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Sequential flows by irrelevant operators
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Abstract

We explore whether one can T T deform a collection of theories that are already T T -
deformed. This allows us to define classes of irrelevant deformations that know about
subsystems. In some basic cases, we explore the spectrum that results from this proce-
dure and we provide numerical evidence in favor of modular invariance. We also study
the flow of the classical Lagrangian for free bosons and free fermions under successive
deformations. Some of the models found by sequentially flowing are likely to have in-
teresting holographic interpretations.
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1 Introduction

The T T deformation is an interesting irrelevant deformation of quantum field theories in two
dimensions [1–3]. The T T operator is constructed from the following quadratic combination
of stress-energy tensors,

T T (x) = lim
y→x

�

Tµν(x)Tµν(y)− Tµµ (x)T
ν
ν (y)

�

. (1)

It is universal in the sense that it requires little more than translation invariance. It is natural to
wonder what other tractable irrelevant deformations might exist. Analogues of the form J1J2
have been studied where J1 and J2 are conserved currents, including higher spin currents.
This work is more exploratory in nature: our aim is to see what happens when we deform
theories with subsystems that are already themselves deformed. We will provide evidence for
the existence of theories which do not follow from the original reasoning that leads to the T T
deformation. For example, the leading irrelevant deformation is not a scalar operator built
from conserved currents of the theory.

The nature of a T T -deformed theory is currently mysterious. Quantizing the theory on a
cylinder of radius R gives an energy spectrum which satisfies the inviscid Burgers’ equation:

∂

∂ λ
En(R,λ) = En(R,λ)

∂

∂ R
En(R,λ) +

Pn(R)2

R
. (2)

Here En are the energies and Pn are the quantized momenta. If Pn = 0, the equation reduces
to ∂λEn = En∂REn; in the absence of shocks, this equation admits an implicit solution:

En(R,λ) = En (R+λEn(R,λ), 0) . (3)

On the other hand if the seed theory is conformal, equation (2) can be solved explicitly for
general Pn,

En(λ) =
R

2λ

 √

√

1+
4λEn

R
+

4λ2P2
n

R2
− 1

!

. (4)

For the good sign of the deformation (λ > 0), the high-energy density of states is Hagedorn and
the energies are real. This signals some kind of non-locality in the theory, perhaps analogous
to the non-locality found in string theory. Note that the ground state energy, E0, for a unitary
CFT is negative. For sufficiently large λ, the ground state energy will become complex so there
is a bound:

λ≤
R

4|E0|
. (5)

Beyond this inequality, the high-energy density of states has passed the point of the Hagedorn
phase transition and the torus partition function is typically no longer convergent.

For the bad sign (λ < 0), the situation is considerably more mysterious. Integrating the
inviscid Burgers’ equation to find the deformed spectrum always encounters a shock singu-
larity for an infinite number of sufficiently large initial energies. This happens regardless of
how small one chooses λ. After encountering the singularity, the energy given by the formal
solution (4) becomes complex and multi-valued. It is not at all clear that using the implicit
solution (3) is sensible after reaching the singularity. At this point one needs some prescrip-
tion to define the spectrum, assuming the theory exists at all. Often in the fluids literature, a
physically motivated conservation equation weaker than the inviscid Burgers’ equation (2) is
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imposed [4]. It would be very interesting if some analogue of that procedure can be found for
quantum field theory.

In this discussion, we will not need to assume the theory makes sense for λ < 0, but
we will occasionally use deformations with this sign in intermediate steps, or even in a final
flow, as long as two criteria are satisfied. The first criterion is some reasonable prescription
for determining the final energy spectrum. The second criterion is that the final deformed
energies are real for some range of deformation parameters.

One of the basic features of local quantum field theory is that given a collection of theories,
one can tensor the theories together. Imagine tensoring two local quantum field theories to-
gether. One might wonder whether we can define an irrelevant deformation that couples the
two theories together in a way that knows about the subsystems. Something like T1T2 rather
than the original T T deformation, which is agnostic to any subsystem structure.

This turns out to be closely related to the following question: can one T T deform a col-
lection of theories with each already T T -deformed? In one case, the answer is clear. For a
single theory, we can continuously perturb by the good sign T T operator because that is how
the deformation is essentially defined. Since the deformation preserves translation invariance,
there is no issue with defining the operator at each point along the flow. As a first case, we
explore sequential deformations of a single theory in section 2.

To define T1T2, let us restrict to seed theories which are conformal so we can use the
explicit energy formula (4) for the seed energy spectrum. Take CFT1

λ1
and CFT2

λ2
, where each

theory is deformed with parameter λ1 or λ2, respectively. Tensor these two theories together.
We should be able to now deform the tensor product CFT1

λ1
⊗CFT2

λ2
to obtain a theory which

we denote as
¦

CFT1
λ1
⊗CFT2

λ2

©

λ3
. The first order in (λ1,λ2,λ3) deforming operator is,

λ3

�

(T1 + T2)(T1 + T2)
�

+λ1T1T1 +λ2T2T2 . (6)

In writing this operator, we are only using the undeformed initial stress-energy tensors. If we
choose λ3 = −λ1 = −λ2 then this operator is

λ3

�

T1T2 + T1T2

�

. (7)

It is not at all clear that the operator in (7) exists beyond first order in λ3. The individual
operators T1 and T2 do not have any immediate definition once one T T deforms the combined
system because only the energy and momentum of the total system is conserved. Yet the
procedure of sequentially deforming that we described would seem to define some theory,
whose leading order deformation might be taken to be (7) perhaps only in the special limit
where λ3 = −λ1 = −λ2 are infinitesimal. Visually, the procedure we have in mind is depicted
in Figure 1.

At this stage, we can try to determine the energy spectrum of
¦

CFT1
λ1
⊗CFT2

λ2

©

λ3
. Even

though CFT1
λ1

might have a complex energy spectrum for λ1 < 0, the additional deformation of
the combined theory might restore real energies for some range of the deformation parameter.
That is what seems to happen when studying combinations like J T + T T , where J T alone
always has complex energies for any choice of deformation parameter [5–8]. Let us very
briefly summarize what we find for the case of a bipartite system:

• For λ1 > 0,λ2 > 0,λ3 > 0, we find a real energy spectrum with a bound on how large
the flow parameters can become before the ground state energy goes complex. This is
completely analogous to the constraint on the good sign deformation of a single theory
given in (5). We also present some numerical evidence in favor of modular invariance
of the resulting spectrum. This case is explored in section 3.1.
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¦

CFT1
λ1
⊗CFT2

λ2

©

λ3

CFT1
λ1
⊗CFT2

λ2

CFT1
λ1

CFT2
λ2

CFT1 CFT2

λ1

⊗

λ2

⊗

λ3

Figure 1: Sequentially deforming two CFTs.

• For λ1 > 0,λ2 > 0,λ3 < 0, we always find complex energies. Depending on the relative
amounts of good sign versus bad sign flows, there can be a finite or infinite number of
complex energies. This case is explored in section 3.2.

• For λ1 < 0,λ2 < 0,λ3 > 0, we find that in specific cases like λ3 = r|λ1| with λ1 = λ2
the spectrum can be all real when r ≥ 2. There is a more intricate and interesting phase
structure for r < 2, described in section 3.3, when the theory has complex energies.

We also explore cases with λ2 = 0 in section 3.4. In section 4, we study the flow equation for
the classical Lagrangian in the case of two free bosons and in the case of two free fermions.
While a single flow takes a free boson to the gauge-fixed Nambu-Goto action, the second flow
generates a kind of interacting theory of multiple strings. It would be interesting to explore
the relation of this deformation with other T T -inspired deformations of string theory, like the
case studied in [9].

Models of potential holographic interest

While our discussion here is mainly focused on quantum field theory, we cannot resist com-
menting on some specific cases that are of potential interest for holography. Take a specific
example of AdS3/CFT2 duality. A possible holographic interpretation of CFT2 deformed by the
wrong sign T T flow has been offered in [10]. The interpretation is a kind of cutoff AdS space-
time. However, this deformed CFT2 has an infinite number of complex energies, which makes
its interpretation as a field theory unclear. If one tensors together two such theories and then
deforms the combination with a sufficiently large good sign flow then our analysis suggests
the resulting theory is free of any immediate pathologies. It might be possible to interpret this
procedure in terms of wormhole physics along the lines of [11–13]. For such an endeavor, it
is likely one will need a more complete understanding of the holographic interpretation of the
good sign T T -deformed CFT2.1

1Some progress has been made in interpreting the holographic good sign T T deformation as a change of bound-
ary conditions for the 3d bulk fields, either in metric [14] or Chern-Simons variables [15]. See also [16–19] for
related analyses in the dimensionally reduced setting where boundary conditions are modified for 2d bulk fields
dual to a (0+ 1)-dimensional T T -deformed quantum mechanics.
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¦

CFT1
λ1
⊗CFT2

λ2
⊗CFT3

λ3

©

λ4

CFT1
λ1
⊗CFT2

λ2
⊗CFT3

λ3

CFT1
λ1

CFT2
λ2

CFT3
λ3

CFT1 CFT2 CFT3

λ1

⊗ ⊗

λ2 λ3

⊗

λ4

Figure 2: Deforming the tensor product of three ‘level 1’ deformed theories.

A more robust holographic proposal has been offered in [20, 21]. This involves a kind
of single trace analogue of the good sign T T deformation, although a precise definition of
the deforming operator is unknown. The holographic interpretation involves changing the
spacetime from asymptotically AdS to asymptotically linear dilaton. One could again consider
the wrong sign for the single trace deformation. In the bulk, this has been discussed in [22].
The field theory should have the same pathologies as the conventional wrong sign double-trace
T T deformation. One could try a similar cure for this theory, as described above, by tensoring
two such theories together and flowing the combination by a sufficient amount of good sign
double trace T T . We should stress that this case is interesting in its own right simply from a
field theory perspective since it involves a mix of single trace and double trace deformations.

Conventions

As a matter of convention, we will denote dimensionless energies and parameters by variables
with a tilde. Explicitly for a theory on a cylinder of size R,

eλ=
λ

R2
, eE = ER , eE = ER . (8)

Future directions

It seems likely that we are only scratching the surface of a large class of non-local theories.
For example, one could relax constraints like Lorentz invariance, or consider higher spin de-
formations. Even if one restricts to Lorentz invariant theories and only considers sequential
flows by T T operators, there are many interesting possibilities.

Imagine, for example, that we begin with three seed theories. The direct analogue of
the bipartite case is to flow each one individually and then flow the tensor product. This is
pictured in figure 2. We can view the final step as deforming the tensor product of three ‘level 1’
deformed theories.

In this case, we could alternatively perform the procedure depicted in figure 3. The final
step can be viewed as deforming the tensor product of a ‘level 2’ deformed theory with a
‘level 1’ deformed theory.
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n
¦

CFT1
λ1
⊗CFT2

λ2

©
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⊗CFT3
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o

λ5

¦

CFT1
λ1
⊗CFT2

λ2

©

λ3
⊗CFT3

λ4

¦

CFT1
λ1
⊗CFT2

λ2

©

λ3
CFT3

λ4

CFT1
λ1
⊗CFT2

λ2
CFT3

CFT1
λ1

CFT2
λ2

CFT1 CFT2

λ1

⊗

λ2

⊗

λ3 λ4

⊗ ⊗

λ5

Figure 3: Deforming the tensor product of a ‘level 2’ deformed theory with a ‘level 1’
deformed theory.

This kind of construction can clearly be extended to N theories in many ways with poten-
tially interesting large N limits. The most straightforward generalization is to flow the tensor
product of N ‘level 1’ deformed theories along the lines of figure 4.

2 Deforming a Single Theory

We want to understand what kind of energy spectrum results from solving (2) for examples like
the sequence of T T deformations depicted in figure 1. As a warm up case, let us first consider
a single theory deformed by two successive T T deformations. Although this is a well-studied
example, the structure seen in this case will help illuminate what we find in examples that
involve multiple systems. We will examine three cases from most conservative and most likely
to result in a unitary theory to more speculative.

For simplicity, let us consider the zero momentum sector using a seed theory which is a
CFT. To avoid confusion, we will introduce three different symbols for the energies at each
step of the deformation process:

en
λ1−→ En

λ2−→ En . (9)

That is, en = en(R) are the energies in the totally undeformed CFT, En = En(R,λ1) are the
energies after the first deformation step, and En = En(R,λ1,λ2) are the final energies after
both deformations.
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¦

CFT1
λ1
⊗ · · · ⊗CFTn

λn

©

λn+1

CFT1
λ1
⊗ · · · ⊗CFTn

λn

CFT1
λ1

· · · CFTn
λn

· · ·

CFT1 · · · CFTn

λ1 λn

⊗

λn+1

⊗ ⊗

Figure 4: Deforming the tensor product of N ‘level 1’ deformed CFTs.

2.1 Sequential good sign deformations

As we saw in equation (4), after the first deformation step by parameter λ1 > 0, the energies
are given by

En(λ1) =
R

2λ1

�√

√

1+
4λ1en

R
− 1

�

. (10)

We now deform the theory with energies (10) again, this time by parameter λ2 > 0. Since
the new initial theory is no longer conformal, we cannot simply use the result (4) again to
find the final energies after the second deformation step. However, since we are restricting to
the zero momentum sector, we are free to use the implicit solution (3) to the inviscid Burgers’
equation, which we reproduce here for convenience:

En(R,λ1,λ2) = En

�

R+λ2En,λ1

�

. (11)

Because (11) instructs us to replace all instances of the cylinder radius R, we must restore the
dependence of the CFT energies en on R. In any unitary CFT one has states with energies,

en =
∆n +∆n −

c
12

R
≡
αn

R
, (12)

where (∆n,∆n) are the conformal dimensions of local operators, and we have introduced the
notation αn for brevity. We are also assuming c = c for simplicity. Then the intermediate
energies with all R-dependence made explicit are given by

En(λ1) =
R

2λ1

�√

√

1+
4λ1αn

R2
− 1

�

. (13)

Equations (11) and (13) give rise to the implicit relation

En =
R+λ2En

2λ1

 √

√

√

1+
4λ1αn

(R+λ2En)
2 − 1

!

, (14)
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which can be rearranged as

(2λ1 +λ2)En + R=
q

(R+λ2En)
2 + 4λ1αn . (15)

Squaring both sides of this constraint then gives a quadratic equation for the final energies En
whose solution is

En =
R

2(λ1 +λ2)

�√

√

1+
4(λ1 +λ2)αn

R2
− 1

�

. (16)

We see that (16) is exactly of the form (13) except with the deformation parameter λ1 replaced
by the sum λ1 +λ2. In particular, first deforming by λ1 > 0 and then deforming by λ2 > 0 is
the same as deforming by the sum λ1 +λ2 all at once.

2.2 Good sign followed by bad sign

As before, flowing first with the good sign gives energies En with the square root form (10). We
now flow by λ2 < 0. Do we get a real sensible spectrum? In the analogy with fluid mechanics,
the flow in λ is a flow in time. Viewed this way, the question is how far back can we flow in
‘time’ before we hit a singularity. Certainly if λ2 is much larger than λ1 we expect the theory
to behave like bad sign T T . The issue is whether any amount of backward flow is problematic
or a finite amount is permissible.

The implicit solution (3) of the Burgers’ equation is the undeformed seed energy evaluated
at a radius that is energy-dependent: R̃ = R+λ2En(R,λ1,λ2). Following the discussion in [3,
23], one kind of singularity develops when ∂R̃R= 0. This occurs when

1−λ2
∂ En

∂ x
(x ,λ1)

�

�

�

�

x=R̃c

= 0 , (17)

where the critical radius is located at Rc = R̃c −λ2E(R̃c ,λ1). Solving for this critical radius in
the specific case of a two step flow with λ1 > 0 and λ2 < 0 gives,

R̃2
c = −

αn(2λ1 +λ2)2

λ1 +λ2
, 2λ1 +λ2 < 0 , (18)

R2
c = −4αn (λ1 +λ2) . (19)

Note that there is no solution for R̃c unless 2λ1 +λ2 < 0. We hit a shock singularity when Rc
has a positive real solution so we want to restrict to R> Rc .

This is one condition for a good implicit solution. If one starts with CFT data and flows
once, this is sufficient because the only singularity of the initial CFT energy in the complex
R-plane is a pole at R= 0. Since we are looking at multi-step flows, our initial data has a more
complicated analytic structure. For example, after the λ1 flow the initial data has square root
branch points seen in (13). There is also no remaining pole singularity at R = 0. In general
this is a difficult problem to study analytically [24]. Our primary tool for exploring solutions
of the inviscid Burgers’ equation will be numerics.

Avoiding any shock region

From (16) with positive energy αn > 0, we find the bound

|λ2| ≤ λ1 . (20)
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At the point of equality, we have flowed forward and backward by the same amount. It seems
reasonable that we have arrived back at the undeformed spectrum in that case. Note there is no
bound from (18) because we never reach a sufficiently large λ2. The other bound follows from
considering the ground state α0 < 0. For the initial flow by λ1, we had a bound that λ1 ≤

R2

4|α0|
.

The most conservative approach is that we impose this strong constraint and completely avoid
any shock region. In this case, the final constraints are |λ2| ≤ λ1 ≤

R2

4|α0|
.

Entering and exiting a shock region

There is another interesting possibility in this two step flow. Suppose we permit ourselves
to travel past the singularity in the initial flow forward by taking λ1 >

R2

4|α0|
. We still assume

that (10) applies giving a complex multi-valued deformed ground state energy at the first step.
We could simply declare that our prescription for treating the flow back by λ2 corresponds to
using the implicit solution again, as we have done in the conservative analysis. In this case
the backward flow might ‘cure’ the complex ground state energy.

We can check whether this is sensible by taking either complex root for the energy of the
ground state in the shock region as initial data for the flow backward:

E0(λ1) =
R

2λ1

�

±i

�

�

�

�

�

√

√

1−
4λ1|α0|

R2

�

�

�

�

�

− 1

�

, λ1 >
R2

4|α0|
. (21)

In the region where the solution (13) gives real energies, there is no ambiguity in the branch
of the square root. Demanding that λ1 → 0 give the initial energy fixes the branch to be the
positive root. Once we cross the branch point and the energy becomes complex, we have to
impose a prescription about how to continue past the singularity into the shock region.

There are two choices of root given in (21). The implicit equation for the flow back by an
amount |λ2| depends on the choice of root. To recover a real energy, one must flow back out
of the shock region, which requires:

|eλ2| ≥ eλ1 −
1

4|α0|
. (22)

With this prescription, we preserve the full spectrum of energies satisfying (16) with no con-
straint on λ1. The only price we pay is that small energies might be complex until λ2 < 0
satisfies (22). We are still left with the question of defining the theory with a finite number
of complex energies if we do not satisfy (22) but do satisfy λ1 + λ2 ≥ 0. If we fail to satisfy
even λ1 +λ2 ≥ 0 then we are back in the bad sign situation of an infinite number of complex
energies. Perhaps additional ingredients along the lines of [25] might result in a well-defined
theory for cases with complex energies. The most conservative option is to simply avoid the
shock region entirely.

2.3 Bad sign followed by good sign

The final case to consider is to first flow by λ1 < 0 followed by a flow with λ2 > 0. Let us
take the same approach as our prior discussion, and try to use the implicit equation to define
these sequential flows. Regardless of the magnitude of λ1, the high energy states are largely
complex after the first flow. Let us take

λ2 = r|λ1| , (23)

and ask what happens for different ranges of r.
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The r < 1 phase

From the implicit solution (16), we expect most high energy states to remain complex. We sim-
ply have not flowed ‘forward’ enough by positive λ2 to cure the complex spectrum. Numerics
confirm this picture.

The r ≥ 1 phase

For r = 1, we expect the backward then forward flow to return us to the initial undeformed
theory. The solution to the two step flow (16) shows this is the case as long as we are careful
about correlating the implicit equation with the branch of the square root determining the
complex energy. In this case, the only bound is not to flow too far forward and make the
ground state complex,

(r − 1)|λ1| ≤
R2

4|α0|
. (24)

Otherwise we have to again deal with a theory with a finite number of complex energies.
Although this was a straightforward algebraic exercise, it demonstrates that a T T deforma-

tion by positive λ can cure a spectrum with an infinite number of complex energies, at least in
this simple case. One might have thought that a theory with infinitely many complex energies
is an unsuitable seed, and that deforming it with any kind of operator would generically lead
to another sick theory. However, we have now checked that applying a T T deformation to
this pathological seed theory can actually reverse the pathology and generate a final deformed
theory with a reasonable spectrum; in this case as long as λ2 > |λ1|.

Finally we note that the analysis of this section assumed that Pn = 0 so that we could use the
implicit solution to the Burgers’ equation. However, the full solution with non-zero Pn in (4)
has an additional term proportional toλ2P2

n in the argument of the square root. Since this extra
term is strictly non-negative, it can only improve the behavior of the deformed spectrum, in the
sense that states which have real energies for Pn = 0 will also have real energies when Pn ̸= 0.

3 Deforming Multiple Theories

Next we will repeat the simplified analysis of section 2 in the case where we tensor together
T T -deformed systems as a first step and then deform by the total T T operator of the combined
system as the second step. This is how we can generate a deformation like T1T2 that knows
about subsystems.

As in the preceding discussion, we will restrict to the zero momentum sector for simplicity
and consider a seed theory which is the tensor product of two CFTs:

CFTseed = CFT1 ⊗CFT2 . (25)

The undeformed energies of CFTseed will be written as en,m. Each such energy is the sum of
two energy eigenvalues, one in CFT1 and one in CFT2:

en,m = e(1)n + e(2)m . (26)

The energies e(1)n , e(2)m take the form (12), so we will introduce constants αn,βm and write

e(1)n =
αn

R
, e(2)m =

βm

R
. (27)
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Now we apply a T1T1 deformation with parameter λ1, only to the theory CFT1 with ener-
gies e(1)n . Likewise, we apply a T2T2 deformation with parameter λ2 to theory CFT2. The total
deformed theory is still a tensor product of the two deformed CFTs, and thus its energy levels
are given by the sum of the deformed energies in the two tensor product factors. We write
these total deformed energies as

En,m(R,λ1,λ2) =
R

2λ1

�√

√

1+
4λ1αn

R2
− 1

�

+
R

2λ2

�√

√

1+
4λ2βm

R2
− 1

�

. (28)

For the last deformation step, we will take the tensor product theory with energies (28) as
our seed and perform a total T T deformation by parameter λ3, with T constructed from the
overall stress-energy tensor of the combined system. Denote the energies of this final deformed
theory by En,m. Because we are restricting to the zero momentum sector, these energies satisfy
the implicit relation

En,m(R,λ1,λ2,λ3) = En,m

�

R+λ3En,m,λ1,λ2

�

. (29)

Using the expression (28) for En,m, this gives the constraint

En,m =
R+λ3En,m

2λ1

 

√

√

√1+
4λ1αn

�

R+λ3En,m

�2 − 1

!

+
R+λ3En,m

2λ2

 

√

√

√1+
4λ2βm

�

R+λ3En,m

�2 − 1

!

. (30)

For choices of parameters such that a solution exists, equation (30) can be solved for En,m by
a computer algebra system, although the general result is quite unwieldy and not especially
illuminating. It is more tractable if we consider some special cases. We will try to order these
cases again roughly from more conservative to less conservative.

3.1 All good sign deformations

The most conservative situation would be all good sign flows: λ1,λ2,λ3 > 0. To avoid entering
the shock region on the first flow, we restrict λ1 and λ2 as in (5) so that the deformed ground
state energies, α0 and β0 respectively, remain real.

High-energy behavior

Let us first examine the high-energy behavior in this case when both αn and βm are very large.
In this limit,

En,m ∼
√

√αn

λ1
+

√

√βm

λ2
−

R
2λ1
−

R
2λ2

+
R2

8
p
αnλ

3/2
1

+
R2

8
p

βmλ
3/2
2

+ . . . (31)

Superficially, we might expect that only the leading two terms in (31) are needed to determine
the high-energy behavior of En,m. However, this is not the case. When solving the implicit
equation (29) for En,m, we replace R with R+λ3En,m which means the remaining terms in (31)
contribute at the same order as the leading two terms. We can still use the implicit solution
(30) to determine En,m in a power series in λ3 around λ3 = 0:

En,m =
R
2

λ1 +λ2 −λ2

Ç

1+ 4αnλ1
R2 −λ1

Ç

1+ 4βmλ2
R2

−λ1λ2 +
λ2λ3

2

�

−1+ 1
r

1+ 4αnλ1
R2

�

+ λ1λ3
2

�

−1+ 1
r

1+ 4βmλ2
R2

� + . . .

→
2λ2

p

αnλ1 + 2λ1
p

βmλ2 − R(λ1 +λ2)
2λ1λ2 +λ1λ3 +λ2λ3

+ . . . (32)
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The arrow denotes the result when we take the high-energy limit for αn and βm. This is again
a Hagedorn spectrum at high energies characterized by the square root dependence on αn
and βm.

High-energies for CFT2

Now we can turn to the case where the seed energy βm is taken very large with αn fixed but
otherwise unconstrained. In this case, the general expression for the energy is complicated
and not particularly illuminating so let us further simplify by taking,

λ1 = λ2 = λ3 = λ . (33)

The seed energies then take the form,

En,m ∼
R

2λ

�√

√

1+
4λαn

R2
− 1

�

+

√

√βm

λ
−

R
2λ

. (34)

This is very similar to the two step flow we studied in section 2.1. Solving the implicit equation
gives deformed energies of the form,

En,m ∼
2
�

R+
p

βmλ
�

15λ

√

√

√1+
15λαn

�

R+
p

βmλ
�2 +

8
15

√

√βm

λ
−

7R
15λ

. (35)

This deformed energy has a similar form to the seed energy (34) with a change in the effective
radius R→ R+

p

βmλ.
At the expense of a more complicated formula, we can relax (33) and consider

λ1 = λ2 = λ , (36)

with arbitrary λ3 > 0. In this case, we find

En,m ∼
1

4λ2 + 8λλ3 + 3λ2
3

�

4
Æ

βmλ3 + 4
Æ

βmλλ3 − 4λR− 3λ3R

−2
r

λ
¦

βmλ
2
3 +αn

�

4λ2 + 8λλ3 + 3λ2
3

�

+ 2
Æ

βmλλ3R+λR2
©

�

. (37)

The expression (37) reduces to (35) when λ3 = λ as should be the case. By examining the
square root of (37) we can extract an interesting feature: for large βm we can flow forward
by λ3 as far as we like even if αn = α0 is the ground state. Said differently: tensoring the de-
formed ground state of CFT1 with a deformed high-energy state of CFT2 can cure the tachyon,
or complex energy, we might have expected from just flowing CFT1 forward alone.

The diagonal spectrum

There is one additional case that admits a nice analytic solution. Take λ1 = λ2 = λ. There
could be seed energies where αn = βm = α; for example, if CFT1 = CFT2 then all αn = βn. For
this diagonal component of the spectrum, the input data for the eλ3 flow is simple and we can
write out an analytic solution for the two-step deformed energies,

En,m =
R

(λ+ 2λ3)

�√

√

1+
4α (λ+ 2λ3)

R2
− 1

�

. (38)
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These energies become complex when λ+ 2λ3 exceeds
�

�

�

R2

4α

�

�

� when α is negative. This is not

surprising because we have simply multiplied the deformed negative energy of CFT1 by a factor
of 2 and continued flowing. If we had taken N copies of {CFT1}λ and considered negative
energy α in each copy, there would be a bound on λ3 of the form λ+ Nλ3 ≤

R2

4|α| to avoid a
complex energy. As one final check, note that for large α we recover the expression (32) with
λ1 = λ2 = λ as long as we expand (38) to leading order in λ3.

The ground state

The next case of qualitative interest is the ground state given by (28) with both α0 and β0 neg-
ative. How far forward can we flow by λ3 before the ground state energy now goes complex?
At least intuitively we still expect it to become complex for some sufficiently large λ3. This is
clear from the formula for the diagonal spectrum (38) applied to a negative energy state.

Explicit formulae, however, become quite complicated when either α0 ̸= β0 or λ1 ̸= λ2. It
seems more useful to examine a few cases numerically to see how things change qualitatively.
To present the numerical results, it is convenient to make the energies and parameters dimen-
sionless using R with the convention given in (8) that dimensionless quantities are denoted
with a tilde.

As a first case, however, we can at least demonstrate that complex energies develop at
some sufficiently large value of eλ3 using an asymptotic analysis. To do this, we assume that
eλ3 ≫ eλ1, eλ2 and expand the constraint equation (30), keeping only the leading contribution
at large eλ3. The result is

eE2
n,m =

αn + βm

eλ3

. (39)

Up to terms which are subleading at large positive eλ3, we see that eE2
n,m has the same sign as

αn+βm. In particular the deformed ground state energy is purely imaginary at this order. Al-
though this asymptotic analysis does not tell us the value of eλ3 at which complex energies first
appear, it does demonstrate that we cannot maintain a real ground state energy at arbitrarily
large values of eλ3.

Some numerical results are presented in table 1. When the initial ground state ener-
gies 4(α0,β0) = (−1,−1) then the maximum values of (eλ1, eλ2) are (1, 1) before one of the
initial seed energies goes complex. The maximum value of eλ3 is approximate aside from two
exceptional cases where an analytic result is possible. Note that when either eλ1 or eλ2 approach
their critical values, the amount eλ3 that we can further flow forward appears to go to zero.
Finally we list the resulting ground state energy for the maximum eλ3.

As a final sanity check, we can take a look at a range of energies for βm with αn = α0. We
expect no strange behavior for positive βm and some numerical checks appear to confirm that
belief.

Evidence for modular invariance

To close this discussion of good sign flows, we will provide some numerical evidence in favor
of modular invariance of the resulting energy spectrum. For this numerical investigation we
consider two copies of the c = 1 free boson CFT. If the free boson is compact with radius r̂,
the CFT energies and momenta are given by

ECFT =
m2

4r̂2
+ n2 r̂2 + N̂ + M̂ −

1
12

, P = mn+
�

N̂ − M̂
�

, (40)
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Table 1: A table listing the approximate maximum eλ3 for several cases along with
the resulting ground energy.

4(α0,β0) (eλ1, eλ2) Max eλ3 4×Energy

(−1,−1) (0.5,0.5) 1
4 = 0.25 −4

(−1,−1) (0.5,0.9) 0.06 −3.24
(−1,−1) (0.5,0.99) 0.00629 −3.18
(−1,−1) (0.5, 0) 0.302 −3.41
(−1,−2) (0.5,0.25) 1

6 ∼ 0.167 −6
(−1,−2) (0.5,0.45) 0.038 −5.26
(−1,−2) (0.5,0.49) 0.0077 −5.18
(−1,−2) (0.5, 0) 0.21 −4.54

where m is the momentum quantum number, n is the winding and (N̂ , M̂) are the oscillator
excitations. To simplify calculations, we chose the self-dual radius r̂ = 1p

2
for both CFT1 and

CFT2 so that the ground state is the only state with negative energy in each CFT. In computing
the partition function,

Z(τ) =
∑

m,n,N̂ ,M̂

e2πiτ1P e−2πτ2E , (41)

with τ2 > 1, the result will be dominated by the ground state.
The most interesting check is the modular S-transformation which sends

τ2 −→
1
τ2

. (42)

The modular transformation properties of each deformation parameter eλ are determined by
the radius of the cylinder used to make λ dimensionless; see, [26, 27], for example. This
means,

eλ −→
eλ

|cτ+ d|2
,

�

a b
c d

�

∈ SL(2,Z) , (43)

and in our case (eλ1, eλ2, eλ3) are each transformed according to (43). In table 2, we have listed
the numerical values of the partition function with τ1 = 0 for various cutoffs on the sums
appearing in (41) along with choices τ2 and the following choice of deformation parameters

�

eλ1, eλ2, eλ3

�

= (0.1, 0.1, 0.5) . (44)

For example, cutoff=2 includes 50,625 energies which each require a separate numerical so-
lution of the inviscid Burgers’ equation. We cannot just numerically solve the implicit equation
because that solution only applies to zero momentum states.

If the theory is modular invariant, the value of the partition function should agree with
the value at 1

τ2
as long as we transform the three deformation parameters in accord with (43).

Even with the relatively low quantum numbers for momentum, winding and oscillators that we
included, there is quite good agreement between the partition function and its S-dual value. It
would be very interesting to see whether the analytic proof of modular invariance developed
in [26,27] for deforming CFTs can be extended to these more general theories.
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Table 2: The value of the partition function for different values of τ2. The winding
and momentum (m, n) run from -cutoff to cutoff, while the oscillator numbers (N̂ , M̂)
run from 0 to cutoff.

τ2 cutoff Z τ2 cutoff Z

1.2 1 5.20 1
1.2 1 5.14

1.2 2 5.20 1
1.2 2 5.19

1.5 1 6.37 1
1.5 1 6.16

1.5 2 6.37 1
1.5 2 6.31

1.75 1 8.08 1
1.75 1 7.60

1.75 2 8.08 1
1.75 2 7.91

2 1 10.55 1
2 1 9.49

2 2 10.55 1
2 2 10.14

3.2 Sequential flows with eλ1, eλ2 > 0 and eλ3 < 0

We now turn to another case described in the introduction that motivated this analysis. We
want to flow forward by eλ1 > 0 and eλ2 > 0 separately and then flow the combined resulting
theory backward by eλ3. The general case is complicated; here we want to establish existence
of a reasonable spectrum in any single example so let us restrict to,

eλ1 = eλ2 = eλ > 0 , eλ3 = −reλ , r ≥ 0 . (45)

The possible values for the parameter r, if any, compatible with a real spectrum will determine
what kind of operators like T1T2, along the lines of (6), we can define this way. Intuition from
flowing a single theory forward then backward, described in section 2.2, would suggest that
we can get a reasonable spectrum.

The diagonal spectrum

As a further simplification, let us assume that CFT1 = CFT2. We then have the usual bound
on eλ ≤ 1

4|α0|
if we wish to keep the ground state energy real after the first flow. We want

to examine how large r can become while still keeping the energies real. For the diagonal
spectrum αn = βn we can use the solution we found earlier, which we reproduce here in terms
of dimensionless parameters:

eEdiag =
−1+

q

1+ 4αeλ (1− 2r)

(1− 2r)eλ
. (46)

From this we see that r > 1
2 looks like a bad sign flow with large α > 0 becoming complex. For

r < 1
2 there is no obvious pathology and this diagonal spectrum appears to be well-behaved.

In this case, the leading irrelevant operator is given by,

λ
�

(1− r)
�

T1T1 + T2T2

�

− r
�

T1T2 + T1T2

�	

, r <
1
2

. (47)

There is an interesting question of what is happening for r = 1
2 . In this case, the solution to

the implicit equation gives eEdiag = 2α, so long as eλ < 1
α , which is confirmed by a numerical

15

https://scipost.org
https://scipost.org/SciPostPhys.14.5.098


SciPost Phys. 14, 098 (2023)

investigation. That is, the deformed diagonal spectrum returns exactly to the undeformed
diagonal spectrum for r = 1

2 and sufficiently small eλ. We can extend this discussion of the
diagonal spectrum to N copies of CFT1. The bound changes to r ≤ 1

N .

The off-diagonal spectrum

Now we would like to explore some features of the off-diagonal spectrum, αn ̸= βm, for the
case of 2 copies of CFT1. Because we are flowing backward by by reλ, we might have thought
any sickness should be visible in the high energy spectrum. This intuition turns out to be
wrong. When both αn and βm are very large, we can use formula (32), which is accurate for
small eλ3 and thus small r, to find

eEn,m ∼

q

αn
eλ+

q

βm
eλ− R

eλ(1− r)
. (48)

This shows that the high-energy spectrum is free of pathologies at least for small r where the
expression (48) is valid.

The other case that needs investigating is when αn and βm differ substantially. Specifically
we can take the ground state α0 < 0 and some βm > 0. Here we find a surprise which we
did not see for the case of a single theory. Let us revisit the implicit equation we are trying to
study:

eE0,m =
1− reλeE0,m

2eλ





√

√

√

√1−
4eλ|α0|

�

1− reλeE0,m

�2 − 1



+
1− reλeE0,m

2eλ





√

√

√

√1+
4eλβm

�

1− reλeE0,m

�2 − 1



 . (49)

What happens in this case, which did not happen in the case of a single theory, is that the first
square root of (49) can become imaginary for large eE0,m regardless of how small one chooses r.
Numerics seems to confirm that there are a finite number of complex energies for generic r.

To see this graphically, we have plotted the real spectrum for the case of eλ= 1
2 in Figures 5

and 6. In both cases, we begin with ground state energies α0 = β0 = −
1
4 and then assume an

evenly-spaced discrete spectrum where the gaps between adjacent energy levels is 1
10 so that

αn+1 −αn = 0.1. In both cases, almost all of the energies are real except for a small strip that
has been excised when one of the energies is negative and the other is moderate and positive.
These excluded strips are visible as ragged edges that have been cut off on either boundary of
the plots. For this combination of flows, there is a slim chance that exceptional solutions exist
where the seed CFT has a special spectrum and one tunes eλ and r to specific values. Such a
theory exist, should it exist, would be isolated.

In hindsight, the existence of complex energies seems reasonable. For r = 1
2 , the diagonal

spectrum returns to its undeformed value. This includes the ground state. However, the off-
diagonal spectrum is definitely changed. It is hard to see how such a spectrum could remain
compatible with modular invariance.

3.3 Sequential flows with eλ1, eλ2 < 0 and eλ3 > 0

Now we reverse the order of the flows and first flow backward into the shock region and then
flow forward. We will use the same simplifying assumption of CFT1 = CFT2
and eλ1 = eλ2 = eλ < 0 with eλ3 = r|eλ|. Is there any range of r for which the resulting spectrum
is real?
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Figure 5: A plot of the deformed energies En,m as a function of the undeformed
energies (αn,βm), where eλ1 = eλ2 =

1
2 and r = 1

4 so that eλ3 = −
1
8 . The left plot

shows the deformed spectrum for αn,βm ranging from −1
4 to 80. The right plot

zooms onto the region −1
4 ≤ αn ≤ 1, where there is a window of complex energies

that are not plotted.

The diagonal spectrum

There is no immediate natural bound on eλ since any amount of backward flow generates
complex energies. Let us first examine the diagonal spectrum with αn = βn:

eEdiag =
−1+

q

1+ 4α|eλ| (2r − 1)

(2r − 1)|eλ|
. (50)

As in section 3.2, there is an exceptional case r = 1
2 where the diagonal spectrum appears

to return to its undeformed value, eEdiag = 2α, so long as |eλ| < 1
α . To prevent high energy

states from becoming complex we require r ≥ 1
2 . To keep the ground state energy real we

also require 2r ≤ 1
4|α0

eλ|
+ 1. This is a fairly weak bound since |eλ| can be very small. As in the

previous example, the diagonal spectrum looks quite reasonable. For N copies of CFT1 rather
than 2 copies we replace

(2r − 1) → (N r − 1) . (51)

The off-diagonal spectrum

Now let us examine what is happening for the off-diagonal spectrum. The implicit equation
takes the form,

eEn,m =
1+ r|eλ| eEn,m

2|eλ|



1−

√

√

√

√1−
4|eλ|αn

�

1+ r|eλ| eEn,m

�2



+
1+ r|eλ| eEn,m

2|eλ|



1−

√

√

√

√1−
4|eλ|βm

�

1+ r|eλ| eEn,m

�2



 . (52)

The square roots can become imaginary only if αn or βm is positive. Assume both αn > 0 and
βm > 0 which should be close to a worst case. If we set αn = 0 and solve, we find the analytic
result corresponding to flowing a single system

eE(αn = 0) =
1

2|eλ| (r − 1)

�

1−
Æ

1+ 4βm (r − 1)
�

. (53)
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Figure 6: A plot of the deformed energies En,m with eλ1 = eλ2 =
1
2 and r = 1

2 . Again
the left plot shows a wide view of the spectrum and the right plot zooms into the
region where some energies are excised because the solution to the implicit equation
is complex.

This requires r > 1 strengthening the constraint seen from the diagonal spectrum.
The last bound we find is something we see numerically; namely, that r ≥ 2. Unlike the

case of good sign followed by bad sign, for this range of r there does appear to be a completely
real spectrum. In table 3, we have listed some numerical results for the energies in the zero
momentum sector with various choices of eλ and r.

Table 3: A table showing the numerical solutions for the deformed energies eEn,m for
various choices of dimensionless undeformed energies (αn,βm), |eλ|, and r. In all
cases we take R= 1.

(αn,βm) |eλ| r Energy (αn,βm) |eλ| r Energy

(−1
4 ,−1

4)
1
8 2 −0.558 (−1

4 ,−1
4)

1
8 2.25 −0.571

(−1
4 , 1) 1

8 2 0.732 (−1
4 , 1) 1

8 2.25 0.717

(−1
4 , 100) 1

8 2 24.561 (−1
4 , 100) 1

8 2.25 22.293

(−1
4 ,−1

4)
1
4 2 −2

3 (−1
4 ,−1

4)
1
4 2.25 −0.739

(−1
4 , 1) 1

4 2 0.705 (−1
4 , 1) 1

4 2.25 0.680

(−1
4 , 100) 1

4 2 18.097 (−1
4 , 100) 1

4 2.25 16.356

One way to argue for the bound r ≥ 2 is as follows: suppose that we consider very high
energy states in the final deformed theory so that eEn,m≫ 1. This corresponds to states in the
undeformed theory with either αn≫ 1, or βm≫ 1, or both. In order for the arguments of the
square roots in (52) to remain positive, the ratios

4αn

r2|eλ|2 eE2
n,m

,
4βm

r2|eλ|2 eE2
n,m

, (54)

must remain smaller than 1. For simplicity, we will take the simultaneous limits αn → ∞,
βm→∞, eEn,m→∞ with the ratios αn

eE2
n,m

and βm
eE2

n,m
held fixed and finite. To leading order, the
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implicit equation (52) in this limit can be written as

eEn,m(1− r) = −
1

2eλ

�
r

eE2
n,mr2eλ2 − 4αn

eλ+
r

eE2
n,mr2eλ2 − 4βm

eλ

�

. (55)

This can be converted into a quartic equation for eEn,m which has four roots:

eEn,m = ±

√

√

√(r − 1)(αn + βm)±
p

4αnβm − 8rαnβm + r2(αn + βm)2

(1− 3r + 2r2)eλ
. (56)

The two± symbols in (56) are independent and all four possible choices of signs yield solutions
to the quartic. However, only the choice of root with both plus signs will give positive real
energies. Since the conversion from (55) to a quartic equation involved squaring, we may have
introduced spurious roots and we must check that the purported solution actually satisfies the
original equation. Indeed, one finds that substituting the preferred root

eEn,m =

√

√

√(r − 1)(αn + βm) +
p

4αnβm − 8rαnβm + r2(αn + βm)2

(1− 3r + 2r2)eλ
, (57)

into the implicit equation (55) only yields a solution when r ≥ 2. This behavior is related to the
fact that the four roots (56) become degenerate at r = 2, coming in two pairs of double roots,
and the preferred root only becomes a solution past this crossing point in the region r ≥ 2.

Another way to interpret this bound is to note that for our high-energy solution (57), one
of the two ratios 4αn

r2|eλ|2 eE2
n,m

, 4βm

r2|eλ|2 eE2
n,m

appearing in (54) tends to 4
r2 if αn is taken to infinity at

fixed βm, or if βm →∞ with αn fixed. In order to guarantee that both ratios remain smaller
than 1, so that the arguments of the square roots are positive, we need r ≥ 2. We conclude that
this bound r ≥ 2 is necessary to have a well-behaved high-energy spectrum in the deformed
theory. If one is willing to tolerate a theory with complex energies, there is an interesting
phase structure that we see as a function of r.

The r < 1 phase

This phase is morally similar to the bad sign T T deformation. Namely, an infinite number of
high-energy states have complex energies. More importantly, there are only a finite number
of real energies. The easiest way to see this is to look at a plot of energies for a specific r.
One such case is displayed in Figure 7. Once again, we take α0 = β0 = −

1
4 and choose evenly

spaced energy levels with a difference of 1
10 . That is, αn+1 −αn =

1
10 and likewise for the βm.

We chose to plot the case r = 1
2 because this case can also be studied analytically. For the

diagonal part of the spectrum (αn = βm), one finds that the implicit equation (30) only admits
a real solution if

|α| ≤
1
eλ

. (58)

This means that the diagonal part of the spectrum has been cut off at high energies. Although
the undeformed theory had an infinite tower of states with energies (αn,βm) with αn and βm
growing arbitrarily large, the corresponding high energy states in the deformed theory either
have complex energies or are not present at all.

For states which do satisfy the bound (58), the diagonal deformed energies are given
by (50) when r ̸= 1

2 . In the special case r = 1
2 , as we mentioned above, the implicit rela-

tion degenerates and admits the new solution

E = 2α
R

, (59)
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Figure 7: The deformed energies En,m as a function of the undeformed dimensionless
energies (αn,βm), and where r = 1

2 , eλ = 1
10 . Note that real energies only exist in a

finite band around αn = βm and that solutions fail to exist when αn,βm >
1
eλ
= 10, as

expected from equation (58). For undeformed energies outside this region, no real
solution exists so the surface plot has been truncated.

which is the same as the corresponding energy level in the undeformed product of CFTs.
In addition to the upper bound in the diagonal sector, we find a second constraint on the

difference between the two undeformed energies which must be satisfied in order to give a
state in the deformed spectrum. This is most easily seen from a numerical investigation, such
as Figure 7 above. We see that, when |αn − βm| is too large, which corresponds to a point on
the plot which is too far from the diagonal, the implicit equation fails to have a real solution.
Therefore there is a upper bound on |αn−βm| in order to have real deformed energies, although
the analytic expression for this bound is unwieldy. Graphically, we see that there is a finite
ribbon of real energies close to the diagonal which satisfy this bound.

The upshot is that in the range r < 1, any interpretation of the deformed spectrum via
truncation to a finite number of real energy modes or by some other approach will encounter
the same difficulties as bad sign T T .

The 1≤ r < 2 phase

There is a qualitative change at r = 1. In addition to an infinite number of complex energies,
there are now an infinite number of real energies, which is unlike the case of bad sign T T .
The real energies are all close to the diagonal case of αn = βm while the complex energies are
far from the diagonal. We can see this numerically in Figure 8. What was a finite ribbon of
real energies near the diagonal for r < 1 now becomes an ribbon of infinite diagonal extent
but finite width.

A simplification occurs in the case of r = 1. In this case, the deformed energy levels are

eEn,m =
1
eλ

�q

1+ 2eλ(αn + βm) + eλ2(αn − βm)2 − 1
�

. (60)

However, not every pair of undeformed energies associated with parameters αn,βm leads to
a real energy level in the deformed theory. This is because the implicit equation (30) only
admits a real solution for eEn,m if the parameters satisfy certain bounds. If either αn ≥ 0 or
βm ≥ 0, the expression (60) solves (30) with r = 1 as long as

|αn − βm| ≤
1
eλ

. (61)
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Figure 8: Deformed energies En,m for r = 3
2 , eλ= 1

4 . In this phase, all of the energies
within a finite band around the diagonal αn = βm remain real in the deformed theory.
However, very off-diagonal energies with |αn−βm| large become complex, or perhaps
alternatively become truncated.

Figure 9: A plot of the deformed energies En,m for r = 2.1, eλ = 1
4 . In the phase

r ≥ 2, all of the deformed energies remain real and there are no complex or truncated
energies.

If αn and βm are both negative, the constraint is

|αn + βm| ≤
1

2eλ
. (62)

For pairs of undeformed energies which do not satisfy these constraints, there is no real solu-
tion to the implicit equation (30).

The r ≥ 2 phase

As mentioned earlier, the case that looks completely real is r ≥ 2. For comparison with smaller
values of r, the spectrum is plotted in Figure 9 for r = 2.1.

The ground state

The other point we want to check is how large eλ can become before the ground state energy
becomes complex. Many of the analytic results in our preceding discussion assumed diagonal
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Figure 10: The deformed energies eEn,m for a combined flow by eλ1 =
1
4 , eλ2 = 0,

eλ3 =
1
4 . No complex energies arise for this combination of flow parameters.

energies, βm = αn = α, but the spectra of CFT1 and CFT2 were otherwise unconstrained. Now
we will assume the ground state energies are the same for both theories so e0,0 =

2α0
R . From

(50), we see that

eλ≤
1

4(2r − 1)|α0|
. (63)

This is in contrast with (5) where there is an upper bound on eλ set by the central charge.

3.4 Sequential flows with eλ2 = 0

We will briefly mention one additional possibility: one can first deform CFT1 by eλ1 then tensor
the result with an undeformed CFT2, and finally deform the tensor product by an additional
flow with parameter eλ3. This corresponds to setting eλ2 = 0 in the preceding discussion.
Note that bounds for the maximum allowed eλ3 when eλ2 = 0 were given for some special
cases in Table 1. Because the qualitative features of the eλ2 = 0 case are similar to the flows
described in the preceding subsections, we will not undertake a detailed analysis. Instead we
content ourselves with describing the various possibilities and presenting plots to illustrate the
behavior.

The first possibility is to deform CFT1 by a positive flow parameter eλ1 > 0, tensor with the
undeformed CFT2, and then flow the combined system by another positive parameter eλ3 > 0.
Because this sequential flow involves only positive deformation parameters, we expect it to
behave like the all-good-sign flows of section 3.1. These flows appear to produce spectra with
all real energies so long as the total length of the positive flows is not so large that the ground
state energy becomes complex. An example of the numerical spectrum for a flow of this form
is shown in Figure 10, where the undeformed energies in CFT1 and CFT2 are taken to be
evenly-spaced with a ground state at α0 = β0 = −

1
4 and a gap of 0.1 between adjacent energy

levels. Indeed one finds that all of the deformed energies are real.
Another possibility is a sequential flow by eλ1 < 0, eλ2 = 0, and eλ3 < 0. This combination

is less interesting because it involves only the bad sign of the deformation parameter and
therefore deformed energies corresponding to high-energy states of CFT1 or CFT2 will always
be complex.

A more interesting possibility is to first flow by eλ1 < 0 and then by eλ3 > 0, again with
eλ2 = 0. We expect this to behave like the sequential flows discussed in section 3.3 where
both CFTs were first deformed by the bad sign of the deformation parameter and then the
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Figure 11: Deformed energies eEn,m with eλ1 = −
1
4 , eλ2 = 0, and eλ3 = r|eλ1|. The

top-left plot shows r = 1 where half of the spectrum below the diagonal becomes
complex and is truncated. The top-right plot displays the corresponding spectrum
when r = 3

2 ; in this case part of the truncated spectrum has been cured, but there is
still an infinite region of excised energies below a shifted diagonal which is visible in
the bottom-right part of the plot. Finally, the plot on the second line shows the case
r = 2, where it appears that the entire spectrum has been cured and all deformed
energies are real.

combined system was deformed with the good sign. In that context, we saw a phase structure
emerge with several possible cases. When the bad-sign flow parameters eλ1, eλ2 were too large
compared to the good-sign parameter eλ3, we saw that part of the spectrum remained complex.
When eλ3 became sufficiently large the entire deformed spectrum became real. We find numer-
ically that a similar phenomenon occurs when eλ2 = 0. In particular, if eλ1 < 0 and eλ3 = r|eλ1|,
we find that part of the deformed spectrum is truncated or becomes complex when r < 2, but
for r ≥ 2 all of the deformed energies appear real. This behavior is shown in Figure 11.

Finally, for the class of sequential deformations with eλ1 > 0 and eλ2 = 0, one could ask
about the maximum allowed eλ3 with which we may flow before the ground state energy be-
comes complex. This is the analogue of the question we addressed numerically in Table 1. In
the eλ2 = 0 case, the approximate maximum values of eλ3 and resulting ground state energies
for several choices of eλ1 are shown in Table 4.
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Table 4: For flows with eλ1 > 0, eλ2 = 0, we have listed the approximate maximum
allowed eλ3 for which the ground state energy remains real together with the value
of that deformed ground state energy.

4(α0,β0) eλ1 Max eλ3 4×Energy

(−1,−1) 0.25 0.41 −3.42

(−1,−1) 0.5 0.302 −3.41

(−1,−1) 0.9 0.006 −2.9

(−1,−2) 0.25 .29 −5.3

(−1,−2) 0.5 0.21 −4.54

(−1,−2) 0.9 0.0049 −3.55

4 Flow Equation for the Lagrangian

In the preceding sections, we have considered the flow equation for the energy levels in a pair
of CFTs coupled via a T1T2 procedure. Aside from the checks of modular invariance, much of
the discussion is restricted to the zero-momentum sector where we can use an implicit solution
to the inviscid Burgers’ equation. Next we will consider the flow equation for the Lagrangian
itself. This is a classical analysis so we are not constrained by quantum constraints on whether
the theory is sensible. For the original T T deformation, the study of classical flows has led to an
unexpected new organizing principle for many well-known effective actions [3,28–36]. Along
the first leg of our multi-step deformation, the Lagrangian obeys the differential equation:

∂Lλ
∂ λ

=
1
2

�
�

Tµµ
�2
− TµνTµν

�

. (64)

4.1 Two Free Bosons

We will be primarily motivated by the example of two free bosons φ and χ, with an initial
seed theory of the form

L0 = ∂
µφ∂µφ + ∂

µχ∂µχ . (65)

For the first step of our deformation, we will separately deform CFT1 of the scalar φ by T1T1
and deform CFT2 of the scalar χ by T2T2, both by a total parameter λ. It was first shown in [3]
that this procedure of deforming a free scalar produces a deformed Lagrangian corresponding
to a Nambu-Goto string in static gauge. After the first leg of our deformation, the resulting
theory is therefore simply the tensor product of two gauge-fixed Nambu-Goto theories:

Lλ =
1

2λ

�
q

1+ 2λ∂ µφ∂µφ +
q

1+ 2λ∂ µχ∂µχ − 2
�

. (66)

We would now like to consider (66) as a new seed theory and deform by the total T T of the
combined theory. In a sense, the first flow by λ takes us from point particles to gauge-fixed
strings. The second flow should be taking us to a kind of interacting theory of multiple strings.

As a first step in the analysis, it will be useful to consider the possible scalar quantities that
can appear in the final Lagrangian after performing this deformation. The Hilbert stress tensor
Tµν of (66) contains one term proportional to ∂µφ∂νφ, one term proportional to ∂µχ∂νχ, and
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one term of the form gµνLλ. When we construct bilinears in Tµν, therefore, three independent
Lorentz scalars will appear:

x = ∂ µφ∂µφ , y = ∂ µχ∂µχ , z = ∂ µφ∂µχ . (67)

It is clear that this exhausts the list of scalars that can be constructed from ∂ µφ and ∂ µχ,
since we will never generate terms with more than one derivative per field and every index
appearing on a derivative ∂ µ of a field must appear contracted with a derivative ∂µ of another
field. During the second step of the flow, we can therefore assume that the Lagrangian takes
the form

Lλ,λ3
= f (λ,λ3, x , y, z) , (68)

where we use the symbol λ3 for the deformation parameter along the second leg of the defor-
mation. We write Lλ,λ3

for the final deformed Lagrangian. The Hilbert stress tensor associated
with Lλ,λ3

is

Tµν = −2
�

fx ∂µφ∂νφ + f y ∂µχ∂νχ + fz ∂(µφ∂ν)χ
�

+ gµν f , (69)

where we write fx =
∂ f
∂ x and so on. Using (69) we can construct the bilinears appearing in

(64). First the trace is

Tµµ = −2
�

x fx + y f y + z fz
�

+ 2 f , (70)

and the contraction TµνTµν is

TµνTµν =4
�

x2 f 2
x + 2z2 fx f y + 2xz fx fz + y2 f 2

y + 2yz f y fz +
1
2
(x y + z2) f 2

z

�

− 4 f
�

x fx + y f y + z fz
�

+ 2 f 2 . (71)

The flow equation with respect to the λ3 variable is therefore

∂Lλ,λ3

∂ λ3
=

1
2

�
�

Tµµ
�2
− TµνTµν

�

= f 2 − 2 f
�

x fx + y f y + z fz
�

+ (4 fx f y − f 2
z )(x y − z2) . (72)

Starting from the seed theory (66), we can use this flow equation to find a perturbative solution
to any desired order in λ3. For instance, up to O(λ3), one has

Lλ,λ3
= Lλ,0 +

3λ3

2λ2
+

λ3

2λ2
p

(1+ 2λx)(1+ 2λy)

�

1+λ(x + y) + 2λ2(x y − z2)

− 2
�p

1+ 2λx +
Æ

1+ 2λy
�

− 2λ
�

y
p

1+ 2λx + x
Æ

1+ 2λy
�

�

+O(λ2
3) , (73)

where for convenience we repeat

Lλ,0 ≡ Lλ =
1

2λ

�
q

1+ 2λ∂ µφ∂µφ +
q

1+ 2λ∂ µχ∂µχ − 2
�

. (74)

Expanding (73) to leading order in λ gives

Lλ,λ3
= Lλ,0 +λ3

�

x y − z2 −
1
4
(x + y)2

�

+λ3λ(x + y)
�

1
2
(x2 + y2)− (x y − z2)

�

+O(λ2
3,λ2λ3) . (75)
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The O(λ3λ
0) term of (75) reproduces the leading contribution when λ= 0. This corresponds

to deforming the tensor product of two free bosons by a T T deformation of the total system.
The exact closed form for this case was presented in [3] and corresponds to a gauge-fixed
Nambu-Goto string with two transverse directions rather than one. The deformed action with
λ = 0 has an O(2) symmetry rotating φ into χ. The combinations x y − z2 and (x + y)2

separately respect this symmetry.
The O(λ3λ) term, however, explicitly breaks this symmetry as we expect since the ac-

tion (66) does not respect this symmetry. Finding a closed form solution for the flow equation
appears to be difficult in this model by contrast with cases like [37, 38] where exact implicit
solutions were possible. Knowing the exact form would be very interesting for cases like λ < 0
followed by λ3 > 0 where we expect the bad behavior of a string with negative tension to
be cured by the forward flow. It is natural to suspect that there is a critical velocity for such
models similar to the critical velocity seen in (66) with the good sign flow λ > 0.

4.2 Two Free Fermions

An even simpler case to consider is the T1T2 coupling of two free Majorana fermions, since the
number of allowed terms is severely constrained by nilpotency. Consider two fermionic fields
ψ± and ζ± with the undeformed action

L0 = iψ+∂−−ψ+ + iψ−∂++ψ− + iζ+∂−−ζ+ + iζ−∂++ζ− . (76)

Here we use bispinor notation for vector indices; for details on these conventions, see [30,31],
for example. Next we would like to compute the components of the stress tensor. Using the
usual Noether procedure but being careful to account for Grassmann statistics, one finds that
the stress tensor components of a general fermionic theory for a single field ψ± are given by

T++++ = (∂++ψ+)
δL

δ(∂−−ψ+)
+ (∂++ψ−)

δL
δ(∂−−ψ−)

,

T++−− = (∂−−ψ+)
δL

δ(∂−−ψ+)
+ (∂−−ψ−)

δL
δ(∂−−ψ−)

−L ,

T−−++ = (∂++ψ+)
δL

δ(∂++ψ+)
+ (∂++ψ−)

δL
δ(∂++ψ−)

−L ,

T−−−− = (∂−−ψ+)
δL

δ(∂++ψ+)
+ (∂−−ψ−)

δL
δ(∂++ψ−)

. (77)

Note that the Noether stress tensor is not symmetric (T++−− ̸= T−−++) which is a generic
feature of theories with fermions. It can be made symmetric via an improvement transfor-
mation or by using the appropriate version of the Hilbert stress tensor, but for our purposes
the Noether stress tensor will be sufficient. The analogous stress tensor components for the
subsystem with the field ζ± can be obtained by replacing ψ± with ζ± in (77).

Using these expressions for the components of Tµν, it is straightforward to find the T T -
deformed Lagrangian after deforming each fermion theory separately by λ,

Lλ = L0 +λ
�

ψ+∂−−ψ+ψ−∂++ψ− −ψ+∂++ψ+ψ−∂−−ψ− + ζ+∂−−ζ+ζ−∂++ζ− − ζ+∂++ζ+ζ−∂−−ζ−
�

. (78)

Although (78) only contains a correction which is linear in λ, it actually satisfies the exact T T
flow (within each sector) to all orders in λ, because all higher terms vanish. This is simply
because there are no additional non-vanishing terms that can be constructed from a single
fermion because of Grassmann statistics.

Now we would like to treat (78) as a seed theory and T T deform again but this time
with parameter λ3. The components of the stress tensor associated with (78), using bispinor
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conventions for the vector indices, are

T++++ = iψ+∂++ψ+ + iζ+∂++ζ+ ,

T++−− = −iψ−∂++ψ− − iζ−∂++ζ− ,

T−−++ = −iψ+∂−−ψ+ − iζ+∂−−ζ+ ,

T−−−− = iψ−∂−−ψ− + iζ−∂−−ζ− . (79)

In particular, the O(λ) term drops out of the stress tensor entirely. Therefore the two-step
deformed Lagrangian is

Lλ,λ3
=L0 + (λ+λ3)

�

ψ+∂−−ψ+ψ−∂++ψ− −ψ+∂++ψ+ψ−∂−−ψ− + ζ+∂−−ζ+ζ−∂++ζ−

− ζ+∂++ζ+ζ−∂−−ζ−
�

+λ3

�

ψ+∂−−ψ+ζ−∂++ζ− −ψ+∂++ψ+ζ−∂−−ζ−

+ ζ+∂−−ζ+ψ−∂++ψ− − ζ+∂++ζ+ψ−∂−−ψ−
�

. (80)

One can verify by direct computation that the components of the stress tensor associated with
Lλ are identical to those associated with Lλ,λ3

. Thus (80) gives the exact, all-orders solution
in both λ and λ3 to the two-step flow. For instance, we can set λ= −λ3 to find

L−λ,λ =L0 +λ
�

ψ+∂−−ψ+ζ−∂++ζ− −ψ+∂++ψ+ζ−∂−−ζ−

+ ζ+∂−−ζ+ψ−∂++ψ− − ζ+∂++ζ+ψ−∂−−ψ−
�

, (81)

which gives the finite-λ solution for the T1T2 deformation discussed in (7). As mentioned
above, this is an irrelevant coupling of the two seed theories but the deforming operator

OT1 T 2
≡
∂L−λ,λ

∂ λ
=ψ+∂−−ψ+ζ−∂++ζ− −ψ+∂++ψ+ζ−∂−−ζ− + ζ+∂−−ζ+ψ−∂++ψ− − ζ+∂++ζ+ψ−∂−−ψ− ,

(82)

cannot be expressed as any scalar quantity constructed from the stress tensor Tµν of the theory.
It is not the product of currents and is therefore a qualitatively different deformation from any
T T -like deformation.

Although this solution for the Lagrangian of the T1T2 deformed system has a fairly simple
form involving four fermion interactions, it is interesting to note that the cylinder spectrum of
this interacting theory is still in principle determined by iterated applications of the inviscid
Burgers’ equation, as we discussed in section 3.
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