉.
1We note that the results in this Appendix have previously been discussed in another preprint by the same

authors [56], but have not been published in another journal.
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The hopping part∝ t yields tunnelings between nearest-neighbor sites 〈Σ,Σ′〉 on the Bethe
lattice:

Ĥc
t = −t
∑

〈Σ,Σ′〉

|Σ〉〈Σ′|+ h.c. , (56)

independent of the spinon position.
The spin-exchange terms∝ J⊥ in ĤtJ introduce spinon dynamics. Assuming for simplicity

that |Ψ0〉 is given by a classical Néel state along z, we obtain next-nearest neighbor tunneling
of the spinon [43] which is correlated with a re-organization of the string:

Ĥs
J =

J⊥
2

∑

xs,Σ

∑

(e2,e1)

′
|xs + e2 + e1〉〈xs| ⊗ |Σe2,e1

〉〈Σ| . (57)

Here the sum Σ′ is over consecutive links e2 ̸= −e1 for which the spins on sites xs + e1 and
xs + e1 + e2 are anti-aligned for the given string configuration Σ; the string Σe2,e1

is obtained
by adding or removing the first two steps e1 and e2 from the original string Σ (see Ref. [43]
for a discussion).

The remaining spin-exchange terms∝ Jz , J⊥ in ĤtJ give rise to spinon-chargon interac-
tions,

Ĥsc
J =
∑

Σ

VΣ|Σ〉〈Σ| ≈
∑

Σ

V (ℓΣ)|Σ〉〈Σ| . (58)

In the second step we assume that the string potential VΣ depends only on the length of the
string ℓΣ (linear string approximation). We calculate V (ℓΣ) by considering straight strings,
which yields

V (ℓΣ) =
dE
dℓ
ℓΣ + g0δℓΣ,0 +µh . (59)

The linear string tension dE/dℓ, g0 and µh can be expressed in terms of the correlations in the
undoped parent AFM, see [43].

A.2 Symmetries and quantum numbers

The effective Hamiltonian defined in the spinon-chargon Hilbert space,

Ĥ = Ĥc
t + Ĥs

J + Ĥsc
J , (60)

is manifestly translationally invariant, [Ĥ, T̂µ] = 0. The translation operator leaves the string

state unchanged and shifts the spinon position, T̂µ = e−iP̂s·eµ where µ = x , y . Hence, we can
label eigenstates by the spinon momentum ks in the lattice.

Furthermore, the underlying t − J model has an exact Ĉ4 discrete rotational symmetry,
which carries over to the effective Hamiltonian: [Ĥ, Ĉ4] = 0. In the new Hilbert space, Ĉ4
rotates the chargon position x (the string configuration Σ) around the origin in the lattice (of
the Bethe lattice). Hence, eigenstates can also be labeled by m4 = 0, 1,2, 3 corresponding to
eigenvalues exp(im4π/2) of Ĉ4.

In general, Ĉ4 and T̂µ do not commute and we cannot simultaneously assign linear and an-
gular momentum quantum numbers. Exceptions require momenta ks for which
Ĥ(C4ks) = Ĥ(ks). In particular, this is the case for C4-invariant momenta (C4IM), i.e. when
the rotated momentum C4ks is equivalent to ks modulo the reciprocal lattice vector,

C4kC4IM
s ≡ kC4IM

s modG . (61)

The reciprocal lattice vectors depend on the unit cell. In the square lattice with a one-site
unit cell, the resulting C4IM are: kC4IM

s = (0, 0) and (π,π). In the AFM phase, where the
sub-lattice symmetry is spontaneously broken, the C4IM of the magnetic unit-cell are

kC4IM
s = (0, 0), (π, 0), (0,π), (π,π) . (62)
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...

Figure 13: Truncated rotational string basis. For fixed center-of-mass momentum ks
of the spinon-chargon pair, we work with a truncated string basis. At string lengths
ℓΣ = 0,1 all states are included, and labeled by their discrete C4 and C3 angular mo-
mentum quantum numbers m4 and m3 = m(1)3 in the Bethe lattice. For longer strings

with length≥ 3 we only include m4 and m3 excitations and set higher m(>1)
3 = 0. The

generally allowed matrix elements for hole (solid lines, t) and spinon (dotted lines,
J⊥) hopping are indicated (in the case of the spinon, only those involving ℓΣ = 0, for
clarity).

While the anti-nodal points are C4 invariant, we emphasize that the nodal points
(±π/2,±π/2), where the ground state of the magnetic polarons is located, are not C4 in-
variant.

If we make the linear string approximation in Eq. (58), the system at strong coupling
t ≫ J⊥ has a series of additional discrete Ĉ3 rotational symmetries around the nodes of the
Bethe lattice different from the origin; see main text or Ref. [28] for a detailed discussion of
the resulting m3 eigenvalues.

A.3 Solution within linear string approximation

To solve the effective Hamiltonian (60) for the linear string potential (59), we start from the
following basis,

|ks,ℓΣ,m〉=
1
p

V

∑

xs

eiks·xs |xs,ℓΣ,m〉 . (63)

Here ℓΣ and m = (m4, m(1)3 , m(2)3 , ...) denote the string length and angular momenta on the
Bethe lattice to label string configurations Σ [28]; V = L2 is the area of the physical lattice.

We truncate the basis by neglecting higher angular momenta beyond m3 ≡ m(1)3 ; i.e. we

consider only states with m(n)3 = 0 for n ≥ 2, see Fig. 13. This is motivated by the strong

coupling result (J⊥ = 0) that non-zero rotational quantum numbers m(n)3 ̸= 0 lead to higher
spinon-chargon interaction energies [28]: This is easily understood by noting that non-zero
values m(n)3 ̸= 0 correspond to eigenvectors which are superpositions of strings with lengths
≥ n+ 1, see Ref. [28].

Since ks is conserved, the effective Hamiltonian in the truncated basis is fully defined by
its matrix elements

Hℓ′,m′4,m′3;ℓ,m4,m3
(ks) = 〈ks,ℓ

′, m′4, m′3
︸ ︷︷ ︸

m′

|Ĥ|ks,ℓ, m4, m3
︸ ︷︷ ︸

m

〉 . (64)

The latter are relatively easy to calculate if we make use of symmetries: The chargon hopping
Ĥc

t conserves all angular momenta m on the Bethe lattice [28] and couples only ℓ and ℓ± 1.
It is sufficient to consider one direction – we choose ℓ→ ℓ′ = ℓ− 1 – since the other follows

29

https://scipost.org
https://scipost.org/SciPostPhys.14.5.090


SciPost Phys. 14, 090 (2023)

from the condition that Ĥ is hermitian. From Ĥc
t we obtain:

Hc
ℓ−1,m′;ℓ,m = −tδm′,m ×

¨p
z − 1 , ℓ≥ 2 ,
p

z , ℓ= 1 ,
(65)

independent of ks, where z = 4 is the coordination number of the lattice.
For the spinon hopping Eq. (57) only transitions between ℓ→ ℓ± 2 are allowed and the

angular momenta m can change in this process. A full calculation for our lattice with z = 4
yields

Hs
ℓ−2,m′;ℓ,m = J⊥ ×

¨

1p
3
[Λs

mδm′,0 −Φs
m′,m] , ℓ > 2 ,

1
2δm′,0Λ

s
m , ℓ= 2 .

(66)

Here we first defined

Λs
m(ks) =

1

2
p

3

3
∑

ν=0

3
∑

ν′=1

eiνm4
π
2 eiν′m3

2π
3 e−iks·eν′ ,ν , (67)

with eν′,ν re-tracing the first two string segments, starting to count at the spinon position;
νπ/2 denotes the angle of the first string segment relative to the x-axis (i.e. ν= 0, 1,2,3) and
(ν′−2)π/2 denotes the angle of the second string segment relative to the first (i.e. ν′ = 1, 2,3).
In complex notation (i.e. real and imaginary parts of εν′,ν ∈ C represent the x and y compo-
nents of eν′,ν ∈ R) it holds:

εν′,ν = eiνπ2 + eiνπ2 ei(ν′−2)π2 . (68)

We further defined for longer strings:

Φs
m′,m(ks) =

1
4

3
∑

ν=0

ei(m4−m′4)ν
π
2 χs

m(ks,ν) , (69)

with:

χs
m(ks,ν) =

1

2
p

3

3
∑

ν′=1

eiν′m3
2π
3 e−im4ν

′ π
2 e−iks·eν′ ,ν−ν′ . (70)

By diagonalizing the effective Hamiltonian Hs(ks) in the truncated basis (Fig. 13), we ob-
tain all low-energy spinon-chargon bound states and their dispersion relations. The ground
state is adiabatically connected to m = 0 without rotational excitations at kC4IM

s ; within our
simplified spinon model Eq. (57), it has a degenerate energy minimum at the edge of the mag-
netic Brillouin zone including nodal and anti-nodal points. This dispersion closely resembles
the ground state magnetic polaron dispersion, although it misses the small energy splitting
between nodal and anti-nodal points [43]. The low-energy excited states have non-trivial
rotational quantum numbers, and their dispersion relations feature a richer structure. The
spinon hopping causes quantum interference effects between rotationally excited states which
are degenerate in the absence of spinon hopping.

At the kC4IM
s of the magnetic Brillouin zone, see Eq. (62), the Hamiltonian Hℓ′,m′;ℓ,m(kC4IM

s )
is block-diagonal, with blocks labeled by m4 = 0, 1,2,3. At ks = 0 the block with m4 = 0
also conserves the m3 quantum numbers, since χs

m4=0,m3
(0,ν) ∝ δm3,0. One further finds

that χs
m4 ̸=0,m3=0(0,ν) is equal for all m4 = 1, 2,3, which means that the three lowest-order

rotational states with m4 ̸= 0, m3 = 0 are degenerate at ks = 0.
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Figure 14: String model results. (a) We show the lowest energy bands predicted
by the spinon-chargon model for t/J = 3 and J⊥ = J . A cut along high-symmetry
directions in the Brillouin zone is shown. The full solid lines correspond to the full
truncated basis; the light dotted lines correspond to a further truncated basis with
only m4 ̸= 0 included. Colors indicate how states connect to rotational (blue) and
vibrational (red) bands at k = 0. (b) We show the expectation value and variance
(error bars) of the rotational eigenvalues m̂4 (black) and m̂3 (yellow) for the ground
state of the spinon-chargon model; parameters as in (a).

A.4 Results

Now we apply the spinon-chargon model introduced above to calculate ro-vibrational eigen-
states. In Fig. 14 (a) we show all low-energy spinon-chargon eigenstates along high-symmetry
cuts through the Brillouin zone. Although well-defined C4 rotational quantum numbers m4 can
only be assigned at C4IM, we can still clearly identify sets of states which are adiabatically con-
nected to the rotational or vibrational states at the C4IM. The ro-vibrational ground state is
non-degenerate, lowest red band in Fig. 14 (a). Then we find a band consisting of three rota-
tional states, which correspond to the non-trivial rotational states m4 ̸= 0 at the C4IM, lowest
blue band in Fig. 14 (a). At k= 0≡ π modG, the latter are exactly degenerate.

To estimate the effect of higher rotational excitations with m(n)3 ̸= 0, in Fig. 14 (a) we also
compare our results to model calculations where we truncate the basis further and include
only m4 states while setting all m(n)3 = 0. For the lowest-lying vibrational and rotational states,

we observe a modest shift to lower energies when m(1)3 ̸= 0 states are included. The ground

state at k = 0 ≡ π modG is an exception: As described in the previous section, all m(n)3 = 0
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Figure 15: Meson Regge trajectories from the spinon-chargon model introduced here.
We calculate the excitation energy gaps ∆E from the ground state from the spinon-
chargon model at the nodal point, k= (π/2,π/2), solid lines. These predictions are
compared to our numerical DMRG results (data points), see Ref. [30]. The lowest
excitations can be identified as rotational (blue) and vibrational (red) by the depen-
dence of their energy gap on J/t. Higher excited states (gray) show similar, though
less pronounced behavior.

quantum numbers are explicitly conserved at this point in the model, and the ground state
energy is exactly obtained.

We find that the third band of states (solid blue) we identify in Fig. 14 (a) consists of
eight states, some of which are degenerate. This band is only obtained if m(1)3 excitations are
included. Indeed, this number of states was predicted at strong coupling for higher-order rota-
tional excitations with m(1)3 = 1, 2 (each of those has four distinct m4 states) [28]. Away from

the C4IM, the non-trivial m(1)3 ̸= 0 excitations weakly hybridize with the purely vibrationally
excited state (2S) and we observe small avoided crossings. The counting suggests that the en-
ergetically highest shown three states correspond to the rotationally excited, m4 ̸= 0, versions
of the 2S state, with a vibrational quantum number n= 2.

In Fig. 14 (b) we calculate the expectation values 〈m̂4〉 and 〈m̂3〉 for the ground state. The
error bars denote the variance. As expected, we find that m4 = 0 is a good quantum number
(zero variance) at C4IM of the magnetic Brillouin zone. At k = 0 ≡ π modG, even m3 = 0 is
a good quantum number with zero fluctuations. All other momenta show some hybridization
of m4 and m3 quantum numbers.

In Fig. 15 we apply the string model to calculate Regge trajectories [30] at the nodal point.
We find that the energy gap∆E to the three lowest-lying excitations scales linearly with J , the
hallmark signature expected of rotational states. We also compare our results to numerical
DMRG calculations from Ref. [30]. Without any free fit parameters, we find that the energy
gap to the first vibrational excitation (2S) is accurately predicted by the spinon-chargon model.

Because of the hybridization of different m3 and m4 states with each other, the model
predicts a splitting between different states from the lowest rotational excitation. While the
overall scale of this splitting is correctly predicted, we find numerically from DMRG a smaller
than expected energy gap to the rotational states. As the DMRG data, the model predicts a non-
degenerate lower rotational line and a two-fold degenerate higher rotational line. However, we
found that the distribution of spectral weight in the model differs from the DMRG results [30].
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Figure 16: Two-hole spectrum as in Fig. 6, showing only data for fermionic holes.
We compare results from the truncated basis with all m4 and m(1)3 sectors (dark dots)

to results from a further reduced basis including only m4 sectors but m(n)3 = 0 for all
n (light dots). In both cases we used a maximum string length ℓmax = 11, and we
considered t/Jz = 3 with a string potential for an Ising background.

(0,0) ( ,0) ( , ) ( /2, /2) (0,0)
k

-12

-10

-8

-6

-4

E k / 
J

t/J=3 , l max=11 , dE/dl=1 J , m3, m4 , J/4 n i nj incl.

(0,0) ( ,0) ( , ) ( /2, /2) (0,0)
k

-1

0

1

2

3

E k / 
J

t/J=1 , l max=11 , dE/dl=1 J , m3, m4 , J/4 n i nj incl.

(0,0) (π,0) (π,π) (0,0)

En
er

gy
 E

, i
n 

un
its

 o
f J

z

En
er

gy
 E

, i
n 

un
its

 o
f J

z

(0,0) (π,0) (π,π) (0,0)

t/Jz=3, lmax=11 t/Jz=1, lmax=11

bosonic

fermionic
asym. approx.

bosonic

fermionic
asym. approx.

Figure 17: Two-hole spectrum as in Fig. 6, but for t/Jz = 1. We used a maximum
string length ℓmax = 11, and assumed a string potential for an Ising background.
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Figure 18: Two-hole spectrum as in Fig. 6, comparing the previous t − Jz results to
spectral lines calculated for a string-tension Eq. (16) calculated for a weakly doped
t − J model (with J2 = 0). We assumed t/Jz = 3 (t/J = 3) and used a maximum
string length ℓmax = 11.
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Figure 19: Negative binding energy −Ebdg as shown in Fig. 11, but plotted linearly
over Jz/t and including larger values of Jz > t. We used a maximum string length of
ℓmax = 13.

B Additional results for two holes

In this Appendix we present additional numerical checks and results for two holes that broaden
our understanding of the truncated basis method developed in the main text.

In Fig. 16 we demonstrate that the inclusion of m(1)3 states in the truncated basis leads to
a significant shift of some eigenenergies, in particular of the flat bands and for large momenta
around k= (π,π). In contrast, around the ground state k= 0, the inclusion of m(1)3 has no or
only little effect. We checked and obtained similar behavior for bosonic and distinguishable
holes.

In Fig. 17 we show eigenenergies of the two-hole Hamiltonian for different statistics as in
Fig. 6 of the main text, but for smaller t/Jz = 1. Our results are qualitatively unchanged, but
in the fermionic case we observe a closer energetic competition of the lowest-energy k = 0
state with the lowest fermionic flat-band state.

In Fig. 19 we show the binding energy, calculated from the effective string theory in a t−Jz
model. We used the same data as in Fig. 11 but included larger values of Jz/t on the linear
x-axis.
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