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Abstract

Motivated by establishing holographic renormalization for gravitational theories with
non-metricity and torsion, we present a new and efficient general method for calculating
Gibbons-Hawking-York (GHY) terms. Our method consists of linearizing any nonlinear-
ity in curvature, torsion or non-metricity by introducing suitable Lagrange multipliers.
Moreover, we use a split formalism for differential forms, writing them in (n − 1) + 1
dimensions. The boundary terms of the action are manifest in this formalism by means
of Stokes’ theorem, such that the compensating GHY term for the Dirichlet problem may
be read off directly. We observe that only those terms in the Lagrangian that contain
curvature contribute to the GHY term. Terms polynomial solely in torsion and non-
metricity do not require any GHY term compensation for the variational problem to
be well-defined. We test our method by confirming existing results for Einstein-Hilbert
and four-dimensional Chern-Simons modified gravity. Moreover, we obtain new results
for torsionful Lovelock-Chern-Simons and metric-affine gravity. For all four examples,
our new method and results contribute to a new approach towards a systematic hydro-
dynamic expansion for spin and hypermomentum currents within AdS/CFT.
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1 Introduction

Curved Riemannian and pseudo-Riemannian spacetimes are of immediate relevance for astro-
physics, cosmology and high energy physics. In most cases, the spacetime metric is the only
dynamical field associated to the geometry, while further geometric structures are argued to be
irrelevant by appealing to current experimental evidence. Recently, however, general space-
times with non-vanishing curvature1 Ω

µ
ν and torsion Tµ found applications in condensed

matter systems—where lattice deformations generate non-trivial Ωµν and Tµ directly coupled
to the electronic degrees of freedom—as a means to simulate high-energy phenomena in tab-
letop experiments [1–16]. In particular, torsion has been shown to alter the the hydrodynamic
expansion by introducing terms relevant for both heavy-ion physics and electron flows in con-
densed matter [15–21].

We may, however, go even further beyond spacetimes with curvature and torsion to the
more general metric-affine spacetimes hosting a non-trivial non-metricity one-form Qµν. In
condensed matter systems, this may be achieved by the introduction of dislocations and cuts
in the lattice of a given material [22]. For our purposes, the importance of considering metric-
affine spacetimes arises from the coupling of torsion and non-metricity to matter fields. Both
torsion and non-metricity may be seen as the sources of conserved matter currents. In partic-
ular, Tµ is the source of the spin tensor S νρµ , while Qµν is the source of the hypermomentum
tensor ∆ρµν [23]. The spin tensor is well-known and has been studied in depth: In particular,
spin transport was recently suggested to play an important role in hadron-hadron collisions at
LHC [18,24,25], as well as in tabletop experiments on electronic systems [26,27]. In contrast,

1Ωµ
ν

is the curvature two-form, whose components are the Riemann tensor Rµ
νρσ

.
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the hypermomentum tensor is not widely studied in the physics literature. The trace of this
tensor, J D

µ = ∆
ν

µν , however, is referred to as dilation current and has found applications in
the context of trace anomalies in condensed matter systems [3].

The source interpretation of torsion and non-metricity is the most relevant in the present
context, due to its role in the AdS/CFT correspondence [28–30]. The AdS/CFT correspond-
ence or holography is a duality between a weakly curved theory of gravity and a strongly
coupled quantum field theory (QFT) living in one dimension lower, at the boundary of the
curved spacetime. The sources coupled to the QFT determine the boundary conditions of the
dynamical fields of the gravitational theory, while the on-shell gravitational action acts as the
QFT’s generating functional. Holography has widely been used to shed light on the transport
properties of matter, for instance of the quark-gluon plasma or of graphene [31, 32]. These
transport properties, however, concern only non-trivial energy-momentum and electric charge
transfer in the QFT, i.e. only a dynamical metric and gauge field in the gravitational theory.
It is our goal to extend the correspondence to include spin and hypermomentum transport in
strongly coupled systems. The former arises from the intrinsic spin of particles, while the latter
arises from the modification of the causal structure of spacetime due to matter [33]. Causal-
ity may exclude hypermomentum transport in relativistic systems of particle and astrophysics,
since it may modify the light-cone structure and turn spacelike separated events into timelike
separated ones under parallel transport. Condensed matter systems are not bound to such
constraints, since their causal structure arises only as an emergent description of the system’s
electronic bands. We therefore expect hypermomentum to lead to new transport phenomena
and perhaps novel phase transitions in this context.

In order to extend holography to the realm of both spin and hypermomentum transport,
the dual gravitational theory must contain dynamical torsion and non-metricity tensors, i.e. we
must consider dynamical theories of metric-affine gravity (MAG) on spacetimes with bound-
ary.2 The introduction of boundaries into the spacetime considered raises issues of funda-
mental importance that need to be addressed before applications can be considered. In partic-
ular, we have to ensure that the boundary conditions of the MAG fields are compatible with a
well-defined variational problem. This is achieved in general relativity by the inclusion of the
Gibbons-Hawking-York (GHY) boundary term.

The importance of the GHY boundary term in theories of gravity cannot be overstated. In
the simplest of applications of gravitational theories, in terms of a Lagrangian, the GHY term
makes the variational formulation well-posed [36–39]. In addition, within the Hamiltonian
formalism, the GHY term allows us to correctly define the Hamiltonian as well as the asymp-
totic conserved charges of the theory, such as energy [38]. The GHY terms also play a crucial
role within holography: First, the asymptotic charges evaluated at the boundary are precisely
the charges of the dual QFT. Second, the on-shell gravitational action (and QFT generating
functional) suffers from divergences. The GHY terms act as counterterms and provide (part
of) the regularization necessary to define a finite gravitational action [40]. Thus, in order to
use holography to derive QFT observables and understand spin and hypermomentum trans-
port, we have to derive the GHY term for every MAG Lagrangian. We carry out this derivation
in the present paper.

The GHY term we find provides the starting point for holographic renormalization [41]
that we plan to address in the future in the present context. Holographic renormalization
in turn will be the starting point for a fluid-gravity hydrodynamic expansion [42] including
torsion and non-metricity. Also beyond holography, our results are of interest to both the
general relativity and condensed matter communities. The first may use our results as a step-
ping stone towards analyzing extensions of general relativity to the MAG framework and their

2For early work on holographic models for spaces with torsion, but zero non-metricity, see [34, 35]. A recent
discussion may be found in [16].
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compatibility with cosmological data. For the second, in addition to forthcoming results on
spin hydrodynamics that we expect to be obtainable based on the analysis presented here, our
terms become important when considering the dynamics of defects that give rise to torsion
and non-metricity on systems with boundaries. In this context, our GHY terms describe the
dynamics of the defects on the boundary which are consistent with the dynamics in the bulk.
Such terms may also become important when considering topological field theories on spaces
with boundaries, perhaps with quantum anomalies, since they describe the emergent degrees
of freedom at the boundary.

The main result of this work is a new and efficient method for deriving GHY terms for
actions formulated in the language of differential forms. In particular, our generalized GHY
term applies for any theory which is allowed to have curved, torsional and non-metric degrees
of freedom in arbitrary polynomial combinations. We achieve this generality by formulating
our result in terms of auxiliary fields which are calculated for generic theories by taking vari-
ations of their Lagrangian n-form with respect to suitable Lagrange multipliers. One of our
main findings is that our generalized GHY term receives contributions from the variation of
only those terms in the Lagrangian that contain curvature. Terms that are solely built from
torsion and non-metricity do not contribute a GHY term, assuming that any derivatives of
torsion and non-metricity have been converted into curvature polynomials by means of the
Bianchi identities. Using our method we confirm the GHY term for the Einstein-Hilbert action
in arbitrary dimensions. We furthermore verify a result for 4d Chern-Simons modified gravity
up to a factor of 2. Moreover, we present new results for torsionful Lovelock-Chern-Simons
and metric-affine gravity. These new results have the form which we expect from comparison
of the Lagrangians with those of Einstein-Hilbert and 4d Chern-Simons modified gravity.

We begin the main part of this paper with section 2, where we briefly set up the geometric
framework used. This allows us to present the main results of our work in a concise man-
ner in the same section. Subsequently, we apply these general results to the special cases of
Einstein-Hilbert and four-dimensional Chern-Simons modified gravity in section 3 to find fa-
miliar results as a check of our method. In the same section, we apply our method to the case of
torsionful Lovelock-Chern-Simons gravity and derive new results for its GHY term. An explicit
derivation of our results is given in section 4. The more involved case of MAG is considered in
appendix A.

2 Geometric setup and summary of the main results

In the current section, we present our main result for the GHY term for any MAG theory in (12).
To fully grasp the meaning of each term in (12), however, we must first give a lightning review
of our geometric setup. For the interested reader, more details are given in section 4.

As mentioned in the introduction, the geometry that we consider in a dynamical setting is
that of a metric-affine spacetime. This spacetime is an n-dimensional manifold M equipped
with a coframe basis θµ, a metric ds2 = gµνθ

µ ⊗ θν and a connection one-form ωµν = Γ
µ
ρνθ

ρ,
where Greek indices take values in {0, . . . , n− 1}. These fields are independent of each other
and may be thought of as the kinematic variables of the spacetime in the same sense that
a U(1) gauge field provides the kinematic variables for a U(1) gauge theory. Following this
analogy further, we may define field strengths for θµ, gµν andωµν. To preserve diffeomorphism
invariance, we construct these field strengths in terms of the exterior derivative d and the
exterior covariant derivative D = d+ωµνρ(L)νµ∧, whereρ(L)νµ is the appropriate representation
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of the GL(n,R) generators L. In particular, the field strengths for the fields ωµν, θ
µ, gµν are

the curvature two-form

the torsion two-form

the non-metricity one-form

Ωµν
..= dωµν +ω

µ
ρ ∧ω

ρ
ν =

1
2

Rµνρσθ
ρ ∧ θσ ,

Tµ ..= Dθµ = dθµ +ωµν ∧ θ
ν =

1
2

Tµρσ θ
ρ ∧ θσ ,

Qµν ..= −Dgµν = −(dgµν −ωρµ gρν −ωρν gµρ) =Qµνρθ
ρ ,

(1)

respectively. The curvature Rµνρσ is the Riemann tensor, while Tµρσ is the torsion and Qµνρ
the non-metricity tensor. All three of the field strengths satisfy a corresponding Bianchi identity

DΩµν = 0 ,

DTµ = Ωµν ∧ θ
ν ,

DQµν = Ωµν +Ωνµ .

(2)

We introduce a boundary ∂M in M and a geometry on ∂M via two sets of vector fields. First,
we define ∂M through the normal vector nµ, normalized as nµnµ = ϵ = −1 for spacelike and
nµnµ = ϵ = +1 for timelike boundaries. Second, we introduce the vielbein eµa as a basis of
tangent vectors on ∂M, nµeµa = 0, where Latin indices take values in {0, . . . , n− 2}. The
vielbein and its dual ea

µ induce a geometry on ∂M via pullback from M. For example, the
boundary coframe basis φa is obtained from the manifold coframe basis θµ as ea

µθ
µ = φa,

while the induced metric on ∂M is γab
..= eµa eνb gµν. While the metric and coframe project

to the boundary via pullback, the connection is related to its boundary value ωa
b in a more

involved way. In particular, we assume that ωµν projects to ωa
b via the vielbein postulate

ωb
a = eb

µ

�

deµa +ω
µ
νeνa
�

. (3)

We prove the transformation property (3) within the MAG framework [23,43] in section 4.3.
To our knowledge this is the most general theory that includes curvature, torsion and non-
metricity. It is thus natural to assume that (3) holds for a large range of theories featuring
fewer fields or more symmetries.

Apart from the curvature, torsion and non-metricity associated to the projected connection,
coframe and metric on the boundary, the embedding of ∂M in M allows for additional quant-
ities that describe the geometry of ∂M relative to that of M. For example, in the following
we use extensively the extrinsic curvatures

Ka ..= ea
µDnµ and K̃a

..= eµa Dnµ = Ka − eµa nνQµν . (4)

The two definitions of the extrinsic curvature in (4) differ only by a deformation in the n− ea
plane due to non-metricity. Thus, for metric compatible connections satisfying Dgµν = 0
it suffices to consider only one of the extrinsic curvature definitions. The tensor compon-
ents of Ka tangent to the boundary give the extrinsic curvature familiar from the literature,
Ka

b = ea
µeνb∇νn

µ, where ∇ν is the covariant derivative on M [38,44,45].
This concludes our brief review of the geometry on M and the induced geometry on ∂M.

For investigating the dynamics of this geometry, we consider the most general action possible,

Sorig[gµν,ω
µ
ν,θ

µ] =

∫

M
L(Ωµν, Tµ,Qµν) , (5)

where the Lagrangian n-form L(Ωµν, Tµ,Qµν) is an arbitrary function of the curvature, torsion
and non-metricity defined in (1). Not fixing a particular form forL ensures that our results hold
for any action of interest and may be applied to a specific system by choosing L appropriately.
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Note that we have restricted ourselves to actions which are polynomial in the field strengths but
do not involve their derivatives. This is not a severe restriction since the Bianchi identities (2)
tell us that derivatives of curvature vanish, while those of torsion and non-metricity can be
reduced to polynomial terms in curvature.

Our goal is to make the variation of the action (5) well-defined by adding the appropriate
boundary terms to it. To find these terms we vary Sorig and isolate the terms on the boundary
that do not vanish after enforcing the boundary conditions on the fields. To be precise, the
boundary conditions we consider are δgµν

�

�

∂M = 0, δθµ|∂M = 0 and δωµν
�

�

∂M = 0. However,
according to [38] it suffices to demand that the Dirichlet boundary conditions

δγab = 0 , δφa = 0 , δωa
b = 0 , (6)

hold since the original conditions may be reinstated by gauge transformations on ∂M.
In principle, we may now obtain the boundary terms from a direct variation of the action

Sorig. However, general covariance requires that we write the boundary terms in terms of
geometric quantities on ∂M. To achieve this we need to perform a 3+ 1 decomposition3 of
Sorig which is impossible to write down if L is not specified. We circumvent this issue by the
method of Lagrange multipliers expounded in [46] for the case of L(Ωµν) gravity. This method
essentially makes the action linear in the field strengths without losing any information of the
dynamics induced by L. In order to isolate the boundary terms, we introduce the Lagrange
multipliers ϕ ν

µ , tµ and qµν and turn the Langrangian into a linear function of Ωµν, Tµ and
Qµν. In particular, we consider the gravitational action

S[gµν,ω
µ
ν,θ

µ,ϕµν ,ϱµν , tµ,τ
µ, qµν,σµν] =

∫

M

�

L(ϱµν ,τµ,σµν) + ∗ϕ ν
µ ∧ (Ω

µ
ν −ϱ

µ
ν) (7)

+ ∗tµ ∧ (Tµ −τµ) + ∗qµν ∧
�

Qµν −σµν
�

�

,

where ϱµν , τµ and σµν are auxiliary fields and ∗ is the Hodge duality. Expressing S as in (7)
allows us to directly access Ωµν, Tµ and Qµν regardless of the explicit form of L. We choose
the Lagrange multipliers to be independent of each other and of the fields ωµν, θ

µ and gµν. In
this way we ensure that the equations of motion for Ωµν, Tµ and Qµν are kept unchanged if
we first impose the equations of motion

Ωµν = ϱ
µ
ν , Tµ = τµ , Qµν = σµν , (8)

for the Lagrange multipliers ϕ ν
µ , tµ and qµν, respectively. To that end, we additionally de-

mand these Lagrange multipliers to have the exact same symmetries as the corresponding field
strengths.

In order to express the boundary terms in terms of a diffeomorphic invariant Lagrangian
on the boundary, we consider projections of the Lagrange multipliers on ∂M. In particular, we
project each index of the Lagrange multipliers either to the boundary by contraction with the
vielbein ea

µ or normal to the boundary by contraction with nµ. We abbreviate these contractions

as ϕan
..= eµa nνϕµν for instance. These projections may be regarded as an extension of the 3+1

decomposition in general relativity and can be derived by expanding every contraction of Greek
indices in (7) using

δµν = eµa ea
ν + ϵn

µnν . (9)

For example Aµ∧Bµ = Aa∧Ba+ϵAn∧Bn for generic differential forms Aµ, Bµ. The explicit form
of the action S in terms of the 3+1 decomposition is rather lengthy and not that enlightening.

3While we work in general n dimensions and perform a full (n− 1) + 1 decomposition, we use the term 3+ 1
decomposition for compactness throughout.
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So we leave (7) unchanged and keep in mind that for further calculations any of the Greek
indices is 3+ 1 decomposed as just described.

While the equations of motion (8) of the Lagrange multipliers ϕ ν
µ , tµ and qµν ensure the

equivalence of S and Sorig, the equations of motion of the additional fields ϱµν , τµ and σµν
yield constraints which enable us to determine the explicit forms of ϕ ν

µ , tµ and qµν in terms

of L. Among these constraints the ones which yield ∗ϕna ..= nαea
β
∗ϕ β

α , ∗ϕan
..= eαa nβ ∗ϕ

β
α

and ∗ϕnn
..= nαnβ ∗ϕ

β
α are particularly important for us. These are

∗ϕna ∧δϱna = ϵδϱna
L(ϱna,ϱan,ϱnn, . . . ) ,

∗ϕan ∧δϱan = ϵδϱanL(ϱna,ϱan,ϱnn, . . . ) ,

∗ϕnn ∧δϱnn = δϱnn
L(ϱna,ϱan,ϱnn, . . . ) ,

(10)

obtained from varying (7) with respect to ϱna, ϱan and ϱnn.4 To put it simple, ϕµν is the
Hodge dual of the equations of motion for Ωµν.

5

In addition to the 3+ 1 decomposition of the Lagrange multipliers and auxiliary fields we
also need to introduce the 3 + 1 decomposition of the curvature, torsion and non-metricity
into the action S in (7). The full details of the derivation are given in section 4. Here we
mention the 3+ 1 decomposition of curvature which plays an important role in the examples
we consider in section 3. We have

ea
µeνbΩ

µ
ν = Ω

a
b − ϵK

a ∧ K̃b ,

ea
µnνΩµν = DKa +

ϵ

2
Ka ∧Qnn ,

nµeνaΩ
µ
ν = DK̃a +

ϵ

2
K̃a ∧Qnn ,

nµnνΩµν =
1
2

DQnn + Ka ∧ K̃a ,
(11)

where we define Ωa
b

..= dωa
b +ω

a
c ∧ω

c
b for the curvature on the boundary.6 The result (11)

may be considered a generalized version of the Gauß-Codazzi equations.
Finally, let us mention the strategy we use to obtain the GHY term for the generic action (5)

after the 3 + 1 decomposition has been made. Expressing the action in a 3 + 1 form results
in two types of terms appearing in the Lagrangian; one containing the fields ωµν, θ

µ, gµν and
their projection to the boundary and another one containing their derivatives. Due to the
Dirichlet boundary conditions (6) the first type does not contribute at the boundary and, thus,
only the second type of terms can lead to boundary contributions under variation. To calculate
them, we employ Stokes’ theorem to rewrite these terms as a pure boundary integral. We then
vary the boundary integral and isolate the terms that do not vanish after variation. These
are the terms which have to be subtracted from S by means of the GHY term. Carrying out
this calculation in section 4 we find the explicit form of the GHY term for a MAG theory with
Lagrangian L to be

SGHY = −
∫

∂M

�

−ϵK̃a ∧ ∗ϕna + ϵKa ∧ ∗ϕan +
1
2

Qnn ∧ ∗ϕnn

�

�

�

�

�

∂M

= −
∫

∂M

�

ϵKa ∧ ∗ (ϕan −ϕna) + ϵQna ∧ ∗ϕna +
1
2

Qnn ∧ ∗ϕnn

�

�

�

�

�

∂M
,

(12)

where ϕan, ϕna and ϕnn are implicitly expressed in terms of L through the constraints (10).

4Only these variations are relevant, since the boundary conditions (6) do not fix ωa
n, ωn

a and ωn
n.

5Note that these are not Einstein’s equations which result from a variation with respect to the connection.
6Note the components of Ωa

b also include normal contributions in general. The purely hypersurface
curvature, Ω(n−1)a

b, is found by means of projecting the components of Ωa
b to the hypersurface, that is

Ω
(n−1)a

b = Ω
a

b(ϕc ,ϕd)φc ∧φd , with ϕa the dual of φa (see (44)).

7
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A couple of comments about SGHY are in order. First, we note that our result should be
expected. All terms in (12) depend on the first derivatives of the metric as in typical general
relativity. That torsion does not appear explicitly in the GHY terms should also be expected.
Torsion may contribute boundary terms only via the derivative of the frame field it contains,
see (1). This derivative measures the non-holonomicity of the frame and is not a true geometric
invariant of the theory. Therefore, in a generally covariant theory, vanishing non-holonomicity
is locally enforceable and as a result the torsion two-form is only a polynomial in ωµν and θµ.
This is why the torsion two-form cannot appear explicitly in the GHY terms. Of course, this
does not forbid turning the GHY term from a function of the curvature to a function of torsion
if additional constraints between the field strengths are taken into account as in teleparallel
theories of gravity for example [47,48].

Second, in the important case of vanishing non-metricity, Qµν = 0, the GHY term (12)
simplifies considerably to

SQ=0
GHY = 2

∫

∂M
ϵKa ∧ ∗ϕna|∂M . (13)

That is, the GHY term is a direct generalization of the GHY term of general relativity which is
proportional to the extrinsic curvature of the boundary.

Finally, some technical notes are in place. First, for the calculation we considered ϱna and
ϱan as independent although curvature fulfills Ωµν + Ωνµ = DQµν according to (2) and ϱµν
has the same symmetry as Ωµν. This simplifies our calculation considerably without altering
the final result. Alternatively, it is possible to invoke the symmetry relation satisfied by ϱµν
prior to the variation. In appendix B we explicitly show that this yields the same resulting
GHY term (13). Second, we worked entirely in the first order formalism where all fields are
independent. If one wants to consider a second order one, the equations of motion must be
used to express all fields in terms of the independent ones. In traditional general relativity, this
involves solving for ωµν in terms gµν. Substituting the solution into L yields a new Lagrangian
L̃ for the independent fields. If L̃ is a function of the remaining independent field strengths,
say L̃= L̃(Ωµν), our algorithm may still be applied mutatis mutandis to obtain the GHY term
for L̃. We have implicitly used this observation when writing down (13) for the GHY terms of
metric compatible theories in the following section.

To recap, the calculation of the GHY term for any MAG theory follows these steps: First,
choose the Lagrangian L of the MAG of interest. Second, express L in a 3 + 1 decomposed
form (see section 4). Third, derive the Lagrange multiplier ϕµν through the constraint equa-
tions (10). Finally, substitute the result into the general form (12) of the GHY term. In the
following section, we apply this algorithm to several particular theories of gravity as a consist-
ency check of our results.

3 Examples for Gibbons-Hawking-York terms

In the current section we apply the algorithm explained in the previous section to calculate
the GHY terms for several theories of gravity. The examples we consider involve the Einstein-
Hilbert action in general dimensions, the action of 4d Chern-Simons modified gravity and
the 5d Lovelock-Chern-Simons action. We also calculate the GHY term for the most general
MAG Lagrangian quadratic in the field strengths. Since both the calculation and the result for
the MAG GHY terms are quite lengthy, but do not add any additional insight regarding the
formalism, we relegate them to appendix A.

8
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3.1 Einstein-Hilbert gravity L∝ R

As a very basic consistency check of our algorithm, we first consider the Einstein-Hilbert action

SEH =
1

2κ

∫

d4 x
p

−gR=
1

2κ

∫

ηµν ∧Ωµν , (14)

where ηµν ..= ∗ (θµ ∧ θν). The Lagrangian for this action is L = L(Ωµν) = ηµν ∧ Ωµν/2κ.
Hence, the general form of the extended action (7) including the auxiliary fields and Lagrange
multipliers reads

SEH
aux =

∫

�

1
2κ
ηµν ∧ϱµν + ∗ϕ ν

µ ∧ (Ω
µ
ν −ϱ

µ
ν)
�

, (15)

in the case of Einstein-Hilbert gravity. The relevant terms in the 3+1 decomposition of L(ϱµν)
for our calculation of the GHY term are

L(ϱµν) =
1

2κ
ηµν ∧ϱµν ≃

1
2κ
ϵηna ∧ϱna , (16)

where ≃ omits irrelevant terms of the decomposition. According to (10), the equations of
motion for ϱna read

∗ϕna ∧δϱna = ϵδϱnaL(ϱ) =
1

2κ
ηna ∧δϱna , (17)

which fix the form of ϕna to

∗ϕna =
1

2κ
ηna . (18)

Substituting (18) into our general result (13) for the GHY term, we obtain

SEH
GHY = 2

∫

∂M
ϵKa ∧ ∗ϕna|∂M =

ϵ

κ

∫

∂M
d3 x
Æ

|γ|Ka
a , (19)

which is the well-known result for the GHY term in general relativity [36, 37]. Note that we
used the 4d Einstein-Hilbert action, but since the differential geometric formulation of the
action (14) holds for an arbitrary number of dimensions, our result is actually more general.
In particular, the GHY term

SEH
GHY =

ϵ

κ

∫

∂M
dVol∂M
Æ

|γ|Ka
a , (20)

solves the Dirichlet problem for Einstein-Hilbert gravity on any n-manifold M. The abbrevi-
ation dVol∂M ..= φ0∧· · ·∧φn−2 is equal to the standard integral measure dn−1 y in holonomic
coordinates φa = dya.

3.2 4d Chern-Simons modified gravity L∝ Ω2

As a next check of our formalism we turn to the four-dimensional Chern-Simons action as used
in Chern-Simons modified gravity [49]. This provides a non-trivial check since the action is
quadratic in curvature and the GHY term was already derived in [50].
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The Chern-Simons part of the full action is7

SCS =
κ

4

∫

d4 x
p

−g θ ∗ RR=
κ

2
(−1)indg

∫

θ Ωµν ∧Ω
ν
µ , (21)

where the background scalar field θ must not be confused with the coframe basis θµ. We read
off L(Ωµν) = κ

2 (−1)indgθ Ω
µ
ν ∧Ωνµ from the action (21) so that the equation of motion (10)

for ϱna yields

∗ϕna ∧δϱna = ϵδϱnaL= (−1)indgκθϱan ∧δϱna , (22)

which leads to ∗ϕna = (−1)indgκθϱan.
We observe that ϕna depends explicitly on ϱan, unlike the Einstein-Hilbert action. To

proceed, we use the equations of motion (8) ofϕµν to fix ϱµν = Ωµν. Subsequently, we employ
the 3+ 1 decomposition of curvature which is given by the Gauß-Codazzi equations (11) to
express ϕna in terms of geometric quantities on ∂M. We find

∗ϕna
�

�

ϱµν=Ωµν
= (−1)indgκθϱan

�

�

ϱµν=Ωµν
= (−1)indgκθDKa , (23)

which evaluated on the boundary reads

∗ϕna|∂M = (−1)indgκθ∇aK c
bφ

a ∧φb . (24)

Here we define the boundary covariant derivative as∇aK c
b

..= ∂aK c
b +Γ

c
ad Kd

b −Γ
d
abK c

d , where
the connection coefficients are related to the boundary connection (3) as ωa

b = Γ
a
cbφ

c . To
match the conventions of [50] we choose |g| = −g, |γ| = γ as well as torsion freedom. This,
in conjunction with (13), leads to the GHY term

SCS
GHY = 2κ

∫

M3

d3 x
p
γθεi jkK l

i ∇ jKkl , (25)

where εi jk denotes the totally antisymmetric tensor which differs from the ϵi jk-symbol by a
factor of 1/

p
γ. The result (25) coincides with the result of [50] up to a factor of 2. However,

a calculation of this GHY term via the methods of [46] and [39] supports our result (25) in-
cluding the factor of 2. We now turn to the derivation of the GHY term for torsionful Lovelock-
Chern-Simons gravity which is not known in literature as far as we are aware.

3.3 Lovelock-Chern-Simons gravity

For our final example, we consider Lovelock-Chern-Simons gravity in a 5d spacetime with
boundary. This example involves both a non-trivial polynomial Lagrangian for curvature and
non-vanishing torsion. In particular, we investigate the action

SLCS = κ

∫

M5

εµναβσ

�

Ωµν ∧Ωαβ +
2
3
Ωµν ∧ θα ∧ θβ +

1
5
θµ ∧ θν ∧ θα ∧ θβ

�

∧ θσ , (26)

employed in [16,51]. As in the previous examples we identify the integrand in (26) as L and
use the equations of motion (8), (10) for ϕµν and ϱµν to obtain

∗ϕna

�

�

ϱµν=Ωµν
= 2ϵκεµναβσnµeνa

�

Ωαβ +
1
3
θα ∧ θβ
�

∧ θσ . (27)

7In the differential geometric version of (21) we could alternatively use a notation which involves the Hodge
dual of one of the curvature two-forms. We refrain from that since the variation of Hodge duals is non-trivial. For
details on the variation of Hodge duals as well as interior products and their inclusion into the framework of this
paper, see appendix A.1.
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Note that since εµναβσ in (27) is contracted with nµ, the α,β and σ indices are all on ∂M
which means that they need to be contracted with eµa when evaluating the 3+1 decomposition
of ϕna. Thus, we may write (27) as

∗ϕna

�

�

ϱµν=Ωµν
= 2ϵκεabcd

�

eb
αec
βΩ
αβ +

1
3
φb ∧φc
�

∧φd . (28)

Employing the Gauß-Codazzi equations (11) for vanishing non-metricity, we evaluate ϕna in
terms of geometric quantities on the boundary as

∗ϕna

�

�

M4
= 2ϵκεabcd

�

Ωbc − ϵK b ∧ K c +
1
3
φb ∧φc
�

∧φd

�

�

�

�

M4

, (29)

where Ωa
b

..= dωa
b+ω

a
c ∧ω

c
b was defined in (11). By virtue of (13) the GHY term of torsionful

Lovelock-Chern-Simons gravity is then

SLCS
GHY = −4κ

∫

M4

εabcd

�

Ωab − ϵKa ∧ K b +
1
3
φa ∧φb
�

∧φc ∧ Kd

�

�

�

�

M4

. (30)

In components (30) takes the form

SLCS
GHY = −4κ

∫

M4

dVolM4

p

−γ
�

3!
�

1
2

Rab
[ab − ϵK

a
[a K b

b

�

K c
c] + 2Ka

a

�

. (31)

General considerations regarding (30) show it is consistent with expectations. To see this,
consider the Lovelock-Chern-Simons action (26) in more detail. This action consists of three
terms. The first of them which is a quadratic curvature term in five dimensions is new to us
so far. Because of its quadratic curvature form we expect it to yield a GHY term of a new form
which is of higher order in the extrinsic curvature just as we observed it in the example of 4d
Chern-Simons modified gravity in section 3.2. We immediately observe this behaviour from
the generalized Gauß-Codazzi equations (11) which give the curvature 3+ 1 decomposition.
The third term in (26) has no curvature contribution and is not expected to yield a GHY contri-
bution since these contributions all relate to variations of curvature, see (12). The remaining
second term we already know. In fact, we rewrite it as

SLCS, 2nd term = κ

∫

M5

εµναβσ
2
3
Ωµν ∧ θα ∧ θβ ∧ θσ = 8κ

∫

M5

ηµν ∧Ωµν , (32)

where ηµν ..= ∗ (θµ ∧ θν) was defined in section 3.1. Note that this is nothing but a 5-
dimensional Einstein-Hilbert action. In section 3.1 we already noticed that actions of this
form always have the same GHY term regardless of their dimension. Hence, we expect a
contribution to the total Lovelock-Chern-Simons GHY term of the type

SLCS, 2nd term
GHY ∝
∫

∂M
dVol∂M
Æ

|γ|Ka
a . (33)

We only write a proportionality instead of an equality in the latter equation since there could be
additional contributions from the quadratic curvature term which we omit in this consistency
consideration. We observe all of these expected contributions in our result (31).

For vanishing torsion, the GHY term for Lovelock-Chern-Simons theory was derived in [52]
following the method of dimensional continuation of [53]. Our results agree with those in [52]
up to a factor of 3 in the cubic extrinsic curvature term in (30). Unfortunately, such a discrep-
ancy should be expected since—as the authors of [52] stress—the dimensional continuation
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method cannot be used if torsion is non-vanishing. The reason for this is quite simple: The au-
thors of [52] and [53] essentially use the two first rungs of the descent ladder for gravitational
anomalies in the absence of torsion [54], in order to define their respective GHY terms. The
inclusion of torsion modifies the descent procedure—and hence the GHY terms—by modify-
ing the BRS algebra of the fields [55]. It would be interesting to use the results of the descent
procedure described in [55] to explicitly check that our result (30) for the Lovelock-Chern-
Simons GHY term can be derived analogously to [52] in the case of vanishing torsion. In
this sense, (30) may be regarded as a generalization of the Lovelock-Chern-Simons GHY term
in [52] to torsionful Lovelock-Chern-Simons theory. Moreover, our formalism does not need to
introduce a background manifold for deriving the GHY term, which may be considered another
generalization of [52,53]. Some results regarding the GHY term for torsionful Lovelock-Chern-
Simons theory also exist in the literature. Namely, the action of Lovelock-Chern-Simons (26)
was renormalized in [51]. To achieve this, the authors of [51] considered a finite Fefferman-
Graham expansion and compensated the divergent terms by addition of counterterms to the
action. The non-divergent terms in this procedure were not given explicitly in [51] but calcu-
lated in [16], where they were interpreted as the GHY term of Lovelock-Chern-Simons gravity.
This term constitutes an on-shell result whereas our result (30) is the universal GHY term
for the Lovelock-Chern-Simons action (26). From this point of view, our result (30) may be
considered as a generalization of the Lovelock-Chern-Simons GHY term in [16].

Our results for the GHY term of torsionful Lovelock-Chern-Simons theory constitute a new
result in the literature. An additional novel result can be found in appendix A, where we
derive the GHY term for the most general MAG Lagrangian quadratic in the fields. In the same
appendix we include details on how to treat interior products and Hodge duals under the
variations necessary to apply our algorithm. These allow to work directly in the differential
form version of the Lagrangian, which usually provides the most economical expression for
the Lagrangian. Before proceeding to appendix A, we suggest reading section 4. This section
contains the explicit derivation of the general formula for the GHY term (12) along with some
useful formulae regarding the 3+ 1 decomposition of the field strengths.

4 Derivation of the Gibbons-Hawking-York term

In this section we present the explicit calculation leading to the GHY term (12) given in sec-
tion 2. The essence of the calculation of the GHY term involves the 3+1 decomposition of the
fundamental fields, ωµν, gµν and θµ, and their field strengths, Ωµν, Qµν and Tµ respectively.
In order to derive such a decomposition, we first consider the geometric setup for spacetime
foliations introduced in section 2 in more detail. This involves an investigation of how the
frame fields θµ, nµ and ea

µ decompose with respect to the spacetime foliation.

4.1 Frame decomposition

In this subsection, we first introduce frame decompositions on manifolds in the vielbein form-
alism. These frame decompositions constitute the basis for the subsequent investigation of
foliations in the 3+ 1 formalism [44,45,56], in which the manifold is described as a stack of
hypersurfaces. We assume that neither torsion nor non-metricity vanishes and use differential
forms throughout to simplify the analysis (see e.g. [23,43,57]).

We consider an n-dimensional manifold M equipped with a generic coframe θµ,
µ ∈ {0, . . . , n−1}. Locally, a coframe is a basis of the cotangent space at each point p of M. In
order to describe how the boundary is embedded in M, we aim at decomposing all geomet-
ric quantities on M into contributions tangent and normal to the boundary. For this reason,

12

https://scipost.org
https://scipost.org/SciPostPhys.14.5.099


SciPost Phys. 14, 099 (2023)

we assume that M is foliated by a family of hypersurfaces {Σλ}λ, where λ =const defines
each hypersurface Σλ. In order to be able to describe the embedding of the boundary as well
as the boundary components of the manifold’s geometric quantities torsion, curvature, and
non-metricity, we choose this foliation such that the asymptotic boundary ∂M is one of the
hypersurfaces. The most basic quantity to decompose in this foliation is the coframe θµ. We
associate a frame field ϑµ to this coframe by means of θµ(ϑν) = δ

µ
ν = ϑν(θµ), and decompose

both according to

θµ = eµa φ̃
a + tµφ , (34a)

ϑµ = Ea
µϕa +

ϵ

N
nµϕ̃ , (34b)

where a ∈ {0, . . . , n− 2}. The new tensors introduced in this decomposition are given by

eµa
..= θµ(ϕa) , Ea

µ
..= ϑµ(φ̃

a) , tµ ..= θµ(ϕ̃) . (35)

Using the induced metric on Σλ, γab
..= eµa eνb gµν, we define

ϵ ..= sgn

�

det gµν
detγab

�

, N ..= 1/
q

|gµνϑµ(φ)ϑν(φ)| , nµ ..= ϵNϑµ(φ) . (36)

The lapse function N is introduced to normalize nµ, nµnµ = ϵ. Moreover, the sign ϵ in nµ is a
convenient choice for the direction of nµ (see [44]), such that ϵ2 = 1. We impose orthogonality
for the frame decomposition (34) by virtue of

φ̃a(ϕb) = δ
a
b = ϕb(φ̃

a) , φ(ϕ̃) = 1= ϕ̃(φ) , (37)

with all other pairings between the φ and ϕ frames vanishing, for instance φ(ϕa) = 0. These
pairings imply that the tensors eµa , Ea

µ, tµ and nµ are not independent of each other. To
see this, we insert the decompositions of frame and coframe (34) into their defining relation
θµ(ϑν) = δ

µ
ν to obtain

δµν = eµa Ea
ν +
ϵ

N
tµnν . (38)

Next, we contract this equation with nµ as well as ea
ν

..= γab gµνe
µ

b to find the relations

tµ = Nnµ + N aeµa and Ea
µ = ea

µ −
ϵ

N
nµ tνea

ν = ea
µ −
ϵ

N
nµN a − ϵnµnνea

ν , (39)

where we define the shift vector N a ..= −NnµEa
µ. Note that the expressions (39) relate the

fields eµa , Ea
µ, tµ and nµ with each other. Nevertheless, their relation may be examined further

by means of8

nµeµa = 0 , (40)

which implies that tµEa
µ = 0 holds, as well. Using the orthogonality conditions (37) and (40),

we may revisit the relations (38) and (39) and rewrite them as

δµν = eµa ea
ν + ϵn

µnν , (41a)

tµ = Nnµ + N aeµa , (41b)

Ea
µ = ea

µ −
ϵ

N
nµN a . (41c)

In the following section we use these equations to find a version of the frame decomposi-
tion (34) which is adapted to the foliation of the manifold M by means of hypersurfaces.

8Equation (40) can be proven by expressing the completeness relation (38) in terms of eµa , nµ via (39) to find
δµ
ν
= eµa ea

ν
+ϵnµnν−ϵnρea

ρ
eµa nν. Using this, we can write nµeµa = nµδ

µ
ν
eνa = nµeµa (ϵn

ρeb
ρ

nνe
ν
b). This implies nµeµa = 0,

since 1= ϵnρea
ρ

nνe
ν
a leads to 1= 0 when we take the trace of the completeness relation.
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4.2 Adapted frame decomposition

In the frame decomposition (34) we have introduced four a priori independent tensors eµa , Ea
µ,

tµ and nµ. We imposed orthogonality conditions in (37) and saw that they allow to express
Ea
µ and tµ in terms of eµa and nµ as in (41). Thus, we use the relations (41) to eliminate Ea

µ

and tµ in the original frame decomposition (34), to obtain

θµ = eµaφ
a + Nnµφ , (42a)

ϑµ = ea
µϕa +

ϵ

N
nµϕ , (42b)

where we introduced the adapted frame

φa ..= φ̃a + N aφ , ϕ ..= ϕ̃ − N aϕa . (43)

The pairings (37) of the (φa,φ,ϕa,ϕ) frames are invariant under this transformation and read

φa(ϕb) = δ
a
b = ϕb(φ

a) , φ(ϕ) = 1= ϕ(φ) , (44)

with all remaining pairings vanishing. Hence, the new frame fields (φa,φ,ϕa,ϕ) are or-
thogonal as well. To gain an intuition for what these fields are, consider a generic one-
form A= Aµθ

µ and a vector B = Bµϑµ. We use (42) to expand A and B as

A= Aµeµaφ
a + NAµnµφ , (45a)

B = Bµea
µϕa +

ϵ

N
Bµnµϕ . (45b)

Recall that a tensor or differential form is called tangent (normal) to a hypersurface if it van-
ishes when any of its indices is contracted with nµ (eµa ). We apply these definitions to (45)
and find that tangent one-forms and vectors take the form

A= Aµeµaφ
a , B = Bµea

µϕa , (46)

while normal ones are expanded as

A= NAµnµφ , B =
ϵ

N
Bµnµϕ . (47)

Combining these notions of being tangent and normal with the orthogonality conditions (44),
we may interpret ϕa as a frame basis on Σλ with associated coframe basis φa. Hence, the
frame decomposition (42) is adapted to the foliation and we proceed to work with it in the
following. Having set up the frame decomposition, we proceed by investigating how fields
transform.

4.3 Decomposition of metric and connection

In the previous subsections we have investigated the decomposition of the frame fields in the
foliation of the manifold M by means of hypersurfaces. We use this decomposition next to
investigate how the basic geometric objects on M decompose in that foliation. In particular,
apart from the frame field, we consider the metric tensor gµν as well as the connection one-
form ωµν as independent dynamical fields. We start by investigating the decomposition of gµν
by applying the adapted frame decomposition (42). Contracting (42) with eµa and nµ, we
exploit the normality condition (40), nµeµa = 0, to identify φ = ϵ

N nµθ
µ and φa = ea

µθ
µ. We

use the manifold metric gµν and the hypersurface metric γab = eµa eνb gµν to raise and lower

14

https://scipost.org
https://scipost.org/SciPostPhys.14.5.099


SciPost Phys. 14, 099 (2023)

indices in ea
µ = γ

ab gµνe
ν
b . Using these relations, we rewrite the metric tensor by means of (42)

as

ds2 = gµνθ
µ ⊗ θν =
�

γabea
µeb
ν + ϵnµnν
�

θµ ⊗ θν . (48)

From (48) we can read of the 3+ 1 decomposition of the metric tensor gµν as

gµν = γabea
µeb
ν + ϵnµnν , (49)

in hypersurface tangent and normal contributions. The decomposition (49) is used heavily in
the following discussion.

For deriving the transformation of the connection one-form ωµν to the hypersurfaces, we
use the transformation law of connections with respect to the metric-affine group. For Λµν ∈
GL(n,R), this transformation is given by [23]

ωµν →ω
′µ
ν = Λ

−1µ
ρω

ρ
σΛ
σ
ν +Λ

−1µ
ρdΛρν . (50)

Motivated by the frame decomposition (42) we choose the transformation

Λµν
..=eµaδ

a
ν + Nnµδn−1

ν ,

Λ−1µ
ν =ea

νδ
µ
a +
ϵ

N
nνδ

µ
n−1 .

(51)

After inserting this transformation into (50), we only consider the µ,ν = (0, . . . , n− 2) com-
ponents of ω′µν to find

ωb
a = eb

µ

�

deµa +ω
µ
νeνa
�

⇔ eb
µDeµa = 0 , (52)

where we suppressed the prime on the left hand side since the indices immediately clarify
which connection is meant here. This is the transformation of the connection on M to the
connection on Σλ. Essentially, the above argument is a proof of the vielbein postulate for the
frame field on the hypersurface for MAG, along the lines of a similar proof in [23]. We interpret
the hypersurface connection coefficients by means of (52) as the contribution of Deµa which
is tangent to the hypersurfaces. It is, thus, natural to consider its normal contributions next
to obtain an expression for Deµa , which constitutes a differential form version of the Gauß-
Weingarten equation.

4.4 Foundations of the 3+1 formalism in general frames

In this section we derive the fundamental equations of the 3+ 1 formalism in terms of differ-
ential forms. This involves the decomposition of Deµa into contributions normal and tangent
to the hypersurfaces in the foliation of the manifold M, which can be considered as a gener-
alized version of the Gauß-Weingarten equations. We furthermore derive a similar equation
for the normal vector nµ, and take exterior covariant derivatives of these relations to derive
generalized versions of the Ricci identities. This set of equations is the foundation of the 3+1
formalism in differential forms.

We start our calculation by investigating Deµa . While we found the tangent contributions
of this one-form for (52), we still need to calculate its hypersurface normal parts. To that
end we define a one-form corresponding to the extrinsic curvature tensor Ka

b
..= ea

µeνb∇νn
µ.

Due to non-vanishing non-metricity, we furthermore define extrinsic curvature in a slightly
different manner by K̃ab

..= eµa eνb∇νnµ, and we work with both definitions interchangeably in
the following. Thus, we also define two different extrinsic curvature one-forms by

Ka ..= ea
µDnµ and K̃a

..= eµa Dnµ . (53)
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We use the frame decomposition (42) to calculate the components of these quantities in our
foliation,

Ka = Ka
bφ

b + Nea
µaµφ ,

K̃a = K̃abφ
b + Neµa ãµφ ,

(54)

where we defined aµ ..=∇nnµ and ãµ ..=∇nnµ analogous to the different notions of extrinsic
curvature.

With the extrinsic curvature one-form at hand, we now investigate the covariant derivative
of generic forms Aµ = eµa Aa tangent to Σλ. We use the 3+ 1 decomposition of the metric (49)
and the vielbein postulate (52) to evaluate

DAµ = D
�

gµνAν
�

=
�

eµa ea
ν + ϵn

µnν
�

DAν = eµa DAa − ϵnµeνa Dnν ∧ Aa . (55)

At the same time Aµ being tangent to the hypersurface implies

DAµ = D
�

eµa Aa
�

= Deµa ∧ Aa + eµa DAa . (56)

We compare both equations and noting they hold for arbitrary Aa, we find

Deµa = −ϵn
µK̃a . (57)

This is the expression of the Gauß-Weingarten equation in terms of differential forms.
We can derive a similar expression like the Gauß-Weingarten equation for the normal vec-

tor nµ. To that end, we first need to define the non-metricity one-form,

Qµν ..= −Dgµν =Qµνρθ
ρ , (58)

with its tensor components given by Qµνρ = −∇ρ gµν. Abbreviating Qnn
..= nµnνQµν, we

investigate 0= Dϵ to obtain

nµDnµ =
1
2

Qnn . (59)

We use this result for the calculation of Dnµ and follow the same steps as described in the case
of Deµa above to find

Dnµ = eµa Ka +
ϵ

2
nµQnn . (60)

This is the hypersurface normal Gauß-Weingarten equation.
The last missing fundamental equations of the differential geometric 3+ 1 decomposition

are the Ricci identities for eµa and nµ. Straightforward evaluation of the second covariant
exterior derivatives of eµa and nµ yields

D2eµa = eνaΩ
µ
ν − eµbΩ

b
a , (61a)

D2nµ = Ωµνn
ν , (61b)

where the curvature two-form on M is given by

Ωµν
..= dωµν +ω

µ
ρ ∧ω

ρ
ν =

1
2

Rµνρσθ
ρ ∧ θσ , (62)

and we defined Ωa
b

..= dωa
b + ω

a
c ∧ ω

c
b, the boundary curvature, analogously. The tensor

components Rµνρσ on the right hand side of (62) are those of the Riemann curvature tensor.
The equations we have derived in this section are sufficient to derive the Gauß-Codazzi

equations, which are at the heart of the 3 + 1 formalism. They describe how curvature de-
composes into contributions normal and tangent to the hypersurfaces of the foliation. We
perform the derivation of these equations and their analogues for torsion and non-metricity in
the following subsection. We begin by investigating the 3+ 1 decomposition of non-metricity.
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4.5 Decomposition of the field strengths

In order to examine which boundary terms the non-metricity one-form Qµν admits, we de-
compose this differential form into contributions normal and tangent to the hypersurfaces
given by the foliation of M. For this derivation we make extensive use of the 3 + 1 decom-
positions derived in the previous subsections, among which the generalized Gauß-Weingarten
equations (57), (60) are particularly important. We start our investigation by using (41a) to
decompose uncontracted manifold indices of a differential form Aµ as

Aµ = δ
ν
µAν = ea

µeνaAν + ϵnµnνAν . (63)

Analogous decompositions hold for contravariant indices. We apply this index decomposition
to the non-metricity one-form Qµν to obtain9

Qµν = ea
µeb
ν

�

eαa eβb Qαβ
�

+ 2ϵea
(µn
ν)

�

eαa nβQαβ
�

+ nµnν
�

nαnβQαβ
�

. (64)

To make the decomposition (64) useful, we recall the definition of non-metricity (58) and use
the 3 + 1 decomposition of the metric (49) along with with repeated use of the generalized
Gauß-Weingarten equation (57) and its normal counterpart (60). We obtain

Qµν = ea
µeb
ν(−Dγab) + 2ϵea

(µn
ν)

�

Ka − K̃a

�

+ 2nµnνnαDnα . (65)

This result decomposes the indices of Qµν into contributions normal and tangent to the hyper-
surfaces in the foliation of M. In contrast to (64), (65) expresses these contributions solely
in terms of fundamental fields on the hypersurface. Hence, the comparison of (65) and (64)
yields the 3+ 1 decomposition of the non-metricity one-form that reads

eµa eνbQµν = −Dγab , eµa nνQµν = Ka − K̃a , nµnνQµν = 2nµDnµ . (66)

This is the decomposition of non-metricity we aim for. The projections on the left hand sides
of (66) are expressed through boundary data on the right hand sides. Note that nµDnµ is a
manifold scalar and does not have to be express through boundary data any further.

Next we derive the corresponding 3+1 decompositions for torsion and curvature. Torsion
is defined as the field strength of the coframe field as

Tµ ..= Dθµ =
1
2

Tµρσ θ
ρ ∧ θσ . (67)

As in the case of non-metricity, we need to decompose the torsion two-form into contributions
which are normal and tangent to the hypersurfaces w.r.t. the foliation of the manifold. The
calculation proceeds identically to that of the non-metricity decomposition above. Its result is
that the torsion two-form is decomposed as

ea
µTµ = Dφa + NKa ∧φ = T a + NKa ∧φ , (68a)

nµTµ = −K̃a ∧φa + ϵD(Nφ) +
N
2

Qnn ∧φ , (68b)

with T a the torsion 2-form on the hypersurfaces.
The final 3+ 1 decomposition of the field strengths to consider is the one of the curvature

two-form defined in (62). In addition to the methods used for non-metricity and torsion we

9We use symmetrization as A(µ1 ...µp)
..= 1

p!

∑

σ∈S Aσ(µ1)...σ(µp) over all permutationsσ in the permutation group S.

Likewise, we define A[µ1 ...µp]
..= 1

p!

∑

σ∈S sgn(σ)Aσ(µ1)...σ(µp) as antisymmetrization, where sgn(σ) equals +1 if σ
consists of an even number of transpositions and −1 else.
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exploit the Ricci identities (61) for eµa and nµ in the derivation of the curvature decomposition.
Apart from that, the analysis proceeds similar to the one of non-metricity and yields

ea
µeνbΩ

µ
ν = Ω

a
b − ϵK

a ∧ K̃b ,

ea
µnνΩµν = DKa +

ϵ

2
Ka ∧Qnn ,

nµeνaΩ
µ
ν = −DK̃a +

ϵ

2
K̃a ∧Qnn ,

nµnνΩµν =
1
2

DQnn + Ka ∧ K̃a .
(69)

These equations are generalizations of the Gauß-Codazzi equations. As we have seen in sec-
tion 3, they are particularly relevant for the calculation of GHY terms if a specific Lagrangian L
is considered. In particular, the calculation of GHY terms which are of second or higher or-
der in curvature always involves terms like ea

µnνΩµν which are evaluated by means of (69).
Moreover, as we show next, the 3+ 1 decompositions of curvature, torsion and non-metricity
which we have just derived are sufficient for calculating the GHY term for generic Lagrangians
which are polynomials or Taylor series of these field strengths.

4.6 Post-Riemannian Gibbons-Hawking-York term

This section follows [46] to derive a generalized GHY term from the foliations of curvature,
torsion and non-metricity. For the sake of generality we consider an action of the form

Sorig[gµν,ω
µ
ν,θ

µ] =

∫

M
L(Ωµν, Tµ,Qµν) , (70)

where the Lagrangian L is a polynomial in curvature Ωµν, torsion Tµ and non-metricity Qµν.
10

We introduce Lagrange multipliers ϕ ν
µ , tµ and qµν in order to linearize L and derive the GHY

term more easily.

S[gµν,ω
µ
ν,θ

µ,ϕµν ,ϱµν , tµ,τ
µ, qµν,σµν] =

∫

M

�

L(ϱµν ,τµ,σµν) + ∗ϕ ν
µ ∧ (Ω

µ
ν −ϱ

µ
ν) (71)

+ ∗tµ ∧ (Tµ −τµ) + ∗qµν ∧
�

Qµν −σµν
�

�

.

Integrating out the multipliers shows that the action (71) yields the same equations of motion
as (70). The remaining fields ϱµν , τµ and σµν in (71) introduced are auxiliary fields that
we demand to have the same symmetries as the corresponding field strength. This symmetry
identification is also required for the Lagrange multipliers ϕ ν

µ , tµ and qµν in order to allow
equivalence of the equations of motion of (70) and (71) [46].

To proceed we substitute the 3+ 1 decompositions of Ωµν, Tµ and Qµν in the action (71)
in order to decompose S into boundary tangent and normal contributions and, subsequently,
isolate the boundary terms. For this, we write by means of (41a) for the linearized terms in S

∗ϕ ν
µ ∧Ω

µ
ν =
�

eαa eb
β ∗ϕ

β
α

�

∧
�

ea
µeνbΩ

µ
ν

�

+ ϵ
�

eαa nβ ∗ϕ β
α

�

∧
�

ea
µnνΩµν
�

+ ϵ
�

nαea
β ∗ϕ

β
α

�

∧
�

nµeνaΩ
µ
ν

�

+
�

nαnβ ∗ϕ β
α

�

∧
�

nµnνΩµν
�

,
(72a)

∗tµ ∧ Tµ =
�

eνa ∗ tν
�

∧
�

ea
µTµ
�

+ ϵ (nν ∗ tν)∧
�

nµTµ
�

, (72b)

∗qµν ∧Qµν =
�

ea
αeb
β ∗ qαβ
�

∧
�

eµa eνbQµν
�

+ ϵ
�

ea
αnβ ∗ qαβ
�

∧
�

eµa nνQµν
�

+ ϵ
�

nαea
β ∗ qαβ
�

∧
�

nµeνaQµν
�

+
�

nαnβ ∗ qαβ
�

∧
�

nµnνQµν
�

.
(72c)

10Derivatives of Ωµ
ν
, Tµ or Qµν may be reduced to polynomials by means of the Bianchi identities (2).
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The right hand side of each of these equations can be written in terms of the 3 + 1 decom-
positions of Qµν, Tµ and Ωµν shown in (66), (68) and (69). For example, (72a) takes the
form

∗ϕ ν
µ ∧Ω

µ
ν =
�

eαa eb
β ∗ϕ

β
α

�

∧
�

Ωa
b − ϵK

a ∧ K̃b

�

+ ϵ
�

eαa nβ ∗ϕ β
α

�

∧
�

DKa +
ϵ

2
Ka ∧Qnn

�

(73)

+ ϵ
�

nαea
β ∗ϕ

β
α

�

∧
�

−DK̃a +
ϵ

2
K̃a ∧Qnn

�

+
�

nαnβ ∗ϕ β
α

�

∧
�

1
2

DQnn + Ka ∧ K̃a

�

.

We insert this decomposition and the analogues for torsion and non-metricity into the ac-
tion (71). The derivative terms yield by means of Stokes’ theorem [58,59] a boundary action,
which reads

Sbdy =

∫

∂M

�

ωa
b ∧
�

eαa eb
β ∗ϕ

β
α

�

+φa ∧
�

eνa ∗ tν
�

− γab

�

ea
αeb
β ∗ qαβ
�

− ϵK̃a ∧
�

nαea
β ∗ϕ

β
α

�

+ ϵKa ∧
�

eαa nβ ∗ϕ β
α

�

+
1
2

Qnn ∧
�

nαnβ ∗ϕ β
α

�

�

�

�

�

�

∂M
.

(74)

Note that we use the restriction of the integrand in (74) to ∂M as abbreviation for its pullback
to ∂M.

We finally construct the GHY term which cancels the boundary contributions to the ac-
tion (71). Only some of the terms in (74) actually contribute boundary terms when we consider
variations of the action. In particular, the variational principle assumes that δgµν

�

�

∂M = 0,
δθµ|∂M = 0 and δωµν

�

�

∂M = 0. According to [38] it equivalently suffices to demand that
the Dirichlet boundary conditions δγab = 0, δφa = 0 and δωa

b = 0 hold since the original
conditions may be reinstated by gauge transformations on ∂M.11 This implies that the GHY
term of (70) only has to cancel the contributions from the second line of (74) and, thus, takes
the form

SGHY = −
∫

∂M

�

−ϵK̃a ∧ ∗ϕna + ϵKa ∧ ∗ϕan +Qnn ∧
1
2
∗ϕnn

�

�

�

�

�

∂M
, (75)

where we abbreviated ∗ϕna ≡ nαea
β
∗ϕ β

α , ∗ϕan ≡ eαa nβ ∗ϕ
β
α and ∗ϕnn ≡ nαnβ ∗ϕ

β
α . The

result (75) is the general form of the GHY term in theories with torsion and non-metricity we
aim for. It is the main result of this paper. In particular, (75) is the GHY term for any theory
which is constituted by a Lagrangian L that is, possibly an infinite, polynomial in curvature,
torsion and non-metricity.

To apply our result to a specific Lagrangian L in (70), we need to know the Lagrange
multipliers ϕna, ϕan and ϕnn. To obtain these, we write the action (71) in a 3 + 1 form in
terms of (ϕna, ϕan, ϕnn, . . . ) instead of ϕ ν

µ , using (72). Then we can read the required
components of ϕ from the equations of motion of ϱµν

∗ϕna ∧δϱna = ϵδϱna
L(ϱna,ϱan,ϱnn, . . . ) ,

∗ϕan ∧δϱan = ϵδϱanL(ϱna,ϱan,ϱnn, . . . ) ,

∗ϕnn ∧δϱnn = δϱnn
L(ϱna,ϱan,ϱnn, . . . ) ,

(76)

derived from (71). Through these constraints, we may calculate SGHY for any given action
polynomial in curvature, torsion and non-metricity.

11By the same argument the residual terms of the curvature, torsion and non-metricity foliations which are not
exact forms do not contribute to the GHY term. We have, hence, disregarded them in the consideration above.
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We emphasize that (75) and (76) are the only equations necessary to calculate the GHY
term for a specific action. The advantage of our method is, thus, not only the universality of
our results but furthermore the efficiency of the calculation. We have already observed this
efficiency in the examples examined in section 3.

Finally we note that the GHY term (75) simplifies considerably if non-metricity is absent
as shown below.

4.6.1 Gibbons-Hawking-York term for metric compatible theories

Let us simplify the above result for theories which are metric compatible, that is, in which
the non-metricity one-form Qµν vanishes. For metric compatible theories, the Bianchi identity
of non-metricity (2), Ωµν +Ωνµ = DQµν, forces the curvature two-form to be antisymmetric.
Since the corresponding Lagrange multipliersϕ and ϱ are required to have the same symmetry
asΩµν, it follows thatϕ is antisymmetric in its two indices. This allows to simplify the Gibbons-
Hawking York term as

SQ=0
GHY = 2

∫

∂M
ϵKa ∧ ∗ϕna|∂M (77)

in the metric-compatible case. Note that due to the antisymmetry of the curvature two-form,
formally we must consider the constraints (76) as not independent. Nevertheless, we may
forego this caveat if we treat δϱna and δϱan as independent variations and use the symmetry
conditions only after the variational calculus. In appendix B we show explicitly that both meth-
ods yield the same result. This concludes the explicit derivation of the GHY boundary term for
any action polynomial in curvature, torsion and non-metricity, as anticipated in section 2. We
refer to the interpretation of our results in section 2.

5 Summary and discussion

In conclusion, in this paper we have accomplished the first step towards the full holo-
graphic renormalization of metric-affine gravity (MAG) theories, namely the derivation of the
Gibbons-Hawking-York term (12) in closed form for any given polynomial action (5) involving
curvature, torsion and non-metricity.12 In addition, our method for calculating the GHY term
is very efficient in practical terms, since it amounts to evaluating a single variation, (10). In-
terpreting the main result (12), we notice that only explicitly curvature-related terms in the
Lagrangian contribute to the GHY boundary terms. If a Lagrangian depends solely on torsion
and non-metricity, we do not need to introduce GHY terms in order for the Dirichlet variational
problem to be well-defined.13

We tested our method explicitly for two theories with known GHY terms, Einstein-Hilbert
gravity and 4d Chern-Simons modified gravity, in sections 3.1 and 3.2 respectively. Moreover,
we used our method to derive the GHY term for torsionful Lovelock-Chern-Simons theory in
section 3.3 and for metric-affine gravity in appendix A. Our new result for the Lovelock-Chern-
Simons GHY term meets intuitive expectations: Since the Lovelock-Chern-Simons action has
a form similar to the Einstein-Hilbert and 4d Chern-Simons modified ones, we expect their
GHY terms to also be comparable. This expectation bears out as explained in more detail in
section 3.3. We emphasize that for Lovelock-Chern-Simons theory, our result generalizes that
of [16] to off-shell field configurations and that of [52] to torsionful backgrounds. It would

12This includes non-polynomial Lagrangians that can be Taylor expanded in the field strengths.
13Of course, boundary terms may arise when these theories must satisfy additional constraints, such as setting

the curvature two-form Ωµ
ν
= 0 as in teleparallel theories of gravity [47,48].
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be interesting to evaluate our GHY term on the solution of [16] and to generalize the method
of [52] to torsionful backgrounds as a consistency check of our formalism.

The next step towards understanding spin and hypermomentum transport by means of the
AdS/CFT correspondence is now to complete the holographic renormalization procedure for
MAG theories.14 Evaluating the MAG action and the associated GHY term given in appendix A
on the torsionful and non-metric AdS Reissner-Nordström solution [60] will provide a hint on
what kind of divergences may appear in this procedure. In general, it will be necessary to find
the asymptotic expansion for torsion and non-metricity coupled to an asymptotically AdS met-
ric. This will provide us with the holographic dictionary for torsion and non-metricity. We then
have to follow e.g. [61] and calculate the regularized on-shell action in order to find all pos-
sible divergences, and to construct appropriate counterterms to cancel them. This will allow us
to derive the thermodynamic properties of black holes with spin and hypermomentum. It may
also enable us to study Hawking-Page type phase transitions [62] relying entirely on spin and
hypermomentum. In fact we expect such transitions to exist, since the entropy of a black hole
generically decreases when it starts rotating [63]. Holographic renormalization then sets the
stage for applying the fluid/gravity correspondence [42,64] to MAG and for deriving the com-
plete hydrodynamic expansion of strongly-coupled holographic systems with non-trivial spin
and hypermomentum transport. We note that non-trivial spin transport in hydrodynamics has
already been discussed in [15–21], but hypermomentum transport is still mostly unexplored.
The inclusion of hypermomentum is particularly interesting, since it contains degrees of free-
dom largely left unexplored in the literature.15 These degrees of freedom are expected to lead
to interesting changes in the transport properties of matter, since their source, non-metricity,
is interpreted geometrically as the modification of the causal structure of spacetime. Since
non-metricity is by definition first order in the hydrodynamic derivative expansion, we expect
it to contribute to hydrodynamic transport only at second order in derivatives or higher. This
makes conformal fluids, where the second order derivative expansion is well-known [66], the
most suitable candidate for carrying out this procedure.

Apart from the AdS/CFT correspondence, MAG theories are relevant in their own right.
For example, they provide us with extensions of Einstein’s theory of relativity based on a gauge
principle [23]. Thus, they are a promising standing point for exploring deviations from general
relativity in search for clues and constraints helpful for the construction of consistent quantum
gravity models. Moreover, torsion appears naturally in supergravity and, hence, top-down
string theory constructions [67]. In addition, non-metricity may play a role for conformal
gravity as follows: When the non-metricity is pure trace, i.e. Qµν = σgµν, it may be absorbed
into the covariant derivative. This derivative is then metric-compatible and covariant under
both diffeomorphisms and Weyl transformations (see e.g. [65]). We expect such derivatives
to be useful for the construction of non-local actions such as the Riegert action that gives rise
to the Euler term in the four-dimensional conformal anomaly [68], and for obtaining Weyl
covariant differential operators [69, 70] and curvature scalars [71, 72]. Finally, restricting
ourselves to the realm of classical gravity, our results may be applied to MAG theories to test
cosmological implications of deviations from Einstein gravity along the lines suggested in [73].

To conclude, we note that our results may also be useful within the context of studying to-
pological field theories in the presence of torsion and non-metricity. Topological field theories
constitute a convenient way of deriving non-dissipative transport properties, in this case for
spin and hypermomentum, without the necessity of solving the underlying electronic dynamics
(see [7] for instance). For example, we may follow [74] instead of a more complicated entropy
current analysis. Our results and specifically our hypersurface decomposition for torsion and
non-metricity allows writing down such theories in a spacetime with a timelike boundary. We

14Recall spin and hypermomentum are dual to torsion and non-metricity respectively [23].
15See [65] for a discussion on non-metricity of the Weyl type.
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expect them to be relevant for describing systems relevant for condensed matter physics.
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A GHY term for metric-affine gravity (MAG)

Metric-affine gravity contains non-vanishing non-metricity in addition to curvature and tor-
sion. According to [23,60] the most general Lagrangian density which is at most quadratic in
these fields and parity conserving is

VMAG =
1

2κ

�

− a0Rαβ ∧ηαβ − 2Λη+ Tα ∧ ∗

� 3
∑

I=1

aI
(I)Tα

�

+ 2

� 4
∑

I=2

cI
(I)Qαβ

�

∧ θα ∧ ∗Tβ +Qαβ ∧ ∗

� 4
∑

I=1

bI
(I)Qαβ
�

+ b5

�

(3)Qαγ ∧ θα
�

∧ ∗
�

(4)Qβγ ∧ θβ
�

�

−
1

2ρ
Rαβ ∧ ∗
� 6
∑

I=1

wI
(I)Wαβ +w7θα ∧ (eγ⌋(5)W

γ

β
)

+
5
∑

I=1

zI
(I)Zαβ + z6 θγ ∧ (eα⌋(2)Z

γ

β
) +

9
∑

I=7

zI θα ∧ (eγ⌋(I−4)Zγ
β
)
�

,

(A.1)

where a0, . . . , a3, b1, . . . , b5, c2, c3, c4, w1, . . . , w7, z1, . . . , z9 are dimensionless constants and
the curvature two-form R µ

ν relates to the definition in (62) as R µ
ν = Ωµν. The various

terms account for the 4+3+11 irreducible contributions to Qαβ , Tα and R β
α under the

(pseudo)orthogonal group, respectively. The explicit form of these irreducible decompositions
is given in appendix B of [23]. eµ denotes the basis dual to θµ and ⌋ is the interior product so
that eµ⌋θν = δνµ. While κ is related to Newton’s constant Gn in n dimensions as κ= 8πGn, the
coefficient ρ controls the curvature squared terms and is, thus, called strong gravity coupling
constant.

Let us consider the terms in (A.1) which are proportional to (2κ)−1 first. The first one of
them, −a0Rαβ ∧ ηαβ , is exactly the Einstein-Hilbert Lagrangian which we already discussed
in section 3.1. The remainder of the terms proportional to (2κ)−1 does not contain curvature
and therefore does not contribute to the GHY term as we already noticed in sections 2 and 4.
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Therefore, the interesting part of the MAG Lagrangian (A.1) in view of the GHY term is

VMAG,ρ =−
1

2ρ
Rαβ ∧ ∗
� 6
∑

I=1

wI
(I)Wαβ +w7θα ∧

�

eγ⌋(5)W
γ

β

�

+
5
∑

I=1

zI
(I)Zαβ + z6 θγ ∧

�

eα⌋(2)Z
γ

β

�

+
9
∑

I=7

zI θα ∧
�

eγ⌋(I−4)Zγ
β

�

�

.

(A.2)

Since the number of terms in this action is large compared to the actions considered in 2, some
preliminary considerations are in place before we calculate its GHY term.

A.1 Variation of Hodge stars and interior products

For deriving the GHY term for the MAG Lagrangian we need to insert the explicit forms of
the Lagrange multipliers ϕna, ϕan and ϕnn into the generic GHY result (75). We derive these
explicit expressions using the constraints (76) which relate ϕµν to the variation of the Lag-
rangian with respect to ϱµν. Considering the relevant part of the MAG Lagrangian (A.2) it is
immediately obvious that its variation involves variations of Hodge duals as well as interior
products. Therefore, we investigate variations of these objects next.

To that effect, we consider differential forms A, B of the same degree p on an n-manifold.
For evaluating expressions like δ ∗ A∧ B we use the relation [75–77]

∗A∧ B = ∗B ∧ A . (A.3)

Furthermore, we employ the result

(δ ∗ − ∗δ)A= δθα ∧ (eα⌋ ∗ A)− ∗ [δθα ∧ (eα⌋A)] +δgαβ

�

θ (α ∧ (eβ)⌋ ∗ A)−
1
2

gαβ ∗ A
�

(A.4)

of [76] for commuting δ and ∗. The right hand side of (A.4) does not contribute at the bound-
ary in the variational principle. Hence, it comes in handy to define ≃ as being equivalent at
the boundary and omitting terms which are irrelevant there. (A.4) therefore implies

δ ∗ A≃ ∗δA , (A.5)

which we combine with (A.3) to find

δ ∗ A∧ B ≃ ∗B ∧δA . (A.6)

For the further evaluation of variations in combination with the Hodge duality and the interior
product we use the relations [75–77]

eα⌋A= (−1)n(p−1)+indg ∗ (θα ∧ ∗A) , (A.7a)

∗(eα⌋A) = (−1)p−1θα ∧ ∗A , (A.7b)

eα⌋ ∗ A= ∗(A∧ θα) , (A.7c)

∗ ∗ A= (−1)p(n−p)+indgA , (A.7d)

where indg is the number of negative signs in the signature of g. The combination of (A.5)
with (A.7a) immediately implies

δ
�

eµ⌋A
�

≃ eµ⌋δA , (A.8)

for the variation of interior products. These are all the expressions for the variation of Hodge
duals and interior product which we need to calculate the variations of the terms in the GHY
relevant part of the MAG Lagrangian (A.2). Therefore, we proceed by considering variations
of the involved terms separately.
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A.2 Variation of the MAG Lagrangian

As first step of the irreducible decomposition of curvature we follow [23] and decompose the
symmetric and antisymmetric parts of the curvature two-form as

Rµν =Wµν + Zµν , (A.9a)

where Wµν ..= R[µν] , Zµν ..= R(µν) . (A.9b)

From this decomposition we immediately read off

δRµν = δWµν +δZµν , (A.10)

which we use to consider the variations of W and Z instead of the R variation.
We start our investigation by considering variations of the terms in (A.2) which include

the antisymmetric part of curvature, Wµν = R[µν]. Performing the variations of the irreducible
decompositions of Wµν using the methods from the previous subsections we obtain

Rαβ ∧δ ∗ (I)Wαβ ≃ δWαβ ∧ ∗(I)Wαβ , (A.11)

for all I ∈ {1,2, . . . , 6}, where ≃ omits terms irrelevant for the GHY term calculation. (A.11)
is a non-trivial result as we observe in the case of the term with coefficient w7. For this term
we obtain

Rαβ ∧δ∗
�

θα ∧
�

eγ⌋(5)W
γ

β

��

≃ −
(−1)n+indg

n− 2
δWµν ∧Θ

νµ γ

[βγ] α

�

∗Rαβ
�

. (A.12)

The operator Θ is introduced such that for any differential form A we have

Θµ(A) ..= ∗
�

θµ ∧ A
�

and Θµp ...µ1
(A) ..= ∗θµp

∧Θµp−1...µ1
(A) . (A.13)

This definition fulfills Θµp ...µ1

�

Θνq ...ν1
(A)
�

= Θµp ...µ1νq ...ν1
(A) which we use in the variation of

the symmetric curvature contributions that we consider next.
We calculate the relevant terms of the Zµν variation like for the Wµν one. In contrast to the

latter each irreducible component of Zµν appears in two terms in the Lagrangian (A.2). Before
we give the results of the variation we introduce the decomposition Zαβ =���Zαβ+

1
n gαβ Z , where

Z ..= Zαα is the curvature trace.
As in the case of Wµν some of the variations simplify significantly as

Rαβ ∧δ ∗ (I)Zαβ ≃ δ���Zαβ ∧ ∗(I)Zαβ , (A.14)

for I ∈ {2,4, 5}. Prominently, I = 3 is missing in this list. For the according term we obtain

Rαβ ∧δ ∗ (3)Zαβ ≃
(−1)n+indg

n2 − 4
δ���Zµν ∧Θνµ (∗ (n(n− 2)∆− 2Z)) . (A.15)

This result does not simplify in the same way as the other terms did since the combination
of terms in (3)Zαβ is not trivial. In particular, one of the terms involved in (3)Zαβ is propor-
tional to gαβ and in the contraction with Rαβ thus yields the factor of Z ≡ Zαα which we
observe in the result. But for casting the result in the way one naively expects from compar-
ison with (A.14), (A.15) may solely depend on ���Zαβ but not on Z . Hence, the structure of
(3)Zαβ makes it impossible to rewrite (A.15) in the same way as the remaining terms.

Accordingly, the variation of (1)Zαβ is non-trivial, too, and needs to be evaluated according
to

Rαβ ∧δ ∗ (1)Zαβ = Rαβ ∧

�

δ ∗ Zαβ −
5
∑

I=2

δ ∗ (I)Zαβ

�

. (A.16)

24

https://scipost.org
https://scipost.org/SciPostPhys.14.5.099


SciPost Phys. 14, 099 (2023)

The rest of the combinations of curvature terms in the MAG action mixes not only ���Zαβ and
Z but furthermore Zαβ and Wαβ terms in general. Hence, there is no simplification like the
ones presented above. The results for these variations are

Rαβ ∧δ ∗
�

θγ ∧
�

eα⌋(2)Zγβ
��

≃
1
2
δ���Zµν ∧ θν ∧
�

−(−1)indg ∗
�

θα ∧ θγ ∧ ∗
�

θ (γ| ∧ ∗Rα|µ)
��

+
1

n− 2
Θ
µ

β

�

∗
�

θα ∧ θγ ∧ ∗
�

θ (γ| ∧ ∗Rα|β)
���

�

,

(A.17a)

Rαβ ∧δ ∗
�

θα ∧
�

eγ⌋(3)Zγβ
��

≃
1

n2 − 4
δ���Zµν ∧Θ

µν

β

�

n(−1)n+indgΘ (γ|
γ α

�

∗Rα|β)
�

− 2Θα
�

∗Rαβ
�

�

,

(A.17b)

Rαβ ∧δ ∗
�

θα ∧
�

eγ⌋(4)Zγβ
��

≃
(−1)n+indg

n
δZ ∧Θβα
�

∗Rαβ
�

, (A.17c)

Rαβ ∧δ ∗
�

θα ∧
�

eγ⌋(5)Zγβ
��

≃
(−1)n

n
δ���Zµν ∧Θν
�

2Θ (γ|
γ α

�

∗Rα|µ)
�

+Θµ (γ|
βγ α

�

∗Rα|β)
�

�

.

(A.17d)

For the construction of the full GHY term of MAG we need to proceed as in the examples in
section 3. In particular, with the variations above it is straightforward to derive the required
Lagrange multipliers from (10) and apply the Gauß-Codazzi equations (11) to simplify the
remaining curvature forms in these Lagrange multipliers. Subsequently, the multipliers sim-
plified that way need to be inserted into (12) to obtain the GHY term for MAG. We outline how
this calculation is performed using the variations in (A.11- A.17) for vanishing non-metricity
next.

A.3 GHY term for metric compatible MAG

For constructing the GHY term for MAG let us consider the Lagrangian (A.2) again. For sim-
plicity we only consider the case of vanishing non-metricity here, Qµν ≡ −Dgµν = 0. From the
relation Ωµν +Ωνµ = DQµν for the curvature two-form Ωµν we obtain that Ω(µν) = 0 in this
case. Comparison with the curvature decomposition in (A.9) implies that Zµν = 0. Thus, we
are left with the relevant part of the MAG Lagrangian (A.2) for the calculation of the metric
compatible GHY term to be

VQ=0
MAG,ρ =−

1
2ρ

Rαβ ∧ ∗

� 6
∑

I=1

wI
(I)Wαβ +w7θα ∧ (eγ⌋(5)W

γ

β
)

�

. (A.18)

This is the part of the MAG Lagrangian (A.1) in the presence of torsion and vanishing non-
metricity which contributes new terms to the GHY term. Hence, we use (A.18) next to de-
termine the GHY term for metric compatible MAG with the method presented in chapter 2.

This method requires us to calculate the Lagrange multiplier ∗ϕna first, since it is the only
term which contributes to the metric compatible GHY term (13). We calculate ∗ϕna by means
of the constraints (10) to obtain

∗ϕna|ϱ=R = −
1

2ρ

�

2
6
∑

I=1

wI ∗ (I)Wna +w7(−1)n+indgΘ[n|γ

�

∗(5)W γ

|a]

�

−w7
(−1)n+indg

n− 2
Θ

γ

[an][µγ] ν (∗R
νµ)

�

,

(A.19)

where we used the variational results (A.11) and (A.12). We already used the equations of
motion for ϕµν that are ϱµν = Rµν. As next step, we need to 3+ 1 decompose the curvature
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indices by means of (41a) and impose the Gauß-Codazzi equations to replace the curvature
decomposition terms. We note that Rµν =Wµν is implicit in the irreducible components (I)Wµν
of Wµν. For the considered case of vanishing non-metricity, the generalized Gauß-Codazzi
equations (11) simplify to

ea
µeνbRµν = −dωa

b −ω
a
c ∧ω

c
b + ϵK

a ∧ Kb ,

nµeνaRµν = −eµa nνRµν = DKa ,
(A.20)

where the extrinsic curvature one-form Ka was defined in (4).
Using (12) we finally write the GHY term of (A.18) as

SQ=0
GHY MAG,ρ = 2ϵ

∫

∂M
Ka ∧ ∗ϕna|ϱ=R, Gauß-Codazzi

�

�

∂M , (A.21)

where ∗ϕna|ϱ=R,Gauß-Codazzi is understood as evaluation of (A.19) using the Gauß-Codazzi
equations (A.20). This evaluation is straightforward but yet obviously cumbersome so we
state only the implicit result here and leave the full evaluation to computer algebra systems.
The same holds for the generalization to the full MAG Lagrangian in presence of non-metricity.

B GHY term for metric compatible theories

In section 2 we comment on the calculation of the GHY term in the case of vanishing
non-metricity, Qµν ≡ −Dgµν = 0. The latter condition enforces the curvature two-form
Ω
µ
ν to be antisymmetric which is obtained from the Bianchi identity (2) of non-metricity,

Ωµν + Ωνµ = DQµν. The Lagrange multipliers ϕµν and ϱµν are assumed to have the same
symmetries as Ωµν, but we recommend to consider ϱna and ϱan as being independent for the
variational calculation in section 2 nevertheless. In the current section we examine the dif-
ferences if one does not follow this method for the calculation but uses ϱna = −ϱan in the
variational process instead.

As a first step, we need to employ the antisymmetry of ϱµν in the 3+ 1 decomposition of
∗ϕµν ∧ δϱµν. In contrast to the constraints for the calculation of ϕµν we have found in (10)
we now obtain

∗ϕna ∧δϱna =
ϵ

2
δϱna

L(ϱna , . . . ) (B.1)

as the only relevant constraint. Note the factor 1
2 on the right hand side of (B.1) in contrast

to (10). This factor results from using the ϱµν antisymmetry. By the same argument we obtain
a factor of 2 from using the antisymmetry of ϱµν in the calculation of δϱna

L(ϱna, . . . ) for a
specific theory. This factor of 2 cancels the factor 1

2 in (B.1). For this reason we recommended
to do the variational calculus without assuming the antisymmetry of ϱµν in section 2. Note
that this assumption is made only in the variational calculus when calculating ϕna by means
of the constraints (10). It can be considered as a method which simplifies the calculation.

Of course, for the asymmetry method to be valid, the GHY terms in both methods need to
coincide. Indeed, using the antisymmetry of Ωµν and ϕµν yields

SQ=0
GHY = 2

∫

∂M
ϵKa ∧ ∗ϕna|∂M (B.2)

as GHY term in coincidence with the result (13) from the asymmetry assumption. The discus-
sion in this appendix generalizes straightforwardly if non-metricity is not vanishing.
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[51] M. Bañados, O. Mišković and S. Theisen, Holographic currents in first order grav-
ity and finite Fefferman-Graham expansions, J. High Energy Phys. 06, 025 (2006),
doi:10.1088/1126-6708/2006/06/025.
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