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Abstract

We study unusual gapped topological phases where they admit Z, fractional excitations
in the same manner as topologically ordered phases, yet their ground state degeneracy
depends on the local geometry of the system. Placing such phases on 2D lattice, com-
posed of an arbitrary connected graph and 1D line, we find that the fusion rules of quasi-
particle excitations are described by the Laplacian of the graph and that the number of
superselection sectors is related to the kernel of the Laplacian. Based on this analysis, we
further show that the ground state degeneracy is given by [N x []; ged(N, pi)]z, where
p;’s are invariant factors of the Laplacian that are greater than one and gcd stands for
the greatest common divisor. We also discuss braiding statistics between quasiparticle
excitations.
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1 Introduction

Topologically ordered phases are novel phases beyond the paradigm of the standard Landau-
Ginzburg theory [1-4] and have been one of the central topics in condensed matter physics for
decades. There are many salient features in these phases, like deconfined fractionalized exci-
tations (anyons) [2,5,6], and they may find many ramifications in different fields of physics,
such as quantum information [7,8] and high energy physics [9-11].

While a plethora of progress has been made towards complete understanding topologically
ordered phases from both of theoretical and experimental point of view, recently, new types of
topologically ordered phases have been proposed, which are often called fracton topological
phases in the literature [12-14]. One of the intriguing properties of the fracton topological
phases is that ground state degeneracy (GSD) depends on the UV lattice spacing, which is
contrasted with conventional topologically ordered phases where GSD depends only on the
global topology of the manifold. This property can be intuitively understood by that frac-
tional quasiparticle excitations are affected by local geometry of the system. In other words,
the local geometry imposes a mobility constraint on the fractional excitations, giving rise to
sub-extensive dependence of the GSD. In this view, fracton topological phases may open a
possibility to explore new geometric phases.

In this work, we consider unusual 2D gapped Zy topological phases with a distinct feature
that while they admit Zy fractional excitations in the same way as the topologically ordered
phases, their GSD depends on the local geometry of the system, similar to the fracton topo-
logical phases. We emphasize that our model is different from fracton topological phases as
it does not show the sub-extensive GSD dependence. Rather, it exhibits unusual GSD depen-
dence on N and geometry of the lattice. To investigate interplay between fractional excitations
and geometry of the system, we place such phases on 2D lattice consisting of arbitrary con-
nected graph, a pair consisting of a set of vertices and a multiset of edges, and 1D line. A
systematic study on geometric aspects of the fractional excitations can be accomplished by re-
sorting to the well-developed algebraic tools of graph theory, such as the Laplacian and Picard
group [15,16]. (see also Ref. [17] for a study on 3D fracton topological phases on the Cayley
trees and Ref. [18] for analysis on the Lifshitz theory on a graph and complexity.)

We find that fusion rules of fractional excitations are described by the Laplacian of the
graph and that the number of superselection sectors (i.e. the number of distinct types of
fractional excitations) is associated to kernel of the Laplacian. Further analysis shows that
GSD depends on the greatest common divisor of N and invariant factors of the Laplacian.

Laplacian plays an important role in graph theory. For instance, one can study connectivity
of a graph by evaluating its eigenvalues [19,20]. In our context, the Laplacian is crucial to
characterize fusion rules of fractional charges and GSD dependence. We also study braiding
statistics between electric and magnetic charges and find that it is described by matrices with
which the Laplacian is transformed into a diagonal form, known as the Smith normal form.
These results are summarized in (26) and (40).

The outline of this paper is as follows. In Sec. 2, after reviewing the notations and formu-
lations in graph theory, we introduce a 2D lattice, which is a product of an arbitrary connected
graph and 1D lattice, and model Hamiltonian. In Sec. 3, we discuss behaviours of fractional
excitations of our model. We derive the fusion rules of the excitations, and the GSD depen-
dence on the graph, based on the formulation of the Laplacian. In Sec. 4, we demonstrate
several examples of the graph (cycle graph and complete graph) to see more transparently
how our results presented in the previous section works. Finally, in Sec. 5, we conclude our
work with a few remarks for future directions.
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2 Model

In this section, we introduce our lattice and model. Since these are described by graph and
the Laplacian, we briefly go over notations and formulations of graph theory, especially the
properties of the Laplacian, before introducing the lattice and model Hamiltonian. Our model
shares the same features as the Zy toric code [8], e.g., Hamiltonian consists of mutually com-
muting terms and there are two types of excitations carrying fractional charges. However, our
model has the distinct property from the toric code: depending on N and graph, excitations
are subject to a mobility constraint in the x-direction, giving rise to unusual GSD.

2.1 Notations of graph and Laplacian

Let us first introduce a graph G = (V, E) which is a pair consisting of a set of vertices V and a
set of edges E comprised of pairs of vertices {v;,v;}. Throughout this work, we assume that
the graph is connected, meaning there is a path from a vertex to any other vertex, and that the
graph does not have an edge that emanates from and terminates at the same vertex. We also
introduce two quantities, deg(v;) and [;;, which play pivotal roles in this paper. The former one,
deg(v;) denotes degree of the vertex v;, i.e. the number of edges emanating from the vertex v;
and the latter one, [;; represents the number of edges between two vertices v; and v; (We have
l;j = 0 when there is no edge between two vertices, v; and v;.). Using these two quantities,
Laplacian matrix of the graph, which is the analogue of the second order derivative operator
8x2 on a graph, is defined. For a given graph G = (V, E), the Laplacian matrix L (which we
abbreviate as Laplacian in the rest of this work) is the matrix with rows and columns indexed
by the elements of vertices {v;} € V, with

L— {deg(vi), (=1, o

o=y, G#ED.

The Laplacian is singular due to the connectivity of the graph. (Summing over all rows or
columns gives zero.) As an example, the Laplacian of the cycle graph C; (i.e. a triangle)
consisting of three vertices and three edges, where there is a single edge between a pair of
vertices, is given by

2 -1 -1
L=1-1 2 -1
-1 -1 2

It is known that by introducing invertible matrices over integer P, Q corresponding to linear
operations on rows and columns of the Laplacian, respectively, the Laplacian of any connected
graph can be transformed into a diagonal form (Smith normal form):

PLQ =diag(u;,uy, -+ ,uy,_1,0):=D, (2)

where u; represents positive integers, satisfying u;|u;,; for all i (i.e. u; divides u;,, for all i)
[16]. Since the Laplacian is singular, the last diagonal entry is zero. The diagonal element u;
referred to as the invariant factors of the Laplacian, plays a pivotal role in the graph theory.
For instance, their product is equivalent to the number of spanning trees, which are connected
subgraphs where there is a unique path from a vertex to any other vertex [15]. In our work,
u; is crucial quantity to characterize the superselection sectors of fractional excitations.
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Figure 1: (a) One example of the 2D lattice, consisting of cycle graph (C3) in the x-
direction and 1D lattice in the y-direction. (b) Two types of terms introduced in (4),
Viv,,y) (left) and P, ;.10 (right) in the case of the square lattice.

2.2 Lattice and Hamiltonian

The 2D lattice is defined by a product of a graph that runs across in the x-direction and 1D
lattice going in the y-direction.! More explicitly, for a given graph, the 2D lattice is constructed
by stacking the copies of the graph and add vertical edges between the adjacent graph. As an
example, we demonstrate the case where the graph is cycle graph C; in Fig. 1a. We place two
types of quantum states, each of which takes discrete N (= 2) values, i.e. generalized qubits
(Zy clock states) on this lattice. The first clock states are located at vertices of the graph (red
dots in Fig. 1a) whereas the second ones are at vertical edges (blue dots in Fig. 1a). We denote
the coordinate of the first clock states by (v;, ¥) where v; represents a vertex of the graph and y
does the height taking integer values in the unit of lattice spacing. Analogously, the coordinate
of the second clock states are denoted by (v;,y + %), where the second element corresponds
to the edge between vertices located at (v;, y) and (v;, y + 1).

Having defined the 2D lattice, we introduce the Hamiltonian. We represent basis of the two
types of the clock states as |w); and |w), with w being N-th root of unity; i.e, w = ¢>™/N _and
Zy; shift and clock operators (they become Pauli operators when N = 2) of the first and second
clock states as {Z;,X;} (i = 1,2). Here we have introduced subscript i = 1,2 to distinguish
operators that act on the clock clock states at vertices and the ones at vertical edges. These
operators satisfy the following relation (I; denotes the identity operator)

XfV:ZlN:Il, Zl|0)>l:0)|w>1: XIZ]:‘UZJX151,] (3)

With these notations, we define following two types of operators at each vertex and edge
Vv =X X‘i’ (XT )deg(v,-) l_[(X )Zij
oY) * T A2,y +1/2)% 2 (v, y—1/2) ¥ 1,(v,y) AL
j
i deg(v;) T L
Poysija) = Zl,(vi,y+1)Zl’("i’)’)zz,(vi,y+1/2) n(zz,(vj,y+1/2)) T )
j

Here, deg(v;) is the number of edges in the x-direction which emanate from the vertex v;
whereas [;; gives the number of edges in the x-direction between two vertices with coordi-
nate (v;, y) and (v;, y). We demonstrate examples of these two types of terms in Fig. 1b in the
case of the square lattice, where at any vertex v;, (without taking into account boundary) we

!We regard the graph as 1D, since it consists of 1- and 0-simplices (which correspond to edges and vertices,
respectively).
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have deg(v;) =2 and [;; =1 (j =i+ 1),l;; = 0 (else). Hamiltonian is defined by

H=- Z V(vi,y)_ Z P(vi,y+1/2) +h.c. (5)

(i.y) (vi,y+1/2)

Note that Hamiltonian is described by Zy shift and clock operators and the two types of quan-
tities, deg(v;) and [;;. Especially, the latter ones also enter in the Laplacian of the graph (1),
allowing us to systematically investigate physical properties of Hamiltonian by resorting to
formulations of the Laplacian.

Each term in Hamiltonian (5) commutes with one another. To verify this, for a given
coordinate (v;,y), one has to check commutation relation between V(v,,y) and some of the
second terms in (5) which has overlapping support with the one of V{,, ). Such terms are
given by P(,. y11/2), Pr,y—1/2)s P(Vj’yﬂ /2)5 P(vj’y_1 /2)» where v; represents a vertex adjacent
to v;. Using (3) and (4), we have

wdeg(Vi)w—deg(Vi)P(v

VonPony+172) = oy +1/2 V) = Pay+1/2V,y) 5

Voo Poyys1jz) = @0 0Py yimVi ) = Poyy1/2 Vi -
Similarly, one can check other commutation relations and find that every term in (5) indeed
commutes. The ground state of this Hamiltonian (5), |£2) satisfies

V(vl-,y) |Q> = P(vl-,y+l/2) |Q> = |Q> 5 v V(vl-,y):P(vl-,y+1/2)>

that is, the ground state satisfies V{,. ,) =1 and P, ,41/2) = 1 at any coordinate.

In what follows, we discuss quasiparticle excitations of this model. As we will see, the
excitations show unusual behavior in x-direction compared with conventional topologically
ordered phases, giving rise to novel GSD dependence on the lattice. In the next subsection,
we start with the simplest case by setting N = 2 and square lattice to intuitively understand
this feature and in the later sections, we present more detailed discussions on the excitations
based on formalism of graph theory.

2.3 Simplest case: N = 2 and the square lattice

To extract more intuition from Hamiltonian (5), we consider the case with N = 2 and the
square lattice, which corresponds to setting the graph to be the cycle graph C,. This graph
consists of n vertices placed in a cyclic order so that adjacent vertices are connected by a single
edge. By setting N = 2 in (3), the terms (4) become simplified:

Vo) = X2,00y+1/2X2,00,y-1/2%1, 0020, 1,(vi41,) >
Pooy+1/2) = Z10uy+D) 210 22,0y +1/222,00y+1/2), (L <1<n). (6)

Here the vertices {v;} (1 < i < n) are placed in cyclic order and we conventionally set
V41 = v and v_; = v,,. We portray these terms in Fig. 2a. Hamiltonian (5) is defined by
using these terms. It is straightforward to check each term in Hamiltonian commutes. The
ground state satisfies V(,, ,y =1 and P, ,,1/2) = 1 at any coordinate. From (6) and Fig. 2a,
one can easily associate mutual commuting terms in Hamiltonian to the ones of the Z, toric
code [8] except the fact that in the x-direction, the next nearest neighboring Pauli operators
X, or Z, enter in the terms (6).

With this difference in mind, let us look at the excitations of Hamiltonian. Analogous to the
Z, toric code, one can act X;(y) and Z;(y) operators to create an excitation carrying “electric”
and “magnetic” charge, respectively. Consider acting a single Z; operator at v; on the ground
state, i.e, applying Z, ,. ,) on the ground state. It violates V; (, .,y =1and Vi, ) =1,

5
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Figure 2: Configurations of terms which constitute of Hamiltonian and the form of
excitations in the case of N = 2 and the square lattice. (a) Two terms given in (6).
(b) When applying Z; ,, ) (green square), V., ,y = 1 is violated, creating a pair of
electric charges (purple dots). (c) Applying further Z; . . .y in (b), the trajectory of
electric charges is stretched. (d) Left: when n is even (n = 6 in this figure), there
are two distinct closed loops of electrics charges (green and yellow squares). Right:
when n is odd (n = 5 in this figure), there is only one closed loop (green squares). In
both of left and right figures, the rightmost vertical edges and vertices are identified

with the leftmost ones.

giving rise to a pair of electric charges as demonstrated in Fig. 2b. If we further act another Z;
operator at v, ,, the trajectory of the electric charges is stretched so that one of them jumps
between next nearest vertices (Fig. 2c). Note that such an unusual behavior of the electric
charge can be seen only in the x-direction. As for the y-direction, the behavior of electric
charge is the same as the toric code: the trajectory of the electric charge is formed in such a
way that the electric charge hops between nearest edges in the y-direction. The behavior of
magnetic charges can be similarly discussed.

One can easily evaluate the GSD in this case, imposing the periodic boundary condition
in the y-direction. Similarly to the toric code, one can successively act Z; operators on the
ground state so that a non-contractible closed loop of the electric charge is formed, which is
responsible for the non-trivial GSD. In the case of n being even, due to the fact that the electric
charge hops between next nearest vertices, there are two closed loops of the electric charge in
the x-direction, the one formed by string of Z; operators at even vertices and the other at odd
ones, denoted by W, , (1) and W, ,. (1), respectively. On the contrary, in the case of n being odd,
there is only one closed loop, W, ,.. the configurations of these loops are portrayed in Fig. 2d.
One can count analogously the number of closed loops of the magnetic charge, and obtain the
same result: in the case of n even, there are two distinct loops, W,,, , (1) and W,,, , 2y whereas
in the case of n odd, there is only one, W, ,. As we mentioned previously, the behavior of
excitations in the y-direction is the same as the Z, toric code, hence, these closed loops that
we consider are deformable to the ones shifted above or below in the y-direction by applying
sets of terms given in (6).

In the torus geometry, the GSD is equivalent to the number of topological excitations, i.e.
the number of superselection sectors which are distinguishable by closed loops of electric and
magnetic charges [8]. Based on this fact, in the case of n being even, there are four closed
loops of Z, charge, W, , (1), We x(2)» Wn,x,(1)>» a0d Wy, ;. (2), thus the GSD is given by 4% = 16.
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On the other hand, in the case of n being odd, there are two closed loops of Z, charge, W, ,
and W,, ., therefore we find that the GSD is given by 22 = 4. Summarizing,

16, (neven),
GSD =
4, (nodd).

This result is consistent with a formula (26) that we are going to prove in the next section.

3 Ground state degeneracy and quasiparticle statistics

In this section, we study distinct quasiparticle excitations of the model. To this end, we show
that the fusion rules of the quasiparticle excitations are succinctly described by the Lapla-
cian (1). Using this result, we also show that the number of superselection sectors and the
GSD of our model depends on N and the great common divisor of N and invariant factors of
the Laplacian.

3.1 Fusion rules and Laplacian

In this subsection, we study excitations of our model by acting a single X;(,y or Z;(,) operator
on the ground state. There are two types of fractional excitations in our model, referred to
as Zy “electric” and “magnetic” charges that violate V(,, ,y) = 1 and P, ,;1/2) = 1 defined
in (4), respectively. We label these two excitations at coordinate (v;,y) and (v;,y + 1/2),
whose eigenvalue of V{,, ,y and P, ,11/2) is w, by e, ) and m(,, ,1/2)- Also, we label their
conjugate with eigenvalue w™! by €(y,,y) and my,, ,11/2). We interchangeably use the notation
el =g m- ! =m 2
vi,y) vi.y)> v,y +1/2) (vi,y+1/2)

We first concentrate on the electric charges. Suppose we introduce an excited state by
acting an operator Zj (,, ,) at (v;,y) on the ground state. From (4), such a state violates
Viv,yy =1and V{,, ) =1 with v; being adjacent vertices to v;, giving eigenvalue w980 and
wlii, respectively. More precisely, we have

V(vl-,y)(Zl,(vi,y) |Q>) = O)_deg(vi)(zl,(vi,y) |Q>)’ v(vj,y)(zl,(vi,y) |Q)) = wlij(Zl,(vi,y) |Q>),

where |Q2) denotes the ground state. Hence, by acting Z; (,, ) on the ground state, we schemat-
ically obtain the fusion rule of the electric charges:

I = @) @ | J(ew, )", 7)
j

where I denotes vacuum sector. The fusion rule (7) is the generalization of the one studied
in conventional topologically ordered phases, where a pair of quasiparticle excitations are
created.

To discuss more systematically the fusion rules in our model, it is useful to introduce the
Laplacian of the graph given in (1). For a graph G(V, E) at given y, we define n-dimensional
vector where each entry takes Z, value by

r=(r1,r2,~--,rn)T€ZK[, (8)

2Throughout this paper, we focus on excitations of the first two terms given in Hamiltonian (5). This is because
the excitations of the rest terms are conjugate of the ones of the first two terms.
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with n being the number of vertices, from which we introduce multiple sets of Z; operators,
T

zn Z? VA acting on the ground state. Also, introducing fundamental basis of
1;("1).}’) 1,(\/2,_)/) 1;(vn7y)
vectors {A;} as A; = (0,-++,0,1,0,---,0)T €r, the fusion rule (7) is rewritten as
~—— ~—
i-1 n—i
al az ... an .
I - e(vl:y) ® e(VZ’y) ® ® e(Vn:y) (al € ZN) ’ (9)

with

f,:=(ay,ay,-,a,) =—LA;. (10)

Note that in the fusion rule (9), charge conservation is satisfied, i.e, Zi a; = 0 (modN) as the
Laplacian is singular (summing over matrix elements along i-th column gives zero).

We can similarly discuss the fusion rules of the electric charges induced by applying mul-
tiple sets of Z; operators on the ground state. When we apply erj(vl’y)er’z(vz’y) . --erf(vn’y) on
the ground state, characterized by vector r (8), the fusion rule of the electric charges has the
same form as (9) by setting

f,=—Lr. (11)

So far we have considered fusion rules of the electric charges in x-direction. As for the
fusion rules in the y-direction, by acting Z,(, ,11/2) on the ground state, a pair of electric
charges are created, giving

I= e, y41)®€(y,y), (12)

sharing the same fusion rule as the one in the toric code.

By the similar line of thoughts, we obtain the fusion rules of magnetic charges in the x-
direction. Introducing a vector s = (s1,89,""* ,sn)T € Zy;, corresponding to an excited state
by applying X;t(vl,y . /2)X;?(v2,y T -X;’:(Vn’y +1/2) on the ground state, one can associate an
excited state induced by applying a single X, operator, X, (,, ,11/2) to a fundamental basis of
vector, n; =(0,---,0,1,0,---, 0)T €s. The fusion rule of the magnetic charges reads

~——  ~—

i-1 n—i

by

by
I=me, 1172 @M, y11/2)

® - ® (b; € Zy), (13)

b,
My +1/2)°
with
fm = (bla bZ: Tt bn)T = Lnl .

In the y-direction, a pair of magnetic charges are created by applying X, (,. ,), yielding

I—mg, y—1/2) ® My, y41/2) - (14)

To summarize, while the fusion rules of electric and magnetic charges in the y-direction have
the same form as the toric code in that a pair of fractional excitations are created, in the x-
direction, the fusion rules show unusual behavior and their form crucially depends on the
Laplacian. In the next subsection, using this property, we will count the number of superse-
lection sectors in our model.

3.2 Superselection sectors and GSD

In this subsection, we study how many distinct fractional excitations in our model, more pre-
cisely, we count the number of superselection sectors. In doing so, we impose periodic bound-
ary condition in the y-direction by identifying the coordinate (v;, y) with (v;, y +n,) (n, € Z).

The number of superselection sectors in our model amounts to be the number of distinct
closed loop of fractional excitations that goes around the system. For instance, in the case
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of the Z, toric code, the superselection sectors are labeled by distinct non-contractible closed
loops of electric and magnetic charges going around in either x- or y-direction [8].

We apply the same logic to the present case. We first focus on the closed loops of electric
charges in the x-direction. Assuming the graph G(V, E) at given y has n vertices, we consider
a closed loop of an electric charge in the form erl(v zZ"? AL characterized by the

,(v,y) 71, (va,y) 1,(ve,¥)
vector r € Zj, defined in (8). The loop must satisfy that they commute with every term of V,, )
given in (4), i.e. the loop does not violate V(,. ,) = 1 at any coordinate. In other words, the
fusion rule of electric charges induced by applying the operator er’l(vl’y) 1r,2(v2,y) e erT(vn,y) on
the ground state becomes trivial. Recalling the argument around (8)-(11), and using the

Laplacian L, this condition is equivalent to

Lr=0 modN. (15

Therefore, the number of closed loops of electric charge in the x-direction is associated with
the kernel of the Laplacian, ker(L). Note that there are always at least N solutions of (15)
r=k(1,1,---,1)T (k € Zy), mirroring the fact that the Laplacian is singular, meaning sum-
ming over matrix elements along row gives zero. As we will see soon, depending on the
Laplacian, there can be more than N solutions.

To proceed, we transform the Laplacian into the Smith normal form (2). By multiplying
invertible matrices P and Q over integers on the Laplacian, the condition (15) becomes

P'DQ'r=0 modN < DF=0 modN, (16)

where in the second equality, we have multiplied P from the left and used the fact that P is a
matrix over integers. Also, we have introduced # := Q" 'r € 7y, (Note that P~'and Q7! are
also integer matrices.). Suppose the Smith normal form of the Laplacian (2) has m invariant
factors greater than one, meaning

D:dlag(l;alyph:pm)o); (plzz) (17)
— ——

n-1-m m

Then, from (16), it follows that the first n —1 —m components of the vector ¥ are zero:
Fi=0 modN (1<i<n—1-—m). (18)
As for the elements 7;,,_1_,, (1 <i < m), they have to satisfy
Pifisn-1—m =0 mod N & pifiip1_m=Nt;(1<i<m, t;€Z). (19)
Decompose N and p; into two integers as
N =N/gcd(N,p;), p;=p;gcd(N,p;), (20)

where ged stands for the greatest common divisor and Nl.’ and plf are coprime, (19) becomes
PiFisn—1-m = N/t;. Since N/ and p{ are coprime, one finds

Fitn—1-m = Ni/ai , (I1<i<m), (21)

where integer a; can take gcd(N, p;) distinct values, i.e. a; =0,1,---,gcd(N, p;)—1. There is
no constraint on the last element of ¥, 7y as the last diagonal entry of D is zero, implying 7y
can take N distinct values.

Overall, with the assumption of (17), the condition (16) leads to that

~ ~ ~ ~ ~ \NT __ / / NT
f=(F, ", Fomims Fnems 5 Tne1, )" =(0,+++,0,Njaq,-+- ,N; o, ')’ mod N, (22)
W—/

v
n-I1-m m n-1-m m
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where 0 < a; < ged(N,p;)—1, 0 < a’ <N —1. Hence, the kernel of the Laplacian, associated
with closed loops of electric charges, is labeled by

Ly X Liged(N,py) X Lged(N,py) X *** X Lged(N,p,,) - (23)

When gcd(N, p;) = 1, the sector Zg.q(y p,) becomes trivial as a; takes trivial value, i.e. a; =0
mod N.

Once we have identified the closed loops of electric charges in the x-direction, they can
be deformed into the ones shifted upwards or downwards in the y-direction by applying sets
of P, y+1/2), corresponding to the fusion rule (12), therefore, we have exhausted all kinds of
closed loops of electric charges in the x-direction, fully labeled by (23). The explicit form of
the closed loops, consisting of multiple of Z; operators, is obtained by multiplying the matrix
Q from the left in (22). More explicitly, the closed loop of an electric charge in the x-direction,
W, xr, is labeled by a := (Zgcan p,)s* ** > Zged(N p,,)> Ln) Via

— 7T Tn _ On—m—l
We,x,ra - Zl,l(V1,y) o Zn,(Vn,y)’ r=Qv ( a mod N 24
Here,
V:diag(]"..‘)17N1/}‘..’ern)1)} (25)
D e

n-1-m m

where N is defined in (20), and 0,,_,,_; denotes n—m— 1 dimensional vector with all entries
being zero.

The closed loops of magnetic charges in the x-direction can be discussed in the similar
fashion, leading to that they carry the same quantum numbers (23), thus, we finally find that
the superselection sectors are characterized by [ZN X Lged(N,py) X Lged(N,py) X *** X chd(N’pm)]Z.
The multiple ground states are distinguished by the closed loops of electric and magnetic
charges in the x-direction, therefore, we have

GSD = [N x ged(N, p;) x - - x ged(N, p,) |- (26)

The GSD dependence on gcd of N and length of the lattice was studied in the Wen’s Z, pla-
quette model and several models in the case of the square lattice [21,22]. Here, by employing
algebraic tools of graph theory, we have derived such novel GSD dependence in the case of an
arbitrary connected graph.

3.3 Alternative derivation of (26)

There is an alternative approach to reach (26) by counting the number of superselection sectors
of electric and magnetic charges in the y-direction, instead of the x-direction. Let us first focus
on the case with magnetic charges. As we mentioned in the previous subsection, the fusion
rules of the magnetic charges in the y-direction (14) is identical to the one in the toric code,
where a pair of excitations are created. From this feature, one can construct a closed loop of
magnetic charge formed by string of X; operators defined by

ny,—1

W, = [ [ X1000- 27)
y=1

Although this loop resembles the one in the toric code, there is a crucial difference between
the two. Depending on N and the graph, one fails to deform the loop by applying sets of
operators V;,, .y so that it is shifted to the adjacent position in the x-direction. Rather, the
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Figure 3: Deformation of the closed loops of magnetic charges in the y-direction in
the case where the graph is the cycle graph C; or C4 with N = 3. The top (bottom)
figures correspond to the cycle graph C3 (C4). The deformation is implemented by
acting l_[y V(%/i,y) (along the vertical line marked by the black arrow) on the loop.
The symbol “~” represents identification between two configurations under the de-
formation.

loop is deformed into composite of loops, W,,, ,. and Wiy, with v; being adjacent vertex in the
x-direction.

To understand what we have just mentioned more intuitively, let us for a moment consider
the case where the graph is the cycle graph C,, and N = 3 as shown in Fig 3. For simplicity, we
concentrate on the two cases with C; and C,. In the case of Cs, by acting ]_[y V(%z,y) on a single

closed loop W,,, ,,, (For the sake of simplicity, ]_[ny ! is abbreviated as l_[ .), it is deformed into

the composite of W2 and W2 (Fig. 3a). After some trials, one is convinced that the single
loop cannot be shlfted to the adjacent position under any deformation. However, if we start
with a “dipole” of the closed loops, Wy, . an1 vy it can be shifted to the adjacent position in
the x-direction under the deformation as shown in Fig. 3b, thus it moves around the system.
This property reminds us of topological defects in smectic phase in a liquid crystal, where a
dipole of excitations which is dislocation, is free to move in one direction whereas a single one,
disclination cannot [23]. On the contrary, in the case of C,, the single loop can be shifted to
the adjacent position under the deformation, as portrayed in Fig. 3c, where a single loop W,,, ,,
is shifted to W,,, ,,. Also, there is no dipole configuration — it becomes vacuum configuration
under the deformat1on (Fig. 3d). As we will see below, whether the single loop can be shifted
or the phase admits the dipole of closed loops depends on N and invariant factors of the
Laplacian.

Coming back to the generic case of the graph, in order to count the superselection sectors
coming from the magnetic charges, one has to know the number of distinct configurations of
the loops up to deformation. From (4), after simple algebra, one finds

l_[V(vl,y) - ,;Cifg(”l_lwnifv (28)

11
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Figure 4: Deformation of closed loops of magnetic charges in the case of the cycle
graph C3 and N = 3. (Top) Deformation of W, , by ]_[y Viv,,y)- (Bottom) The top
view of our lattice, where one assigns Z5; number on each vertex, corresponding to
the configuration of the loops. These numbers are regarded as chips located at each
vertex. By applying ]_[y V(v,,y)» the closed loop is deformed, which corresponds to
the one of the chip-firing process where the chip at vertex v, is transferred into the
adjacent ones, v, and v5 (red arrows).

By acting this operator on a closed loop W, ,,, it yields
l_[V(v Wi, = W 080 l_[W ., (29)

This consideration becomes more succinct in the language of the Laplacian. We define a vec-
tor s € Zy,; associated with sets of closed loops, W,f}’ py X o X W,ifvn. Also, introducing another
vector o € ZY, corresponding to [, V) gy X000 X ]_[y o n" )» which acts on the sets of the
closed loops. The configuration of the closed loops after the deformation becomes

s—Lo(:=5¢'). (30)

The number of distinct configurations of the closed loops is equivalent to the number of distinct
s under the identification s ~ s’. Therefore, we need to find Z}, /im(L), which is known as the
Picard group, Pic(G).

What we have discussed so far in this subsection has intimate relation to the chip-firing
game, invented in the context of graph theory [24-26]. This interpretation becomes clearer
from the top view of our lattice (Fig. 4). The configuration of the closed loops of magnetic
charges, s € Z; corresponds to what is called chip configuration in the chip-firing game which
is defined as non-negative integer vector recording the number of chips located at each vertex
of the graph and the process of the deformation of the closed loops can be regarded as the
process of chip-firing where one chip is sent to each of its neighbors. In the chip-firing game,
the Picard group is studied to classify the configurations of chips [24-26]. Important difference
between the chip-firing game and our consideration is that while a chip takes non-negative
integer at each vertex in the chip-firing game, Zy number is assigned at each vertex in our
case.

To find the Picard group, we need to evaluate im(L). To this end, remembering the Lapla-
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cian is transformed into the Smith normal form (2), we have

im(L) = Lo, Yo €Zy
= P D& (6:=Q o)
= span(n}, my, -+, 7). (31)

Here, 7} represents the vector corresponding to the i-th column of P7'D. Since D is the
diagonal with the last entry being zero, (31) is further written as

lm(L) = Span(ulﬂ:l: UpTlo, ", un—lnn—l) > (32)
where 7; denotes the vector which corresponds to the i-th column of P™'. Now we write
s € Zy,/im(L) in these basis:

n
S:ZCi’i'Ci, (Ci GZN)' (33)
i=1

From (32), ¢; is subject to (the symbol “~” represents identification)
c~e+uy,(1<i<n—1). (34)
By definition, it also must satisfy
c;~c+N(1<i<n). (35)
The algebraic structure of the Picard group is determined by the number of distinct s subject
to the two constraints (34)(35). Assuming the Smith normal form of the Laplacian has m
invariant factors greater than one as shown in (17), then we have
c~c+1(1<i<n—1-—m),
implying the coefficients of the first n —1 —m basis are trivial. As for the coefficients ¢;,_1_,
(1 <i < m), they satisfy
Citn-1-m ~ Citn—1-m T Di>
Citn—1-m ~ Citn—1-m +N (1 <i< m):

which leads to that ¢;,,_1_,, (1 < i < m) can take gcd(N, p;) distinct values. Together with
the fact that the last coefficient c,, can take N distinct values, we find that

c:= (Cls 5 Ch—1—m> Cn—m> "7 5 Cn—15 Cn)T = (0: -0, /51, cee ljm: ﬁ/)T mod N, (36)
—~— ~—— ————
n-1-m m n-1-m m

with B; € Zgeyn p,)» B’ € Zy. Therefore, the distinct configurations of the closed loops of
magnetic charges are labeled by

Ly X Ziged(N,py) X Lged(Npy) X *** X Lged(N,p,) -

Since
n

S:ZCiﬂ:i:P_lc, (37)
i=1
the explicit form of the configuration of the loops s is obtained by multiplying P! from the left
in (36). To be more precise, the closed loops of magnetic charges running in the y-direction,
Wm’y’sﬁ is labeled by f8 := (Zgcan p,)s*** » Lged(N,p,,)» ZN) Via

m,y,sg m,vy m,v,’ ﬁ

One can similarly discuss the configurations of the closed loops of electric charges in the y-
direction, giving the same result as the case with the magnetic charges. Hence, the GSD is given
by (26).

w =W x---xWSh g=p! (On_m_l) mod N . (38)
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3.4 Braiding statistics

Based on discussions presented in preceding subsections, one can evaluate braiding statistics
between electric and magnetic charges. In dosing so, we make use of the analogous logic to
obtain the statistics in the toric code. In the case of the Z, toric code, the non-trivial braiding
statistics is characterized by 6 via W, \W,, , = elQWm,yWe)x, where W, (W, ) represents the
closed loop of electric (magnetic) charge in the x(y)-direction and the phase factor is given
by 6 = .

In our model, we have closed loops of fractional excitations in the x-direction and the ones
in the y-direction, both of which are labeled by a, 8 € ]_[In:1 Zged(N p;) X Zn- From 3), 24,
(25), and (38), introducing sub-diagonal (m + 1) x (m + 1) matrix of (P~1)TVQ by I via

-1 [ %
(P )TVQ—(* F), (39)

where the symbol “+” denotes some matrix element which is not necessary to find in the present
discussion, the statistical relation between the two loops is described by

— Ta
Wexx,Winy.sy = WP W, Wer, - (40)

The braiding statistics between a closed loop of a magnetic charge in the x-direction and the
one of an electric charge in the y-direction has the same form as (40).

Generally, the form of the matrices P and Q is not uniquely determined, mirroring the fact
that there are multiple ways to transforming the Laplacian into the Smith normal form. In
our context, such a fact corresponds to the base transformation of the superselection sectors,
retaining physical properties of the system, such as spectrum. More thorough analysis on
statistics of fractional excitations will be presented elsewhere.

3.5 More generic 2D lattice

We can extend our analysis to the case where the 2D phases are placed on more generic 2D
lattices constructed by product of two connected graphs, G,(V;, E;) ® Go(V5, E;). Practically,
such lattices are obtained by replacing the 1D line (the line in y-direction) introduced in Sec. 2
with a connected graph G,(V;, E;) and relabeling the graph in the x-direction as G;(V;, Eq).
Generalization of Hamiltonian (5) to such lattices is straightforward. One of examples of such
lattices is portrayed in Fig. 5, consisting of the cyclic group C, and a tree.

C, ® tree

< » e v = o
|
[

Figure 5: An example of a 2D lattice as a product of two connected graphs. The
red dots are nodes of the lattice. Solid and dashed lines are the edges along the
horizontal and vertical directions, respectively.

As we previously mentioned, in the y-direction, the behavior of the excitations closely
parallels the one in the toric code. Thus, properties of the excitations in the y-direction only
depends on the global topology of the graph, not the Laplacian. In deriving the GSD by the
second approach (Sec. 3.3), we initially constructed a single closed loop of a magnetic charge
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in the y-direction. If we instead consider the case of the 2D lattice where 1D line is replaced
with graph G,(V,, E,), there are g, ways to form such a closed loop with g, being the genus of
graph G,, g5 := |E5| —|V,| + 1. In other words, additional g, degrees of freedom is assigned to
each closed loop of a magnetic charge. Accordingly, one finds that the distinct configurations
of closed loops of magnetic charges are labeled by

&
[Zy X Zgea py) X Zged,pp) X+ X LgedV,pp) ) (41)

Taking closed loops of electric charges into the consideration [these are also labeled by (41)],
one arrives at

2
GSD =[N x ged(N,p;) x - x ged(N, pp) |, g2 = |Eo| — Vo] + 1. (42)

4 Examples

In this, section, we examine two simple examples of graph to see explicitly how our re-
sults (26) (40) work.

4.1 Cycle graph

The cycle graph C,, consists of n vertices placed in a cyclic order so that adjacent vertices are
connected by a single edge. The 2D lattice construed from the product of the cycle graph and
1D line with periodic boundary condition in the y-direction is equivalent to the torus geometry
with periodicity in the x-direction being n. We transform the Laplacian to the Smith normal
form by implementing operations on rows and columns.

To start, adding the first n — 1 columns to the last one and doing the same procedure for
rows, the Laplacian is transformed as

2 -1 -1
-1 2 -1 )
. I o,_
L= -1 2 - —>(0§_1 '61), (43)
ST
-1 -1 2
where
2 -1
-1 2 -1
L= -1 2 . : (44)
|
-1 2

n—1xn—1

The Laplacian of any connected graph is transformed into the form (43), where I is obtained
by removing the last row and column of the Laplacian. We further transform I as

1 -2 1 1 0 O
2 -1 2 3 =2
- swap 1°' and 2"¢ row . add 1% column to 2™ one twice
I ———— -1 2 . -1 2 . (45)
and negate on 15t row and subtract 15t column from 374 one
-1 =1
-1 2 -1 2
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Continuing,
1 O 0
0O 3 -2
(45) subtract 1°¢ row from 2" one twice -1 2 . . (46)
Y |
-1 2

The last form of (46) has a diagonal element in (1,1) entry. We iteratively implement the
similar transformation on the sub-diagonal matrix below (1,1) entry by swapping the first
and second rows of the sub-diagonal matrix followed by multiplying (—1) on the first row,
and adding the first columns and rows to or subtracting those from other columns and rows.
Finally, one arrives at

PLQ = diag(1,1,---,n,0), “47)

where matrix P (Q) corresponds to the operations involving switching between rows
(columns), negating, and adding or subtracting the rows (columns). From the Smith normal
form (47), there is only one invariant factor greater than one, which is the second diagonal
element from the last, n. Applying formula (26) to the present case, one finds

GSD =[N x ged(N,n)]2. (48)

From our operations on columns and rows performed in (43)-(46), one can find P! and Q as

[2 3 -+ n-—1 1 0\ 1 2 3 - n—1 1

—1 0 1 2 -+ n—2 1
pl— —1 , Q= R 1. (49

1 2 1

-1 0 1 1

\-1 -2 - —(1-2) -1 1) 1

The superselection sectors are labeled by Zgqwn) X Zy. From (49), one finds that

the form of the closed loop of electric charge in the x-direction, W,, . , labeled by
a=(ay, )" € Zgq n) X Ly is described by Egs. (24)(25) with
n—1 1
0, n—2 1
r=QV| a; |=Nja;| : |[+a|:]| modN, (50)
a’ 1 1
0 1

where N] = N/ged(N,n). The last term of (50) corresponds to the solution of Lr = 0 that
any connected graph has. Similarly, refereeing to (49), the configuration of the closed loop
of magnetic charge in the y-direction, W,, characterized by 8 = (1, )" € Zgean ) X Ly
has the form (38) with

5 Y>Sp

1 0
0, , 0 0

s=p! /31/ =B : |+B|:| modN. (51)
B 0 0
—1 1

When ged(n, N) # 1, the phase admits dipole of closed loops of magnetic charges in accordance
with the first term of (51). In Fig. 6, we demonstrate configurations of closed loops of electric
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Figure 6: Two configurations of the closed loops of electric charge in the x-
direction (24) with a = (1,0),(0,1) (red dots) and those of magnetic charges in
the y-direction (38) with # = (1,0),(0, 1) (blue dots) in the case of the cycle graph
C,withN=n=3.

charges with a = (1, 0), (0, 1) and those of magnetic charges with = (1,0), (0, 1) in the case
of N = n = 3, from which any configuration of loops is constructed. By calculating (P~)TVQ,

the matrix I given in (39), the braiding statistics between W, , . and W, , . reads
T . N ’(n - 1)
Wesexr, Winy.sp = @ "Wy s, We i, » WithT = ( 1 1) : (52)

4.2 Complete graph

We move on to another example, complete graph K,,. It comprised of n vertices, where there
is an edge between any pair of vertices. The Laplacian is described by

L =diag(n,n,n,---,n)—A, (53)

where A represents the all-ones matrix (i.e. the matrix with all entries being one). To transform
the Laplacian into the Smith normal form, we add the first n — 1 columns to the last one and
implementing the same manipulation for the rows, giving the form

L 0,,
L— T n ) N
(On—l 0

with L being the matrix obtained by removing the last row and column of L. We further
transform L. Adding all of the second to the last rows to the first one, and adding the first
column to all of the second to the last columns, we have

1 0 --- 0
il 1 n
: . 0
1 n

Subtracting the first rows from all other rows gives rise to the Smith normal form:

PLQ = diag(1,n,n,---,n,0). (54)
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There are n — 2 invariant factors greater than one, all of which are n. By making use of (26),
we obtain

2
GSD = [N X (gcd(N,n))"_z] ) (55)

One of possible form of the matrices P! and Q, corresponding to transformations on columns
and rows mentioned above, is given by

1 11 e 1
-1 1 12 1 - 1
Pl=| . , Q=|: 1 . : (56)
-1 1 11 1 2 1
n—-3 -1 -1 -1 1 00 0 0 1
The superselection sectors are characterized by 2772 X Zy- The closed

gcd(N,n)
loop of electric charge in the x-direction, given in (24) and (25), is labeled by

a=(ay,0, 0, 5 d)E ch_dz(N’n) x Zy with
1 1\ 1 1
L) [ MM

1 2 1 1
S| +Nay |1+ +Na,, +a'| | modN,

YERY, o) \u)

where N’ = N/ged(N, n). Likewise, closed loops of magnetic charges in the y-direction, de-

(57)

0 /
r:QV(a):N aq

fined in (38), which are labeled by 8 = (1, By, , Bnz, B’) € ch_dz(N » X Zn with

[0 0 0 \ 0
1 ( 0 ) ( 0 0\
0 1 0 0

s=P_1(/g)=/31 i O [+ tBun| ¢ [+ | moan. )

: : 0 0
0 0 1 J 0

-1/ - -/ U

We portray configurations of (57) and (58) in Fig. 7 with n = N = 4 where a and f3 take the
form of the standard basis of vector e.g., a = (1,0, ---,0)T.
The braiding statistics between the closed loop of electric and the one of magnetic charge

is given by
W, W =of TOW
exr, 'mysp = @ m,y,sp

2N’ N’
N’ 2N’
N/
with'=
NN
\ o
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Figure 7: The top view of three configurations of the closed loops of electric charge
in the x-direction (24) with a = (1,0,0),(0,1,0),(0,0,1) (red dots) and those of
magnetic charges in the y-direction (38) with § = (1,0,0),(0,1,0),(0,0,1) (blue
dots) in the case of the complete graph K, with n = N = 4. The blue dot with dashed
circle represents the closed loop of the magnetic charge which is directed out of the

paper.

5 Conclusion

Spurred by a recent discovery of the fracton topological phases, in this paper, we have studied
unusual gapped Zy topological phases on 2D lattice which is constructed by the product of an
arbitrary connected graph and 1D line, and explored interplay between fractional excitations
and combinatorics. The distinct property of our model from the conventional topologically
ordered phases is that depending on N and the graph, the world line of a fractional excitation
cannot be deformed to shift to the adjacent position in the x-direction. Rather, the composite
of world lines of the excitations can be shifted. Such a property can be seen more clearly in
the case of the square lattice by setting G(V, E) to be the cycle graph C,, with gcd(N,n) # 1,
where dipole excitations are free to move. This behavior is reminiscent of topological defects
of the smectic phase in a liquid crystal, where dipoles of disclinations move freely in one
direction [23].

Due to this mobility constraint, the model exhibits unusual GSD dependence on N and the
graph. We have derived the GSD dependence on the graph (26) by two approaches. In the first
approach, we have shown that the superselection sectors are characterized by the kernel of
the Laplacian. By the knowledge of graph theory, we have found that GSD depends on N and
the great common divisor of N and invariant factors of the Laplacian. In the second approach,
we evaluate the number of distinct configurations of closed loops of fractional excitations in
the y-direction up to the deformation. Finding an intriguing analogy between our model and
the chip-firing game, we have obtained the same GSD dependence by evaluating the Picard
group. Based on these two approaches, we also have found braiding statistics between electric
and magnetic charges.

In this work, we have considered Abelian topological phases on connected graphs. It would
be interesting to extend our study to non-Abelian topological phases. Due to the non-Abelian
statistics, the fusion rules, described by the Laplacian, would become more complicated, which
probably allows us to explore more interesting interplay between fractional excitations and
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graphs. Studying fermionic analogue of our model would be an another intriguing direction.
To this end, one has to introduce directed graphs, which incorporates the direction of an edge
between two vertices. Algebraic study on such graphs could lead us to new fermionic topologi-
cal phases. It would be also interesting and important to address whether one can establish an
effective field theory description of our model to see any universal data, such as self-statistics,
is fully captured by the Laplacian, analogously to the K-matrix description of topologically or-
dered phases [27]. Such investigation would contribute to exploring new types of topological
field theory.

Last but not least, it is important to ask whether our model is useful for practical purposes,
such as quantum error corrections. To this end, one needs to study the stability of the closed
loops of electric and magnetic charges and investigate which graph can host stable loops. By
setting the length of 1D line in the y-direction, n, to be large so that closed loops in the
y-direction is stable against local perturbations, one can concentrate on studying stability of
closed loops in the x-direction. As seen from (50) (57) and in the case of any connected
graph, there is always a closed loop which has the form r = k(1,1,---,1)T (k € Zy). It is
the most stable loop as it consists of operators at every vertex. For other loops, the stability
crucially depends on the matrix P given in (2). The stability condition can be studied by
evaluating invariant factors of the sub-matrix of the Laplacian. It would be interesting to see
whether such condition is associated with other quantities of the graph such as connectivity.
Furthermore, one has to study asymptotic behavior of the loops by taking large n limit.

We hopefully come back to these issues for future works.

Notes added. After submitting the paper, we were informed by the authors of [ 28] that the
similar model is considered in their upcoming work. We thank Ho Tat Lam for this notification.
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