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Abstract

We use a network of chiral junctions to construct a family of topological chiral spin liq-
uids in two spatial dimensions. The chiral spin liquid phase harbors SU(2)k anyons,
which stem from the underlying SU(2)k WZW models that describe the constituent spin
chains of the network. The network exhibits quantized spin and thermal Hall conduc-
tances. We illustrate our construction by inspecting the topological properties of the
SU(2)2 model. We find that this model has emergent Ising anyons, with spinons acting
as vortex excitations that bind Majorana zero modes. We also show that the ground state
of this network is threefold degenerate on the torus, asserting its non-Abelian character.
Our results shed new light on the stability of non-Abelian topological phases in artificial
quantum materials.
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1 Introduction

Chiral spin liquids (CSLs) are elusive phases of matter with emergent gauge structures and
fractionalized excitations [1,2]. They occur in frustrated quantum magnets with highly entan-
gled ground states that break time-reversal and parity symmetries. A seminal example was put
forward by Kalmeyer and Laughlin [3], who constructed a topologically ordered state of spins
that bears a strong resemblance to a fractional quantum Hall fluid. Among the similarities, the
elementary excitations of CSLs in two dimensions obey anyonic statistics [4]. Of paramount
importance to the development of fault-tolerant quantum computing are non-Abelian anyons
featuring exotic braiding rules, closely related to the algebraic structure of conformal field
theories (CFTs) [5, 6]. Examples of non-Abelian CSLs include the Kitaev honeycomb model
in a magnetic field [7], the decorated honeycomb model of Yao and Lee [8], and the bosonic
Pfaffian wave function proposed by Greiter and Thomale [9].

The low-energy physics of topological CSLs is captured by Chern-Simons theories in 2+1
spacetime dimensions [10]. In addition to anyons, they also feature gapless edge modes [11]
and a ground state degeneracy that depends on the topology of space [12]. These properties
have been observed in numerical studies of lattice models [13–15]. The edge physics is of great
interest to experiments, where one can probe magnetic and thermal responses in the form of
quantized Hall conductances [16,17]. Transport measurements can provide a smoking gun to
identify CSL phases, as in the recent observation of a quantized thermal Hall conductance for
the Kitaev spin liquid candidate material α-RuCl3 [18].

In spite of their long history, tractable microscopic models realizing CSL phases are still
lacking. In that regard, networks built out of junctions of one-dimensional (1D) electronic
systems, such as quantum wires and spin chains, represent a new platform to simulate ex-
otic phases of matter [19–23]. The transport properties of these systems can be characterized
by the boundary conditions of the collective modes of charge or spin, which are described
by low-energy effective field theories [24, 25]. In particular, networks constructed with junc-
tions of spin chains provide a controllable framework to investigate CSLs. Ferraz et al. [21]
showed how to realize a Kalmeyer-Laughlin state in a honeycomb network of antiferromag-
netic
spin-1

2 Heisenberg chains coupled by three-spin interactions. From the perspective of the effec-
tive field theory, the starting point is a junction of SU(2)1 Wess-Zumino-Witten (WZW) models
with boundary interactions tuned to a chiral fixed point [26, 27]. In this approach, one can
directly access the topological properties of the CSL without invoking a renormalization group
flow towards a strong-coupling fixed point as in standard coupled-wire constructions [28–33].
While the Kalmeyer-Laughlin state studied in Ref. [21] is an example of Abelian topological
phase, the recent finding of a chiral fixed point of critical spin-1 chains described by the SU(2)2
WZW model [34] opens the way for generalizations with non-Abelian anyons.

In this paper, we extend the network construction to non-Abelian CSLs. Postulating the
existence of chiral fixed points in junctions of SU(2)k WZW models, we assemble a honeycomb
network that realizes gapped CSL phases, see Fig. 1. The network harbors elementary spin-
j excitations of all spins from j = 1

2 to j = k
2 , with energy gaps determined by the scaling

dimensions of the primary fields of the underlying WZW models. The CSL exhibits quantized
spin and thermal Hall conductances that depend on the level k of the WZW model. We show
that perturbations to the chiral fixed point control the mobility of the elementary excitations,
and the CSL phase is stable over a finite range of couplings for which all excitations remain
gapped. We test the topological properties of our construction by studying the SU(2)2 model as
a concrete example. This network model has a factorized spectrum akin to Kitaev’s non-Abelian
CSL, with spin-1

2 excitations (spinons) acting as Z2 vortices that bind Majorana zero modes.
We also show that the ground state of the SU(2)2 CSL on the torus is threefold degenerate,
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Figure 1: Honeycomb network of critical spin chains realizing a gapped chiral spin
liquid phase. Blue arrows indicate the direction of spin currents in the bulk. Edge
modes are represented in green. The inset shows how the low-energy modes are
rerouted in the anticlockwise direction at a junction tuned to the chiral fixed point.

as a consequence of the blocking mechanism that demonstrates the non-Abelian character of
this phase.

This paper is organized as follows. We start in Sec. 2 with a broad view of the network
construction of SU(2)k CSLs. After presenting our construction scheme, we verify that the
spectrum contains SU(2)k anyons. To further characterize our CSLs, we compute their spin and
thermal Hall conductances from the edge modes in a strip geometry. We conclude this overview
with a discussion about the stability of the CSL phases by looking into the effects of boundary
perturbations allowed by symmetry. Section 3 provides an analysis of the SU(2)2 model, which
has emergent Ising anyons and a threefold topological degeneracy on the torus. Finally, we
draw our conclusions and point out some future directions in Sec. 4. We also include an
Appendix where we detail the computation of some commutators for string operators on the
network.

2 Network construction for SU(2)k models

Quantum spin circulators [26, 27] can be viewed as building blocks of networks that harbor
CSL phases. In this section, we revisit the major plot points of this construction, extending
the results of Ref. [21] to higher-level SU(2)k WZW models, which describe critical points in
the phase diagrams of isotropic spin-S chains [35–40]. Motivated by the recent report of a
chiral fixed point in the junction of SU(2)2 models [34], we start by postulating the existence
of chiral fixed points for general values of k and examine the properties of the corresponding
CSLs. A posteriori, the analysis of perturbations to the putative chiral fixed points allows us
to assess the stability of these non-Abelian phases.

2.1 Low-energy spectrum

Consider a honeycomb network constructed by coupling together a large number of finite spin
chains that, when isolated, are described by independent SU(2)k WZW models. The bulk
Hamiltonian of a single spin chain is written in Sugawara form as [41]

Hc =
2πv
k+ 2

∫ ℓ

0

d x
�

J
2
L,c + J

2
R,c

�

, (1)

where v is the spin velocity, ℓ is the length of the chain, and k is the level of the WZW model.
The operators JL,c and JR,c are the left- and right-moving currents that propagate on chain c.
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We then assume that we can tune the boundary interactions in a microscopic model for
the junctions to a chiral fixed point [26,27,34]. The key property of this fixed point is that at
each junction the incoming currents are perfectly transmitted to the next chain in rotation, as
in an ideal circulator; see the inset in Fig. 1. As a result, the currents circulate in loops. When
we impose chiral boundary conditions at the junctions, the set of currents associated with the
spin chains can be locally mapped to plaquette spin currents Jp,

(JL,c,JR,c) 7→ (Jp,Jp′) , (2)

where p and p′ are plaquettes sharing chain c. In terms of the plaquette currents, the effective
low-energy Hamiltonian of the network assumes the form

H =
∑

p

Hp , Hp =
2πv
k+ 2

∫ L

0

d x J2
p , (3)

where L = 6ℓ is the distance traveled by a chiral mode around a plaquette and Jp is subjected
to periodic boundary conditions

Jp(x + L) = Jp(x) . (4)

Since the currents are confined to the plaquettes, the network has a gapped energy spec-
trum in the bulk. To diagonalize the Hamiltonian in Eq. (3), we proceed to momentum space.
Using translation invariance, we expand the spin current in Fourier modes as

J a
p (x) =

1
L

∞
∑

n=−∞
J a

p,nei2πnx/L (n ∈ Z) , (5)

where a = {x , y, z} are the spin components. The modes satisfy the commutation relations of
the Kac-Moody algebra, [J a

pn, J b
qm] = iεabcδpqJ c

n+m+
1
2 knδabδpqδn+m,0. Substituting the mode

expansion into the Hamiltonian, we obtain

H =
∑

p

2πv
L

1
k+ 2

�

J a
p,0J a

p,0 + 2
∑

n>0

J a
p,−nJ a

p,n

�

, (6)

where we drop an unimportant additive constant and sum over repeated spin indices. To label
the eigenstates of the Hamiltonian, we use the quantum numbers of total spin and total spin-z
projection operators, S2

tot and Sz
tot. These quantum numbers are fixed by the eigenvalues of

the plaquette zero-mode operators, in the form

Stot ≡
∑

p

Sp , Sp =

∫ L

0

d x Jp(x) = Jp,0 . (7)

Note that the effective theory for the chiral fixed point is endowed with an enlarged symmetry,
as the Hamiltonian in Eq. (3) commutes with each Sp individually. However, the quantum
numbers of S2

tot and Sz
tot impose global constraints on the network spectrum. If we assume

that the total number of lattice sites in the network is even, the allowed values for Sz
tot are

integers, which precludes the existence of single spin-1
2 excitations.

The ground state of the system is a spin singlet defined by the vacuum condition

J a
p,n|Ω〉= 0 , (8)

for all plaquettes p, all spin components a, and non-negative integers n. The low-energy
Hilbert space is generated by acting on the vacuum with operators of the chiral SU(2)k WZW
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models associated with the plaquettes [41,42]. The first excited state is highly degenerate and
corresponds to a pair of elementary spin-1

2 excitations, known as spinons, with energy

E1 =
πv
L

3
k+ 2

. (9)

In fact, the network carries elementary excitations with spin j = 1
2 , 1, · · · , k

2 . They are created
in pairs by the action of local operators in the spin chains, which can be written in terms of
the primary fields Φ( j)c of the SU(2)k WZW model. Crucially, in our construction the left- and
right-moving parts of Φ( j)c act on different, neighboring plaquettes of the network. The energy
of a pair of elementary spin- j excitations is

E2 j =
4πv

L
h j , h j =

j( j + 1)
k+ 2

, (10)

where 2h j is the scaling dimension of Φ( j)c . Note that the excited states are degenerate with
respect to the plaquettes in which the spin- j excitations are located. Although a spin- j pair
can only be created at neighboring plaquettes, one can move them apart by a series of local
operations without energy cost. Finally, each elementary spin- j excitation has a tower of de-
scendant states, which can be obtained by applying ladder operators J a

p,−n with n ≥ 1. For
high values of k, the first excited state with a large spin j may lie above the first descendant
in the tower of the identity operator, which corresponds to j = 0.

2.2 Edge modes and transport properties

The edge theory of the network is governed by a chiral SU(2)k WZW model. The gapless edge
modes can be directly visualized in real space by tracking the path of the currents reflected at
the open ends of the spin chains at the boundary, see Fig. 1. The edge modes carry spin and
energy, contributing to transport properties of the CSL phase [11,16,17]. Here we show that
the network exhibits a quantized response to gradients of magnetic fields and temperature. In
a strip geometry, we can treat the edge modes as spatially separated chiral currents Jupper and
Jlower, with Hamiltonian

Hedge =
2πv
k+ 2

∫

d x
�

J2
upper + J2

lower

�

, (11)

where x ∈ R runs along the edge. Figure 2 shows a strip whose width is much larger than
the chain length ℓ. At large length scales, the edge modes propagate approximately in the
direction indicated by the x axis. The detailed geometry of the boundary can be absorbed into
a rescaling of the velocity for the edge modes, which does not affect the quantized transport
coefficients.

To evaluate the spin Hall response, we apply a magnetic field h at the upper edge of the
strip. This perturbation imposes a spin voltage drop along the transverse direction of the strip.
For small magnetic fields, h≪ v/L, we can neglect the bulk contribution and concentrate on

δHedge = h

∫

d x J z
upper . (12)

Due to the magnetic field difference, we observe a nonzero longitudinal spin current
Is = v〈J z

upper − J z
lower〉h. From standard linear response theory, we find that the spin Hall con-

ductance is given by

Gx y = − lim
ω→0+

v

∫

d x

∫

dτ eiωτ〈J z
upper(τ, x)J z

upper(0)〉 , (13)
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Figure 2: Effective strip geometry. Hall responses are evaluated by subjecting the
system to gradients of magnetic fields and temperature along the transverse direc-
tion. Green arrows represent the direction of propagation of the chiral edge modes.
The gapped bulk is depicted in gray.

being closely related to the magnetic susceptibility of a chiral WZW model [43]. If we then
use the current correlator

〈J a
upper(τ, x)J b

upper(0)〉=
k

8π2

δab

(vτ− i x)2
, (14)

and perform the integrations, we arrive at

Gx y =
k

4π
. (15)

Thus, the network exhibits a quantized spin Hall conductance Gx y/G0 = k/2,
where G0 = 1/2π is the spin conductance quantum. Note that, generally speaking, k/2 coin-
cides with the spin S of critical spin chain models whose low-energy physics is described by
an SU(2)k=2S WZW model [35]. In particular, our formula correctly reproduces Gx y = 1/4π
for k = 1, as predicted for the network of spin-1

2 Heisenberg chains [21].
We now consider the thermal Hall response of the system. For this part we follow closely

the calculations of Cappelli et al. [17], who showed that the thermal Hall conductance of a
quantum Hall state is directly proportional to the central charge c of the chiral CFT on its edge.
We assume that the upper edge is held at finite temperature T , creating a temperature bias
along the transverse direction of the strip. The induced thermal current is determined by the
expectation value of the energy-momentum tensors:

IQ =
v2

2π
〈Tupper − Tlower〉∆T . (16)

As the lower edge is kept at zero temperature, the expectation value of its energy-momentum
tensor vanishes, 〈Tlower〉0 = 0. Let us then focus on the contribution from the upper edge. We
extend our CFT to finite temperature using the conformal mapping w→ z(w) = ei2πw/β , where
β = 1/T is the inverse temperature, and z and w represent the coordinates on the cylinder
and on the plane, respectively [42]. When we perform this conformal transformation, the
energy-momentum tensor acquires the nonzero expectation value:

〈Tupper(z)〉T =
�

dz
dw

�2

〈Tupper(w)〉0 +
c

12
{z; w}=

π2

6
cT2

v2
. (17)

Here, {z; w} stands for the Schwarz derivative, defined as {z; w} = z′′′
z′ −

3
2(

z′′
z′ )

2 [44]. From
Eqs. (16) and (17), we see that the induced thermal current is equal to IQ =

π
12 cT2. This

implies that the network has a quantized thermal Hall conductance

Kx y =
∂ IQ
∂ T
=
π

6
cT =

π

2
k

k+ 2
T . (18)
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In the last equality we used the expression for the central charge of the SU(2)k WZW model,
c = 3k/(k+ 2) [41].

2.3 Perturbations and stability

Reaching the chiral fixed point of junctions of SU(2)k WZW models requires fine tuning mi-
croscopic boundary interactions [26, 27, 34]. Once the model parameters deviate from this
special point, boundary perturbations appear at the junctions of the network. These pertur-
bations couple the low-energy modes in neighboring plaquettes, allowing the elementary ex-
citations to become mobile and lower their energy. However, the stability of the CSL phase is
guaranteed by the excitation gap for a network composed of chains with finite length.

For a single junction, the leading boundary operators allowed by symmetry that perturb
the chiral fixed point are

δHY =
k/2
∑

j=1/2

λ2 j

3
∑

c=1

trΦ( j)c (0) , (19)

where λ2 j are coupling constants. Here we take the trace of the primary matrix fields to
obtain SU(2)-invariant operators and we sum over the three chains c = 1,2, 3 that make
up the junction, preserving the Z3 cyclic permutation symmetry. The boundary operators are
placed at the junction point x = 0. Recall that trΦ( j)c has scaling dimension 2h j . Thus, for large
values of k, δHY may include not only relevant, but also marginal and irrelevant boundary
perturbations. We neglect boundary operators that are written in terms of the currents, such
as J2

L,c(0), because they are always irrelevant.
Let Nk denote the number of relevant and marginal boundary operators, for which 2h j ≤ 1.

From Eq. (10), we have Nk = ⌊
p

2k+ 5−1⌋. To reach the chiral fixed point, we need to tune a
set of parameters in the microscopic model, {g2 j} with j = 1

2 , · · · , 1
2Nk, to a special point {g⋆2 j}

in the Nk-dimensional boundary phase diagram so that λ2 j = 0. In the simplest example,
k = 1, it suffices to tune a single parameter, namely the strength of the three-spin interaction
at the boundary [26,27]. The model with k = 2 is special because it contains one relevant and
one marginal operator [34].

Moving on to the 2D network, the boundary perturbations can be expressed as

δH =
k/2
∑

j=1/2

λ2 j

∑

c

2
∑

r=1

trΦ( j)c (xr) . (20)

Here, the summation runs over all chains c. Since every spin chain terminates at two junctions,
we use the positions x1 = 0+ and x2 = ℓ− to parametrize the two ends of the chain.

In general, these boundary operators break the integrability of the model. We expect that
their leading effect is to lift the extensive degeneracy of the excited states discussed in Sec. 2.1.
We can unveil this physics by applying degenerate perturbation theory. Let |φ( j)p 〉 be a one-
particle state corresponding to an elementary spin- j excitation at plaquette p. Although such
a state is unphysical, we may still use it as an approximation to the situation where a pair of
excitations is taken very far apart. To first order, the perturbation couples one-particle states
located in neighboring plaquettes, generating an effective hopping amplitude given by the
matrix element

t2 j = 〈φ( j)p |δH|φ( j)p′ 〉 . (21)

We can use the properties of the WZW model to extract the scaling behavior of t2 j . First,
we recall that the primary fields act on chiral modes that belong to adjacent plaquettes. This
means that we can fractionalize Φ( j)c into

Φ( j)c 7→ φ
( j)
p ×φ

( j)
p′ , (22)

7
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where φ( j)p denotes the chiral primary field with spin j at plaquette p. Second, from the fusion
rules of the chiral WZW model [44]

φ( j)p ×φ
( j′)
p′ =

min( j+ j′,k− j− j′)
∑

l=| j− j′|

δpp′φ
(l)
p′ , (23)

we deduce that the action ofφ( j)p onto the states |φ( j
′)

p′ 〉 only returns the ground state for j = j′:

φ( j)p |φ
( j′)
p′ 〉= δpp′δ j j′ |Ω〉+ · · · (24)

This means that the problem factorizes, with spin- j excitations only being scattered by the
coupling λ2 j . Hence, t2 j obeys the scaling law

t2 j∝ λ2 jℓ
−2h j . (25)

As a result, to first order in perturbation theory the first excited state in the spin- j sector splits
into a continuum with bandwidth proportional to |t2 j|. A quantum phase transition occurs
once the perturbation is large enough to close the energy gap, i.e. for |t2 j| ∼ v/ℓ. When λ2 j
is a relevant coupling constant, the region of stability of the gapped CSL phase shrinks with
increasing chain length, reflecting the instability of the chiral fixed point in a single junction
with ℓ→∞ [21]. Using λ2 j∝ g2 j − g⋆2 j , we find that the CSL is stable for

1
ℓ
≳ |g2 j − g⋆2 j|

1/(1−2h j) . (26)

Remarkably, the boundary perturbations in our network model have an effect similar to
that of exchange interactions that break the integrability of the Kitaev honeycomb model and
generate a mobility for visons in a Kitaev spin liquid [45,46].

3 Ising topological order in the network of SU(2)2 models

We now consider the SU(2)2 CSL as a particular example of our construction. This model may
be realized in a network of critical spin-1 chains [34]. Our main goal here is to verify the
topological properties of this CSL phase, asserting its non-Abelian character.

3.1 Majorana formulation

Let us begin by noting that SU(2)2 anyons can be mapped onto Ising anyons. The chiral SU(2)2
WZW model contains three primary fields, including the identity φ(0) = 1, with fusion rules
[see Eq. (23)]

φ(
1
2 ) ×φ(

1
2 ) = 1+φ(1) , φ(

1
2 ) ×φ(1) = φ(

1
2 ) , φ(1) ×φ(1) = 1 . (27)

These fusion rules can be identified with those of the Ising CFT with scaling fields 1, σ, and
ξ [44],

σ×σ = 1+ ξ, σ× ξ= σ , ξ× ξ= 1 , (28)

if we map φ(
1
2 ) 7→ σ and φ(1) 7→ ξ. On the other hand, it is important to keep in mind that

the energy levels of the SU(2)2 theory feature an additional spin degeneracy associated with
the SU(2) spin-rotation symmetry of the Hamiltonian.
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In fact, the SU(2)2 WZW model can be expressed as a theory of three Ising models [41,
47–49]. In this formulation, we can write the plaquette Hamiltonian in terms of three chiral
Majorana fermions

Hp = −
iv
2

∫ L

0

d x ξa
p∂xξ

a
p , (29)

where we sum over repeated spin indices a = x , y, z. The fermions obey standard anticom-
mutation relations, {ξa

p(x),ξ
b
q(y)}= δ

abδpqδ(x − y). The spin currents are given by

J a
p (x) = −

i
2
εabcξb

p(x)ξ
c
p(x) , (30)

for all spin components a in the plaquette p. The periodic boundary conditions for the currents
can be satisfied by imposing

ξa
p(x + L) = ±ξa

p(x) . (31)

These two types of boundary conditions give two independent sectors of the theory in the
plaquette. Antiperiodic boundary conditions define the Neveu-Schwarz (NS) sector, while pe-
riodic boundary conditions specify the Ramond (R) sector. To label these sectors, we introduce
the Z2 variable wp defined such that

wp =

¨

+1, antiperiodic BCs (NS sector) ,

−1, periodic BCs (R sector) .
(32)

The full set of wp defines a static Z2 flux configuration. The Z2 flux can be determined by
assigning signs in the chiral boundary conditions for the Majorana fermions at each junction
around a plaquette, which is equivalent to fixing a gauge in the representation of the local
operators [34]. In analogy with the solution of the Kitaev honeycomb model [7], we write the
eigenstates of H =

∑

p Hp in the factorized form

|Ψ〉= |MG〉|G〉 , (33)

where |MG〉 is a many-body eigenstate of Majorana fermions in the background of the Z2-field
configuration specified by |G〉.

To find the spectrum for given boundary conditions, we go to momentum space. The mode
expansion for the chiral fermions has the general form

ξa
p(x) =

1
p

L

∞
∑

k=−∞
ξa

p,kei2πkx/L , (34)

where k is half-integer in the case of antiperiodic boundary conditions, and integer other-
wise. When we substitute the mode expansion into the plaquette Hamiltonian, we have to
distinguish between the NS and R sectors:

Hp =
2πv

L

∑

k>0

kξa
p,−kξ

a
p,k −

2πv
L

1
16

, (k ∈ Z+ 1
2) ,

Hp =
2πv

L

∑

k>0

kξa
p,−kξ

a
p,k +

2πv
L

1
8

, (k ∈ Z) .
(35)

The additive constants come from the normal ordering of the mode operators and can be
obtained from the regularization prescription given by the Riemann zeta function [44].
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We see that the ground state of Hp is the NS vacuum, while the R vacuum is the first excited
state. Thus, changing the Z2 flux from wp = 1 to wp = −1 costs energy, and we can associate
the R vacuum to a vortex excitation. The corresponding single-vortex gap is

Ev =
2πv

L
3
16

. (36)

Moreover, the ground state in the R sector is degenerate due to the zero-mode operators ξa
p,0

which do not enter the Hamiltonian. These operators commute with Hp and satisfy (ξa
p,0)

2 = 1
2 .

For each plaquette there are three zero modes, whose degeneracy is protected by the SU(2)
symmetry. We can combine the Majorana zero modes to form a fundamental representation
of the SU(2) algebra (omitting the plaquette index):

sx = −iξy
0ξ

z
0 , s y = −iξz

0ξ
x
0 , sz = −iξx

0ξ
y
0 , (37)

with [sa, sb] = iεabcsc and s2 = 3/4. As a result, the vortex corresponds to an elementary
spin-1

2 excitation. In other words, the spinon of the SU(2)2 model binds Majorana zero modes.
This conclusion is consistent with the fusion rules in Eq. (27), which tell us that the spinon
has two fusion channels and should be responsible for the non-Abelian character of the CSL.

We are now in a position to recover the spectrum of the network. The ground state cor-
responds to the vacuum state on the vortex-free configuration, i.e. wp = 1 for all plaquettes
p. The first excited state compatible with the global constraints is a two-vortex configuration,
with energy

E2v =
2πv

L
3
8

. (38)

The elementary spin-1 excitations are represented by the Majorana fermions. The lowest-
energy state in this subspace that respects global fermion parity is a two-fermion excitation
ξa

p,−1/2ξ
b
q,−1/2|Ω〉, with energy

E2f =
2πv

L
. (39)

Note that these excitation energies are compatible with the general formula in Eq. (10).
Let us dig a bit deeper and see how these excitations are created by the action of local

operators. We recall that the SU(2)2 WZW model that describes a spin chain has two nontrivial

primary fields, Φ
( 1

2 )
c and Φ(1)c . We first examine the spin-1 operator, whose components can be

expressed as Majorana bilinears [41]. We write the spin-1 matrix field of a given chain in terms
of the chiral modes in the network as

[Φ(1)c ]
ab = iξa

L,cξ
b
R,c 7→ iξa

pξ
b
p′ , (40)

where p and p′ are the two plaquettes sharing chain c. This mapping implies that Φ(1)c frac-
tionalizes into a pair of Majorana fermions at adjacent plaquettes. Working in the basis of
fermionic ladder operators:

(ξx ,ξy ,ξz)→ (ξ+,ξ−,ξ) , (41)

with ξ± = ξx ± iξy and ξ = ξz , we can easily verify that these fermions represent spin-1
excitations:

[Sz
tot,ξp(x)] = 0 , [Sz

tot,ξ
±
p (x)] = ±ξ

±
p (x) . (42)

Note that we have dropped the upper index for the third Majorana fermion in the ladder
representation to lighten the notation. Importantly, these excitations are deconfined on the
network, meaning that we can move them without energy cost. For example, if we start with
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the state ξ+p2
ξ−p1
|Ω〉, we can apply a series of local operations ξ+pn

ξ−pn−1
· · ·ξ+p3

ξ−p2
to move the

Majorana from plaquette p2 to pn. For elementary Majorana excitations, the final state

ξ+pn,−1/2ξ
−
pn−1,−1/2 · · ·ξ

+
p2,−1/2ξ

−
p1,−1/2|Ω〉 , (43)

is also an eigenstate of the network with the same energy given in Eq. (39). While we may use
this property to send one Majorana to infinity and talk about single Majorana states, physical
states of the network always contain an even number of Majorana fermions.

It is also convenient to bosonize the complex fermions in the basis of fermionic ladder
operators. We write

ξ±p (x)∼
1
p
π

exp[±2iφp(x)] . (44)

To ensure the anticommutation of fermions, we impose the equal-time algebra for the chiral
bosons

[φp(x),φp(y)] = i
π

4
sgn(x − y) , (45)

where sgn(x) is the sign function defined so that sgn(0) = 0. The plaquette magnetization Sz
p,

see Eq. (7), has a simple representation in terms of the chiral boson:

Sz
p =

1
2

∫ L

0

d x :ξ+pξ
−
p : =

1
π

∫ L

0

d x ∂xφp , (46)

and hence Sz
p = (1/π)
�

φp(L)−φp(0)
�

. Since the total spin of the network is an integer, we
have the constraint

1= ei2πSz
tot =
∏

p

ei2[φp(L)−φp(0)] . (47)

Next, we consider the spin-1
2 matrix field. The latter appears in the staggered magnetiza-

tion of a spin chain, given by nc∝ trτΦ
( 1

2 )
c , where τa with a = x , y, z are Pauli matrices [35].

The n±c components obey the commutation relations with the chiral currents

[Jz
L/R,c(x), n±c (y)] = ±

1
2
δ(x − y)n±c (y) . (48)

Given the mapping in Eq. (2), this means that n±c creates two spin-1
2 excitations at adjacent

plaquettes. In practice, we can say the action of n±c fractionalizes into

n±c 7→ u±p u±p′ , (49)

where u± are chiral twist operators. In the notation where ξ± are bosonized, the SU(2)2 twist
operator takes the form

u±p ∼ e±iφpσp , (50)

where σp is the twist operator for the Majorana ξp [50].
The twist operator changes the boundary conditions of the fermions on the plaquettes from

antiperiodic to periodic and vice versa. To verify that, we first note that the action of the vertex
operator e±iφp on the boson φp gives

e∓iφp(y)φp(x)e
±iφp(y) = φp(x)±

π

4
sgn(x − y) . (51)

Thus, e±iφ creates a kink in the bosonic field configuration. When we go around the plaquette,
we gather the phase shift

φp(L)−φp(0)→ φp(L)−φp(0)±
π

2
. (52)
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This phase shift reverses the boundary conditions of ξ±p , see Eq. (44), creating one spinon

with Sz
p = ±

1
2 .

The next step is to verify how σp changes the boundary conditions of ξp. Their OPE has
the form

ξp(z)σp(0)∼ z−1/2σp(0) + · · · (53)

Due to the branch cut introduced by the twist operator, for z = eiθ , we get different signs
whether θ = 0 or θ = 2π. This is equivalent to imposing the equal-time relations (dropping
the plaquette index):

ξ(x)σ(y) =

¨

+σ(y)ξ(x) , x < y ,

−σ(y)ξ(x) , x > y .
(54)

The sign choice is arbitrary and depends on where we place the branch cut. (We can also think
the other choice is implemented by the dual twist field µ). Independently of our choice, we
can show that σ implements periodic boundary conditions when acting on the NS vacuum:

ξ(L)σ(x)|0〉NS = −σ(x)ξ(L)|0〉NS = σ(x)ξ(0)|0〉NS = ξ(0)σ(x) |0〉NS , (55)

where 0 < x < L is an arbitrary position at the plaquette. In sum, the action of u± upon the
NS vacuum yields the R vacuum (plus descendants),

u±(x)|0〉NS ∼ |±〉R+ · · · (56)

To move a pair of spinons, we must apply an ordered product of twist operators. The
multiplication rules of the vertex operators, together with the fusion rules of the Ising model,
yield the mutual OPEs:

u±(z)u±(w)∼ (z −w)1/8ξ±(w) + · · · ,

u±(z)u∓(w)∼
1

(z −w)3/8
+ (z −w)1/8ξ(w) + · · · (57)

Here we omit the structure constants and the ellipsis stands for less relevant terms. Note that
our OPEs are consistent with the fusion rules of the chiral SU(2)2 WZW model in Eq. (27).
Since the product u± × u∓ has two fusion channels, we define the two-spinon excitation as

u+pn

�

P1u−pn−1
u+pn−1
· · ·P1u−p2

u+p2
P1
�

u−p1
|Ω〉 , (58)

where P1 is the projection onto the identity channel. The factors of P1 guarantee that no
fermions are created along the string in the process of separating the spinons.

3.2 Topological degeneracy on the torus

Topological phases exhibit a ground state degeneracy that depends on the topology of space.
Let us assure the topological order of the CSL phase by computing its topological degeneracy
on the torus. This can be done by inspecting the algebra of string operators that implement
the transport of quasiparticles around the noncontractible directions of the torus [50,51].

We first define Tx as the operator that transports a spin-1 quasiparticle along the horizontal
direction of the network. We write Tx as a product of ladder operators ξ± in the form

Tx ∼
∏

p∈Wx

ξ+p (ℓ+ ε)ξ
−
p (−ℓ− ε) , (59)

where the product is taken over all plaquettes p crossed by the closed string Wx , which winds
around the torus in direction depicted in Fig. 3. Note that we have a free parameter 0< ε < ℓ
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Figure 3: String operator that realizes the transport of quasiparticles along the hor-
izontal direction. Here the periodic plaquette coordinate x ∈ [−3ℓ, 3ℓ] is measured
from the bottom vertex of the hexagon in the anticlockwise direction. The free pa-
rameter 0< ε < ℓ controls the position where we cut the plaquettes.

that determines the position where the string cuts the plaquettes. We can also use bosoniza-
tion, see Eq. (44), to define Tx as

Tx ∼
∏

p∈Wx

exp
�

2i

∫ ℓ+ε

−ℓ−ε
d x ∂xφp(x)
�

. (60)

This operator has three key properties we would like to highlight. First, as one can readily
verify, Tx is unitary, i.e. T †

x Tx ∼ 1. Second, it gives information about the global boundary
conditions on the torus. Under a proper normalization, Tx has eigenvalues ±1. This follows
from the fact that when we annihilate the Majorana pair, after completing one turn around the
torus, the transported Majorana picks up a plus or minus sign. Finally, Tx commutes with the
Hamiltonian in the ground state manifold [51]. To show this last property, we first compute
the commutator [ξ+p (x1)ξ−p (x2), Hq], where we rewrite the plaquette Hamiltonian as

Hp = −
iv
2

∫ 3ℓ

−3ℓ

d x
�

ξ+p ∂xξ
−
p + ξp∂xξp

�

. (61)

Then it follows that

[ξ+p (x1)ξ
−
p (x2), Hq] = −ivδpq

�

∂x1
ξ+q (x1)ξ

−
q (x2) + ξ

+
q (x1)∂x2

ξ−q (x2)
�

, (62)

which vanishes when projected onto the plaquette ground state. This can be more easily seen
by expanding the right-hand side in Fourier modes, such that we have

[ξ+p (x1)ξ
−
p (x2), Hq] = δpq

2πv
L

∑

k1k2

(k1 + k2)ξ
+
q,k1
ξ−q,k2

ei2π(k1 x1+k2 x2)/L , (63)

with ξ±p,k = ξ
x
p,k±iξy

p,k, see Eq. (34). The vacuum expectation value of ξ+q,k1
ξ−q,k2

then enforces
k1+k2 = 0. Hence, since Tx is just a product of elements of the form ξ+p (x)ξ

−
p (−x), and the full

Hamiltonian involves the sum over all Hp, we conclude the commutator of Tx and H vanishes
in the ground state subspace.

Let us now define the operator Ty , which transports spin-1 excitations around the vertical
direction. We introduce Ty as the product of local operations:

Ty ∼
∏

〈p1p2〉∈Wy

ξ+p1
(−2ℓ− ε)ξ−p1

(−ℓ+ ε)ξ+p2
(3ℓ− ε)ξ−p2

(ε) , (64)

where with 0 < ε < ℓ. We use the notation1 〈p1p2〉 to indicate that we use a “doubled unit
cell” with two types of plaquettes along the closed string Wy , as shown in Fig. 4. We can

1This notation is only necessary because we have chosen Wy to run in the direction perpendicular to Wx . Alter-
natively, we could have defined the closed strings along two independent but nonorthogonal directions, following
for instance the standard choice of primitive lattice vectors for the triangular lattice of hexagonal plaquettes.
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Figure 4: String operator along the vertical direction. The path is parametrized by
the distance offset ε. The outlined pair of plaquettes corresponds to the double unit
cell used in the definition of the closed string Wy .

translate Ty to boson language as well,

Ty ∼
∏

〈p1p2〉∈Wy

exp
�

2i

∫ −2ℓ−ε

−ℓ+ε
d x ∂xφp1

(x) + 2i

∫ 3ℓ−ε

ε

d x ∂xφp2
(x)
�

. (65)

It is easy to verify that the operator Ty enjoys the same properties as Tx .
Next, we introduce the operators that realize the transport of the spin-1

2 excitations around
the torus. The operator that carries the spinon along the horizontal direction is

Ux ∼
∏

p∈Wx

P1
�

u+p (ℓ+ ε)u
−
p (−ℓ− ε)
�

P1 . (66)

Unlike the definition of Tx , here we need to specify the fusion channel for the twist operators.
In boson language, Ux takes the form

Ux ∼
∏

p∈Wx

eiφp(ℓ+ε)−iφp(−ℓ−ε)P1
�

σp(ℓ+ ε)σp(−ℓ− ε)
�

P1 , (67)

where we can take the exponentials out of the projection. Similarly, we define the operator
that carries the spinon along the vertical direction as

Uy ∼
∏

〈p1p2〉∈Wy

P1
�

u+p1
(−2ℓ− ε)u−p1

(−ℓ+ ε)
�

P1
�

u+p2
(3ℓ− ε)u−p2

(ε)
�

P1 . (68)

Note that, in analogy with Ty , we employ a two-plaquette unit cell in the definition of Uy . The
bosonized version of Uy reads

Uy ∼
∏

〈p1p2〉∈Wy

eiφp1
(−2ℓ−ε)−iφp1

(−ℓ+ε)+iφp2
(3ℓ−ε)−iφp2

(ε)

×P1
�

σp1
(−2ℓ− ε)σp1

(−ℓ+ ε)
�

P1
�

σp2
(3ℓ− ε)σp2

(ε)
�

P1 . (69)

We now examine the algebra of the string operators, which can be established by the sole
use of bosonization (see Appendix A). In effect, we find that the spin-1 operators Tx and Ty
commute,

Tx Ty = Ty Tx , (70)

and the spin-1
2 operators satisfy

Tx Ux = Ux Tx , Ty Ux = −Ux Ty ,

Ty Uy = Uy Ty , Tx Uy = −Uy Tx . (71)
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As shown in the appendix, these results are independent of the choice of the ε parameters,
which can be taken to be all different for Tx , Ty , Ux , and Uy . That is, we are free to choose
the position where the strings cross the plaquettes for each operator separately. Equation (70)
implies that Tx and Ty form a set of mutually commuting operators. We can then label the
ground states by the eigenvalues of Tx and Ty , which correspond to the choices of boundary
conditions on the torus:

|Ω−−〉 , |Ω+−〉 , |Ω−+〉 , |Ω++〉 . (72)

More interestingly, the commutation relations in Eq. (71) imply that the operators Ux and
Uy act as global twist operators, changing the boundary conditions on the torus. This means
that we can use them to navigate among different ground states of our network. For example,
suppose that we start from the vacuum state with antiperiodic boundary conditions in both
directions, |Ω−−〉. We can arrive at the ground states with mixed boundary conditions by acting
with Ux and Uy separately, i.e.

|Ω−+〉 ∼ Ux |Ω−−〉 , |Ω+−〉 ∼ Uy |Ω−−〉 . (73)

What about the state |Ω++〉? At first sight, it seems that we could reach this state by acting
with Ux Uy . However, due to the non-Abelian nature of the SU(2)2 anyons, the fourth state is
inaccessible from this manifold:

|Ω++〉 ∼ PphysUx Uy |Ω−−〉= 0 , (74)

where Pphys is a projector onto the physical subspace of the spin-chain network.
To rule out the fourth ground state, let us then take a closer look at the composite operator

Ux Uy . The nontrivial contribution must come from the plaquette where the two strings meet,
i.e. Wx ∩Wy ∈ p. Focusing on this plaquette, we have

(Ux Uy)p ∼ P1
�

σp(ℓ+ εx)σp(−ℓ− εx)
�

P1
�

σp(−2ℓ− εy)σp(−ℓ+ εy)
�

P1 , (75)

where we drop the bosonic exponentials because they clearly fuse to the identity. Thus, we
just need to show that the twist fields σ do not fuse to the identity. Let us then verify that the
four-point function vanishes:

〈0|P1(σ1σ2)P1(σ3σ4)P1|0〉= 0 , (76)

where |0〉 denotes the ground state (NS vacuum) of the plaquette. It is important to remark
that, as the operators in Eq. (76) are not radial-ordered [42], we are dealing with a nontrivial
configuration for the branch cuts, which can be represented by

. (77)

Note that we have reduced our problem to the analysis of a four-point function on a single
plaquette. This approach differs significantly from what happens in standard coupled-wire
constructions [50], where one does not have such quasilocal degrees of freedom.
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Let us quickly recall some basic facts about the braiding rules of the Ising CFT. Our conven-
tions follow Kitaev [7] and Iadecola et al. [50]. The fusion space for the four-point function
〈σ1σ2σ3σ4〉 is two-dimensional, so we choose the basis

|η1〉= , |η2〉= . (78)

Notice that our diagrams represent a particular channel for the expansion in conformal blocks.
This choice is arbitrary. As a matter of fact, we can change the channel expansion using the
so-called crossing matrix:

= F , F =
1
p

2

�

1 1
1 −1

�

, (79)

where we supress the channel index and use the shorthand notation F ≡ Fσσσσ . Another
fundamental operation, the exchange of two particles when their fusion channel is held fixed,
σ×σ→O with O ∈ [1,ξ], is implemented by

= RσσO , RσσO = eiπ(2hσ−hO) . (80)

Here, hσ =
1
16 is the conformal dimension of the twist operator. Using that h1 = 0, hξ =

1
2 , we

define the braiding matrix as

= R , R=

�

eiπ/8 0
0 e−i3π/8

�

. (81)

Note that the matrix is diagonal since the fusion channel is fixed. We finally note that fermion
parity is diagonal in the basis we have chosen, with (−1)F = P1 −Pξ.

We are now ready to resume our discussion of the four-point function. The operator prod-
uct we are interested in can be associated to

P1(σ1σ2)P1(σ3σ4)P1 → . (82)
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Using the rules above, we untie this diagram as

= F = FR−1 = FR−1F−1 = FR−1F−1R

= FR−1F−1RF . (83)

Our sequence of operations coincides with the ones used in Ref. [50]. Since we start from the
identity channel, after we unwind the diagram, we arrive at

= eiπ/4 . (84)

We then see that this operation corresponds to changing the fusion channel. The operator
product in Eq. (82) is mapped to the radial-ordered product

eiπ/4Pξ(σ1σ2)Pξ(σ3σ4)Pξ , (85)

which clearly vanishes when we take the expectation value in the ground state of the pla-
quette. As we have established before, this condition excludes the fourth state |Ω++〉 of the
ground-state manifold. We note in passing that this result is associated with a zero component
(S1)σσ = 0 of the topological S-matrix [7].

We conclude with a few words about the blocking mechanism in the network. Our solution
shows that Ux Uy can only fuse through the fermion channel. However, this possibility is
ruled out by the conservation of fermion parity (−1)F . This observation is compatible with
a prediction of Read and Green [52], who showed that the ground state of a weak-pairing p-
wave superconductor has a well-defined fermion parity given the boundary conditions on the
torus. As a matter of fact, they found that the three ground states |Ω−−〉, |Ω−+〉, and |Ω+−〉 have
even fermion number, while |Ω++〉 has odd fermion number. The pair wave function of their
p-wave superconductor resembles the Moore-Read (Pfaffian) quantum Hall state [53]. The
connection with our SU(2)2 network model seems natural given that a Pfaffian state was also
used by Greiter and Thomale to study a non-Abelian CSL state in S = 1 antiferromagnets [9].

4 Conclusions

We presented a network construction of topological chiral spin liquids in two spatial dimen-
sions. The construction scheme relies on chiral fixed points of spin-chain junctions. The CSLs
inherit their non-Abelian character from the SU(2)k WZW models that describe the constituent
spin chains of the network. We illustrated this approach by looking further into the topologi-
cal properties of the SU(2)2 model. First, we showed that the theory exhibits emergent Ising
anyons. We then constructed a set of string operators that implement transport of elementary
excitations around a torus. These operators are used to label and cycle the set of degenerate
ground states, demonstrating how the expected threefold degeneracy of the SU(2)2 CSL arises
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in the network construction. This calculation makes use of the operator algebra of the under-
lying CFTs that furnish the low-energy degrees of freedom for the network construction, thus
making explicit the connection between these CFTs and the emergent topological phases.

There are a number of open directions for the study of network constructions that are
worth exploring further. One interesting possibility is to investigate the even more elusive
gapless CSL phases [54–57]. These phases are hard to describe within standard coupled-
wire constructions, which hinge on relevant perturbations that gap out the bulk degrees of
freedom, but a network with staggered chiral boundary conditions at the junctions may provide
a starting point to capture the gapless modes. Another question is whether such a construction
could be used to investigate topological phases in three dimensions. Finally, we remark that,
while our construction was devised to offer a controllable analytical framework to study CSLs,
it may also guide bottom-up approaches to realize these strongly correlated topological phases
in artificial quantum materials. This route might involve assembling critical spin chains on a
substrate and using circularly polarized light to drive chiral three-spin interactions [58, 59].
Remarkably, recent experiments [60] demonstrated the on-surface synthesis of nanographene
S = 1 chains with nearly isotropic bilinear and biquadratic exchange interactions that could
be tuned to the vicinity of the critical point described by the SU(2)2 WZW model [61–63].
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A Exchange algebra of string operators

In this appendix, we use bosonization to derive the commutation relations in Eqs. (70) and
(71). We begin by showing Tx and Ty commute. In the boson representation, see Eqs. (60)
and (65), these two operators take the general form

Tα ∼ exp[Tα(ε)] , α ∈ {x , y} , (A.1)

where we omit normalization constants, and the operators that appear in the argument of the
exponential are

Tx(ε) = 2i
∑

p∈Wx

∫ ℓ+ε

−ℓ−ε
d x ∂xφp ,

Ty(ε) = 2i
∑

〈pp′〉∈Wy

�

∫ −2ℓ−ε

−ℓ+ε
d x ∂xφp +

∫ 3ℓ−ε

ε

d x ∂xφp′
�

. (A.2)

We can obtain the algebra of Tx and Ty by means of the identity eAeB = eBeAe[A,B], valid for
constant [A, B]. Let us then compute the commutator of Tx with Ty . Using the equal-time
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algebra of the chiral bosons in Eq. (45), we find

[Tx(ε),Ty(ε
′)] = −iπ
∑

p∈Wx

∑

〈qq′〉∈Wy

§

δpq

�

sgn(3ℓ+ ε+ ε′)− sgn(2ℓ+ ε− ε′)− sgn(ℓ− ε+ ε′)

+ sgn(−ε− ε′)
�

+δpq′
�

sgn(−2ℓ+ ε+ ε′)− sgn(ℓ+ ε− ε′)

− sgn(−4ℓ− ε+ ε′) + sgn(−ℓ− ε− ε′)
�

ª

. (A.3)

Here we use ε and ε′ to denote the free parameters of Tx and Ty , respectively. Given that both
of them lie in the range 0< ε,ε′ < ℓ, we obtain

[Tx(ε),Ty(ε
′)] = 2πi
∑

p∈Wx

∑

〈qq′〉∈Wy

�

δpq +δpq′
�

= 2πi , (A.4)

where the last step follows from the fact that these two strings only meet once on the torus.
We thus conclude that the operators Tx and Ty commute, leading us to the relation in Eq.
(70). Note that this property is independent of the particular values we may choose for the
parameters ε and ε′.

Let us now determine the commutation relations among the spin-1 and the spin-1
2 oper-

ators. We recall that the boson representation of the spin-1
2 operators also contains an Ising

part, see Eqs. (67) and (69). However, since the Ising and boson components are indepen-
dent, it is clear that the significant contribution to the exchange relations between T and U
operators only come from the bosonized components of both operators, i.e.

TαUβ = UβTα exp
�

[Tα(ε),Uβ(ε′)]
	

, (A.5)

where exp[Uα(ε)] denotes the boson part of Uα. From Eqs. (67) and (69), we have

Ux(ε) = i
∑

p∈Wx

�

φp(ℓ+ ε)−φp(−ℓ− ε)
�

,

Uy(ε) = i
∑

〈pp′〉∈Wx

�

φp(−2ℓ− ε)−φp(−ℓ+ ε) +φp′(3ℓ− ε)−φp′(ε)
�

. (A.6)

Thus, we just need to evaluate the commutators [Tα(ε),Uβ(ε′)] to establish the exchange
relations in Eq. (71). The commutator of Tx with Ux vanishes identically:

[Tx(ε),Ux(ε
′)] = −

iπ
2

∑

p∈Wx

∑

q∈W ′x

δpq

�

sgn(ε− ε′)− sgn(2ℓ+ ε+ ε′)

− sgn(−2ℓ− ε− ε′) + sgn(−ε+ ε′)
�

= 0 . (A.7)

Note that this is trivial for the case where we choose two different horizontal paths Wx and
W ′x , with no overlapping plaquettes, but holds true even in the case of superimposed paths,
where the contribution of every plaquette cancels out. Hence, Tx and Ux commute, as written
in the first relation in Eq. (71).

We then consider the commutator of Ty with Ux . After using the commutation relations
for the chiral bosons in Eq. (45), we arrive at

[Ty(ε),Ux(ε
′)] = −

iπ
2

∑

〈pp′〉∈Wy

∑

q∈Wx

§

δpq

�

sgn(−3ℓ− ε− ε′)− sgn(−ℓ− ε+ ε′)

− sgn(−2ℓ+ ε− ε′) + sgn(ε+ ε′)
�

+δp′q

�

sgn(2ℓ− ε− ε′)− sgn(4ℓ− ε+ ε′)

− sgn(−ℓ+ ε− ε′) + sgn(ℓ+ ε+ ε′)
�

ª

.

(A.8)
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Since the parameters ε and ε′ are bounded, and the strings only meet at one plaquette, the
expression above gives

[Ty(ε),Ux(ε
′)] = −iπ . (A.9)

We thus conclude the operators Ty and Ux anticommute, i.e. Ty Ux = −Ux Ty . It is straight-
forward to verify the commutation relations of Uy as well. The commutators of interest are

[Tx(ε),Uy(ε
′)] = iπ , [Ty(ε),Uy(ε

′)] = 0 . (A.10)

From these it follows that Uy commutes with Ty , but anticommutes with Tx , completing the
set of exchange relations in Eq. (71).
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