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Isotropic fluids in two spatial dimensions can break parity symmetry and sustain
transverse stresses which do not lead to dissipation. Corresponding transport coeffi-
cients include odd viscosity, odd torque, and odd pressure. We consider an isotropic
Galilean invariant fluid dynamics in the adiabatic regime with momentum and parti-
cle density conservation. We find conditions on transport coefficients that correspond
to dissipationless and separately to Hamiltonian fluid dynamics. The restriction on the
transport coefficients will help identify what kind of hydrodynamics can be obtained by
coarse-graining a microscopic Hamiltonian system. Interestingly, not all parity-breaking
transport coefficients lead to energy conservation and, generally, the fluid dynamics is
energy conserving but not Hamiltonian. We show how this dynamics can be realized by
imposing a nonholonomic constraint on the Hamiltonian system.
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1 Introduction

In fluid dynamics, viscosities appear as transport coefficients in the first-order derivative ex-
pansion of the stress tensor. Viscosity terms preserve both mass and momentum conservation
laws but usually spoil the energy conservation due to their dissipative nature. For example,
shear viscosity (η) introduces friction between adjacent fluid layers that do not flow with the
same velocity, whereas the bulk viscosity (ζ) provides resistance to compression or expansion
of the fluid.

In two spatial dimensions, there exist viscosity coefficients within the first-order hydrody-
namics that break parity symmetry and preserve both the fluid isotropy and energy conser-
vation. Odd viscosity (ηH) is undoubtedly the most famous of the parity-breaking viscosity
terms, first showing up in the study of plasma physics [1] and later on as a new quantized re-
sponse in quantum Hall systems [2]. It was introduced in the hydrodynamic context by Avron
in [3] and was recently experimentally observed in both electron fluids [4] and active matter
systems [5].

In quantum Hall systems, the odd viscosity is associated with the intrinsic angular momen-
tum density of the electron fluid [6–8]. In classical systems, the intrinsic angular momentum
density (ℓ) is an independent dynamical variable with its own continuity equation. On the
other hand, odd viscosity is a transport coefficient, that is, a function of density and tempera-
ture. If we initialize ℓ to be proportional to density, this relationship is preserved for all times
since both quantities satisfy similar continuity equations (in the absence of internal torque).
This class of initial conditions with ℓ∝ ρ corresponds to a projected Hamiltonian system. In
general, such a projection need not lead to a new Hamiltonian system. However, ℓ∝ ρ does
not spoil the underlying Poisson algebra as shown in Ref. [9]. Together with a velocity re-
definition [8], this projection gives rise to odd viscosity terms in the momentum conservation
equation. Physically, this projection (ℓ∝ ρ) can be realized in systems where fluid intrinsic
angular momentum equilibrates much faster than the other hydrodynamic quantities [10].

Recently, it was shown in Ref. [11] that odd viscosity could also arise in the equation of
motion from a non-Hamiltonian reduction of the intrinsic angular momentum ℓ. For that, the
authors introduced dissipative terms and an external drive to a Hamiltonian system. The out-
of-equilibrium dynamics leads to the relaxation of the fluid intrinsic angular momentum, giving
rise to the odd viscosity term in the Navier-Stokes equation. The non-Hamiltonian projection
in Ref. [11], odd viscosity is a linear function of the mass density, but it depends explicitly
on the external drive. Although Refs. [9–11] describe different physical systems, all of them
obtain odd viscosity through relaxation of the intrinsic angular momentum. However, odd
viscosity is not the only parity odd coefficient in two dimensions and it is not a priori clear if
some or all of these other coefficients can be obtained starting from a microscopic Hamiltonian
system. In fact, the identification of Hamiltonian systems provides a benchmark for idealized
dissipationless systems about which the dissipative contributions can be introduced.

In this work, we start from the most general first-order hydrodynamic equations of motion
and derive under which conditions the density dependent viscosity coefficients can be derived
from a Hamiltonian system. Throughout the paper, we only consider adiabatic flows, neglect-
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ing heat transport.1 There are in total 6 independent viscosity coefficients which preserve fluid
isotropy and satisfy Galilean symmetry in two dimensions. Half of these transport coefficients
are even under parity symmetry, and the other half is parity odd.2 In general, parity-violating
forces are transverse to the fluid motion and perform no work. Therefore, such terms are
expected not to dissipate energy. However, it is not apparent whether a 2D hydrodynamical
system with parity-odd coefficients possesses conserved energy in general. In addition, even
if the conserved energy exists, it is not obvious that the corresponding system is Hamiltonian.
We show that not all parity-breaking transport coefficients amount to energy conservation.
For a hydrodynamic system whose energy is conserved, we derive sufficient conditions on the
transport coefficients for the system to be Hamiltonian. As a consequence, we obtain that
an energy-conserving hydrodynamic system is Hamiltonian if there exists a conserved quan-
tity, ρvi + εi j∂ jηH , which satisfies the diffeomorphism algebra. This quantity is associated
with the “molecular” center-of-mass momentum density, as pointed out in [11]. The energy-
conserving cases that fail to be Hamiltonian systems are closely related to projections of the
intrinsic angular momentum incompatible with the Poisson algebra. We discuss the projection
of the intrinsic angular momentum to a function of mass density and the breakdown of the
Hamiltonian system from the point of view of nonholonomic constraints.

This paper is organized as follows: we begin by defining our hydrodynamic system in Sec 2
and present the conditions for the fluid energy to be conserved. In Sec. 3, we derive under
which conditions the aforementioned energy-conserving systems are Hamiltonian. In Sec. 4,
we study the connection between dynamical intrinsic angular momentum and odd viscosity
as well as its implications towards non-Hamiltonian systems with conserved energy density.
We close the paper with conclusions and discussions. Some technical details are relegated to
appendices.

2 Energy conservation in 2D fluid dynamics

Hydrodynamic equations consist of local conservation laws for mass and momentum, assuming
all other relevant quantities are equilibrated. These equations are supplemented by constitu-
tive relations between the conserved quantities. The presence of a finite mean-free-path and
a finite characteristic relaxation time of the interacting system modify the dynamics at small
length scales and at transient times, giving rise to derivative corrections in these constitutive
relations. This means that constitutive relations can be formally written as an expansion in
derivatives, both in time and space, and the hydrodynamic equations are obtained by trun-
cating this series at some particular order. In non-relativistic hydrodynamics, spatial and time
derivatives do not scale the same way, and only terms with a single spatial derivative enter in
the constitutive relations in the first-order derivative expansion. Mass (the continuity equa-
tion) and momentum conservation can be written in terms of the mass density (ρ) and velocity
(vi) as

∂tρ + ∂i(ρvi) = 0 , (1)

∂t v j + vi∂i v j =
1
ρ
∂i Ti j . (2)

Here, the stress tensor Ti j is of first-order in spatial gradients and is given by

Ti j = −p(ρ)δi j +ηi jkl(ρ)∂kvl , (3)

1Adiabatic conditions are satisfied when the fluid contracts or expands so fast that there is no time to exchange
heat between its adjacent layers. The adiabaticity ensures that energy conservation follows directly from mass and
momentum conservation laws.

2Throughout this paper, we denote parity-breaking terms with a subscript H.
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where ηi jkl is the viscosity tensor. In principle, all transport coefficients must be functions of
density and temperature, however, for adiabatic flows, temperature can be expressed in terms
of fluid density. The relation between pressure and mass density for adiabatic flows gives us
the equation of state,

p(ρ) = ρ ϵ′(ρ)− ϵ(ρ) , (4)

where ϵ(ρ) is the internal energy density of the fluid.
In first-order hydrodynamics, the fluid velocity cannot be uniquely defined, leading to

different hydrodynamic frames [12–15]. Even though hydrodynamic equations depend on the
specific parametrization of momentum density in terms of the fluid velocity, the momentum
conservation must not rely on any particular definition of the fluid velocity. In this work, we
define the fluid velocity such that the momentum density is expressed as ρvi . Equations (1, 2)
must be invariant under the Galilean symmetry, that is,

t → t , x i → x i − Vi t , and vi → vi + Vi ,

for a constant boost velocity Vi . Consequently, the divergence of the stress tensor must be
invariant under this Galilean symmetry; that is, the force must be independent of the boost
velocity. Moreover, this also implies that the mass current can only differ from the momen-
tum density by some “magnetization current”, which does not modify the equations of mo-
tion (1, 2).

The isotropic condition imposes that there are only 6 independent viscosity coefficients in
two dimensions, that is,

ηi jkl = η
�

δikδ jl +δilδ jk −δi jδkl

�

+ ζδi jδkl + Γ εi jεkl

+ηH

�

εikδ jl + ε jlδik

�

+ ζH δi jεkl + ΓHεi jδkl . (5)

Here and in the following, we suppress the dependence of all coefficients on density using the
notation η(ρ)→ η, etc.

As previously mentioned, η, ζ, and ηH are shear, bulk, and odd viscosities, respectively.
The quantity ζH is the odd pressure coefficient, Γ is the rotational viscosity, and we refer
to the ΓH term as the odd torque coefficient. Rotational viscosity gives rise to torque when
the fluid vorticity is non-zero, and the odd pressure coefficient generates pressure when fluid
vorticity does not vanish. Finally, the odd torque coefficient ΓH generates torque when the
fluid expands or compresses.3

A close inspection of Eqs. (3) and (5) shows that there is a symmetry among transport
coefficients that leaves Eq. (2) invariant. Indeed, under the transformation

η→ η+ c1 , ζ→ ζ− c1 , Γ → Γ − c1 , (6)

ηH → ηH + c2 , ζH → ζH − c2 , ΓH → ΓH + c2 , (7)

with two arbitrary constants c1 and c2, we obtain

∂i Ti j → ∂i[Ti j + 2∂ ∗i
�

c1 v∗j + c2 v j

�

] = ∂i Ti j . (8)

Here and in the following, we define the star operation as a∗i ≡ εi ja j . Since we are only
interested in equations of motion and not in a particular form of the stress tensor, we will
ignore these redundancies for the rest of this work. The particular form of the stress tensor,
however, is crucial for the free surface problems for which a no-stress boundary condition is
imposed [16].

3For a hydrodynamic system without any internal torque, the stress tensor must be symmetric, which imposes
that Γ = ΓH = 0.
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For reasons that will be clear later, it is convenient to parametrize the parity-breaking part
of Eq. (5), i.e. viscosity coefficients with subscript H, as

ηH
i jkl = η̄i jkl −ρG′δi jεkl . (9)

Here we have introduced the tensor

η̄i jkl = ηH

�

εikδ jl + ε jlδik

�

+ ΓH
�

εi jδkl −δi jεkl

�

, (10)

which is anti-symmetric with respect to the interchange of following pairs of indices

η̄i jkl = −η̄kli j . (11)

Comparing (5) with (9,10), we see that the newly introduced function G(ρ) is related to ζH by

ζH = −ΓH −ρG′ . (12)

In order to study the Hamiltonian structure of Eqs. (1-3,5) the first step is to obtain under
which conditions these equations allow for a third conserved quantity, namely, energy. We are
looking for a conserved energy density E satisfying

∂tE + ∂iQ i = 0 , (13)

with some local energy current Q i . To be consistent with zeroth-order hydrodynamics, that is,
ηi jkl → 0, the energy density should have the form

E = 1
2ρv2

i + ϵ(ρ) + . . . , (14)

where dots denote terms of higher order in spatial gradients of density and velocity fields.
Here and in the following, we use v2

i instead of vi vi to shorten up the notation.
We now state the general condition (up to the redundancies (6-8) in the stress tensor) for

the energy conservation while leaving the full details of the calculation to the Appendix A.

Statement I. The energy of a hydrodynamic system described by Eqs. (1-5) is only conserved
when the parity-preserving viscosity coefficients vanish, that is, η = ζ = Γ = 0, and when the
parity-breaking viscosity coefficients satisfy one of the following two conditions

Case 1: For ηH(ρ) and ΓH(ρ) arbitrary and

G = 0 .

Case 2: For an arbitrary function G(ρ) and an arbitrary constant parameter c, along with

ηH = cG ,
ΓH = c(G − 2ρG′) .

From Eq. (12), we obtain that ζH = −ΓH in the first case and ζH = −c(G−2ρG′)−ρG′ in
the second one. The conserved energy density in both cases can be generically written as

E = 1
2ρv2

i + ϵ + vi∂
∗
i G +

c
ρ
(∂iG)

2 . (15)

Note that when G = 0 (Case 1), the energy density has the same functional form as in the
inviscid case.
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The dissipative nature of viscosities η,ζ, Γ is well known. It is not known however that an
arbitrary choice of odd viscosities ηH ,ζH , ΓH may not lead to dissipationless fluid dynamics.
The energy density equation can be deduced from Eqs. (1-3) and can be written as

∂t

�

ϵ + 1
2ρv2

i

�

+ ∂i

��

ϵ′ + 1
2 v2

j

�

ρvi −ηi jkl v j∂kvl

�

= −ηi jkl∂i v j∂kvl . (16)

In Case 1, the viscosity tensor is given by η̄i jkl which forces the right hand side of (16) to
vanish due to the antisymmetry property (11), leading to conserved energy density.

The second condition of Statement I is more subtle, and we refer the reader to Appendix A
for details. For the particular case of c = 0, the only nonvanishing viscosity coefficient is
ζH = −ρG′. For this particular case, the corresponding stress is diagonal and can be consid-
ered a modification of the pressure term in the Euler equation so that p → p − ζHω. Here
ω= ∂1v2 − ∂2v1 is the fluid vorticity.

In the next section, we will address when the energy-conserving fluid dynamics described
in Statement I can be endowed with the Hamiltonian structure.

3 Hamiltonian fluid dynamics in two dimensions

A fluid dynamic system is Hamiltonian if its hydrodynamic equations can be generated by
a Hamiltonian function (total energy of the fluid) and a set of Poisson brackets. In other
words, both mass and momentum conservation laws can be written as Hamilton’s equations.
We often refer to the Hamiltonian function together with the Poisson algebra as the Hamil-
tonian structure. In contrast to the standard textbook examples, here we have both the
Hamiltonian, i.e. the integrated energy density of the fluid (Eq. (15)) and the equations of
motion (Eqs. (1-3)) together with the conditions of Statement I. Our goal is to derive, when it
exists, the Poisson algebra for these systems. As a result of our analysis, we show that not all
cases in Statement I can possess Hamiltonian structure.

It is worth to note that the Hamiltonian function need not always be the total energy of
system, however we do not consider this possibility in this work. We aim to recover the ideal
fluid structure, in the limit of vanishing viscosity coefficients. In addition to that, we only
consider local deformations of the ideal fluid Poisson algebra here.

3.1 Hamiltonian structure of zeroth-order hydrodynamics

Before we proceed to study the cases of Statement I, let us briefly review the well-known
Hamiltonian formulation for the inviscid or, more precisely, the zeroth-order hydrodynam-
ics [17–19]. Let us consider the set of Eqs. (1-3) with ηi jkl = 0. Here it is convenient
to write the hydrodynamic equations in terms of conserved quantities since they are frame-
independent. Indeed, it is straightforward to check that both equations (1) and (2), written
in terms of ρ and Ji ≡ ρvi , are generated by the Hamiltonian

H0 =

∫ �

J2
i

2ρ
+ ϵ(ρ)

�

d2 x , (17)

along with the following Poisson brackets

{ρ(x ),ρ(y)}= 0 , (18)

{ρ(x ), Ji(y)}= −ρ(y)
∂

∂ yi
δ(x − y) , (19)

{Ji(x ), Jk(y)}=
�

Jk(x )
∂

∂ x i
− Ji(y)

∂

∂ yk

�

δ(x − y) . (20)
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The subalgebra defined in Eq. (20) is the diffeomorphism algebra so that the momentum
density Ji is the generator of “local translations” (diffeomorphisms). The Lie-Poisson algebra
defined in Eqs. (18-20) is a semidirect product algebra which we will refer to simply as Ex-
tended Diffeomorphism Algebra (EDA) hereon. The time evolution of any quantity is defined
by ∂tQ = {H,Q}.4 In particular, for the time evolution of density and momentum density
fields, one proceeds as

∂tρ(x ) = {H,ρ(x )}=
∫

�

δH
δρ(y)

{ρ(y),ρ(x )}+
δH
δJi(y)

{Ji(y),ρ(x )}
�

d2 y , (21)

∂tJi(x ) = {H, Ji(x )}=
∫

�

δH
δρ(y)

{ρ(y), Ji(x )}+
δH
δJk(y)

{Jk(y), Ji(x )}
�

d2 y . (22)

It can be checked that substituting Poisson’s brackets (18-20) into the above equations one
obtains the correct evolution equations for ρ and Ji = ρvi equivalent to (1,2).

Using (18-20) one can compute Poisson brackets of any two functionals ofρ and Ji . Poisson
brackets between two functions (or functionals) of ρ and Ji must satisfy two conditions: (1)
antisymmetry

{Q, R}= −{R,Q} , (23)

and (2) Jacobi identity

J
�

Q, R, S
	

≡ {{Q, R}, S}+ {{S,Q}, R}+ {{R, S},Q}
= 0 . (24)

Here J (Q, R, S), defined in the first line of (24), is referred as the Jacobiator of three function-
als Q, R, S of ρ and Ji . The Jacobi identity is the statement that the Jacobiator vanishes for any
three functionals.5 It can be checked that (18-20) satisfy antisymmetry condition and Jacobi
identity (23,24).

3.2 Modification of brackets for the first-order hydrodynamics

Since not all dynamical systems with conserved energy are Hamiltonian systems [20–22], the
scope of this section is to find under which conditions the systems defined in the Statement I
are Hamiltonian. For that, we must obtain the brackets that, together with the Hamiltonian

H =

∫ �

J2
i

2ρ
+ ϵ +

Ji

ρ
∂ ∗i G +

c
ρ
(∂iG)

2

�

d2 x , (25)

generate Eqs. (1,2), where the stress tensor satisfy both Eqs. (3-5) and the Statement I. The
Hamiltonian (25) is obtained by integrating the energy density (15). It is important to point
out that this choice of Hamiltonian is not only natural, but it recovers the ideal fluid Hamilto-
nian in the limit when ηi jkl → 0.

We find that the continuity equation can be generated by the brackets (18,19), while the
bracket (20) must be modified in order to provide us the correct momentum conservation
equation. After such deformation, the momentum density algebra becomes

{Ji(x ), Jk(y)}=
�

Jk(x )
∂

∂ x i
− Ji(y)

∂

∂ yk

�

δ(x − y)

−
∂

∂ x j

�

η̄ jilk

�

ρ(x )
� ∂

∂ x l
δ(x − y)
�

, (26)

4Here, we follow the notation convention in Ref. [17] The algebra presented here may differ by an overall
negative sign from some other references in the literature.

5Jacobi identity is associated to the existence of local canonical coordinates.
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where η̄i jkl is defined in (10). The antisymmetry property of η̄i jkl (Eq. (11)) together with
the identities

f (x )δ(x − y) = f (y)δ(x − y) ,
∂

∂ xm
δ(x − y) = −

∂

∂ ym
δ(x − y) ,

guarantees the antisymmetry of the bracket (26). Here, we assume that the bracket defor-
mation is local and recovers the diffeomorphism algebra (20) in the limit of an ideal fluid.
The algebra (18,19,26) is sometime called almost Poisson brackets [22], since it satisfies the
property (23), but not necessarily the Jacobi identity (24).

The direct computation of equations of motion generated by the Hamiltonian (25) with
the algebra (18,19,26) provides us the following hydrodynamic equations

∂tρ = −∂iJi , (27)

∂tJk = −∂i

�

JiJk

ρ
+ pδik −ηH

iklm ∂l

� Jm

ρ

�

�

, (28)

with ηH
i jkl defined by (9,10) with parameters specified in the Statement I. More specifically,

in Case 1, both ηH and ΓH are independent functions of density in the bracket (26) and the
Hamiltonian is obtained by taking G = 0 in the Eq. (25). In Case 2, we must substitute
ηH = cG and ΓH = c(G − 2ρG′) in the bracket (26). It is easy to see that this system of
equations is equivalent to Eqs. (1,2), when the stress tensor is given by Eqs. (3-5) and the
viscosity tensor satisfies one of the the cases in the Statement I. Because these equations are
generated by antisymmetric brackets, the Hamiltonian (25) itself is automatically conserved,
since ∂t H = {H, H}= 0. In the following, we will check if these almost Poisson brackets satisfy
the Jacobi identity.

3.3 Constraints imposed by Jacobi identity

Prima facie one might think that the identification of antisymmetric brackets (26) means that
all energy-conserving cases specified by Statement I are Hamiltonian. However, for the system
to be Hamiltonian, brackets must also satisfy the Jacobi identity (24). We now present the
main condition for which the brackets in Eqs. (18,19,26) satisfy the Jacobi identity (24).

Statement II. The antisymmetric brackets from Eqs. (18,19,26) are Poisson brackets, i.e, satisfy
Jacobi identity if and only if

ΓH(ρ) = ηH(ρ)−ρη′H(ρ) . (29)

When this condition holds, there exists a locally conserved quantity, namely

Ji ≡ Ji + ∂
∗
i ηH(ρ) , (30)

which satisfies the diffeomorphism algebra.

To see the origin of the condition (29) let us consider the modified momentum den-
sity Ji (30). It is clear that the bracket {ρ(x ), Ji(y)} is not modified and coincides with (19).

Using brackets (18,19,26) it is straightforward to compute
¦

Ji(x ), Jk(y)
©

=
�

Jk(x )
∂

∂ x i
− Ji(y)

∂

∂ yk

�

δ(x − y)− (ε jiδlk −δ jiεlk)

×
∂

∂ x j

�

�

ΓH −ηH +ρη
′
H

�

(x )
∂

∂ x l
δ(x − y)
�

. (31)
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One immediately notices that the condition (29) annihilates the second term in the right hand
side of Eq. (31) and the algebra of brackets of ρ and Ji becomes identical to the original
diffeomorphism algebra (18-20) thereby satisfying the Jacobi identity. Throughout the rest of
the paper we will use Ji to refer to the diffeomorphism generators.

In Appendix B, we perform more direct computation showing that the condition (29) is
also necessary for brackets (18,19,26) to satisfy the Jacobi identity. The key point of that
computation is that the Jacobiator (see Eq. (24)) is given by

J
¦

Ji(x), Jk(y), Jm(z)
©

=
�

εkm
∂

∂ x i

∂

∂ yl

∂

∂ zl
+ εik

∂

∂ x l

∂

∂ yl

∂

∂ zm
+ εmi

∂

∂ x l

∂

∂ yk

∂

∂ zl

�

�

2(ηH −ρη′H − ΓH)δ(x − y)δ(x − z)
�

. (32)

The Jacobiator J vanishes only when (29) holds completing the proof of Statement II.
We now discuss the physical picture behind the constraint (29). The constraint can be

rewritten as ΓH/ρ + ρ(ηH/ρ)′ = 0. We consider the angular momentum per particle
ℓ/ρ = ηH/ρ and notice that if it is itself ρ-independent, the constraint requires ΓH = 0.
We see that if one compresses the fluid of rotating particles, no intrinsic torque is needed if
the angular momentum of each particle does not depend on the particles’ density. If ηH(ρ)
is nonlinear in ρ, the compression would require an additional torque applied to each parti-
cle. If (29) is satisfied, this torque can be provided by the intrinsic torque ΓH of the fluid. If
the condition (29) is not met, additional “constraint forces” are needed rendering the system
non-Hamiltonian.

3.4 Conditions for Hamiltonian hydrodynamics

For the first-order hydrodynamics defined by Eqs. (1-5) to be Hamiltonian the viscous stress
coefficients in Eq. (5) must jointly satisfy Statement I and Statement II. Case 1 of Statement I
defines a Hamiltonian system as long as ΓH = −ζH = ηH(ρ)− ρη′H(ρ). For the Case 2, the
Jacobi identity constraint is incompatible with the energy conservation condition unless c = 0.
We summarize these findings in the following statement.

Statement III. The hydrodynamics Eqs. (1-5) is Hamiltonian only in the following cases
Case 1: For arbitrary ηH(ρ), G = 0, and

ΓH(ρ) = −ζH(ρ) = ηH(ρ)−ρη′H(ρ) .

Case 2: For arbitrary G(ρ) and

ζH(ρ) = −ρG′(ρ) , ΓH(ρ) = ηH(ρ) = 0 .

Furthermore, Case 2 itself comes with a corollary.

Corollary III.1. If the momentum density satisfies the diffeomorphism algebra (20) the only
allowed viscosity term in the Hamiltonian is the odd pressure term ζH .

In both cases, the hydrodynamic equations are obtained from the Hamiltonian (25) and
the Poisson brackets (18,19) and (26), with the viscosity coefficients satisfying one of the con-
ditions in the Statement III. Note that the Hamiltonian function for Case 1 has the same form
as the inviscid Hamiltonian (17). In addition to that, we would like to emphasize that the
Hamiltonian hydrodynamics corresponding to Case 1 could be equivalently written in terms
of the diffeomorphism generator Ji defined in (30). In these new variables, the Poisson al-
gebra becomes the EDA and the equation of motion for the “modified momentum density” Ji
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posses higher-order derivative terms and no odd viscosity stress (only odd pressure). This was
already pointed out in several references, such as [9,11,16] for the particular case of ΓH = 0.
When ΓH = 0, the Jacobi identity condition (29) imposes that ηH(ρ) = νoρ, where νo is a
constant kinematic odd viscosity. In fact, in the Ref. [11], the authors identify the generators
of diffeomorphism Ji to the “molecular” center-of-mass momentum density.

For Case 2, the Hamiltonian is different from that of the inviscid case and can be written
as

H =

∫ �

J2
i

2ρ
+ ϵ +

Ji

ρ
∂ ∗i G

�

d2 x . (33)

However, the Poisson brackets remain the same as in the inviscid zeroth-order hydrodynamics,
i.e. EDA given by (18,19,20). In this case the full stress tensor is explicitly given by

Ti j = −
�

p+ρG′ω
�

δi j , (34)

which proves the Corollary III.1.

3.5 Generalized Hamiltonian hydrodynamics

In the previous sections, we showed that the Hamiltonian structure is intimately related to the
existence of hydrodynamic variables ρ and Ji , which satisfy the EDA. This way, we can easily
generalize our results and propose the most general Hamiltonian hydrodynamics within an
appropriate counting scheme.

It is not hard to see that the Poisson algebra (18,19,20) is invariant under the scaling

Ji → αJi , ∂i → α∂i , ρ→ ρ . (35)

Hence, the diffeomorphism generators Ji , defined in Eq. (30) also scales as Ji → αJi . This new
counting scheme differs from the original derivative expansion of the stress tensor. Under this
scaling, first-order hydrodynamic terms, such as viscous terms in the stress tensor, show up in
the same order as the following second-order hydrodynamic terms

τi jkl(ρ)∂kρ∂lρ +σi jkl(ρ)∂k∂lρ .

In the following, we refer to them as Madelung terms.6

Note that Eq. (35) together with the continuity equation impose that ∂t must be of orderα2.
The scaling (35) is similar to the one used for energy conservation in Appendix A and gives us
that the energy density of the fluid must scale in the same way as the fluid stress tensor. Thus,
within this counting scheme, the most general Hamiltonian dynamics is given by the following
simple prescription. Let us first take the most general Hamiltonian of the second order in α,
that is,

H =

∫ �

J2
i

2ρ
+ ϵ +

Ji

ρ
∂ ∗i G +

1
2ρ
(∂iK)

2

�

d2 x , (36)

where Ji is the diffeomorphism generator, G and K are arbitrary functions of ρ. Let us as-
sume conventional EDA brackets (18-20) and generate equations of motion for ρ and Ji . The
equation for ρ is the standard continuity equation

∂tρ + ∂iJi = 0 , (37)

6These terms generalize the “quantum pressure” arising from the Madelung transformations in Schrödinger
equation.
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while the one for Ji is

∂t Jk + ∂i

�

JiJk

ρ
− Tik

�

= 0 , (38)

with

Ti j = −
1
ρ
∂iK∂ jK −
�

p+ρG ′∂k

� J∗k
ρ

�

− K ′∆K

�

δi j . (39)

Once again, pressure is given by (4). In this form the only viscous term present is the odd
pressure term with ζH = −ρG ′ and primes denote derivatives with respect to ρ.

Let us now shift the momentum density according to (30), i.e. Ji = Ji + ∂
∗
i ηH , where

ηH(ρ) is an arbitrary function of ρ. As a result, we obtain the hydrodynamic system in terms
of these new variables,7 that is,

∂tρ + ∂iJi = 0 , (40)

∂tJk + ∂i

�

JiJk

ρ
− T H

ik

�

= 0 , (41)

where the new stress tensor T H
i j is given by

T H
i j = η

H
i jkl∂k

� Jl

ρ

�

−
A
ρ
∂iρ∂ jρ −δi j

�

p− B(∇ρ)2 − C∆ρ
�

, (42)

with

ζH = −ηH −ρG ′ , ΓH = ηH −ρη′H , (43)

A= K ′2 −η′H
2 , C = A+η′H(G

′ +η′H) , (44)

B =
1
2

A′ + (G ′ +η′H)
�

η′′H −
η′H
ρ

�

. (45)

We notice that the modified stress tensor’s parity-breaking part is generally defined by
two independent functions ηH(ρ) and G (ρ). An additional free function K(ρ) contributes
to Madelung terms. The expressions (43-45) are the most general relations on parity-odd
coefficients compatible with Hamiltonian hydrodynamics. If by some reason one requires that
Madelung term vanish one obtains K = ±ηH and (G ′ + η′H)η

′
H = 0. The latter equation has

two solutions G = −ηH or ηH = 0. These two solutions give Cases 1 and 2 of the Statement III,
respectively.It is interesting to note that the odd viscosity term ηH appears in this construction
not as a parameter of the Hamiltonian (36) but as the parameter of the momentum density
shift or equivalently as a modification of Poisson’s brackets.

We remark here that it is relatively straightforward to generate all Hamiltonian systems.
One can start with a general local form of the Hamiltonian (36), generate equations using
(18-20) and then consider redefinitions of hydrodynamic fields (30) preserving the structure
of equations of motion. However, this procedure is based on the assumption that there are no
non-trivial extensions of the EDA within the order in derivatives used in this work. A priori
one might have a non-trivial extension of Poisson algebra similar to the central extensions con-
sidered in [23]. The authors are not aware of the theorem on the absence of such extensions,
and one should consider the computations done in Appendix B as an explicit proof of such a
theorem within our counting scheme.

7There is a certain ambiguity in the form of the stress tensor resulting from the freedom to add to the stress
arbitrary divergenceless terms. These additions, however, do not change the equations of motion.
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4 Energy conservation and nonholonomic constraints

The absence of Hamiltonian structure in energy-conserving systems is one of the prominent
features of so-called nonholonomic systems. These systems are described as systems with
restrictions on types of motion. Typical examples include systems like rolling balls and rolling
wheels as well as skates with rolling constraints and skating constraints, respectively [21,22,
24]. In these systems, the constraints imposed on velocities are not integrable and, therefore,
cannot be reduced to the constraints on the configurational space of the dynamic system. Such
constraints are called nonholonomic and are related to the break down of the Jacobi identity
in the Hamiltonian framework [22,25].

In this section, we consider the fluid dynamics described by Case 1 of Statement I, but not
satisfying the condition of Statement II. We show that it arises from Hamiltonian fluid dynamics
with internal angular momentum degree of freedom subject to a nonholonomic constraint. The
constraint pins the internal angular momentum density to the function of the density of the
fluid, preserving energy conservation but breaking the Hamiltonian structure.

Let us consider the following Hamiltonian

Hλ =

∫

d2 x

�

J2
i

2ρ
+ ϵ(ρ) +λ (ℓ+ 2ηH(ρ))

2

�

. (46)

This Hamiltonian is a functional of hydrodynamic fields ρ and Ji as well as of the new field ℓ,
which corresponds to the internal angular momentum density of the fluid. The numerical
constant λ > 0 couples the internal angular momentum density to a function of the density of
the fluid ηH(ρ). For large λ, it is energetically favorable for the system to have ℓ≈ −2ηH .

Let us assume that the fields obey the Lie-Poisson algebra given by the brackets

{ρ(x ),ρ(y)}= {ℓ(x ),ρ(y)}= {ℓ(x ),ℓ(y)}= 0 , (47)

{ρ(x ), Ji(y)}= −ρ(y)
∂

∂ y i
δ(x − y) , (48)

{ℓ(x ), Ji(y)}=
�

2ΓH(ρ(x ))
∂

∂ x i
− ℓ(y)

∂

∂ y i

�

δ(x − y) , (49)

�

Ji(x ), Jk(y)
	

=
�

Jk(x )
∂

∂ x i
− Ji(y)

∂

∂ yk

�

δ(x − y)

+ (εikδ jl +δikε jl)
∂

∂ x j

�

ℓ(x )
2

∂

∂ x l
δ(x − y)
�

− (δi jεkl − εi jδkl)
∂

∂ x j

�

ΓH(ρ(x ))
∂

∂ x l
δ(x − y)
�

. (50)

One can check that these brackets do satisfy the Jacobi identity. In fact, this is true by construc-
tion, since the brackets involving ℓ were derived from replacing ηH by the new variable −1

2ℓ

in Eqs. (98, 105). Furthermore, we can recover the conventional EDA presented in [9, 11] if
we rewrite this algebra in terms of the quantities Ji ,ρ, L, which are defined by

Ji = Ji −
1
2∂
∗
i ℓ , (51)

L = ℓ+M , (52)

with
ΓH =

1
2(M −ρM ′) . (53)

The Hamiltonian (46) with these brackets define a Hamiltonian fluid dynamics, whose
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equations of motion are given by

∂tρ + ∂i(ρvi) = 0 , (54)

∂tℓ+ ∂i (ℓvi) = −2ΓH ∂i vi , (55)

∂tJ j + ∂i

�

ρvi v j + p̃δi j

�

= ∂i

�

ηℓi jkl∂kvl

�

, (56)

ηℓi jkl = −
1
2ℓ (δikε jl +δ jlεik) + ΓH (δi jεkl − εi jδkl) , (57)

p̃ = ρϵ′ − ϵ +λ(δℓ)2 − 4λ(ηH −ρη′H − ΓH)δℓ . (58)

Here we introduced the notation δℓ = ℓ + 2ηH and vi = Ji/ρ. Notice that the form of the
viscous tensor (57) is identical to (10) with the replacement ℓ→−2ηH .

It is important to understand that the dynamical system (54-58) is Hamiltonian for any
value of the parameter λ as it is generated by the Hamiltonian (46) with the use of Poisson
brackets (47-50). It is clear that, at finite energy, the intrinsic angular momentum ℓ should
follow −2ηH(ρ), in the limit λ→∞. However, from (54,55) we obtain that

∂t(δℓ) + ∂i(δℓ vi) = −2(ΓH −ηH +ρη
′
H)∂i vi . (59)

If the condition (29) is satisfied, the right hand side of (59) vanishes. In this case one can start
with initial conditions ℓ = −2ηH(ρ) and the dynamics (59) will preserve these conditions at
all times. The constraint

−1
2ℓ= ηH(ρ) (60)

in this case is the first-class constraint [26] and the substitution of ℓ= −2ηH(ρ) in all brackets,
Hamiltonian and equations is consistent and produces the Hamiltonian dynamics of ρ and Ji
specified in the Statement III, Case 1.

Let us assume now that (29) does not hold. In this case, imposing the constraint (60)
cannot be reduced to just a choice of initial conditions. Choosing initial conditions satisfy-
ing ℓ = −2ηH we find that, for large but finite λ, ℓ will deviate from −2ηH in time, due
to (59). However, this deviation creates a large pressure term (58) proportional to λ which
will lead the flow to be incompressible, that is, ∂i vi = 0. Consequently, the right hand side of
Eq. (59) vanishes, making sure that ℓ ≈ −2ηH . The limiting solution at λ →∞ will satisfy
the constraint (60) at all times, however it constrains the flow to be incompressible. In other
words, in the absence of the restriction (29), the time evolution of the constraint (60) gives
rise to incompressibility, which is a second-class constraint [26]. The system with both con-
straints, that is, Eq. (60) together with ∂i vi = 0, can be written from a Hamiltonian principle
by working out the Dirac brackets of the system [26], which will turn out to be non-local. If, on
the other hand, we insist in imposing only the constraint (60), without the incompressibility
condition, i.e. neglecting Eq. (59), we end up with a nonholonomic constraint. This can be
directly observed, if we substitute ℓ by −2ηH(ρ) in the Poisson bracket (49). This replacement
is inconsistent to Eq. (48).

In the following, we explore a possible origin of energy-conserving but non-Hamiltonian
fluid dynamics as coming from Hamiltonian systems with additional degrees of freedom
through dynamical nonholonomic constraints. The problem of realizing nonholonomic con-
straints has been considered in the context of dynamical systems. The realization of constraints
is not always unique and might result in different equations of motion. We refer the reader to
the original article [27] and reviews [21, 22]. The discussion here is heuristic and is closely
related to the so-called vakonomic mechanics [28].

Let us introduce a relaxation term proportional to δℓ on the right hand side of Eq. (55),
that is,

∂tℓ+ ∂i(ℓvi) = −2ΓH∂i vi − γλ(δℓ) , (61)
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with γ > 0. The energy equation acquires a dissipative term

∂tE + ∂iQ i = −γλ2(δℓ)2 . (62)

This regularization procedure allows us to take the limit λ→∞ without imposing the incom-
pressibility condition. Solving Eq. (61) in powers of 1/λ gives us

ℓ= −2ηH −
2
γλ
(ΓH −ηH +ρη

′
H)∂i vi +O(λ−2) . (63)

Plugging this expression back in the Eqs. (56-58), we obtain the regularized stress tensor

Ti j = (−p+ ζ∂kvk)δi j + η̄i jkl∂kvl , (64)

with the bulk viscosity given by

ζ=
8
γ
(ΓH −ηH +ρη

′
H)

2 . (65)

The intrinsic angular momentum relaxation introduces a bulk viscosity in the system and
spoils the energy conservation. With the dissipative regularization (61) the limit λ→∞ can
be taken. The energy equation (62) in this limit becomes

∂tE + ∂iQ i = −ζ(∂i vi)
2 , (66)

where the bulk viscosity is given by Eq. (65). We observe that the limit λ→∞ produced a
family of hydrodynamic equations characterized by the parameter γ (compare with [27,28]).
Within this family for γ → 0, the bulk viscosity becomes infinite and forces the fluid to be
incompressible. This way, we recover the Hamiltonian case with second-class constraints,
discussed previously. In the opposite limit γ→∞, the bulk viscosity vanishes, and the system
conserves energy, even though it cannot be written from a Hamiltonian principle.

5 Discussion and conclusions

We considered a space of two-dimensional fluid dynamics with parity-breaking terms in the
viscous stress tensor in this work. We started by identifying the subset of energy-conserving
fluids within this space (Statement I). Surprisingly, not all parity-odd viscosity coefficients lead
to energy conservation in first-order hydrodynamics. For example, for a hydrodynamic system
with ηi jkl = ΓHεi jδkl , Eqs. (77-81) give us

∂tE + ∂iQ i = −
�

�

ΓH
ρ2

�′
ΓH(∂iρ)

2 +
Γ 2

H

ρ2
∆ρ

�

∂ j v j .

The right hand side can be either positive or negative, depending on the flow and the den-
sity distribution. Hydrodynamic systems which neither conserve energy nor are exclusively
dissipative may be realized in active matter systems, where the driving is local. If, however,
we insist on having both energy conservation and (ηH , ΓH ,ζH) being independent functions,
we must allow for Madelung terms in the stress tensor, which is the subject of future work.
Some of the hydrodynamical systems considered in this work turn out to be energy-conserving
but not Hamiltonian. An obstacle for the system to be Hamiltonian is that the brackets gen-
erating equations of motion fail to satisfy the Jacobi identity. We found that this condition
amounts to (29) defining what we might refer to as Hamiltonian fluids. We also observed
that the bracket generating equations of Hamiltonian fluids could always be transformed to

14

https://scipost.org
https://scipost.org/SciPostPhys.14.5.103


SciPost Phys. 14, 103 (2023)

⌘ijkl = ⌘ (�ik�jl + �il�jk � �ij�kl) + ⇣ �ij�kl + � ✏ij✏kl

+ ⌘H (✏ik�jl + ✏jl�ik) + ⇣H �ij✏kl + �H✏ij�kl

⌘ijkl = ⌘H
ijkl

⌘ijkl = ⌘̄ijkl

⌘ = � = ⇣ = 0

⇣H = ��H
⌘H = cG

�H = c(G � 2⇢G0)

⇣H = �c(G � 2⇢G0) � ⇢G0

�H = ⌘H � ⇢⌘0H

c = 0

Energy conservation

Hamiltonian

Isotropic viscous tensor

Parity-odd viscous tensor

⇣H = �⇢G0

Figure 1: The space of parity breaking barotropic Galilean fluids in two dimensions.
In addition to the internal energy density ϵ(ρ), the space is parametrized by viscosity
coefficients that are considered to be arbitrary functions of density.

the conventional extended diffeomorphism algebra (EDA) (18-20) by changing hydrodynamic
variables (Statement II). In particular, if the momentum density satisfies the EDA, the only al-
lowed viscosity term in the Hamiltonian dynamics is the odd pressure ζH . The main results
supporting the described structure of the space of theories are formulated as Statements I-III
with some details of derivations relegated to appendices.

The study of the space of parity-violating hydrodynamic equations in 2+1 dimensions have
been done before both in relativistic [13] and nonrelativistic [29,30] context. In this work, we
focus on the Hamiltonian fluids. We use a nonrelativistic counting scheme, described in 3.5, to
make sure that there are only a finite number of terms in the stress tensor at any given order of
the counting scheme. We find the most general Hamiltonian fluid dynamics within the second-
order of that counting scheme. This dynamics is characterized by three independent functions
of density. The stress tensor (42) and the correspondent transport coefficients are given by
Eqs (43-45).

In Section 4, we provided a possible origin of nonholonomic fluid dynamics as originating
from fully Hamiltonian extended dynamics with nonholonomic constraints imposed on an ad-
ditional degree of freedom. This additional degree of freedom, in our case, has a meaning of
an intrinsic angular momentum density of the fluid. We introduced an energy cost term in the
Hamiltonian (46), such that, in the limit of infinite rigidity (λ →∞), the intrinsic angular
momentum (ℓ) is pinned to the odd viscosity, ηH(ρ). Solving for ℓ, with a particular regu-
larization procedure, we obtain an effective dissipative hydrodynamic system with the stress
tensor given by Eqs. (64,65). Therefore, “integrating out” the intrinsic angular momentum
density provides us a one-parameter family (γ) of a dissipative hydrodynamic system. Inter-
estingly enough, we can recover the energy conservation for γ→ 0 and γ→∞. In the former
case, the hydrodynamic system is Hamiltonian and subjected to the incompressibility condi-
tion, i.e. ∂i vi = 0. In the latter, we obtain an energy-conserving system, described in Case 1 of
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the Statement I, yet not Hamiltonian, since it does not satisfy the condition of the Statement II.
To conclude, if the stress tensor contains gradient terms, there are both Hamiltonian and

energy-conserving nonholonomic fluids. We note that the stability analysis is very different
for Hamiltonian and nonholonomic systems [22]. In particular, additional instabilities are
expected to occur in nonholonomic systems realizable in active matter.
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A Conditions for energy conservation

Let us consider Eqs. (1-5) and let us work out under which conditions this set of equations
allows for a third conserved quantity, namely, energy conservation. One way to do so is to
determine the most general form of the energy density and then match all the transport coef-
ficients such that the energy density E satisfies Eq. (13). To determine the form of E , we need
to study the symmetries of Eqs. (1-2). The continuity equation

∂tρ + ∂i(ρvi) = 0 ,

is invariant under the following scaling

x i → x i/α , t → t/β , and vi → viβ/α . (67)

Plugging this scaling into equation

∂t v j + vi∂i v j =
1
ρ
∂i Ti j =

1
ρ
∂i

�

−p(ρ)δi j +ηi jkl(ρ)∂kvl

�

,

and choosing that ρ→ ρ, we obtain

Ti j → (β/α)2Ti j . (68)

This means that all viscosity coefficients scale as β/α2. Since they are only functions of ρ,
they should have no scaling, which imposes that β = α2. Here, one could argue that pressure
is also only a function of the density and, thus, should not scale. However, we must note that
p′(ρ) = c2

s , where cs is the sound velocity. Since cs scales as the velocity flow, we obtain that
pressure must scale as (β/α)2. The scaling (67) with β = α2 fixes the form of energy density.
Hence, the most general energy density of order α2, up to total derivatives, is given by

E = 1
2ρv2

i + ϵ(ρ) + F(ρ)κ+ G(ρ)ω+ 1
2W (ρ) (∂iρ)

2 , (69)

where ω = ∂i v
∗
i is the fluid vorticity, κ = ∂i vi is the flow compressibility and the functions

F(ρ), G(ρ) and W (ρ) must be determined in terms of the viscosity coefficients. Note that this
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counting scheme differs from the original derivative expansion and set Madelung terms, such as
γi jkl(ρ)∂kρ∂lρ+σi jkl(ρ)∂k∂lρ, to be of the same order as viscous terms.. For the inviscid case
the well-known conserved energy is recovered by setting F = G =W = 0.

Taking the time derivative of Eq. (69) give us

∂tE = −∂iQ i + F ′(ρ)ϵ′′(ρ)(∂iρ)
2 + Ai jkl ∂i v j∂kvl + Bi jkl ∂iρ∂ jρ∂kvl + Ci jkl ∂i∂ jρ∂kvl , (70)

where

Q i = E vi + Ti j v j −
F δik + G εik

ρ
∂ j T jk +ρκW∂iρ −

F ′δ jm + G′ ε jm

ρ
ηimkl ∂ jρ∂kvl , (71)

Ai jkl = −ηi jkl +
F
2
εi jεkl +

F
2

�

δikδ jl +δilδ jk −δi jδkl

�

+
�

F
2
−ρF ′
�

δi jδkl −ρ G′δi jεkl , (72)

Bi jkl =
�

F ′

ρ
δ jm +

G′

ρ
ε jm

�′

ηimkl +
ρW ′

2
δi jδkl −

W
2

�

δikδ jl +δilδik −δi jδkl

�

, (73)

Ci jkl =
�

F ′

ρ
δ jm +

G′

ρ
ε jm

�

ηimkl +ρW δi jδkl . (74)

The term F ′ϵ′′(∂iρ)2 is velocity independent and must vanish by itself for the energy to be
conserved. This means that either F ′(ρ) = 0 or ϵ′′(ρ) = 0. However, the sound velocity on a
fluid is given by

cs =
Æ

ρϵ′′(ρ) ,

which implies that F ′(ρ) must necessarily vanish to guarantee energy conservation. Since the
energy density is only defined up to total derivatives, we obtain that

F(ρ) = 0 , (75)

which substantially simplifies Eqs. (72-74).
The term Ai jkl ∂i v j ∂kvl is a quadratic form and cannot be written as a total derivative

unless Γ = ζ = −η = c1. However, as mentioned in the main text, we ignore this particular
case, since it does not modify the equations of motion in flat space. Thus, Ai jkl ∂i v j ∂kvl must
necessarily vanish to ensure energy conservation. This is obtained when Ai jkl = −Akli j and,
after imposing Eq. (75), we end up with

η(ρ) = ζ(ρ) = Γ (ρ) = 0 , (76)

ζH(ρ) + ΓH(ρ) +ρ G′(ρ) = 0 . (77)

Let us now turn our attention to the last two terms. They give us

Bi jkl ∂iρ∂ jρ∂kvl + Ci jkl ∂i∂ jρ∂kvl = ∂i

�

κ∂iρ − ∂ jρ∂ j vi

ρ
2ηH G′
�

+
�

ΓH −ηH

ρ
G′ +ρW
�

κ∆ρ

+

�

�

G′

ρ

�′

(ΓH −ηH)−
η′H G′

ρ
+
ρW ′

2

�

κ (∂iρ)
2

+

�

η′H G′

ρ
−

W
2

�

∂iρ∂ jρ (∂i v j + ∂ j vi −δi jκ) . (78)

In order to write the right hand side of Eq. (78) as a total derivative, we must impose that

η′H G′

ρ
−

W
2
= 0 , (79)

G′

ρ
(ΓH −ηH) +ρW = 0 , (80)

�

G′

ρ

�′

(ΓH −ηH)−
η′H G′

ρ
+
ρW ′

2
= 0 . (81)
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Equation (77) allows us to express G(ρ) in terms of ζH(ρ) and ΓH(ρ). This means that there
are four variables (ηH ,ζH , ΓH , W ) and 3 equations. Unless Eqs. (79-81) are linearly dependent,
there is no way to satisfy them for ηH(ρ), ζH(ρ) and ΓH(ρ) independent. Plugging Eq. (79)
into Eq. (80), we find that

�

ΓH −ηH + 2ρη′H
�

G′ = 0 . (82)

This breaks into two possible cases, namely, G′(ρ) = 0 or G′(ρ) ̸= 0.

A.1 Case I: G′(ρ) = 0

Let us first consider the case when G′(ρ) = 0. Plugging this into Eq. (79) gives us W = 0,
which is consistent with Eq. (81). From Eq. (77), we see that this case is simply the condition

ζH(ρ) = −ΓH(ρ) , (83)

or equivalently
ηi jkl(ρ) = η̄i jkl(ρ) , (84)

where η̄i jkl is defined in Eq. (10).

A.2 Case II: G′(ρ) ̸= 0

In this case, Eq. (82) imposes that

ΓH(ρ)−ηH(ρ) + 2ρη′H(ρ) = 0 , (85)

and Eq. (81) can be written solely in terms of G′(ρ) and ηH(ρ). Plugging Eq. (79) into Eq. (81)
and expressing ΓH(ρ) in term of ηH(ρ) gives us

η′H(ρ)G
′′(ρ)−η′′H(ρ)G

′(ρ) = 0 . (86)

Note that G′(ρ) ̸= 0, otherwise we recover the case I. Therefore, we can express η′H(ρ) in
terms of G′(ρ). This gives us

η′H(ρ) = c G′(ρ), (87)

for a constant c. Hence, we obtain

ηH(ρ) = c G(ρ) + c2 , (88)

ΓH(ρ) = c
�

G(ρ)− 2ρ G′(ρ)
�

+ c2 , (89)

ζH(ρ) = −c G(ρ) + (2c − 1)ρ G′(ρ)− c2 , (90)

W (ρ) =
2c
ρ

�

G′(ρ)
�2

(91)

for a generic function G(ρ) and some constant c2. However, if we focus on the stress tensor,
we see that

Ti j =−
�

p(ρ) + (2c − 1)ρ G′(ρ)ω
�

δi j − 2 cρ G′(ρ)κεi j

+ [c G(ρ) + c2]εik ∂kv j . (92)

The constant c2 in the last term does not contribute to equations of motion and we can set it
to zero without loss of generality. Moreover, when c = 0, only odd pressure is present and the
stress tensor becomes diagonal.
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B Condition to satisfy the Jacobi identity

For the system to be Hamiltonian, the algebra defined through expressions (18), (19), and (26)
must satisfy the Jacobi identity. Let us define

FA =

∫

�

fAρ + Ji ξ
i
A

�

d2 x , (93)

for some test functions fA, ξ1
A and ξ2

B. In this notation, Jacobi identity can be written as

εABC{{FA, FB}, FC}= 0 . (94)

Using equation (18), we find that the brackets between FA and FB is given by

{FA, FB}=
∫∫

d2 x d2 y
�

�

fA(x )ξ
i
B(y)− fB(x )ξ

i
A(y)
�

{ρ(x ), Ji(y)}

+ ξi
A(x )ξ

k
B(y){Ji(x ), Jk(y)}

�

,

{FA, FB}=
∫

d2 x
�

ρ
�

ξi
A∂i fB − ξi

B∂i fA
�

+ Ji

�

ξk
A∂kξ

i
B − ξ

k
B∂kξ

i
A

�

+ η̄ jiℓk ∂
jξi

A∂
ℓξk

B

�

. (95)

Plugging the expression (95) into equation (94), we find

εABC{{FA, FB}, FC}= εABC

∫∫

d2 x d2 y

�

2

�

ξi
C(y)ξ

k
A(x )

∂ fB

∂ xk
(x )− fC(x )ξ

k
A(y)

∂ ξi
B

∂ xk
(x )

�

× {ρ(x ), Ji(y)}+ 2ξk
C(x )ξ

ℓ
A(y)

∂ ξi
B

∂ xℓ
(x ){Ji(x ), Jk(y)}

+ fC(y)
∂ ξi

A

∂ x j
(x )
∂ ξk

B

∂ xℓ
(x ){η̄ jiℓk(x ),ρ(y)}

+ ξm
C (y)

∂ ξi
A

∂ x j
(x )
∂ ξk

B

∂ xℓ
(x ){η̄ jiℓk(x ), Jm(y)}

�

. (96)

Note that there are two types of terms in equation (96), i.e. some of them depend on 3 vectors
(ξA,ξB,ξC), whereas the others depend on 2 vectors (ξA,ξB) and one function fC . Since they
are independent, each type of term must vanish separately. Let us now focus on terms with 2
vectors (ξA,ξB) and one function fC . The Jacobi identity imposes that

εABC

∫

d2 x
�

2ρ(x )ξi
A(x )ξ

k
B
∂ 2 fC

∂ x i∂ xk
(x )

−
∂ ξi

A

∂ x j
(x )
∂ ξk

B

∂ xℓ
(x )

∫

d2 y fC(y){η̄ jiℓk(x ),ρ(y)}
�

= 0 ,

εABC

∫∫

d2 x d2 y
∂ ξi

A

∂ x j
(x )
∂ ξk

B

∂ xℓ
(x ) fC(y){η̄ jiℓk(x ),ρ(y)}= 0 , (97)

where in the second line we used that εABCξi
Aξ

k
B is antisymmetric in the indices (i, k). Equa-

tion (97) imposes that
{η̄ jiℓk(x ),ρ(y)}= 0 , (98)

which is automatically satisfied when the components η̄i jkℓ are functions solely of ρ.
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Let us now turn our attention to terms in equation (96) with 3 vectors (ξA,ξB,ξC),

εABC

∫

d2 x

�

2 η̄ jiℓk(x )
∂ ξk

C

∂ xℓ
(x )

∂

∂ x j

�

ξm
A

∂ ξi
B

∂ xm

�

(x )− 2Ji(x )ξ
k
A(x )ξ

j
B(x )

∂ 2ξi
C

∂ xk∂ x j
(x )

+

∫

d2 y ξm
C (y)

∂ ξi
A

∂ x j
(x )
∂ ξk

B

∂ xℓ
(x ){η̄ jiℓk(x ), Jm(y)}

�

= 0 ,

εABC

∫

d2 x

�

η̄ jiℓk(x )

�

ξm
A (x )

∂

∂ xm

�

∂ ξi
B

∂ x j

∂ ξk
C

∂ xℓ

�

(x ) + 2
∂ ξm

A

∂ x j
(x )
∂ ξi

B

∂ xm
(x )
∂ ξk

C

∂ xℓ
(x )

�

+

∫

d2 y ξm
C (y)

∂ ξi
A

∂ x j
(x )
∂ ξk

B

∂ xℓ
(x ){η̄ jiℓk(x ), Jm(y)}

�

= 0 . (99)

In the third line, we used one more time that εABCξk
Aξ

j
B is antisymmetric in the indices (k, j)

and that

εABC η̄ jiℓk∂m

�

∂ jξi
B∂
ℓξk

C

�

= εABC(η̄ jiℓk − η̄i jkℓ)∂
ℓξk

C ∂m∂
jξi

B = 2εABC η̄ jiℓk∂
ℓξk

C ∂m∂
jξi

B .

Integrating equation (99) by parts give us

εABC

∫

d2 x

�

2η̄ jiℓk(x )
∂ ξm

A

∂ x j
(x )
∂ ξi

B

∂ xm
(x )
∂ ξk

C

∂ xℓ
(x )−

∂ ξi
B

∂ x j
(x )
∂ ξk

C

∂ xℓ
(x )

∂

∂ xm

�

ξm
A η̄ jiℓk

�

(x )

+

∫

d2 y ξm
A (y)

∂ ξi
B

∂ x j
(x )
∂ ξk

C

∂ xℓ
(x ){η̄ jiℓk(x ), Jm(y)}

�

= 0 . (100)

Note that equation (100) is valid for any spatial dimensions, since we still have not used the
2-dimensional form of η̄i jkℓ. Moreover, if the stress tensor is symmetric, η̄i jkℓ = η̄ jikℓ and the
first term vanishes identically. Let us now focus on the first term in (100). Hence,

2εABC η̄ jiℓk∂
jξm

A ∂mξ
i
B∂
ℓξk

C = ε
ABC η̄ jiℓkε

jiεnr∂
nξm

A ∂mξ
r
B∂
ℓξk

C = 2ΓHε jkδiℓ∂
jξi

A∂
ℓξk

B∂mξ
m
C ,

and equation (100) becomes

εABC

∫

d2 x
∂ ξi

B

∂ x j
(x )
∂ ξk

C

∂ xℓ
(x )

�

�

ΓH(x )(ε jkδiℓ +δ jkεiℓ)− η̄ jiℓk(x )
�∂ ξm

A

∂ xm
(x )− ξm

A (x )
∂ η̄ jiℓk

∂ xm
(x )

+

∫

d2 y ξm
A (y){η̄ jiℓk(x ), Jm(y)}

�

= 0 . (101)

However, using that εABC∂iξ
i
A∂ jξ

j
B = 0, together with

ε jkδiℓ +δ jkεiℓ = ε jℓδik +δ jℓεik ,

we obtain

εABC

∫

d2 x
∂ ξi

B

∂ x j
(x )
∂ ξk

C

∂ xℓ
(x )

�

�

ε jℓδik +δ jℓεik

�

�

�

ΓH(x )−ηH(x )
�∂ ξm

A

∂ xm
(x )− ξm

A (x )
∂ ηH

∂ xm
(x )

�

−
�

ε jiδℓk −δ jiεℓk

�

ξm
A (x )

∂ ΓH
∂ xm

(x ) +

∫

d2 y ξm
A (y){η̄ jiℓk(x ), Jm(y)}

�

= 0 . (102)

Here is convenient to use that ΓH is a function of ρ, that is,

�

ΓH
�

ρ(x )
�

, Jm(y)
	

= −Γ ′H
�

ρ(x )
�

ρ(y)
∂

∂ ym
δ(x − y) . (103)
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Plugging equation (103) into (102), we see that

εABC

∫

d2 x

�

�

ΓH −ηH

�∂ ξm
A

∂ xm
− ξm

A
∂ ηH

∂ xm
+

∫

d2 y ξm
A (y){η̄H(x ), Jm(y)}

�

× (ε jℓδik +δ jℓεik)
∂ ξi

B

∂ x j

∂ ξk
C

∂ xℓ
= 0 . (104)

The bracket between the odd viscosity and the momentum density is fully determined by
Jacobi identity, i.e.

{ηH(x ), Jm(y)}=
�

�

ηH(x )− ΓH
�

ρ(x )
�

� ∂

∂ xm
+
∂ ηH

∂ xm
(x )
�

δ(x − y) ,

{ηH(x ), Jm(y)}= −
�

ηH(y)
∂

∂ ym
+ ΓH
�

ρ(x )
� ∂

∂ xm

�

δ(x − y) . (105)

So far, we have not used that ηH is a function of ρ. Imposing it into equation (104) give
us

εABC(ε jℓδik +δ jℓεik)

∫

d2 x
�

ΓH(ρ)−ηH(ρ) +ρη
′
H(ρ)
�∂ ξm

A

∂ xm

∂ ξi
B

∂ x j

∂ ξk
C

∂ xℓ
= 0 , (106)

in other words, the Jacobi identity is only satisfied when

ΓH(ρ) = ηH(ρ)−ρη′H(ρ) . (107)

In fact, equation (105) must always be valid, even when ηH cannot be expressed in terms
of ρ. Therefore, equation (105) defines the brackets between the fluid intrinsic angular mo-
mentum and momentum density.

Equation (105) however has a deeper implication. Note that

∂

∂ x j

�

η̄ jiℓk(x )
∂

∂ xℓ

�

δ(x − y)

=
∂

∂ x j

�

�

ηH(x )
�

ε jℓδik + εikδ jℓ

�

+ ΓH(x )(ε jiδℓk −δ jiεℓk)
� ∂

∂ xℓ

�

δ(x − y) ,

∂

∂ x j

�

η̄ jiℓk(x )
∂

∂ xℓ

�

δ(x − y) =

�

εi j
∂

∂ y j

�

ηH(y)
∂

∂ yk

�

− εk j
∂

∂ x j

�

ηH(x )
∂

∂ x i

�

�

δ(x − y)

− εi j
∂

∂ x j

�

ΓH(x )
∂

∂ xk

�

δ(x − y) + εk j
∂

∂ y j

�

ΓH(x )
∂

∂ y i

�

δ(x − y) . (108)

Using equation (105), we can eliminate the dependence in ΓH , since

−εi j
∂

∂ x j

�

ΓH(x )
∂

∂ xk

�

δ(x − y) = {∂ ∗i ηH(x ), Jk(y)} −ηH(y)εi j
∂ 2

∂ y j∂ yk
δ(x − y) , (109)

εk j
∂

∂ y j

�

ΓH(x )
∂

∂ y i

�

δ(x − y) = {Ji(x ),∂
∗
k ηH(y)}+ηH(x )εk j

∂ 2

∂ x j∂ x i
δ(x − y) . (110)

Therefore, we obtain

∂

∂ x j

�

η̄ jiℓk(x )
∂

∂ xℓ

�

δ(x − y) = {∂ ∗i ηH(x ), Jk(y)}+ {Ji(x ),∂
∗
k ηH(y)}

+
�

∂iηH(y)
∂

∂ yk
− ∂ ∗k ηH(x )

∂

∂ xk

�

δ(x − y) . (111)

Combining this with equation (26), we see that the quantities Ji+∂
∗
i ηH are the diffeomorphism

generators, that is, they satisfy following algebra
��

Ji + ∂
∗
i ηH

�

(x ),
�

Jk + ∂
∗
k ηH

�

(y)
	

=
�

�

Ji + ∂
∗
i ηH

�

(y)
∂

∂ yk
−
�

Jk + ∂
∗
k ηH

�

(x )
∂

∂ x i

�

δ(x − y) . (112)
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