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Abstract

We derive the response of non-Hermitian topological phases with intrinsic point gap
topology to localized magnetic flux insertions. In two spatial dimensions, we identify
the necessary and sufficient conditions for a flux skin effect that localizes an extensive
number of in-gap modes at a flux core. In three dimensions, we furthermore establish the
existence of: a flux spectral jump, where flux tube insertion fills up the entire point gap
only at a single parallel crystal momentum; a higher-order flux skin effect, which occurs
at the ends of flux tubes in presence of pseudo-inversion symmetry; and a flux Majorana
mode that represents a spectrally isolated mid-gap state in the complex energy plane. We
uniquely associate each non-Hermitian symmetry class with intrinsic point gap topology
with one of these cases or a trivial flux response, and discuss possible experimental
realizations.
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1 Introduction

Gapped Hermitian topological phases can be differentiated from trivial phases, as well as
between each other, by a quantized response to local magnetic fluxes [1-9]. Such fluxes
take the form of zero-dimensional (0D) flux cores (vortices) in two dimensions (2D), or one-
dimensional (1D) flux tubes in three dimensions (3D). In particular, in presence of a symmetry
that quantizes the magnetic flux ¢ through a plaquette (stack of plaquettes) of a 2D (3D) lat-
tice — most commonly to values ¢ = 0, 7t — topological insulators generically host flux-localized
bound states [10]. In 2D, these states may be constrained to occur at zero energy by a spectral
symmetry such as the particle-hole symmetry of (mean-field) superconductors. For example,
magnetic vortices in a 2D p + ip superconductor are known to host unpaired Majorana zero-
modes [11,12]. Without spectral symmetry, flux bound states in 2D systems can be moved
out of the gap, but may still contribute to a filling anomaly of the ground state that cannot be
trivialized without breaking a symmetry or closing a gap [13]. In 3D, flux bound states fall
into two categories: in the first case, they form a gapless state localized along the 1D flux tube,
as is the case for m-flux tubes in 3D time-reversal symmetric topological insulators [3-9]. In
the recently discovered second case, the flux tube ends bind OD states that give rise to a filling
anomaly or are pinned to zero energy by a spectral symmetry [14]. This latter case is realized
in higher-order topological phases protected by crystalline symmetries.

The goal of our present work is to generalize the theory of flux bound states to non-
Hermitian (NH) topological phases that break energy conservation. Such phases have gen-
erated increased interest recently due to their unconventional bulk-boundary correspondence
[15-25]. Fundamentally, there exist two kinds of NH systems [15-18]: Hamiltonians H with
a line gap in their complex energy spectrum can be adiabatically (without closing the line gap)
deformed to purely Hermitian (H " = H) or anti-Hermitian (H" = —H) Hamiltonians. On the
other hand, Hamiltonians without any line gap may still host a point gap — a region of com-
plex energy that is devoid of, but surrounded by, eigenstates. Point-gapped systems without
a line gap cannot be adiabatically deformed to any (anti-)Hermitian limit, and therefore re-
alize intrinsically NH topology. A prime example is the 1D Hatano-Nelson chain [26-28] in
NH symmetry class A (no symmetries) whose bulk winding number invariant W € Z in peri-
odic boundary conditions (PBC) results in the NH skin effect under open boundary conditions
(OBC): when W # 0, an extensive number of (almost all) OBC eigenstates accumulate at only
one edge of the system [29-37]. While this observation is reminiscent of a bulk-boundary cor-
respondence, it is unclear how the OBC spectrum may crisply differentiate between systems
with different nonzero W. To alleviate this issue, we here employ the NH pseudospectrum
that consists of the collection of spectra associated with all O(e)-deformed Hamiltonians (see
Sec. 2.1 for details) [38-40]. The pseudospectrum reduces to the spectrum in the Hermitian
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case, but represents the more physically adequate quantity in the NH case: if a state fails to be
an eigenstate only by O(e) terms, then it behaves as an eigenstate with respect to realistic mea-
surements. Moreover, the pseudospectrum restores the full bulk-boundary correspondence of
NH point-gapped systems: for instance, a Hamiltonian with nonzero bulk winding number W
has a pseudospectrum that fills the point gap and is W-fold degenerate in presence of bound-
aries [39]. In the thermodynamic limit, the pseudospectrum is equivalent to the spectrum in
semi-infinite boundary conditions (SIBC) [38-40]. Correspondingly, we characterize the flux
response of NH systems by their SIBC spectrum in presence of flux defects. We exclusively
focus on NH phases with intrinsic point gap topology, which were classified in all 38 NH sym-
metry classes in Refs. [16,39]: in addition to stability under manipulations preserving point
gap and symmetry class, these phases cannot be trivialized even when coupling with arbitrary
NH line-gapped phases is allowed.

We find that, depending on the NH symmetry class, the flux response of intrinsically NH
point-gapped phases falls into one of 5 classes:

(1) No flux response: Some NH phases have a trivial flux response even when their bulk is
topologically nontrivial.

(2) Flux skin effect: Inserting a m-flux core in a 2D NH system can induce a skin effect re-
sponse where a macroscopic number of OBC eigenstates localizes at the flux core [39].
Concomitantly, the SIBC spectrum in presence of flux fills up the entire point gap in the
complex energy plane. This effect is similar to the dislocation skin effect of Refs. [41,42],
with the important distinction that it does not rely on (discrete) translational symmetry
and therefore probes strong instead of weak NH topology [14].

(3) Flux spectral jump: Threading a 1D 7t-flux tube through a 3D NH system with nontrivial
point gap topology can result in a spectral jump as the momentum coordinate k| along the
flux tube is varied. In particular, the SIBC spectrum in presence of flux remains gapped at
generic values of kj, but completely fills up with an extensive number of states at one of
the two special points k; = 0, . Such a gapless NH dispersion cannot be realized in any
purely 1D lattice system, and therefore represents an intrinsically NH anomalous 1D state.
We note that a purely 1D system cannot realize a filled point gap at a single momentum,
as there is only a finite Hilbert space available at any given momentum. Instead, the
discontinuity in the 1D flux tube dispersion described here capitalizes on a topologically
nontrivial 2D bulk.

(4) Higher-order flux skin effect: Even when the SIBC spectrum of a 3D NH phase in presence
of a 1D flux tube is fully gapped (does not exhibit a spectral jump), preserving crystalline
pseudo-inversion symmetry [43-51] may result in a nontrivial higher-order response. In
this case, an extensive number of eigenstates accumulates at the ends of flux tubes when
these terminate at sample surfaces. Concomitantly, the SIBC spectral point gap remains
empty with PBC along the flux tubes, but is completely filled up in OBC when a surface
termination perpendicular to the flux tubes is introduced.

(5) Flux Majorana modes: In just two NH symmetry classes, intrinsic 3D point gap topology
furthermore manifests itself in an unpaired flux Majorana mode pinned to the center of
the SIBC spectral point gap. For the case of NH class D, this mode is localized along the
entire 1D length of the flux tube. Such localization is impossible in Hermitian systems
where energetically isolated bound states must be pointlike.

In Tab. 1, we identify the flux response of each NH symmetry class that allows for intrinsic
point gap topology with one of the 5 possible NH flux responses. In Sec. 2 we outline the
formalism that we use to derive the flux responses, before discussing the individual effects:
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Figure 1: NH bulk-boundary correspondence. The NH skin effect, which corre-
sponds to a nonzero topological invariant W (E) [Eq. (1)], induces a spectral collapse
of the point gap under OBC. However, the resulting OBC spectrum does not uniquely
specify the nonzero value of W(E). This ambiguity is resolved in the SIBC spectrum,
which restores the NH bulk-boundary correspondence: surface states fill the point
gap, and their degeneracy corresponds to W(E).

in Sec. 3 we highlight the flux skin effect, Sec. 4 presents the flux spectral jump, in Sec. 5 we
introduce the higher-order flux skin effect, and finally Sec. 6 unveils the flux Majorana modes.
We close by discussing potential experimental realizations in Sec. 7. The appendices contain
exhaustive auxiliary derivations and toy model Hamiltonians.

2 Formalism

We begin by pedagogically reviewing the concepts needed to characterize flux responses in the
NH context.

2.1 NH Bulk-boundary correspondence

NH systems can differ dramatically in their spectra under PBC and OBC. One of the prime
examples of this feature is the NH skin effect, whereby a point-gapped bulk collapses to a line
under OBC (see Fig. 1). Connected with this is a pile-up of all states at a single boundary. In
1D, this effect is associated with a winding number W(E) [39],

2r
dk d

where the Bloch Hamiltonian H(k) is point-gapped about the reference energy E. In particular,
if W(E) # 0, the NH skin effect must occur. However, it is important to note that W(E) € Z is
an integer-valued invariant, while the presence or absence of a skin effect only provides a Z,
quantifier. This observation raises the question of how the OBC spectrum of two systems with
nonzero but different W(E) can be crisply distinguished. The problem is further compounded
by the dramatic sensitivity of the OBC spectrum [52] to small changes of the Hamiltonian.

To solve both issues, the e-pseudospectrum of NH systems was introduced in Refs. [38-40].
It describes the change in the spectrum under a small perturbation e,

o (H)={E€C||[(H—E)|v)||<e, foratleastone |v) with (v|v) =1}. (2)

This definition is practical: if a state is just O(e) away from being an eigenstate, it will still
behave as one with regards to realistic measurements, which always include a small error.
In contrast to other approaches reestablishing the NH bulk-boundary correspondence, for in-
stance the OBC treatment of Ref. [53], the pseudospectrum, therefore, does not suffer from a
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Figure 2: Implementation of flux defects. a Periodic systems must contain pairs of
flux defects £¢. b These can be implemented by multiplying all hoppings from sites
51 to s, by e'?, and by e~'® in the opposite direction.

sensitivity to infinitesimal errors. The pseudospectrum is particularly useful because it can be
related to the spectrum in SIBC ogpc(H), which is the spectrum in presence of just a single
boundary in the thermodynamic limit (system size L. — o0). In particular, it holds that [38-40]
lim lim o.(H) = ogpc(H). 3)
e—>0L—0o0
This correspondence between pseudospectrum and SIBC spectrum allows for a precise def-
inition of a NH bulk-boundary correspondence. In particular, in the SIBC spectrum of a 1D
system with nonzero W (E), the point gap fills completely with boundary localized states whose
degeneracy equals W(E) (see Fig. 1).

2.2 Extended Hermitian Hamiltonian

To find the flux response of NH systems, we rely on the topological equivalence between a NH
Hamiltonian H and an extended Hermitian Hamiltonian (EHH) H [54,55], defined as

_ 0 H —EO)
H=| .+ . 4)
(H' —E 0

By construction, H enjoys a chiral symmetry,

N - - 1 0
YcHYL, =-H, 2c=(0 _ﬂ). (5)
The presence of a point gap of H around E = E, translates into a gapped spectrum of H
about zero energy. Conversely, exact topological zero-energy eigenvalues of H correspond to
protected E = E states within the NH point gap, because

det(A) =—det(H —Ey)det(H' —E})=0 — det(H—E;)=0. (6)

Consequently, we can predict the presence of protected in-gap modes from the EHH spectrum.

2.3 Flux defects in NH systems

Flux defects are routinely employed as probes of bulk topology in Hermitian systems [1-9,56].
For instance, n-flux cores in 2D topological insulators bind a single Kramers pair of midgap
states [2—-4]. While general defects [57], dislocations [41, 42], and disclinations [58] have
been investigated in the NH context, a systematic understanding of the flux response of all
intrinsically point-gapped NH symmetry classes has been absent until now.
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Any topological flux response relies on a quantization of the admissible values of flux ¢.
Restricting to local NH symmetries corresponding to one of the 38 NH symmetry classes [16]
— potentially taken together with a crystalline symmetry like pseudo-inversion — we find that,
depending on the symmetry class, flux is either unquantized or must take values ¢ = 0,7 in
PBC. In the cases where ¢ = 0, 7, the NH symmetry class must either contain a time-reversal
(TRS) or particle-hole (PHS) symmetry, or include crystalline pseudo-inversion symmetry.

Here, we focus on PBC in order to cleanly separate the NH flux response from boundary
states or skin effects. The PBC geometry requires (at least) two flux cores/tubes with strength
+¢ [14]. Such a pair of fluxes can be introduced by the Peierls substitution: the hoppings
encircling each flux must accumulate a phase e*® (see Fig. 2a). A convenient electromag-
netic gauge choice is then to multiply all hoppings across the line (plane) connecting the two
fluxes in a 2D (3D) system by a factor of ¢'? in one direction (s; — s, see Fig. 2b) and by
e in the other direction (s, — s;), where we denote the sites above the line (plane) as
s; and the ones beneath as s,. We choose the orientation of this line (plane) along the x-
(x- and z-)direction in 2D (3D), respectively. SIBC corresponds to the idealized limit where
only one flux (= only one “boundary”) is present, while the second flux is infinitely far away.
In our conventions, a system with SIBC then has a single flux core/tube at x = 0, is infinitely
extended in the x-direction, and is finite with PBC in all remaining directions (but potentially
still thermodynamically large).

We derive the flux response for all NH symmetry classes with intrinsic point gap topology
from their respective EHH. The EHH experiences the same flux defect as the NH Hamiltonian:
in the gauge described above, Peierls substitution implies

(s1/Hgls2) = ei¢(51|H¢=o|52)- (7

The corresponding matrix element for the EHH reads (3‘11|H P |s§ ), where a, 8 = 1,2 label the
two sublattices introduced by the Hermitian extension. The only nonzero contributions are

(3= 1H,g |Sg:2) =e'? (s11Hp—ols2) , (8)

and
=213 =1 i T
(5172 1Hglsh ) = e {51 H] _gsa) )

where, importantly, the flux enters in both cases as e!?. The reason is that Hermitian conju-
gation in Eq. (9) not only flips the sign of the flux, but also transposes the matrix elements
s1 — S5 to s, — s1. In Eq. (7) we have used that E, multiplies an identity matrix in Eq. (4) and
therefore remains unaffected under flux insertion.

In summary, our strategy for determining the flux response of a given NH symmetry
class X is to:

(1) Find the corresponding Hermitian symmetry class X of the EHH.
(2) Derive the flux response of X using the Dirac formalism detailed in the appendices.

(3) Infer the topological properties of the NH SIBC spectrum that result from exact EHH ze-
romodes.

3 NH flux skin effect

We begin our survey of NH flux responses with 2D systems. Here we first consider a specific
example in NH class AII" (see App. E.1.1 for details). Point-gapped systems in NH class AII"

6
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Figure 3: NH flux skin effect in 2D. a Spectrum in the complex energy plane under
PBC (blue) and SIBC in presence of 7-flux cores (blue and red) for a model exhibit-
ing nontrivial point gap topology in NH class AIl" [Eq. (E.1)]. Flux-localized states
fill the point gap in the SIBC spectrum, showing the flux skin effect. b The energy
spectrum of the EHH for NH class AIl" [Eq. (E.1)] shows four topological zero energy
modes within the bulk energy gap, caused by two 7t-flux cores. ¢ The flux skin effect
localizes an extensive number of eigenmodes at the fluxes, indicated by two peaks of
the summed density p(r) = >, ; |[(ril14)|*, where a ranges over all eigenstates v,
of the Hamiltonian with flux defect, r denotes the lattice site, and the summation i
runs over sublattice degrees of freedom.

are classified by a Z, invariant v € {0, 1}, defined in Ref. [16]. In order to derive the flux
response of the nontrivial phase where v = 1, we rely on the EHH for a given energy E, inside
the point gap (see Sec. 2.2). Irrespective of the choice of E,, the EHH for NH class AII" enjoys
the symmetries of Hermitian class DIII (see App. B.4.1 and Tab. 2 therein). Moreover, since
Hermitian class DIII is likewise Z,-classified in 2D, the EHH associated with a nontrivial NH
phase in class AII" must itself realize a nontrivial topological insulator phase in Hermitian class
DIIIL. For this phase, it was shown in Ref. [10] that flux cores bind two degenerate zero-energy
states (a Kramers pair). In the NH SIBC spectrum, these modes then correspond to a single
flux localized state at complex energy E, in the point gap [39]. Since we can perform this
construction for all E, inside the point gap, we obtain an extensive number of modes localized
at the flux core (see Fig. 3a,b). Such an extensive accumulation of states defines the NH flux
skin effect [39].

In a PBC geometry with two flux cores, this response is topologically equivalent to the Z,
skin effect [39] of a 1D model in NH class AII' situated on the line terminated by the two flux
cores (see Fig. 3c). Indeed, the number of flux-localized modes scales with the length of the
1D edge connecting the two defects, denoted by L, (see App. C.1 for details on the finite-size
scaling). The equivalence of the flux skin effect and the 1D NH bulk-boundary correspondence
is consistent with the fact that point gap topology in 1D and NH class AIl" is Z,-classified [16].
This observation leads us to the following generalizing hypothesis, which we prove in App. B
by exhaustion:

@ A 2D system with nontrivial intrinsic point gap topology in NH symmetry class
X, where X pins ¢ = 0, 7, exhibits a flux skin effect for ¢ = 1 iff X also has a
nontrivial point gap classification in 1D.

The flux response of the complete set of NH symmetry classes with nontrivial intrinsic point
gap topology [39] is summarized in Tab. 1. Only the classes satisfying the above condition,
including NH class AlI", realize a flux skin effect. An exhaustive collection of model Hamilto-
nians can be found in App. E.1.

We note in closing that there is a fundamental difference between crystal dislocations and
flux defects [14]: Whereas lattice Burgers vectors are integer-valued, flux is only defined


https://scipost.org
https://scipost.org/SciPostPhys.14.5.107

Scil SciPost Phys. 14, 107 (2023)

mod 27. Consequently, since ¢ = +7m and ¢ = —m are physically equivalent, both fluxes
¢ = £ of a PBC geometry have to collect skin modes, which is compatible only with a Z,-
skin effect but not a Z-skin effect [39]. In contrast, dislocations can give rise to both the Z and
the Z,-skin effect [41].

4 NH flux spectral jump

We now study the 7t-flux response of intrinsically NH topological phases in 3D [39] in presence
of TRSM or PHS. We begin with the example of a point-gapped NH system in class AlI',
which is classified by a nontrivial 3D winding number W5 (E) € Z [16] (see App. E.2.1 for
details). We derive the flux response of the simplest nontrivial case, where Wsp(E,) =1 for a
given energy E, inside the point gap, from the corresponding EHH (see Sec. 2.2 and Fig. 4a).
Irrespective of the choice of E,, this EHH enjoys the symmetries of Hermitian class DIII (see
App. B.5.2 and Tab. 3 therein), which is also Z-classified in 3D. Hence, the EHH associated
with W5, (E) = 1 corresponds to a nontrivial topological insulator phase [59]. For this phase,
it was shown in Ref. [10] that flux tubes with ¢ = 7 bind a 1D helical Majorana mode. This
mode crosses zero energy at a single fixed TRS-invariant momentum, k| € {0, 7}, contributing
two exact zero-energy states (see Fig. 4b). Importantly, no symmetry allowed perturbation is
able to move these flux localized states away from zero energy at kj = 0, 7. Correspondingly,
there is a single flux-localized state at complex energy E, in the NH SIBC spectrum [39].
Repeating this construction for all E, inside the NH point gap yields an extensive number
of states localized along the 1D flux tube for a single momentum k; € {0, 7t} (see Fig. 4c).
Away from this momentum, the EHH remains gapped, corresponding to the absence of in-gap
modes in the NH SIBC spectrum. The extensive pile-up of flux-localized states only for a single
value of k| constitutes a novel type of NH bulk-defect correspondence, which we term NH flux
spectral jump.

In a PBC geometry with two flux tubes, this response is equivalent to that of a nontrivial
2D NH phase situated in the plane separating the flux tubes: NH class AIl" is Z, classified in
2D [16] and protects an infernal point, i.e. the extensive accumulation of edge states only at a
single momentum.! The number of flux localized modes scales with L |, the distance between
the two defects (see App. C.2 for details on the finite-size scaling). For OBC in the z—direction,
where k| is not conserved, the NH flux spectral jump still implies an accumulation of states at
the flux tube. There may potentially also be surface states contributed by a surface skin effect.
Next to their different real-space localization, the two effects can be distinguished in terms of
the scaling with system size: whereas the surface skin effect is expected to localize O(L = L,)
modes, the flux spectral jump localizes O(L ;) modes.

We note that all NH phases with nontrivial point gap topology are Z,-classified in 2D. On
the other hand, they may be Z,- or Z-classified in 3D. In the latter case, the flux spectral jump
only arises when the Z-valued invariant is odd. In our example of NH class AIl", this means
that only systems where W55 (E) mod 2 # 0 exhibit a flux response (see Tab. 1). Additional
responses would be needed to probe the Z nature of W5 (E). The above observations lead us
to the following hypothesis, which we prove in App. B by exhaustion:

(ID A 3D system with nontrivial intrinsic point gap topology in NH symmetry class
X and invariant w € Z, or Z, where X pins ¢ = 0, 1, shows a flux spectral
jump for ¢ = m iff class X has a nontrivial point gap classification in 2D and
wmod 2 # 0.

M. M. Denner, T. Neupert and E Schindler, in preparation.
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Figure 4: NH flux spectral jump in 3D. a Spectrum in the complex energy plane
under PBC (blue) and SIBC in presence of 7-flux tubes (blue and red) for a model
exhibiting nontrivial point gap topology in NH class AIl" [Eq. (E.7)]. Flux-localized
states fill the SIBC spectral point gap at a single momentum k; = 0 along the flux
tube. b At this momentum, the EHH spectrum exhibits a helical crossing at zero
energy for any E, located in the central point gap. ¢ The flux spectral jump localizes
an extensive number of eigenmodes at the flux tubes, indicated by two peaks of the
summed density p(r) = Za’i |(r;ly4)|?, where a ranges over all eigenstates 1)), of
the Hamiltonian with flux defect, r denotes the lattice site and the summation i runs
over sublattice degrees of freedom.

The flux response of the complete set of NH symmetry classes with nontrivial intrinsic point gap
topology [39] is summarized in Tab. 1. Only classes fulfilling the above condition, including
NH class All", realize a flux spectral jump. An exhaustive collection of model Hamiltonians
can be found in App. E.2.

5 NH higher-order flux skin effect

We next study the m-flux response of intrinsically NH topological phases in 3D [39] in the
absence of TRS(" or PHS(". In order to still obtain a quantized flux response, we consider the
presence of pseudo-inversion symmetry (see also App. A.1),

TH(K)' T = H(—k), (10)

which, in contrast to normal inversion symmetry, entails a Hermitian conjugation of the Hamil-
tonian H(k). As explained in App. D.2, pseudo-inversion represents the simplest crystalline
symmetry that is compatible with nontrivial point-gap topology. In a PBC geometry with two
inversion-related flux tubes, this symmetry implies that the magnitude of the two fluxes is the
same: ¢; = ¢,. At the same time, PBC leads to the constraint ¢; + ¢, mod 27 = 0, thereby
recovering the quantization of magnetic flux to ¢ = 0, . This argument only requires PBC
in the direction separating the flux tubes (i.e. in our case in the x-direction); in fact, we will
consider OBC in the direction along the flux tubes later on.> We note that the addition of

2For experimental settings with OBC in all directions, the magnetic flux ¢ is not quantized. For our theory to
be applicable, the flux must then be fine-tuned to ¢ = 7.

9
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Table 1: Flux response of all NH symmetry classes with intrinsic point gap topol-
ogy in d = 2,3. These are a subset of the 38 NH symmetry classes [16,39]. Class
labels refer to the Altland-Zirnbauer (AZ) classes, their AZ" counterparts, and addi-
tional sublattice symmetry (SLS) [16]. The subscript of SLS, S.., determines whether
SLS commutes (+) or anticommutes (-) with time-reversal symmetry (TRS) and/or
particle-hole symmetry (PHS). For the NH symmetry classes with both TRS and PHS
(BDI, DIII, CII, and CI), the first subscript refers to TRS and the second one to PHS.
All classes are identified by the square of TRS™, PHS(M and chiral symmetry CS.
The topological classification is reproduced from Ref. [39], with d, ;p denoting the
1D line gap classification for the cases with trivial point-gapped phases in both 1D
and 2D. Z" denotes the additional presence and form of pseudo-inversion symmetry
that, in NH symmetry classes without an anti-unitary operation, is needed to protect
a topological flux response. The subscript of SLS/TRS next to the pseudo-inversion
symmetry Z', S, /T.., determines whether SLS/TRS commutes (+) or anticommutes
() withZ'. L | denotes the distance between the flux tubes in a finite system, and Ly
their length. We distinguish the flux skin effect (FSE) in 2D, the flux spectral jump
(FSJ), higher-order flux skin effect (HO-FSE), the flux Majorana mode (FMM) and
the higher-order flux Majorana mode (HO-FMM) in 3D.

dim class symmetry classification Al nt-flux response # modes  App.

d TRS PHS® €S| d d—1 d—2|dyp

2 ATI' -1 - -z, 1z, 0 - FSE (Sec. 3) O(L;) B.41
2 DI’ -1 +1 1| Zy 7y 0 - FSE (Sec. 3) O(L,) B.4.2
2 AIIS- - - 1|2, O Zy - - B.4.3
2 BDIS+ | +1 +1 1|2y 2 Z, - FSE (Sec. 3) O(L;) B.4.4
2 DS~ - +1 -z, 7, 0 - FSE (Sec. 3) O(L;) B.4S5
2 DI+ | -1 +1 1|2, O Z, - - - B.4.6
2 CIS-—+ -1 -1 11z, O Zy - - - B.4.7
2 CIS+ -1 -1 1|2, O 0 - - - B.4.8
2 CrS-—+ +1 -1 1|z, O Z, - - - B.4.9
3 ATl +1 -2z o 0 0 - - - B.5.1
3 Nig -1 Z 7y Z, - FSJ (Sec. 4) O(L,) B.5.2
3 A Z 0 Z A HO-FSE (Sec. 5) o) BS53
3 AS - - |z 0 Z Z™5- | HO-FSE (Sec. 5) O(L)) BS54
3 D - +1 - |z 0 0 Z, - FMM (Sec. 6) 0(1) B.5.5
3 DS+ - +1 Z 0 0 7 7%S- | HO-FMM (Sec. 6)  O(1)  B.5.6
3 DS- - +1 -z oz, Zy FSJ (Sec. 4) O(L,) B.5.7
3 DIIS+ -1 +1 1|2y 2y 0 - FSJ (Sec. 4) O(L,) B.5.8
3 AIS+ -1 - - |z, 0 Z Z75-T- | HO-FSE (Sec. 5) o) B59
3 C 1 2Z 0 0 0 - - - B.5.10
3 CS+ -1 Z 0 Zy I"- | HO-FSE (Sec.5)  O(L)) B.S5.11
3 c5- -1 Z 0 0 0 - - - B.5.12

pseudo-inversion symmetry may change the classification of NH point gap topology. However,
in this work, we are only concerned with the flux response of point-gapped systems with local
NH symmetries that are enriched by pseudo-inversion (see App. D.2).

We begin by considering the NH system discussed in Sec. 4 and App. E.2.1 in absence of
TRST. Recall that, in that section, we studied NH symmetry class AII' which exhibits a flux
spectral jump. Upon the relaxation of TRS', we obtain NH symmetry class A, which is still
classified by the same topological invariant W5 (E) € Z [16] (see App. E.2.2 for details). Our
present example therefore again yields Wsp(Ey) = 1 for any given energy E, inside the point
gap. As explained above, we furthermore assume pseudo-inversion symmetry.

We derive the flux response for this phase from the corresponding EHH (see Sec. 2.2). The
EHH for NH class A retains the symmetries of Hermitian class AllI, irrespective of the choice of
E, (see App. B.5.3 and Tab. 3 therein). Additionally, NH pseudo-inversion symmetry induces
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1) W)
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Figure 5: NH higher-order flux skin effect in 3D. a The energy spectrum of the
EHH for a system with higher-order flux skin effect shows a gap for PBC along the
flux tubes, here using a model in NH class A [Eq. (E.8)]. b Under OBC in the flux tube
direction, the presence of a nontrivial flux ¢ = 7 introduces two exact zero-energy
states in addition to the gapless Dirac cone surface dispersion, one for each flux tube.
c In the NH system, the resulting flux skin modes are localized at the same ends of
the two flux tubes. As explained in Sec. 5, this is a consequence of pseudo-inversion
symmetry Z", which maps states between the two flux tubes, but also changes their
chirality. Only states with more than 85% support at the flux tubes are shown. All
panels are generated for a model of size 20 x 20 x 20 unit cells in NH class A with
additional pseudo-inversion symmetry (see Sec. E.2.2).

a Hermitian inversion symmetry of the EHH. Hermitian class AIIl is also Z-classified in 3D,
such that the EHH associated with a nontrivial point-gapped phase in NH class A must itself
realize a nontrivial topological insulator phase in Hermitian class AIIIl [59]. Importantly, this
class does not protect gapless modes along 1D flux tubes [10]. Hence, the PBC spectrum of the
EHH in presence of two 7t-flux tubes is gapped (see Fig. 5a), where here we assume PBC both
along and perpendicular to the flux tube directions. Correspondingly, the NH point gap shows
no SIBC spectral in-gap modes. However, inversion symmetry can protect a flux response as
soon as OBC are introduced in the direction of the flux tubes.

To derive this response, we first note that Ref. [44] showed that Wsp(Ey) = 1 is indi-
cated by a double band inversion in the corresponding EHH when pseudo-inversion symmetry
is present: to obtain a trivial (atomic limit) state, two occupied EHH inversion eigenvalues
must flip sign at high-symmetry momenta in the 3D Brillouin zone. Without chiral symmetry
(Hermitian class A), a double band inversion induces a higher-order topological (axion insu-
lator) phase protected solely by inversion symmetry [60,61]. Such axion insulators exhibit a
higher-order flux response: Ref. [14] derived that localized states appear at alternating ends
of the two flux tubes, resulting in one state per flux tube for the EHH. In Hermitian class A,
these states are generally not zero-modes, but instead contribute to a filling anomaly of the
full inversion-symmetric system. Returning to the present case of Hermitian class Alll, chiral
symmetry enforces that such flux end states arise at zero energy.

Besides pinning flux end states to zero energy, Hermitian class AIll differs in another im-
portant aspect from class A: it protects surface Dirac cones [59] that render the EHH OBC
spectrum gapless even in absence of flux tubes (see Fig. 5b, left inset). However, the presence
of such 2D surface states does not, in general, result in a skin effect in NH class A: The EHH
surface Dirac cones are located at arbitrary surface momenta, which are in general not sampled
over in the discrete surface Brillouin zone associated with any finite system size. Hence, there
are no exact zero-energy states in the EHH spectrum.® Instead, each EHH Dirac cone implies

30One might similarly argue that flux bound states in realistic samples are always subject to a finite-size splitting,
and therefore do not contribute to the NH spectrum: this splitting arises due to hybridization with other, spatially
separated bound states. However, the gap resulting from such hybridization is exponentially small in the system
size. On the other hand, the gap of a Dirac cone surface state that arises due to a finite-size quantization of
crystal momentum decreases only algebraically with system size. Hence, in the thermodynamic limit and for an
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a single exceptional point or single sheet of eigenvalues in the NH surface dispersion [21]. On
the other hand, each flux tube introduces a single exact zero-mode per flux tube in the EHH.
This constitutes a fractional flux response, since there exists no 1D Hermitian model with a
single end state under OBC (see also App. D.1). The zero-energy flux end state of the EHH
then corresponds to a flux-localized SIBC spectral in-gap state at complex energy E,. Repeat-
ing this construction for all E, inside the NH point gap yields an extensive number of modes
localized at the end of a flux tube (see Fig. 5¢). In a finite system, the number of localized
modes scales with the length of the flux tube, denoted by L (see App. C.2 for details on the
finite-size scaling). This extensive pile-up of states on a region of dimension d — 3 represents
a NH higher-order flux skin effect.

Interestingly, the flux skin modes appear at the same end for both flux tubes, highlighting
a uniquely NH feature (see Fig. 5¢): if a right eigenstate skin mode localizes on the top of one
flux tube, pseudo-inversion symmetry maps it to the bottom of the other flux tube. Due to the
Hermitian transpose contained in the definition of pseudo-inversion (see App. A.1), this state
is a left eigenstate of the NH Hamiltonian (see Fig. 5c, top-right). The corresponding right
eigenstate is localized at the top end of the same flux tube [39] (see Fig. 5c, bottom-right).

Consequently, when the plane spanned between the two n-flux tubes is interpreted as a
1D NH system aligned along the flux tube direction, and with an extensively large unit cell
along the perpendicular direction,* the higher-order flux skin effect is equivalent to the skin
effect of a nontrivial 1D system [39] in NH class A. Due to pseudo-inversion symmetry, which
maps between the two flux tubes, the resulting extensive number of end-localized modes is
evenly distributed between the two flux tube ends, so that each flux tube on its own realizes
half of a conventional 1D skin effect. On the other hand, the 2D point-gap classification of NH
symmetry class A is trivial. This observation leads us to the following hypothesis, which we
prove in App. B by exhaustion:

(1) A 3D system with nontrivial point gap topology in NH symmetry class X
and with pseudo-inversion symmetry exhibits a higher-order flux skin effect
for ¢ = 7 iff the point gap classification of X is trivial in 2D but nontrivial
in 1D.

The flux response of the complete set of NH symmetry classes with nontrivial intrinsic point
gap topology [39] is summarized in Tab. 1. Only classes fulfilling the above condition, includ-
ing NH class A, show a NH higher-order flux skin effect. An exhaustive collection of model
Hamiltonians can be found in App. E.2.

We note in closing that the higher-order flux skin effect realizes a novel flavour of NH
topology that is fundamentally different from the Hermitian case: In a Hermitian system with
gapless surface states, it is impossible to resolve a higher-order response to flux defects, be-
cause the nontrivial surface state would obscure any flux-localized modes. On the contrary the
NH higher-order flux skin effect is observable: In addition to O(L; x L) NH surface modes
deriving from gapless surface states, flux tubes induce a skin effect in z-direction, localizing
another O(L;) modes on the surface, only at the flux tube ends (see App. C.2 for details on
the finite-size scaling and App. D.3 for the implications on the EHH spectrum). Alternatively,
one could reduce the extent of the flux tubes in the z—direction, thereby separating the flux
response from the surface states.

exponentially small €, the e-pseudospectrum [38,40] (Sec. 2.1) of the system discussed in the main text only
exhibits a skin effect in presence of flux tubes. Even if surface modes do contribute to the pseudospectrum due to
large experimental errors, they are still distributed across the entire surface. On the other hand, flux modes appear
at the flux tubes only and therefore lead to an experimentally observable peak in the local density of states.

“Reducing the separation of the two flux tubes will result in a phase transition (along the flux tubes) that
removes all flux modes in the limit of zero distance.
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6 Isolated first- and higher-order flux Majorana modes

All NH flux responses discussed so far have led to a SIBC spectrum with a completely filled
point gap in presence of n-flux defects. Surprisingly, it is also possible to obtain isolated flux
modes at specific energies within the point gap. These are similar to Hermitian bound states,
but associated with NH point gap topology.

To understand this phenomenon, we consider NH systems in class D, which are classified
by the Z-valued 3D winding number W5 (E) [16] (see App. E.2.4 for details). We derive the
flux response for a given energy E, inside the nontrivial point gap, in the simplest case with
Ws5p(Ey) = 1, from the corresponding EHH (see Sec. 2.2). The EHH for E, = 0 of NH class D
retains the symmetries of Hermitian class DIII (see App. B.5.5 and Tab. 3 therein). Hermitian
class DIII is also Z-classified in 3D, such that the EHH associated with a nontrivial NH phase in
class D must itself realize a nontrivial topological insulator phase in Hermitian class DIII [59].
For this phase, it was shown in Ref. [10] that flux tubes bind two degenerate zero-energy
states (see Fig. 6a), corresponding to a single flux-localized state at E, = 0 in the NH SIBC
spectrum (see Fig. 6b). Away from E, = 0, the EHH retains only a chiral symmetry, resulting
in Hermitian class AlII (see App. B.5.5). The flux response of the EHH in Hermitian class AIII
is trivial, such that the point gap remains empty for E, # O (see Fig. 6¢).

We diagnose the nature of the unpaired NH flux state at E, = 0 by investigating (in a
gedankenexperiment) its stability under coupling with a 1D line-gapped phase spanned be-
tween the two flux tubes. 1D line gap topology in NH class D is Z,-classified (see Tab. 1). The
nontrivial phase is nothing but the NH generalization of the 1D Kitaev chain [39, 62], which
hosts a single Majorana zero-mode at each end. Two zero-modes — the end state of the 1D
line gap phase combined with the flux localized mode — are not protected. Consequently, the
flux state must be a Majorana mode as well, and flux defects in NH class D can only probe
W5p(E) mod 2. An unpaired flux Majorana mode remains pinned at zero complex energy. It
is localized along the entire length of the flux tube (see Fig. 6d), highlighting another NH
peculiarity: in Hermitian systems, spectrally isolated bound states are pointlike.

We next study NH class DS+, which is also classified by a Z invariant [16], the 3D winding
number W5p(E) restricted to even values (see App. E.2.5 for details). Choosing an energy E,
inside the nontrivial point gap with W5 (E,) = 2 allows to construct an EHH: for E; = 0 the
EHH contains two interdependent unitary subspaces in Hermitian class AIII (see App. B.5.6 and
Tab. 3 therein). Due to the Z-classification of Hermitian class AlIl in 3D, the EHH associated
with a nontrivial phase in NH class DS+ must itself realize a nontrivial topological insulator
phase per unitary subspace in Hermitian class AlIIl. However, without additional crystalline
symmetries, the zero energy modes arising in the flux Dirac theory of systems in Hermitian
class AIIl are not protected [10] (see Fig. 6e). Adding an inversion symmetry (corresponding
to pseudo-inversion in the NH Hamiltonian, App. D.2) quantizes the flux and allows for a
stable flux response [14]: under OBC, each flux tube now hosts one zero energy mode per
unitary subspace of the EHH. These flux end states then correspond to flux-localized NH SIBC
spectral in-gap states at E; = O (see Fig. 6f and g). Away from E, = 0, the EHH is situated
in Hermitian class CI: due to the absence of Kramers theorem, pairs of zero-energy states are
no longer protected (see App. B.5.6). Consequently, the flux modes in each unitary subspace
can be gapped, so that the higher order flux response persists only at E, = 0. The resulting
NH higher-order Majorana mode localizes at the ends of the flux tubes (see Fig. 6h). Detecting
its presence in a real system is, however, intricate, as it will in general be obscured by the NH
surface state that is already present for ¢ = 0.

We can understand the existence of (higher-order) flux Majorana modes by noting that,
among all NH symmetry classes that do not exhibit a flux spectral jump or higher-order flux
skin effect in 3D, NH class D and D%+ are the only ones with a nontrivial line gap classification
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Figure 6: NH flux Majorana modes in 3D. a The energy spectrum of the EHH for NH
class D realizes a helical metal for E, = 0. b This corresponds to a single Majorana
mode at E; = 0 in the NH point gap. ¢ Away from E, = 0, the EHH is gapped.
This implies that the NH point gap does not fill up with flux-localized states, but
only pins the Majorana mode. d The Majorana mode is localized along the entire
flux defect (k; = 0), a scenario that is not possible for a single mode in a Hermitian
system. e The energy spectrum of the EHH for NH class D%+ with pseudo-inversion
symmetry is gapped in presence of two PBC-preserving m-fluxes. f This results in
an empty point gap in the NH spectrum. g When terminating the system along a
surface perpendicular to the flux tubes, the EHH features four exact zero modes at
Ey = 0, which are absent when the flux tubes are removed. (Note that in this limit,
approximate zero-modes remain due to the gapless surface states in this symmetry
class, highlighted in the inset for ¢ = 0.) h The two resulting NH higher-order
Majorana modes are then localized at the ends of the flux defects. Panels a-d are
generated for a model of size 20 x 20 (x20 in OBC) unit cells in NH class D (see
Sec. E.2.4), panels e-h for a model of size 20 x 20 (x20 in OBC) unit cells in NH class
D%+ (see Sec. E.2.5).

(see Tab. 1) in 1D. As line-gapped phases are adiabatically deformable to Hermitian systems,
flux tubes in these classes can only cause the presence of isolated modes (similar to the end
states of 1D Hermitian topological insulators) instead of NH skin effects.

7 Experimental realization of NH flux response

In a solid-state setting, we usually assume isolated systems that are governed by a Hermitian
Hamiltonian. Most meta-material platforms are however either accidentally or tunably lossy,
such that the description with an effective Hamiltonian involves NH terms. The same holds for
interacting electronic quantum systems in which quasiparticles acquire a finite lifetime. Such
a scenario equips the single-electron Green’s function with a complex self-energy, leading to
an effective NH Hamiltonian [63-68]. Consequently, NH systems appear quite naturally in
experimental settings.

We now outline the NH platforms in which flux defects can be studied experimentally. Su-
perconductors are natural starting points for studying flux defects, as magnetic fields penetrate
samples as flux vortices. Consequently, superconducting NH systems in 2D or those in direct
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proximity to a superconductor may experience a flux skin effect in presence of vortices. The size
of vortices should be matched with the lattice scale by the use of moire substrates/potentials,
allowing for precisely localized defects and quantized responses. However, in general we ex-
pect flux localized states to not disappear immediately with increasing vortex size, but rather
to spread out over the vortex region. In 3D, the prototypical NH point-gapped phase is the
exceptional topological insulator (ETI) [21]. The ETI emerges naturally from a Hermitian 3D
topological insulator or Weyl semimetal, if quasi-particles acquire a finite lifetime. This could
for instance be caused by electron or electron-phonon interactions [21]. As the ETI does not
require any symmetry to be stabilized, it is naturally situated in NH class A. With additional
pseudo-inversion symmetry, it can thus give rise to a higher-order flux skin effect upon flux in-
sertion. Additionally, the ETI phase was shown to arise in NH class AII' [21], thereby allowing
for the flux realization of the NH flux spectral jump. Consequently, the ETI serves as the ideal
platform to investigate 3D flux defects. Due to their versatility, meta-materials provide conve-
nient classical analogs to quantum mechanical topological states. A flux defect can for instance
be realized in electrical meta-materials [35,69] by introducing operational amplifiers. These
equip arbitrary hoppings t with a tuneable phase t — te'?, thereby allowing to implement
¢ flux tubes [70]. Alternatively, one might realize effective magnetic fluxes in photonic [71],
mechanical [72], and ultra-cold atom systems [73, 74]. Additionally, one can envision a re-
alization in NH superconductors [75-77]. Such systems, for instance in NH class C5+ and
DIIIS+, can give rise to both higher-order flux skin effect and flux spectral jump upon flux in-
sertion, respectively. Similarly, the NH flux Majorana mode appears in a NH superconductor in
class D.

8 Discussion

We have derived the flux response of all NH symmetry classes with intrinsic point gap topology
in 2D and 3D. In 2D, we found the NH flux skin effect, in which a macroscopic number of states
localizes at the flux core. We identified the necessary conditions for its emergence and pre-
dict its occurrence for four NH symmetry classes. In 3D, we discovered the flux spectral jump,
where a 7m-flux tube causes a NH skin effect only at a single momentum along the flux tube
direction. This response derives from a corresponding novel 2D phase exhibiting an infernal
point, where an extensive number of states collapses to the boundary at a single momentum.
Developing a physical understanding for this phenomenon, including a field-theoretical de-
scription, is an important future endeavor. Additionally, we found NH symmetry classes giving
rise to a higher-order flux skin effect, which occurs at the ends of flux tubes. Being a higher-
order response, it relies on the presence of a crystalline symmetry. We here considered the
case of pseudo-inversion symmetry, but expect further exciting responses for other crystalline
symmetries. Finally, we identified the presence of flux Majorana modes, forming spectrally
isolated mid-gap states in the NH point gap. Realizing such modes in open quantum systems
is an interesting question for future theoretical and experimental research.
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A Symmetries in NH systems

This section defines symmetries in NH systems and their relation to the corresponding sym-
metries of the EHH. Hermitian quantities are denoted with an overline.
A.1 NH symmetries
The Hermitian time-reversal symmetry given as
O HEK) U =H(—k), U705 ==1, (A.1)
is generalized to a NH time-reversal symmetry TRS
UrH(K)' UL =H(—k),  UsUs==1, (A.2)
as well as a pseudo time-reversal symmetry TRS'
UrH() UL =H(—k),  UyU;==1. (A.3)
The Hermitian particle-hole symmetry given as
UpH(k)'U), =—H(—k),  UpUp==+1, (A.4)
is generalized to a NH particle-hole symmetry PHS
UpH(k) UL, =—H(—k),  UpUj==1, (A.5)

as well as a pseudo particle-hole symmetry PHS"

UpH(k)'U), =—H(—k),  UpUp==+1. (A.6)
The Hermitian chiral symmetry given as
UcHK)O) =—H(K), 02=1, (A7)
is generalized to a NH chiral symmetry CS
UcHK)' UL =—H(K), UZ=1. (A.8)
Additonally, one can have sublattice symmetry SLS, defined by
SH(K)S"=—H(k), S*=1, (A.9)
as well as pseudo-Hermiticity
nH(k)'n"=H(E), n*=1. (A.10)
Finally, we investigate the presence of inversion
IHI)I = H(—k), (A.11)
and pseudo-inversion symmetry
IHK)' TN =H(—k). (A.12)
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A.2 Appearance of NH symmetries in the EHH

The presence of symmetries for the NH Hamiltonian (k) imposes constraints on the EHH
H(k),

-1 0 H(k)—E,
Specifically, for Ey = 0, it holds:
T H(k) U) = H(—k), (A.14)
with
_ Ur 0
U = ; (A.15)
7 ( 0 UT)
for TRS and
- 0 U
Ur = (UT OT) , (A.16)
for TRS' of the NH Hamiltonian.
UpH(k) U), =—H(—k), (A.17)
with
- 0 U
Up = (UP 07’) , (A.18)
for PHS and
_ Up O
Up = 5 (A.19)
g ( 0 UP)
for PHS' of the NH Hamiltonian. Additionally we have
- - - 0 Ue
U HIOT, =—H(K), U= (UC . ) , (A.20)
SH(OS =—Ak),  §= (‘g g) , (a.21)
e _ _ 0 n
aHEk)' 7' =H(k), 0= (n o) : (A.22)
By construction, H(k) enjoys an additional chiral (sublattice) symmetry for arbitrary E,:
et - - (1 0
DeH(k)Z, =—H(k), o= 0 —1)° (A.23)

Besides the chiral symmetry introduced in (A.23), sublattice symmetry S and PHS Up
allow a TRS

U7 H(k) UF = H(—k), (A.24)
with
- (0o Sup
Ur = (SUP 0 ) , (A.25)
and a PHS i _ i
UpH (k) Up =—H(—k), (A.26)
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with
- 0 SUp
Up = (—SUP 0 ) . (A.27)
For daggered NH symmetry classes, TRS'
O H(k) UL = H(—k), (A.28)
with
- (0 Ur
U= (UT 0 ) , (A.29)
can be combined with (A.23) to a PHS
UpH(k) U, = —H(—k), (A.30)
with
- (0 Ur
Up = (_UT 0 ) . (A.31)

B Classification of flux response in all NH point-gapped symmetry
classes

We classify the flux response of all NH systems with nontrivial intrinsic point gap topology.
Since topological zero energy eigenvalues of the EHH #(k) correspond to states at E, within
the NH point gap, we first investigate the flux response of Hermitian systems. This procedure
relies on a Dirac treatment of the flux defect, introduced in App. B.1. We employ this proce-
dure for all relevant Hermitian symmetry classes in 2D (App. B.2) and 3D (App. B.3). The
corresponding NH flux response follows from protected EHH zero energy modes, derived in
App. B.4 for 2D and App. B.5 for 3D.

B.1 Dirac theory of Hermitian flux response

For a Hermitian topological insulator in one of the 10 Altland-Zirnbauer (AZ) symmetry classes
[78, 79], we can derive the response for a ¢ = 7 flux using the Dirac theory of its edge
states [80].

To derive the flux response of 2D (3D) topological insulators, we first cut the 2D (3D) bulk
in half (see Fig. 7a) to create two sets of edge (surface) states, one for the top layer and one
for the bottom layer. In general, these will be described by a 1D (2D) Dirac Hamiltonian

Hyp(k)=1,®h(k)+ M, (B.1)
Hyp(k) =1, ®h(k)+ M, (B.2)

where k is the momentum along the edge and k the momenta on the surface, with 7, a Pauli
matrix acting on layer space. In the presence of N edge (surface) states, h(k) is a N x N matrix
capturing the edge (surface) state dispersion, and M is a 2N x 2N mass matrix that couples
the edge (surface) states to yield a gapped bulk. The insertion of a flux core (flux tube) ¢
can be viewed as a modification of all hoppings crossing a line (plane) emanating from the
flux core (flux tube), multiplying all such hopping amplitudes with a Peierls phase t — te'?.
For a flux of ¢ = m, this corresponds to a sign flip [14]. The mass term M coupling the two
layers therefore changes sign at the flux tube, forming a domain wall binding point-like (line-
like) states (see Fig. 7b,c). In the following, we therefore consider a flux-Dirac theory for all
relevant Altland-Zirnbauer classes.
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Figure 7: Dirac theory of flux response. a The gapped bulk of a topological insulator
can be viewed as a combination of two subsystems, whose edge states are gapped by
a bulk mass term. b Bound states localized at r-fluxes in Hermitian insulators can
be viewed as domain wall bound states of the Dirac mass associated with a pair of
edge states [14]. ¢ In 3D, n-fluxes similarly bind 1D states.

B.2 2D systems, symmetry classes of 7 (k)

In 2D, the EHH (k) for nontrivial intrinsic point-gapped NH models resides in Hermitian
classes A, All, D, DIII or C (see Tab. 2). In the follov_ving, we investigate whether a flux induced
mass domain wall leads to zero energy modes of H (k).

B.2.1 Class A

The prototypical model in Hermitian class A in 2D is a Chern insulator, whose edge Hamilto-
nian is described in the nontrivial phase by

h(k) =k, (B.3)
where k is the momentum along the edge. The 1D Dirac Hamiltonian can then be written as
H(k) =1, ®h(k)+mxT,+67,, (B.4)

where mx implements the flux core induced domain wall in the mass term at x = 0, T, are
Pauli matrices (u = 0,x,y,z) and 6 multiplies a symmetry allowed perturbation. In order
to derive the presence of topological zero energy states, we consider OBC along the edge
(x—direction) and solve for boundary-localized zero-energy states determined by the Hamil-
tonian

0
H, =—iTZa—x+mxrx+5Ty. (B.5)
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Table 2: NH symmetry classes with intrinsic point gap topology in 2D and the cor-
responding Hermitian classes of the EHH.

dim class H class H class H App.
(Eg=0) | (Eg#0)
2 Al DIII DIII B.4.1
2 pur’ D DIII B.4.2
2 AIIIS- A®A Alll B.4.3
2 BDIS+ D& D DIII B.4.4
2 DS- DIII & DIII DIII B.4.5
2 DIIIS+ All ® All DIII B.4.6
2 CIS—+ A DIII B.4.7
2 CIIS+ CecC CI B.4.8
2 CI5—+ A DIII B.4.9

For 6 = 0 we can find one normalizable zero energy solution [), H,|1) = 0, given by

1 .
) = Ne—%mxz G) . (B.6)

To study the effect of the perturbation &, we rely on first-order perturbation theory
(YIH p)=—6. (B.7)

Consequently, the EHH for flux cores in Hermitian class A (d = 2) has no zero energy mode, as
any finite ¢ is able to remove the in gap state. This means the flux response of 2D NH systems
that lead to Hermitian class A for #(k) is trivial. Note that additional crystalline symmetries
do not change this statement, contrary to the case of 3D.

B.2.2 Class All

Hermitian class AIl has a TRS with U7UJ- = —1, describing 2D topological insulators. As such,
the surface Hamiltonian of the nontrivial phase is gapless,

h(k) = ko, (B.8)

where k is the momentum along the edge and mass terms are forbidden by the presence of
TRS Uy = 0. The 1D Dirac Hamiltonian can then be written as

H(k) =1, ®h(k) + mxT,00+ 50, (B.9)

where mx implements the flux core induced domain wall in the mass term at x =0, 7,0, are
Pauli matrices (u = 0, x, y,2) and & multiplies a collection of symmetry allowed perturbation
terms O. In order to derive the presence of topological zero energy states, we consider OBC
along the edge (x—direction) and solve for boundary-localized zero-energy states determined
by the Hamiltonian

0
H, :_iTzo-xa +mx7t,09+60. (B.10)

For 6 = 0 we can find two normalizable zero energy solutions |¢), H, |y} = 0, given by

2 2

1 1 1 1
|T/J1)=N€ 2mx , WZ):]Ve amx (B.11)

- 0 O ~
o = ~ O
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In order to reveal that symmetry allowed perturbations O are able to gap out these modes,
we rely on degenerate first-order perturbation theory in 6. Fixing O = 7,0 as one symmetry
preserving choice under TRS Uy = 140, we obtain

y’
[Hﬂux]mn = (wmlgxlwn> = [500]mn . (B.12)

Consequently, the EHH for flux cores in Hermitian class AIl (d = 2) is gapped and hosts no
zero energy modes. This means the flux response of 2D NH systems that lead to Hermitian
class Al for H(k) is trivial.

B.2.3 ClassD

Hermitian class D describes the thermal quantum Hall effect, with a PHS with UPU;; = +1.
The surface Hamiltonian for the nontrivial phase is gapless,

h(k) =k, (B.13)
where k is the momentum along the edge. The 1D Dirac Hamiltonian follows as
H(k) =1, ® h(k) + mx7,, (B.14)

where mx implements the flux core induced domain wall in the mass term at x = 0, 7,
are Pauli matrices (u = 0, x, y,z) and further symmetry allowed perturbation terms O are
not allowed by the presence of Up = 7,. In order to derive the presence of topological zero
energy states, we consider OBC along the edge (x—direction) and solve for boundary-localized
zero-energy states determined by the Hamiltonian

.0
H, =—lfza+mXTx. (B.15)

We can find one normalizable zero energy solution [1)), H,|v)) = 0, given by

1 1. 2f1
Iw)=ﬁe 2 (1) (B.16)

Consequently, the EHH for flux cores in Hermitian class D (d = 2) is gapless, and hosts one
topologically protected zero mode localized at the flux core.

B.2.4 Class DIII

In Hermitian symmetry class DIII, the surface Hamiltonian along the edge h(k) is gapless in
the nontrivial phase and assumes the form

h(k) = ko, (B.17)

where k is the momentum along the edge and mass terms are forbidden by the presence of TRS,
PHS and chiral symmetry. Choosing chiral symmetry as U, = 7,0, the 1D Dirac Hamiltonian
can be written as

H(k) =7, ® h(k) + mxt,04+ 50, (B.18)

where mx implements the flux core induced domain wall in the mass term at x =0, T u» Oy are
Pauli matrices (u =0, x, y,2) and 6 multiplies a collection of symmetry allowed perturbation
terms O. In order to derive the presence of topological zero energy states, we consider OBC
along the edge (x—direction) and solve for boundary-localized zero-energy states determined
by the Hamiltonian
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0
H, =—ifzaxa+mx7xao+60. (B.19)

For § = 0 we can find two normalizable zero energy solutions |v), H,|1)) = 0, given by

1 12
—me

= le_%mxz
N

) = N ;o) (B.20)

O O ~.
O R~ O

1

In order to reveal that symmetry allowed perturbations O are not able to gap out these
modes, we rely on degenerate first-order perturbation theory in 6. Fixing O = 7,0, as the
only symmetry preserving choice under TRS U = 7(0 , and PHS Up = 7,0, we obtain

(At ], = Wl ) =0. (B.21)

Consequently, the EHH for flux cores in Hermitian class DIII (d = 2) is gapless, and hosts two
topologically protected zero modes localized at the flux cores.

B.2.5 Class C

In Hermitian symmetry class C with Up U;‘; = —1, the surface Hamiltonian along the edge h(k)
is gapless in the nontrivial phase and assumes the form

}_l(k):kO'O‘l‘ﬁllO'x'i‘ﬁ"lzo'y +ﬁ130'2, (B22)

where k is the momentum along the edge and the terms multiplied by m, , 3 only shift the

zero energy crossing. Using Up = 7,0 y, the 1D Dirac Hamiltonian can then be written as

H(k) =7, ® h(k) + mxt,00+ 80, (B.23)

where mx implements the flux core induced domain wall in the mass term at x =0, 7,0, are
Pauli matrices (u =0, x, y,z) and & multiplies a collection of symmetry allowed perturbation
terms O. In order to derive the presence of topological zero energy states, we consider OBC
along the edge (x—direction) and solve for boundary-localized zero-energy states determined
by the Hamiltonian

- %,
H,= —iTZooa +mxt,00+60. (B.24)

For 6 = 0 we can find two normalizable zero energy solutions |¢), H, |y} = 0, given by

(B.25)

_ O ~

0
2| i 1 1.2
NERTSEREEL

1 0

1 1
[r) = et

To study the influence of symmetry allowed perturbations O, we rely on degenerate first-
order perturbation theory in 6. Fixing O = 7,0, as one symmetry preserving choice under

PHS Up = 7,0, we obtain

(A, = Wl ) =[50, ], - (B.26)

Consequently, the EHH for flux cores in Hermitian class C (d = 2) is gapped, and hosts no zero
modes localized at the flux cores. This is a consequence of PHS being able to protect only a
single state, not two.
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Table 3: NH symmetry classes with intrinsic point gap topology in 3D and the cor-
responding Hermitian classes of the EHH.

dim class H class H class H App.
(Eg=0) | (Eg#0)
3 Al CI CI B.5.1
3 NIl DIII DIII B.5.2
3 A Alll Alll B.5.3
3 AS Alll ® AlII Alll B.5.4
3 D DIII Alll B.5.5
3 DS+ Alll CI B.5.6
3 DS- DIII @ DIII DIII B.5.7
3 DIIIS+ All ® All DIII B.5.8
3 AlIIS+ CIl ® CII Alll B.5.9
3 C CI Alll B.5.10
3 cS+ Alll DIII B.5.11
3 cs- Cle CI CI B.5.12

B.3 3D systems, symmetry classes of 7(k)

In 3D, the EHH # (k) for nontrivial point-gapped NH models resides in Hermitian classes AlI,
AlIL, DIII, CI or CII (see Tab. 3). In the following, we investigate whether a flux induced mass
domain wall leads to zero energy modes of (k).

B.3.1 Class All

In App. B.2.2 we derived the absence of zero energy modes at flux defects in 2D Hermitian
class All In 3D, the edge Hamiltonian in the nontrivial phase is given as

}_l(kl,kz) = klo'x +k20'y, (B27)

where k; is the momentum along the edge, k, the momentum along the flux tube, we obtain
the 1D Dirac Hamiltonian as

H(kl,kz):Tz®il(k1,k2)+mxTxO-0+50, (B.28)

with the Pauli matrices 7,0, (u = 0,x,y,2). For ky = 6 = 0 we still find the two nor-
malizable zero energy solutions given by (B.11). In order to derive the effective Hamiltonian
along the flux tube, we rely on degenerate first-order perturbation theory in k, and 6. Us-
ing 60 = Zi:x,y,z 8;T,0;+084T¢0¢+ 657,0 as the symmetry preserving choices under TRS

Ur = 140,, we obtain

[Apux(k2)],, = Pl Ao (ko)lpy) = [kooy + (84— 51)0 ], - (B.29)

Since the identity matrix constitutes just a trivial spectral shift, the Hamiltonian along the flux
tube is still gapless. Consequently, flux tubes in Hermitian class AIl (d=3) form a helical metal,
with zero modes of H (k) appearing at k, = 0.

y)

B.3.2 Class AIlI

Hermitian class AIIl contains a chiral (sublattice) symmetry, such that the edge Hamiltonian
for the nontrivial phase appears in (B.2) as

H(ky, ko) =7, ® (ko) + ko0, )+ M + 50, (B.30)
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where k; is the momentum along the edge, k, the momentum along the flux tube, M the mass
matrix that couples the edge states to yield a gapped bulk, 7, o, Pauli matrices (u =0, x, y, 2)
and 6 multiplies a collection of symmetry-allowed perturbation terms O. The insertion of a
n—flux tube forms a mass domain wall, causing a sign change in M. Note however that Her-
mitian class AIIl does not contain a symmetry fixing the flux to zero or . In order to derive
the presence of topological zero energy states, we consider OBC along the edge (x—direction).
Without further symmetries, there exists an ambiguity in the suitable mass domain wall, which
can equivalently be realized as 7,0 or 7,0. Therefore there exists no bound state without
additional (crystalline) symmetries. Adding for instance inversion symmetry Z, realized here
as I = 7,0, removes the ambiguity by rendering 7,0, an incompatible choice. However,
our current single mass domain wall inherently breaks inversion symmetry. We therefore have
to introduce a second flux tube, representing the opposite mass domain wall. A corresponding
2D-Dirac theory is discussed in Ref. [14], showing that each flux tube localizes one zero energy
mode under OBC.

B.3.3 Class DIII

Since the DIII 3D topological insulator can be understood as a pumping cycle of the correspond-
ing 2D system along a third momentum direction, the flux response follows directly from the
respective case in 2D. In App. B.2.4 we derived the presence of two zero modes under 7t-flux
insertion. Accounting for the additional dimension by using

E(kl,k2)=k10x+k20'y, (B.Bl)

where k; is the momentum along the edge, k, the momentum along the flux tube, we obtain
the 2D Dirac Hamiltonian as

I:I(kl,kz):Tz®f_l(k1,k2)+mXTXUO+5O, (B.32)

with the Pauli matrices 7,0, (u =0, x, y,2). For k, = 6 = 0 we still find the two normalizable
zero energy solutions given by (B.20). In order to derive the effective Hamiltonian along the
flux tube, we rely on degenerate first-order perturbation theory in k, and 6. Using again
O = 1,0, as the only symmetry preserving choice under TRS Ur =140, and PHS Up = 7,0,
we obtain

y

[Hﬂux(kz)]mn = <wm|Hx(k2)|wn> = [kZOy]mn . (B.33)

Consequently, flux tubes in Hermitian class DIII (d=3) form a gapless helical metal, with zero
modes of H(k) appearing at k, = 0.

B.3.4 Class CI

Hamiltonians in Hermitian symmetry class CI possess TRS, chiral and PHS, where only the
latter squares to minus one. The corresponding surface Hamiltonian along the edge h(k,, k;)
is gapless in the nontrivial phase and assumes the form

Fl(kl,kz) :klpyO'x +k2p00'y, (B34)

where k; is the momentum along the edge, k, the momentum along the flux tube, p,, 7,0
Pauli matrices (u = 0, x, y,2) and allowed mass terms only constitute trivial shifts of the lo-
cation of the zero energy mode in momentum space. Using Uy = Topq00, Up = T4Py 03,

Uc = 1,p,0, the 1D Dirac Hamiltonian can then be written as

H(k) =1, ® h(k) + mxT,po0¢ + 60, (B.35)
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where mx implements the flux tube induced domain wall in the mass term at x = 0 and
6 multiplies a collection of symmetry allowed perturbation terms O. In order to derive the
presence of topological zero energy states, we consider OBC along the edge (x—direction)
and solve for boundary-localized zero-energy states determined by the Hamiltonian

- d
H, =—iTZpyaxa+k2’rzp0c7y+mx*rxp0c70+60. (B.36)

For k, = 6 = 0 we can find four normalizable zero energy solutions |), H,|1) = 0, given by

) (1)

1
0 0
1 1210 _ 2] 0
0 0
0 1
\1/ \ o/
(0 0\ (B.37)
0 (5
0 -1
1 1211 1 121 0
o) = et [ 1 gy = et | 9
1 0
0

\0/ \8]

In order to derive the effective Hamiltonian along the flux tube, we rely on degenerate first-
order perturbation theory in k, and 6. Using O = 7, p, 0 as one symmetry preserving choice,
we obtain

[Apux(ka) ] = (Wil H (k)2 )
= [kzpoay - 5pzo-z:|mn .

Consequently, flux tubes in Hermitian class CI (d=3) are gapped, and also host no zero energy
end states under OBC.

(B.38)

B.3.5 Class CII

In Hermitian symmetry class CII, the surface Hamiltonian along the edge h(ky, k,) is gapless
for the nontrivial phase and assumes the form

}_l(k]_, kz) = klpo()'x + kpoO'y 5 (B.39)

where k; is the momentum along the edge, k, the momentum along the flux tube, p,, o, are
Pauli matrices (u = 0, x, ¥,2) and mass terms are forbidden by the presence of TRS, PHS and
chiral symmetry. Choosing chiral symmetry as U, = 7,p,0,, the 1D Dirac Hamiltonian can be
written as

H(ky,ky) = T, ® (k1po0y +kapoo,)+ M + 60, (B.40)

where M implements the m—flux tube induced domain wall in the mass term at x =0, T p are
Pauli matrices (u =0, x,y,2) and & multiplies a collection of symmetry allowed perturbation
terms O. Note however that Hermitian class AIIl does not contain a symmetry fixing the flux
to zero or 7. Requiring TRS as Uy = iToPx0, and PHS as Up = iT,0,0, one can find

25


https://scipost.org
https://scipost.org/SciPostPhys.14.5.107

Scil SciPost Phys. 14, 107 (2023)

two possible mass terms M, 7,000 Or Typ,00. Due to this ambiguity there exists no bound
state without additional (crystalline) symmetries. Adding for instance inversion symmetry Z,
realized here as 7 = 7, 0,0, removes the ambiguity by rendering T,P;0 an incompatible
choice. We therefore choose the mass domain wall to be realized as M = mx7,po0,. How-
ever, the single mass domain wall again breaks inversion symmetry. We therefore have to
introduce a second flux tube, representing the opposite mass domain wall. Using again the
results of the 2D-Dirac theory discussed in Ref. [14], one obtains two zero energy modes per
flux tube, localized at the flux tube ends.

B.4 NH flux response in 2D

Zero modes of the EHH and NH point gap states are in one-to-one correspondence. Using the
Hermitian flux Dirac theory, we here derive the flux response and the corresponding topologi-
cal properties of the SIBC spectrum of all intrinsically nontrivial 2D point-gapped NH symmetry
classes, summarized in Tab. 2.

B.4.1 Class AIl

NH class AII" has a TRS' squaring to minus one, which quantizes the flux ¢ = 0, 7. As outlined
in A.2, the corresponding EHH introduces a chiral symmetry ¥, which combines with TRS to
form a PHS with UpUj, = —U7Uj- = +1. Consequently, the EHH is in Hermitian class DIII,
which is Z, classified for both 1D and 2D [79].

The flux response of the EHH in Hermitian class DIII shows two zero energy modes for each
flux core (see App. B.2.4). As the construction of the EHH can be repeated for every complex
energy inside the point gap, the point gap of a corresponding NH system fills with flux core
localized modes. Consequently, models in NH class AIl" show a flux skin effect for ¢ = .
A periodic system contains two flux cores ¢ = £, each localizing an extensive number of
modes. This number scales with the extension of the system along the direction containing
the two defects, denoted by L (see App. C.1).

B.4.2 Class DIII'

The NH class DIII' possesses TRS, PHS and chiral symmetry with (UrUZ, UpUL) = (—1,1),
where Uy = UrUp. As outlined in App. A.2, the corresponding EHH at E = 0 obtains TRS U,
PHS Up and two chiral symmetries {Ug, 2} = 0. Both chiral symmetries can be combined to
a unitary symmetry U = Up%, with U% = —1.

Since U has an imaginary spectrum and [U;, U] = 0, the eigenspaces of U are exchanged
by anti-unitary TRS. Since {Up, U} = 0, we retain anti-unitary PHS in each eigenspace, cor-
responding to Hermitian class D which has a Z classification in 2D [79]. After modding out
line-gap phases, this is reduced to a Z, classification [39]. Since 1D Hermitian class D is
also Z, classified, we expect that a 7-flux induces a single bound state per U eigensector (see
App. B.2.3). Hence, the full Hermitian spectrum hosts a zero-energy Kramers pair per flux.

Away from E, = 0, we retain only UTU;. = —1 where U and % anti-commute, resulting
in Hermitian class DIII. Due to TRS and chiral symmetry, the flux-bound Kramers pair cannot
move away from zero energy. Hence the entire point gap of a corresponding NH system fills
with flux core localized modes. Consequently, models in NH class DIII' quantize the flux to
¢ =0, m and show a flux skin effect for ¢ = 7.

B.4.3 Class AIIIS-

Models in NH class AIII>- possess chiral symmetry U, and sublattice symmetry S, with
{Uc,S} = 0. As outlined in A.2, the corresponding EHH at E, = 0 obtains three chiral sym-
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metries Ue, £, S, which can be combined to two unitary symmetries U; = UpS with U2 = —1
and U, = ST with U2 = +1. Due to the anti-commutation of U; with the chiral symmetries,
the eigenspaces of U; are exchanged by U, %, S. Since [U;,U,] = 0, we retain U, in each
subspace. However, each eigenspace of U, has no symmetry left, corresponding to Hermitian
class AGA.

In App. B.2.1, we derived the flux response of EHHs in Hermitian class A, which did not
yield protected zero energy modes pinned to the flux defects. Consequently, NH systems in
class AIIIS- do not show flux induced states within the NH point gap. Therefore, the flux
response for this NH symmetry class is trivial.

B.4.4 Class BDIS+

The NH class BDIS+ possesses TRS, PHS and chiral symmetry with (U7UL, UpUL) = (1,1),
where U, = UUp, as well as sublattice symmetry S. As outlined in A.2, the corresponding
EHH at E, = 0 obtains TRS Uy, PHS Up and three chiral symmetries Ue, %, S. The chiral
symmetries can be combined to two commuting unitary symmetries U; = UpZ¢ with U2 = —1
and U, = ST with U2 = +1.

Since U; has an imaginary spectrum and

[UT, l_fl] = {UP’Ul} = {Uc, Ul} = {iC’Ul} = {S, U1},

the eigenspaces of U; are not independent and individually enjoy Up and U, symmetry. More-
over, we have [Ur,U,] = [Up,U,] = [S,U,] = [Ug,U,] = [E¢,U,] = 0, so that the U,
eigenspaces are independent and individually preserve Up symmetry. They therefore lie in
Hermitian class D and yield a Z & Z classification in 2D [79] that is reduced to Z, by line gap
phases [39]. The nontrivial point gap phase is the one where only one U, subspace is nontriv-
ial, corresponding to a single p + ip superconductor per U, eigenspace (see App. B.2.3). The
full Hermitian spectrum will therefore contain two exact zeromodes in presence of a w-flux.

Away from E, = 0, we can only form the TRS U/- = SUp with U-U% = —1 and PHS
Uy, = LU with UL U5 = +1 (see App. A.2). This results in Hermitian class DIII, such that
due to TRS and chiral symmetry, the flux-bound Kramers pair cannot move away from zero
energy. Hence the entire point gap of a corresponding NH system fills with flux core localized
modes. Consequently, models in NH class BDI+~ quantize the flux to ¢ = 0,7 and show a
flux skin effect for ¢ = 7.

B.4.5 Class D°-

Models in NH class D5~ possess PHS Up (UpUp = +1) and sublattice symmetry S, with
{Up,S} = 0. As outlined in App. A.2, the corresponding EHH introduces a chiral symme-
try %, which combines with sublattice symmetry to form a unitary symmetry U = S¥; with
U? = +1. The unitary U satisifies [Up, U] = [S,U] = [£¢, U] = 0. We may furthermore de-
fine a TRS Uy = UpX, which satisfies UTI_J;‘_ = —1. Hence we obtain Hermitian class DIII in
each U subspace, giving a Z, & Z, classification in 2D [79]. By modding out line-gap phases,
this is reduced to a Z, classification where the nontrivial element corresponds to having only
a single U subspace being nontrivial [39]. Hence the full Hermitian spectrum hosts a single
zero-energy Kramers pair under n-flux insertion (see App. B.2.4).

Away from E, = 0, we can only form the TRS U/- = SUp with U,-U% = —1 and PHS
Uy, = %¢ U’T with U, U7y = +1 (see Sec. A.2). This results in Hermitian class DIIL, such that
the flux-bound Kramers pair cannot move away from zero energy. Hence the entire point gap
of a corresponding NH system fills with flux core localized modes. Consequently, models in
NH class D5~ quantize the flux to ¢ = 0, w and show a flux skin effect for ¢ = .
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B.4.6 Class DIIIS+

The NH class DIII®+ possesses TRS, PHS and chiral symmetry with (U;U%, Up U H)=(-1,1),
where Uz = UrUp, as well as sublattice symmetry S. As outlined in App. A.2, the correspond
ing EHH at E; = 0 obtains TRS U, PHS Up and three chiral symmetries UC, %, S. The chiral
symmetries can be combined to two commuting unitary symmetries U; = Up% with U 2=—1
and U, = S%; with U22 =+1.

Since U; has an imaginary spectrum and

{U’T’ Ul} = [U’P’Ul] = {UC’ Ul} = {EC’Ul} = {S, Ul},

the eigenspaces of U, are not independent and individually enjoy Us and U, symmetry. More-
over, we have [Ur,U,] = [Up,U,] = [S,U,] = [Uz,U,] = [Z¢,U,] = 0, so that the U,
eigenspaces are independent and individually preserve U; symmetry. They therefore lie in
Hermitian class All and yield a Z, & Z, classification in 2D [79] that is reduced to Z, by line-
gap phases [39]. The nontrivial element corresponds to having only a single U, subspace
nontrivial. In App. B.2.2, we derived the flux response of EHHs in Hermitian class All, which
did not yield protected zero energy modes pinned to the flux defects. Consequently, systems
in NH class DIII*+~ do not show flux induced states within the NH point gap. Therefore, the

flux response for this NH symmetry class is trivial.

B.4.7 Class CII>-+

The NH class CII5-+ possesses TRS, PHS and chiral symmetry with (U;U%, Up U »)=(-1,-1),
where Uy = U7 Up, as well as sublattice symmetry S. As outlined in App. A.2, the correspond-
ing EHH at E, = 0 obtains TRS U, PHS Up and three chiral symmetries Ug, %, S. The chiral
symmetries can be combined to two commuting unitary symmetries U; = U, % with U 2=—1
and U, = S%; with U2 = +1.

Since U; has an imaginary spectrum and

[U7, 01] = {Up, U1} = {U¢, U1} = {Zc, U1} = {S, Un},

the eigenspaces of U; are not independent and individually enjoy Up and U, symmetry. More-
over, we have {Ur,U,} = {Up,U,} = [S,U,] = [U¢,U,] = [Z¢,U,] = 0, so that the U,
eigenspaces are exchanged by Up symmetry. This leaves us with Hermitian class A, which has
a Z classification in 2D [79] that is reduced to Z, by line-gap phases [39]. In App. B.2.1, we
derived the flux response of EHHs in Hermitian class A, which did not yield protected zero
energy modes pinned to the flux defects. Consequently, systems in NH class CII°+ do not
show flux induced states within the NH point gap. Therefore, the flux response for this NH
symmetry class is trivial.

B.4.8 Class CII°+

The NH class CII®+- possesses TRS, PHS and chiral symmetry with (U;U%, Up U »)=(-1,-1),
where Uz = UrUp, as well as sublattice symmetry S. As outlined in App. A.2, the correspond-
ing EHH at E, = 0 obtains TRS U, PHS Up and three chiral symmetries Ug, 3¢, S. The ch1ra1
symmetries can be combined to two commuting unitary symmetries U; = Up % with U7 2=
and U, = S%; with U2 = +1.

Since U; has an imaginary spectrum and

[UT> Ul] = {UP: Ul} = {UC) Ul} = {iC: Ul} = {S, Ul}:

the eigenspaces of U; are not independent and individually enjoy Up and U, symmetry. More-
over, we have [Ur,U,] = [Up,U,] = [S,U,] = [Ug,Uy] = [Z¢,Uy] = 0, so that the U,
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eigenspaces are independent and individually preserve U, symmetry. We therefore obtain Her-
mitian class C, giving a Z®Z classification in 2D [79]. This is reduced to Z, under the addition
of line-gap phases, and the nontrivial element corresponds to only having one U, eigenspace
nontrivial [39]. Since the 1D classification of Hermitian class C is trivial and App. B.2.5 showed
no protected zero energy modes, we do not expect a stable flux response. Therefore, the flux
response for systems in NH class CIIS+ is trivial.

B.4.9 Class CI5—+

The NH class CI-+ possesses TRS, PHS and chiral symmetry with (U;U%, Up Ur) =(1,-1),
where Uz = U7 Up, as well as sublattice symmetry S. As outlined in App. A.2, the correspond-
ing EHH at E, = 0 obtains TRS U7, PHS Up and three chiral symmetries Ug, %, S. The chiral
symmetries can be combined to two commuting unitary symmetries U; = U, % with Ul2 =-1
and U, = S%; with U2 = +1.

Since U; has an imaginary spectrum and

{UT> Ul} = [UP’ Ul] = {UC? Ul} = {ECJ Ul} = {Sn Ul}a

the eigenspaces of U; are not independent and individually enjoy U; and U, symmetry. More-
over, we have {Uy,U,} = {Up,Us} = [S,U,] = [Ue,U,] = [Z¢,U,] = 0, so that the U,
eigenspaces are exchanged by U symmetry. This leaves us with Hermitian class A, which has
a Z classification in 2D [79] that is reduced to Z, by line-gap phases [39]. In App. B.2.1, we
derived the flux response of EHHs in Hermitian class A, which did not yield protected zero
energy modes pinned to the flux defects. Consequently, systems in NH class CI°~+ do not show
flux induced states within the NH point gap. Therefore, the flux response for this NH symmetry
class is trivial.

B.5 NH flux response in 3D

Similar to the case of 2D, we rely on the Hermitian flux Dirac theory to derive the flux response
of all nontrivial 3D point-gapped NH symmetry classes, summarized in Tab. 3.

B.5.1 Class AI'

NH class AI" has a TRS' squaring to plus one. As outlined in App. A.2, the correspond-
ing EHH introduces a chiral symmetry %, which combines with TRS to form a PHS with
UpUj = —U7U; = —1. Consequently, the EHH for all energies inside the point gap Ej is in
Hermitian class CI.

The flux response of the EHH in Hermitian class CI shows no protected zero energy modes
(see App. B.3.4). Consequently, systems in NH class AI" do not show flux induced states within
the NH point gap. Therefore, the flux response for this NH symmetry class is trivial.

B.5.2 Class AIl"

As for the case of 2D, NH class All" has a TRS' squaring to minus one, which quantizes the
flux ¢ = 0, . As outlined in App. A.2, the corresponding EHH introduces a chiral symmetry
¢, which combines with TRS to form a PHS with UpU, = —UTU*T = +1. Consequently, the
EHH is in Hermitian class DIII, which is Z classified for 3D and hosts a Z, index for 2D [79].
The flux response of the EHH in Hermitian class DIII forms a gapless helical metal along
the flux tube (see App. B.3.3). As the construction of the EHH can be repeated for every
complex energy inside the point gap, the point gap of a corresponding NH system fills with an
extensive number of states at a single momentum k. This is the defining signature of the NH
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flux spectral jump, discussed in Sec. 4. Therefore, systems in NH class AII' show a NH flux
spectral jump when introducing a flux defect. Note that due to the Z,-classification in 2D, flux
defects only probe the Z, nature of the 3D Z invariant in NH class AII'.

B.5.3 Class A+Z"

As NH class A does not contain any symmetries, the corresponding EHH only introduces a
chiral symmetry % (see App. A.2). Consequently, the EHH is in Hermitian class AlIl, which is
Z classified for 3D and 1D while being trivial in 2D [79].

Without additional crystalline symmetries, the zero energy modes arising in the flux Dirac
theory of systems in Hermitian class AIIl are not protected (see App. B.3.2). This indicates the
absence of a NH flux spectral jump, but allows for a different, higher order phase. Adding a
crystalline symmetry Z' serves two purposes: first, it should fix the flux to be either zero or
7, to allow for a topological flux response. Second, it should protect zero energy states from
being gapped by perturbations. A crystalline symmetry fixing the flux requires the presence
of at least two defects, resulting in a 2D Hermitian flux Dirac theory. The results derived in
App. B.3.2 show the presence of zero energy states under OBC along the flux tubes, which can
be distinguished from the surface signature for ¢ = 0. Consequently, these zero modes appear
extensively in the point gap of the NH model. This constitutes a higher order skin effect, with
skin modes appearing at the ends of the flux tubes in a finite geometry. The precise localization
of skin modes is then determined by the present pseudo inversion symmetry Z'. This is the
defining signature of the NH higher-order flux skin effect, discussed in Sec. 5.

B.5.4 Class AS +75-

NH class AS possesses a sublattice symmetry S, which combines with the chiral symmetry 3
in the corresponding EHH (see App. A.2) to form a unitary symmetry U = S, with U? = +1.
The unitary U satisifies [S, U] = [%., U] = 0. Hence we obtain Hermitian class AIll in each U
subspace, giving a Z @ Z classification in 3D and 1D, while 2D is trivial [79]. By modding out
line-gap phases, this is reduced to a Z classification where the nontrivial element corresponds
to having only a single U subspace being nontrivial [39].

Away from E; = 0, we are only left with the chiral symmetry %, resulting in Hermitian
class AIII. Without additional crystalline symmetries, the zero energy modes arising in the flux
Dirac theory of systems in Hermitian class AIIl are not protected (see App. B.3.2). Adding a
crystalline symmetry Z™5-, however, quantizes the flux and allows for a stable flux response.
The results derived in App. B.3.2 show the presence of zero energy states under OBC along
the flux tubes, which can be distinguished from the surface signature for ¢ = 0. Consequently,
these zero modes appear extensively in the point gap of the NH model, constituting a higher-
order flux skin effect (see Sec. 5) for NH class AS + 775~

B.5.5 ClassD

Models in NH class D possess a PHS Up with UpUy, = +1, yielding a Z classification in 3D,
while lower dimensions are trivial. As outlined in App. A.2, the corresponding EHH intro-
duces a chiral symmetry -, which combines with PHS to a TRS U = UpY.; which satisfies
UTU*T = —1. Hence we obtain Hermitian class DIII, giving a Z classification in 3D [79]. The
flux response of the EHH in Hermitian class DIII forms a gapless helical metal along the flux
tube (see App. B.3.3).

Away from E; = 0, we are only left with the chiral symmetry %, resulting in Hermitian
class AIIl. Hermitian class AIIl allows to gap the helical metal by introducing suitable mass
terms. Consequently, only at Ey = 0 we expect flux localized modes to appear in the NH point
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gap. The number of modes does not scale extensively with the system size, the NH system
only pins the Hermitian surface state of the extended model. This surface state is a Majorana,
models in NH class D therefore show a flux Majorana mode, as introduced in Sec. 6. Note that
due to the Z, line gap classification in 1D, flux defects only probe the Z, nature of the 3D Z
invariant in NH class D.

B.5.6 Class D%+ + Z"5-

Models in NH class D5+ possess PHS Up (UpUy = +1) and sublattice symmetry S, with
[Up,S] = 0. As outlined in App. A.2, the corresponding EHH introduces a chiral symme-
try %¢, which combines with sublattice symmetry to form a unitary symmetry U = S%, with
U? = +1. The unitary U satisifies {Up,U} = [S,U] = [Z.,U] = 0. We may furthermore
define a TRS U7 = UpX, which satisfies U7UZ- = —1 and anti-commutes with U. Hence the
eigenspaces of U are not independent and individually enjoy a chiral symmetry, leading to Her-
mitian class AIIl with a Z classification in 3D [79]. Without additional crystalline symmetries,
the zero energy modes arising in the flux Dirac theory of systems in Hermitian class AIll are
not protected (see App. B.3.2). Adding a crystalline symmetry Z"5-, however, quantizes the
flux and allows for a stable flux response. The results derived in App. B.3.2 show the presence
of one zero energy mode per flux under OBC, occurring in each U subspace.

Away from E, = 0, we can only form the TRS U/- = SUp with U-U% = +1 and PHS
U = LU with U,UZ = —1 (see App. A.2). This results in Hermitian class CI which does
not protect a Kramers degeneracy. Consequently, the pair of flux modes can be now gapped,
yielding a higher order response only at E, = 0. Models in NH class D%+ +Z "5~ therefore show
a higher-order Hermitian flux response, the higher-order flux Majorana mode, as introduced
in Sec. 6.

B.5.7 Class D%-

As for the case of 2D, models in NH class D5- possess PHS Up (UPU;'; = +1) and sublattice
symmetry S, with {Up, S} = 0. As outlined in App. A.2, the corresponding EHH introduces
a chiral symmetry %, which combines with sublattice symmetry to form a unitary symmetry
U = 8%, with U? = +1. The unitary U satisifies [Up, U] = [S,U] = [Z.,U] = 0. We may
furthermore define a TRS U7 = Up %, which satisfies U7 U = —1. Hence we obtain Hermitian
class DIII in each U subspace, giving a Z & Z classification in 3D [79]. By modding out line-
gap phases, this is reduced to a Z classification where the nontrivial element corresponds to
having only a single U subspace being nontrivial [39]. Hence the full Hermitian spectrum
hosts a helical metal under 7t-flux insertion (see App. B.3.3).

Away from E, = 0, we can only form the TRS U = SUp with U7-U% = —1 and PHS
Uy, = LcU% with UL US = +1 (see App. A.2). This results in Hermitian class DIII, such that
the flux-bound helical metal cannot move away from zero energy. Hence the entire point gap
of a corresponding NH system fills with flux tube localized modes. Consequently, models in
NH class D%~ quantize the flux to ¢ = 0, m and show a NH flux spectral jump, discussed in
Sec. 4. Note that due to the Z,-classification of NH class D%~ in 2D, flux defects only probe the
Z, nature of the 3D Z invariant.

B.5.8 Class DIIIS+

As for the case of 2D, models in NH class DIIIS+ possess TRS, PHS and chiral symmetry with
(UrUL, UpUy) = (—1,1), where Ue = U Up, as well as sublattice symmetry S. As outlined
in App. A.2, the corresponding EHH at E, = O obtains TRS Uy, PHS Up and three chiral
symmetries Ug, %, S. The chiral symmetries can be combined to two commuting unitary
symmetries U; = UoZ¢ with U? = —1 and U, = SE with U2 = +1.
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Since U; has an imaginary spectrum and

{UT’ Ul} = [UP:Ul] = {Uc, Ul} = {iC:Ul} = {S: Ul}:

the eigenspaces of U; are not independent and individually enjoy U; and U, symmetry. More-
ovet, we have [Ur,U,] = [Up,U,] = [S,U,] = [U,U,] = [5¢,U,] = 0, so that the U,
eigenspaces are independent and individually preserve U; symmetry. They therefore lie in
Hermitian class All and yield a Z, & Z,, classification in 3D [79] that is reduced to Z, by line-
gap phases [39]. The nontrivial element corresponds to having only a single U, subspace
nontrivial. In App. B.3.1, we derived the flux response of EHHs in Hermitian class All, which
shows a helical metal pinned to the flux defects.

Away from E, = 0, we can only form the TRS U/- = SUp with U,-U% = —1 and PHS
Uy = i!cl_],’r with U, Uz = +1 (see App. A.2). This results in Hermitian class DIII, such that
the flux-bound helical metal cannot move away from zero energy. Hence the entire point gap
of a corresponding NH system fills with an extensive number of states at a single momentum
kj. Consequently, models in NH class DIIIS+ quantize the flux to ¢ = 0, 7w and show a NH flux
spectral jump, discussed in Sec. 4.

B.5.9 Class AIlS+ + Z75-T-

NH class AII*+ possesses TRS Uy (U U3 = —1) and sublattice symmetry S, with [U7,S]=0.
As outlined in App. A.2, the corresponding EHH introduces a chiral symmetry X, which com-
bines with sublattice symmetry to form a unitary symmetry U = S%, with U? = +1. The
unitary U satisifies [Ur,U] = [S,U] = [%,U] = 0. We may furthermore define a PHS
Up = Uz which satisfies UpU%, = —1 and commutes with U. Hence the eigenspaces of U
are independent and individually enjoy TRS, PHS and chiral symmetry, leading to Hermitian
class CII with a Z, classification in each sector in 3D [79]. Without additional crystalline sym-
metries, the zero energy modes arising in the flux Dirac theory of systems in Hermitian class
CII are not protected (see App. B.3.5). Adding a crystalline symmetry Z"5~T-, however, quan-
tizes the flux and allows for a stable flux response. Introducing a w-flux results in the presence
of zero energy states under OBC along the flux tubes, in addition to the surface signature for
¢ =0.

Away from E, = 0, we are only left with the chiral symmetry %, resulting in Hermitian
class AIIl. As Hermitian class AIIl with additional crystalline symmetry Z"5—T- protects flux
modes localized at the end of the flux tubes, these zero modes appear extensively in the point
gap of the NH model, constituting a higher-order flux skin effect (see Sec. 5) for NH class
AT+ + 75T,

B.5.10 Class C

Models in NH class C possess a PHS Up with UpUy, = —1, yielding a 2Z classification in 3D,
while lower dimensions are trivial. As outlined in App. A.2, the corresponding EHH intro-
duces a chiral symmetry %, which combines with PHS to a TRS U = UpY; which satisfies
U7Uj = +1. Hence we obtain Hermitian class CI, giving a 2Z classification in 3D [79]. The
flux response of the EHH in Hermitian class CI is trivial, without protected flux localized zero
modes (see App. B.3.4). Consequently, systems in NH class C do not show flux induced states
within the NH point gap. Therefore, the flux response for this NH symmetry class is trivial.

B.5.11 Class C5+ +Z"5-

Models in NH class C5+ possess PHS Up (UpUy = —1) and sublattice symmetry S, with
[Up,S] = 0. As outlined in App. A.2, the corresponding EHH introduces a chiral symme-
try %, which combines with sublattice symmetry to form a unitary symmetry U = S%, with
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U? = +1. The unitary U satisifies {Up,U} = [S,U] = [Z.,U] = 0. We may furthermore
define a TRS U7 = Up%i which satisfies U7Us = +1 and anti-commutes with U. Hence the
eigenspaces of U are not independent and individually enjoy a chiral symmetry, leading to
Hermitian class AIIl with a Z classification in 3D [79]. Without additional crystalline symme-
tries, the zero energy modes arising in the flux Dirac theory of systems in Hermitian class AIII
are not protected (see App. B.3.2). Adding a crystalline symmetry Z'5-, however, quantizes
the flux and allows for a stable higher order flux response, with a single mode at the end of
each flux tube per U eigenspace.

Away from E, = 0, we can only form the TRS U = SUp with U707 = —1 and PHS
Uy, = %cUS- with UL, Up = +1 (see App. A.2). This results in Hermitian class DIII, such that
the two flux modes in each U eigenspace are still protected. Consequently, these zero modes
appear extensively in the point gap of the NH model. This constitutes a higher order skin
effect, with skin modes appearing at the ends of the flux tubes in a finite geometry. The precise
localization of skin modes is then determined by the present crystalline symmetry Z™5-. This
is the defining signature of the NH higher-order flux skin effect, discussed in Sec. 5.

B.5.12 Class C°-

NH class C5- possesses PHS Up (Up U;; = —1) and sublattice symmetry S, with {Up, S} = 0. As
outlined in App. A.2, the corresponding EHH introduces a chiral symmetry -, which combines
with sublattice symmetry to form a unitary symmetry U = S%; with U? = +1. The unitary
U satisifies [Up, U] = [S,U] = [Z¢, U] = 0. We may furthermore define a TRS Uy = Up¥
which satisfies U7 UZ- = +1, commuting with U. Hence we obtain Hermitian class CI in each U
subspace, giving a 27Z & 2Z classification in 3D [79]. By modding out line-gap phases, this is
reduced to a Z classification where the nontrivial element corresponds to having only a single
U subspace being nontrivial [39].

Away from E, = 0, we can only form the TRS U/ = SUp with U,-U% = +1 and PHS
Uy, = U7 with U, Uz = —1 (see App. A.2). This results again in Hermitian class CI, which
shows a trivial flux response (see App. B.3.4). Consequently, systems in NH class C°~ do not
show flux induced states within the NH point gap. Therefore, the flux response for this NH
symmetry class is trivial.

C Scaling analysis of flux defect localized modes

This appendix highlights the scaling of flux localized modes with system extent for the flux
responses discussed in the main text.

C.1 Scaling of flux core-localized modes in 2D

Sec. 3 predicts a skin effect localizing modes at the points where flux cores with ¢ = 7 pierce
a 2D system. Their number scales with the system size, precisely with the extension of the
system parallel to the line connecting the two flux cores L, as shown in Fig. 8. All states in
this 1D slice collapse towards the flux cores. For small separations d, states at the two flux
cores can hybridize, yielding a smaller number of localized states. The topologically relevant
regime has both flux cores well separated, for which the number of skin modes does not change
with d. Consequently, all L states experience the flux skin effect, irrespective of the extension
of the system to the left and right of the flux defects.
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Figure 8: Scaling analysis for the NH flux skin effect. The number of modes with
more than 70% localization at the flux cores scales linearly with the extent of the
system along the direction connecting the two flux cores L | . The separation between
the flux cores d is held fixed. The fit is given by # = —3.81538 + 1.78462 L |, using
a model in NH class AIl' [Eq. (E.1)].

C.2 Scaling of flux tube-localized modes in 3D

In 3D, NH flux defects probe 4 unique topological phases: the flux spectral jump, the higher-
order flux skin effect, the NH flux Majorana mode and its higher-order cousin. For a t-flux, the
flux spectral jump causes an extensive number of defect localized modes. Their number scales
with the extension of the system parallel to the line connecting the two flux tubes L | , as shown
in Fig. 9a. Conversely, the higher-order flux skin effect appears along n-flux tubes, thereby
localizing O(L”) modes, where L is the extension of the system along the defect as shown in
Fig. 9b. In contrast, flux Majorana modes appear only as isolated modes, without a connected
skin effect. Their number then derives from the EHH Dirac theory, which predicts two zero-
energy modes per flux tube, localized at the flux defects (see App. B.2.4). Correspondingly, the
model in NH class D hosts one mode per flux tube (see Fig. 9c and App. B.5.5). Higher-order
flux Majorana modes appear in addition to the surface state in NH class D5+ (see App. B.5.6).
The number of modes localized at the ends of the flux tubes, however, does also not scale with
the system size, indicating the absence of a flux induced skin effect (see Fig. 9d).

D More details on the higher-order flux skin effect

This appendix provides details on the fractional nature of the higher-order flux skin effect
and the role of (pseudo-)inversion symmetry in it. Additionally, we provide details for NH
symmetry classes AII+ and C5+.

D.1 Fractional nature of the higher-order flux skin effect

The NH higher-order flux skin effect results from the presence of one flux-end localized zero
energy mode per flux tube in the corresponding EHH. The single flux bound state is fractional,
as there exists no 1D system with a single end state. In this appendix, we investigate the
fractional nature of this state by considering the weight of a given chirality on each surface,
which reveals an imbalance only present for finite flux ¢ = 7.
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Figure 9: Scaling analysis for the flux effects in 3D. a In the flux spectral jump, the
number of modes with more than 70% localization at the flux tubes scales linearly
with the extent of the system connecting the two flux tubes L | . The fit is given by #
= —4.04396+1.67033 L for amodel in NH class AIl' [Eq. (E.7)]. b The higher-order
flux skin effect localizes all modes along the flux defects, thereby scaling with L. The
fit is given by # = —8.53571+1.51786 L) for modes localized at the ends of the flux
tubes. Scaling generated for a model in NH class A with fixed size L, = 20 unit cells
[Eq. (E.8)]. ¢ The number of Majorana modes with more than 70% localization at
the flux tubes does not scale with the system size. The number follows directly from
the Dirac flux theory for models in NH class D [Eq. (E.11)] d The number of higher-
order Majorana modes with more than 55% localization at the flux tubes does not
scale with the system size, here specifically shown for the dimension along the length
of the flux defect, L. Scaling generated for a model in NH class DS+ with fixed size
L =20 unit cells [Eq. (E.12)].

The eigenstates of the EHH are given as

Hiy;)=Ejlp;), jeE={1,...,L5 -Lj-L}, (D.1)

where L, L are the system dimensions, with L; describing internal (sublattice, spin) degrees
of freedom. We can then consider an interval around zero energy —e < E; < €: requiring
that we do not separate degenerate states, the set of states in the interval 2¢ forms the subset
& c E, for instance as highlighted in the inset of Fig. 5b. Expressing the chiral symmetry of
the EHH X, in this subspace,

% = (YilZcly;), (D.2)

allows to diagonalize X
va::l:vf, le{l,...,n.}, (D.3)

and obtain eigenstates of the chiral symmetry %... We denote eigenvectors with positive (neg-
ative) chiral eigenvalue as Vl+ (VZ_) and their number as n, (n_). We are interested in the
chirality of the original eigenstates of the EHH H, which we expand in the obtained chiral
basis:

ps) = D Vi), (D.4)

Lj

where |1, ) are now eigenstates of positive (+) or negative (-) chirality. For a system without
flux defects, for instance in Hermitian class AlIl as considered in Sec. 5, each surface has zero
net-chirality [79]. We calculate the net chirality by summing all states of (+)/(-) chirality for
the top/bottom surface, ptﬂ;p,botmm, and investigating their differences. Specifically, we use

[Yo(r))?<s

pr= . IamP, (D.5)

rLr =l
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[Y.(r))I*<8

pi= >, Wa®P, (D.6)

11,1‘\\:0

where we restrict the summation for bottom (top) surface, denoted by r; =0 (r) = L), once
the states 1, decay in the bulk (|1/)i(r||)|2 <95,0kK1).

Forming the differences between top and bottom surface for a fixed chirality, e.g. (+),
yields

AT =lpg, — P - (D.7)

In the absence of a flux defect, ¢ = 0, each chirality has equal weight one each surface, A* = 0.
Conversely, for a nontrivial flux ¢ = 7, each chirality has predominant weight on one surface.
For a PBC system with two flux tubes, A* is equal to one: there is a single state per chirality per
flux tube (see Fig. 10). Viewing a flux tube as an effective 1D model highlights the fractional
nature of this response: A 1D model always contains end states of both chiralities, for instance
as in the Su-Schrieffer-Heeger model [81]. The fact that we obtain a single state per chirality
shows the fractional nature in the EHH, causing the higher-order flux skin effect in the NH
system.

Ly

T

Chirality

10 Chirality -

|‘//:(ru) |2
1 >

0.2 0.4 0.6 0.8

Figure 10: Fractional nature of the NH higher-order flux skin effect. Eigenstates
of the chiral symmetry in the EHH appear with zero net-chirality per surface in the
absence of a magnetic flux ¢. Introducing a flux defect with ¢ = 7 leads to additional
contributions to top and bottom surface (depicted in red), having opposite chirality.
Panel is generated for a model of size 20 x 20 x 20 unit cells in NH class A with
additional pseudo-inversion symmetry (see App. E.2.2).

D.2 Role of inversion symmetry in the higher-order flux skin effect

This appendix investigates the effect of (pseudo-)inversion symmetry on NH symmetry classes
with a higher-order flux skin effect under nt-flux insertion. The relevant NH symmetry classes
are A, A%, AIIS+ and C5+. In order to obtain a nontrivial response to flux defects in these classes,
we require the presence of additional crystalline symmetries, restricting the magnetic flux ¢ to
0, m in PBC, while still allowing for nontrivial topology. Specifically, we investigate inversion
symmetry

TH(K)I = H(—k), (D.8)

appearing in the EHH as

THK)I =—H(k), I= 6 g) , (D.9)
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and pseudo-inversion symmetry

TH(K)' T = H(—k), (D.10)

appearing in the EHH as

o - - 0 7
TH(K)L' =—H(k), I= (Z O) . (D.11)
We have to identify choices of (pseudo-)inversion symmetry that leave the intrinsic point gap
classification invariant, i.e. do not trivialize the flux response.

D.2.1 Class A

In NH symmetry class A, the EHH can be formed as outlined in Eq. (4) of the main text, which
adds a chiral symmetry ¥, resulting in Hermitian class AlIIl. We can either use an inversion
symmetry (D.8) or a pseudo-inversion symmetry (D.10) to fix the flux ¢ to 0, in PBC in
the NH Hamiltonian. However, these two choices differ in their commutation with the chiral
symmetry Y., when considering the EHH: Whereas “normal” inversion symmetry commutes

with chiral symmetry
- (Z O
[zc,(o I)]_o, (0.12)

pseudo-inversion symmetry anticommutes,

{ic, @ g)} =0. (D.13)

This means both chiral subspaces have the same inversion eigenvalues. Consequently, at every
inversion-symmetric momenta in the Brillouin zone, the occupied and unoccupied subspace
have the same number of positive and negative inversion eigenvalues. Therefore every Hermi-
tian model with these symmetry properties cannot have a band inversion and so is topologically
trivial [82]. As topological zero modes of Hermitian extended models stand in one-to-one cor-
respondence with NH modes within a point-gapped bulk (see Sec 2.2), also the corresponding
NH model is trivial. Accordingly, Ref. [83] outlines that with commuting inversion symmetry,
the resulting Hermitian class AIII?+ is trivial, in agreement with the vanishing 3D winding
number of the NH system. Conversely, anticommuting pseudo-inversion symmetry yields a
EHH in Hermitian class AIII*- which is classified by a Z index. Contrary to normal inversion,
pseudo-inversion hence allows for a nontrivial flux response, the higher-order flux skin effect.

D.2.2 Class AS

In NH symmetry class AS, the EHH can be formed for each sublattice symmetry block (see
App. B.5.4) as outlined in Eq. (4). This construction adds a chiral symmetry %, resulting in
Hermitian class AIIl in each block, of which only one has to be nontrivial. Again, we can either
use an inversion symmetry (D.8) or a pseudo-inversion symmetry (D.10) to fix the flux ¢ to 0,
in PBC in the NH Hamiltonian. However, these two choices differ in their commutation with
the chiral symmetry U, when considering the EHH: Whereas “normal” inversion symmetry
commutes with chiral symmetry pseudo-inversion symmetry anticommutes (see Sec. D.2.1).
Additionally, the sublattice symmetry S of the NH Hamiltonian acts as a chiral symmetry of
H, too. Depending on the commutation or anti-commutation of both U, and S with (pseudo-
)inversion symmetry the topological classification differs. Ref. [83] outlines that both chiral
symmetries have to anti-commute with inversion symmetry to form a nontrivial phase classified
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by a Z index. Correspondingly, an inversion symmetry in the NH Hamiltonian always results
in a trivial phase. Pseudo-inversion symmetry on the other hand only results in a nontrivial
flux response for an anti-commuting sublattice symmetry S. Contrary to normal inversion,
pseudo-inversion hence allows for a nontrivial flux response, the higher-order flux skin effect.

D.2.3 Class AII°+

In NH symmetry class AII-, the EHH follows as outlined in Eq. (4) (see Sec. B.5.9). The EHH
possesses a unitary symmetry U, whose eigenspaces are independent and individually enjoy
TRS, PHS and chiral symmetry, leading to Hermitian class CII in each sector. A stable flux
response in this class requires the presence of a crystalline symmetry: we can either use an
inversion symmetry (D.8) or a pseudo-inversion symmetry (D.10). We have to analyse these
two choices with respect to their commutation with TRS and PHS, to derive their topological
classification [83]. In the EHH we can form two TRS:

- _(Ur O
Ur = ( 0 UT) , (D.14)
and
- [UrS 0
Ur= ( 0 —UTS) . (D.15)
Similarly, we can form two PHS,
- _(Ur O
Up = ( 0 _UT) , (D.16)
and
- _(UrS O
Up = ( 0 UTS) . (D.17)

A 47 classified phase is obtained if both TRSs commute while the PHSs anticommute with
inversion. Conversely, if both TRSs anticommute while the PHSs commute with inversion, we
obtain a Z, classification [83]. Only the latter is compatible with the Z,-point gap classification
without crystalline symmetries. All other cases, also including inversion symmetry, do not yield
a nontrivial response. Therefore, we should choose a pseudo-inversion symmetry commuting
with sublattice symmetry S, but anticommuting with TRS U;. Contrary to normal inversion,
pseudo-inversion hence allows for a nontrivial flux response, the higher-order flux skin effect.

D.2.4 Class C5+

In NH symmetry class C5+, the EHH possesses chiral symmetries S, % in each independent
unitary eigenspace (see App. B.5.11). Consequently, the EHH sits in Hermitian class AlII for
each block, of which only one has to be nontrivial. We can either use an inversion symmetry
(D.8) or a pseudo-inversion symmetry (D.10) to fix the flux ¢ to 0, © in the NH Hamiltonian.
However, these two choices differ in their commutation with the chiral symmetry %, when
considering the EHH: Whereas “normal” inversion symmetry commutes with chiral symme-
try, pseudo-inversion symmetry anticommutes (see Sec. D.2.1). Additionally, the sublattice
symmetry S of the NH Hamiltonian acts as a chiral symmetry of #, too. Depending on the
commutation or anti-commutation of both ¥ and S with (pseudo-)inversion symmetry the
topological classification differs. Ref. [83] outlines that both chiral symmetries have to anti-
commute with inversion symmetry to form a nontrivial phase classified by a Z index. Corre-
spondingly, an inversion symmetry in the NH Hamiltonian always results in a trivial phase.
Pseudo-inversion symmetry on the other hand only results in a nontrivial flux response for an
anti-commuting sublattice symmetry S. Contrary to normal inversion, pseudo-inversion hence
allows for a nontrivial flux response, the higher-order flux skin effect.
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D.3 Resolving the higher-order flux skin effect in the EHH spectrum

In Sec. 5, we derived the presence of a higher-order flux skin effect in NH symmetry classes A,
AS, AI%+, and C5+. While being observable in the NH system due to the extensive localization
of states, the occurrence in the corresponding EHH is more intricate: the inherent nontrivial
surface state of the EHH obscures flux-localized modes. We can nevertheless cleanly identify
the presence of flux induced zero-energy modes in the EHH by considering an interval around
zero energy —e < E < e, within the bulk energy gap (|e| < Ep,°). We denote the set of states
within this interval by £ (see Fig. 5b and Fig. 11 for examples). The number of states |£| can
be used to resolve the higher-order flux skin effect.

NH class A and AS map to Hermitian class AIIl, where the total number of states |£| has to
be a multiple of 4 in the absence of a magnetic flux ¢ =0,

|E] mod4=0. (D.18)

This can be understood from the fact that the EHH in Hermitian class AIll hosts an integer
number of Dirac cones on each surface [79]. Since there is no net chirality per surface,® energy
eigenvalues appear in pairs (E,—FE) on each surface. Inversion symmetry maps between the
two surfaces, such that £ contains a multiple of 4 states.

On the other hand, for a finite flux ¢ = 7, we obtain one additional zero-energy mode per
flux tube (see App. B.3.2), and so we find for a PBC system hosting two flux tubes that

|€] mod 4=2. (D.19)

Calculating |£] mod 4 for our example system in NH class A (Fig. 5b) yields |€[4—y mod 4 =10
(upper left inset), while we find |€]4_, mod 4 = 2 as predicted (lower right inset).

This relation is modified for the NH classes AII°+ and C5+. NH class AII°+ maps to Hermitian
class CII®CII, of which only one subspace is nontrivial (see App. B.5.9). Hermitian class CII
shows a 4-fold degenerate Dirac cone per surface, as chiral symmetry combined with TRS yields
pairs of doubly degenerate states. As inversion symmetry maps between the two surfaces,
states appear as multiples of eight in £. The introduction of two flux tubes amends this by 4
additional states (see App. B.3.5), hence we obtain for the number of states in £, denoted by
|£€], that

|€] mod 8 =0 (4), (D.20)

for flux ¢ = 0 (7). Fig. 11a and b show the comparison of both cases and the validity of the
above index.

NH class C5+ maps to Hermitian class AIIl in two interdependent unitary subspaces (see
App. B.5.11). As outlined in Sec. 5, each subspace comes with a multiple of 4 states. The
full system hence has £ containing multiples of 8 states. The introduction of two flux tubes
amends this by 2 additional states per unitary subspace (see App. B.3.2), hence

€] mod 8 =0 (4), (D.21)

for flux ¢ = 0 (). Fig. 11c and d show the comparison of both cases and the validity of the
above index.

SEyu corresponds to the smallest EHH energy Ey,;, = min(|E|) in absence of flux tubes and where PBC are
implemented in all directions.

5We refer to chirality as the trace of chiral symmetry projected into the surface states, with details explained in
App. D.1.
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E Toy models for all NH symmetry classes with nontrivial flux re-
sponse

E.1 2D models

In this appendix we present models for all intrinsically nontrivial 2D point-gapped NH classes
showing a nontrivial flux response. As outlined in the main text, we consider flux defects
oriented along the x-direction.

E.1.1 Class AIl'
The model in NH class AII' is given by the Hamiltonian
Hagrr (k) =sin(k, )o, —sin(k, )o, +1i ( Z cos(k;) —u) oy + Aoy, (E.1)
i=x,y

with the Pauli matrices o, (u = 0, x, y,%), possessing pseudo TRS as Uy =ic, and A # 0 is
a real parameter breaking residual symmetries.

E.1.2 Class DIII
The nontrivial point-gapped model in NH class DIII" is given by the Hamiltonian
Hpmyi (k) =sin(k,)o, —sin(k,)o, —1i ( Z cos(k;) — 1) 09, (E.2)
i=x,y
with the Pauli matrices o, (u = 0, x, y,2). We obtain TRS' Ur=oy, PHS' Up = o, and chiral

symmetry U, = 0, fulfilling the required commutation relations.

E.1.3 Class BDI+

The point gap-nontrivial model in NH class BDIS+ is given by the Hamiltonian

_( 0 Qk;1)
Hpprs+— (k) =i (Q(k; 3) 0 ) s (E.3)
with
QUk; p) = —sin(k,)or, —sin(k, o, ( > cos(k)— u) o, (E4)
i=x,y

and the Pauli matrices o, (u =0, x, y,2). We obtain TRS Uy = 140, PHS Up = 7,0, chiral
symmetry U, = 7,0, and sublattice symmetry S = 7,0, fulfilling the required commutation
relations.

E.1.4 Class DS-

A nontrivial point-gapped model in NH class D%~ is realized by the Hamiltonian

_ 0 Q(k;2)
Hps- (k) = (Q(k; 6) 0 ) + AT 0y, (E.5)
with
Qk; ) = isin(k,)o, —sin(k, oo +i (z > cos(k;) —u) oy, (E.6)
i=x,y
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Figure 11: Higher-order flux skin effect in NH class AII’+ and C%+. a The EHH for
models in NH class AII+ [Eq. E.17] shows a gapless surface even for ¢ = 0. b Under
OBC in NH class AIIS+, the presence of a nontrivial flux ¢ = m introduces four addi-
tional flux states. ¢ Similarly, the EHH for models in NH class C5+ [Eq. E.19] shows
a gapless surface for ¢ = 0. d Under OBC, however, the presence of a nontrivial flux
¢ = 7 introduces two additional flux states per unitary subspace, yielding in total
four additional modes. All panels are generated for systems of size 20 x 20 x 20 unit
cells.

with the Pauli matrices o, and 7, (u =0, x, y,2). The Hamiltonian possesses PHS Up = 7,0
and sublattice symmetry S = 7,0, fulfilling the required commutation relations. Note that A
multiplies a term to remove unwanted residual symmetries.

E.2 3D models

In this appendix we present models for all intrinsically nontrivial 3D point-gapped NH classes
showing a nontrivial flux response. As outlined in the main text, we consider flux defects
oriented along the x- and z-direction.

E.2.1 Class AIl'

The model in NH class AIl" is based on the exceptional topological insulator introduced in
Ref. [21]. Its Hamiltonian is given by

Hap (k) = ( Z cos(k;) —M) T,00+A Z sin(k;)T,0;+16T,09+ ATo0q, (E.7)
j:x’y?z j:x’y’z

where the Pauli matrices o, and 7, act on the spin and orbital degrees of freedom, respectively,
with 4 = 0,x, y,z and the O-th Pauli matrix as the 2 x 2 identity matrix. A # 0 is a real
parameter breaking residual symmetries. The invariant is wsp =1 for3—6/A <M <3+6/A.
By changing M, we transition to the trivial phase at M = 3 = §/A. The Hamiltonian has
pseudo-inversion symmetry with 7 = 7,0, and pseudo TRS represented by Uy = 740 .
E.2.2 Class A+Z'

The prototypical phase in 3D NH class A is formed by the exceptional exceptional topological
insulator introduced in Ref. [21]:

HA(k)z( Z cos(kj)—M) T,00+A Z sin(k;)T,0;+10T,00+A(To0,+7,0,), (E.8)
j:x’y’z j:x’y’z

where the Pauli matrices o, and 7, act on the spin and orbital degrees of freedom, respectively,
with u = 0,x, y,z and the O-th Pauli matrix as the 2 x 2 identity matrix. A # 0 is a real
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parameter breaking residual symmetries. The Hamiltonian is only left with pseudo-inversion
symmetry with 7 = 1,0y.

E.2.3 ClassAS+7Z'

The nontrivial model in NH class A’ is given by

[ 0 Qk;2)
HAs(k)_(Q(k;O) 0 )+Arxax, (E.9)

with the Pauli matrices oy and Ty (W=0,x,y,2), A # 0 a real parameter breaking residual
symmetries and

Q(k; u) = isin(k,)o, +isin(k,)o, +isin(k,)o, + ( Z cos(k;) — ,u) ogp- (E.10)

i=x,y,2

‘H s has a sublattice symmetry S = 7,0 and pseudo-inversion symmetry Z = 7,0.

E.2.4 Class D

The model in NH class D is given by

Hp(k) =—isin(k,)o, —isin(k,)o, +sin(k,)og +1 ( Z cos(k;)— 2) Oy, (E.11D)

i=X,y,2

with the Pauli matrices o, (u =0, x,y,2), possessing a PHS Up = 0.

E.2.5 Class D+ +Z"

The nontrivial point-gapped phase in NH class D~ is based on the Hamiltonian in NH class D,
formed by

0 Hp(k) .
Hps, (k) = (HD(k) DO ) +A(T,00+iT,0y), (E.12)

with the Pauli matrices o, and 7, (u = 0,x,y,2) and A # 0 a real parameter breaking
residual symmetries. We obtain PHS Up = 770 and sublattice symmetry S = 7,0, fulfilling
the required commutation relations. Additionally, Hps, has pseudo-inversion symmetry with

1= T,0,.

E.2.6 Class D°-

The nontrivial point-gapped phase in NH class D~ is formed by

0 Q(k;Z))

Q(k: 0) 0 (E.13)

Hps- (k) = (

with the Pauli matrices o, and 7, (u=0,x, y,2) and

Q(k; u) = isin(k,)o, +isin(k,)o, +isin(k,)o, + ( Z cos(k;) — ,u) oy. (E.14)

i=x,y,2

We obtain PHS Up = 7,0, and sublattice symmetry S = 7,0, fulfilling the required com-
mutation relations.
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E.2.7 Class DIIIS+

The nontrivial point-gapped phase in NH class DIIIS+ is formed by

0 Q(k;2)

Hps+- (k) =i (Q(k; 4) 0

)+Apxrxcro, (E.15)

with the Pauli matrices Ous Ty and Pu (u=0,x,y,2), A # 0 a real parameter breaking
residual symmetries and

Q(k; u) = sin(k, )7, 0 +sin(k, )10, +isin(k,)T,0, + ( Z cos(k;) — ,u) T,00. (E.16)

i=Xx,Yy,2
We obtain PHS Up = p,7,0,, TRS Uy = p,7,0y, chiral symmetry U; = p,7¢0, and sub-
lattice symmetry S = p, 70, fulfilling the required commutation relations.
E.2.8 Class Al + Z7
The nontrivial point-gapped phase in NH class AIIS+ is formed by

0 Q(k;4)

7-[AIIS+ (k) =i (Q(k, 2) 0

)+Apy7xaz, (E.17)

with the Pauli matrices o
residual symmetries and

w Ty and p, (u = 0,x,y,2), A # 0 a real parameter breaking
Q(k; u) = sin(k, )70, +sin(k, )7, 0, +isin(k,)7, 0,

E.18
+ ( Z cos(k;) — u) T,00tA(T, 0, +1Tg0,). ( )

i=x,y,2

We obtain TRS" Ur = pyto0 , and sublattice symmetry S = p, 70, fulfilling the required
commutation relations. Additionally, H s+ has pseudo-inversion symmetry withZ = p, 7, 0.

E.2.9 Class C5++Z"

The nontrivial point-gapped phase in NH class C°+ is formed by

0 Q(k;3)

Mo )=t (Q(k;s)"‘ 0

)+A(pyrxoz+ipxrxao), (E.19)

with the Pauli matrices o
residual symmetries and

w Ty and p, (u = 0,x,y,2), A # 0 a real parameter breaking
Q(k; u) = sin(k, )70, +sin(k, )70, +isin(k,)7,0,
(E.20)
+ ( Z cos(k;)— u) T,00tA(T, 0, +iTg0,).

i=x,y,2

We obtain PHS Up = p,T(0, and sublattice symmetry S = p,7(0y, fulfilling the required
commutation relations. Additionally, H¢s, has pseudo-inversion symmetry with Z = p , 7, 0.
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