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Abstract

We study Tomonaga-Luttinger liquids thrown out of equilibrium by marginal deforma-
tions in the form of interaction modulations. This is modeled by quenching or peri-
odically driving the Luttinger parameter or, equivalently, the compactification radius of
the free boson conformal field theory between two different values. We obtain exact
analytical results for the evolution of the Loschmidt echo and observables such as the
particle and energy densities. Starting from generic initial states, the quench dynamics
are shown to exhibit revivals and temporal orthogonalities. For the periodic drive, we
show stability or instability of time-evolved physical quantities dependent on the drive
parameters. We also compare the corresponding marginally deformed thermal density
matrices by non-perturbatively evaluating their Rényi divergence as a Euclidean quench.
All the dynamics are shown to be crucially dependent on the ratio of the Luttinger pa-
rameters, which corresponds to the Zamolodchikov distance in the space of marginal de-
formations. Our setup is equivalently interpreted as the dynamics of the bosonic string
upon instantaneous changes of the target-space radius.
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1 Introduction

Quantum quenches and Floquet drives are simple yet fruitful protocols for understanding
physics out of equilibrium. In this paper we study the dynamics of gapless quantum many-
body systems in one spatial dimension called Tomonaga-Luttinger liquids (TLLs) [1] under
interaction quenches and drives. Their low-energy description is given by the simplest con-
formal field theory (CFT) that belongs to a continuous family of CFTs related by marginal
deformations [2], namely 1+1-dimensional compactified free bosons. In this case, the contin-
uous parameter that labels different CFTs is the compactification radius, which corresponds
to the Luttinger parameter for TLLs. Our interaction modulations are modeled precisely by
quenching or periodically driving this parameter between two different values.

The recent advent of experimental platforms capable of probing the non-equilibrium dy-
namics of quantum many-body systems has fueled an interest in related theoretical questions.
These pertain to the physics of thermalization, prethermalization, equilibration to non-thermal
states, and non-equilibrium phenomena such as quantum revivals, dynamical quantum phase
transitions, Floquet topological phases, and discrete time crystals, to name a few [3, 4]. Due
to the inherent complexity of non-equilibrium quantum physics, it is often difficult to make
analytical progress. In this context, CFTs in general and TLLs in particular provide examples
that can be studied out of equilibrium by exact analytical means. The TLL description in terms
of free bosons is also relevant to experiments, such as quasi-one-dimensional condensates of
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ultra-cold atoms [5,6]. Moreover, the free boson CFT and its multi-component generalizations
play a pivotal role in high-energy and mathematical physics, e.g., in the formulation of bosonic
string theory [7] and as an exactly solvable quantum field theory (QFT) [8–10].

In general, quenches of critical theories are categorized as massive or massless, depend-
ing on whether the initial state has correlations with exponential or power-law decay, respec-
tively. Massive or short-range correlated states can be well-approximated by suitable conformal
boundary states, consequently, massive quenches have been studied extensively using powerful
techniques in boundary CFT [11,12]. On the other hand, massless quenches pertain to initial-
izing the system in a state that corresponds to one critical Hamiltonian and abruptly changing
to another. Examples of works in this direction include interaction or marginal quenches in
TLLs [13–26], the sine-Gordon model [27], quantum spin chains [28–31], the one-dimensional
Hubbard model [32], and the Lieb-Liniger model [33–38]. Despite much progress in the study
of quench dynamics for CFTs, few exact results are known for quenches from arbitrary excited
states. Furthermore, the role played by the geometry of the space of marginally deformed
theories [39] in any non-equilibrium setting is yet to be identified.

For driven critical systems, one example that has received recent attention is to periodically
switch between CFTs with different spatially deformed Hamiltonians [40–45]. Such systems
were shown to host rich dynamics containing stable and unstable phases, which have been
numerically verified in spin-chain realizations of TLL theory. Motivated by these developments,
a natural question arises: What is the dynamics of a CFT when subjected to modulations of
marginal couplings? In a sense, this is a more canonical class of deformations since they do
not break conformal invariance. A simple realization of such a protocol consists of periodically
varying the Luttinger parameter in time for TLLs, as studied in [46–48]. However, many
aspects, such as the nature of dynamical phases, transitions between them, and their signatures
in physical quantities have not been analyzed.

In the present paper, we harness underlying symmetries to derive a number of exact an-
alytical results for dynamical quantities for TLLs subjected to marginal quenches and drives.
Among these are the evolution of particle and energy densities and the Loschmidt echo (return
probability) starting from arbitrary excited or thermal states. For the quench, we show that the
results exhibit revivals and periodic orthogonality signaling dynamical quantum phase transi-
tions [49]. For the periodic drive, we find stable and unstable dynamical phases and infer the
critical exponents of natural order parameters at the phase boundary. A key feature common
to all our results is a dependence through the ratio of the two Luttinger parameters. This ra-
tio also corresponds to the well-known Zamolodchikov distance in the space of CFTs related
by marginal deformations [39]. Besides studying dynamical properties, we also use and ex-
tend our formalism to evaluate the Rényi divergence [50] and relative entropy [51] between
thermal states of two TLLs with different Luttinger parameters. The Rényi divergence is a
one-parameter generalization of the relative entropy, which serves as an information-theoretic
measure of the distance between two density matrices, and our result establishes a relation
between this distance and the Zamolodchikov distance for marginally deformed TLLs.

Setup and methods

In TLL theory, all details are encapsulated in two parameters: The propagation velocity v and
the Luttinger parameter K encoding the interactions of the original system. The Hamiltonian
can be written as1

Hv,K =
1

2π

∫ L/2

−L/2
dx :

� v

K
[πΠ(x)]2 + vK[∂xϕ(x)]

2
�

: −
πv

6L
, (1)

1We use units so that ħh= kB = 1.
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for a bosonic field ϕ(x) = ϕ(x) + 2π with x on the circle of length L, where
[ϕ(x),Π(y)] = iδ(x − y) and :· · ·: denotes Wick ordering. From a path integral perspec-
tive, this corresponds to the action2

S =
R2

4πα′

∫

d2 x (∂ µϕ)(∂µϕ) =
1

4πα′

∫

d2 x (∂ µX )(∂µX ) , (2)

describing free bosons X = Rϕ with compactification radius R satisfying

K =
R2

2α′
, (3)

where α′ is referred to as the string tension in bosonic string theory [7]. We recall that α′ has
dimension length2 and is commonly set as α′ = 2, which we will also do here for simplicity.

In this paper, we study TLLs out of equilibrium by quenching or driving the interactions.
This is modeled by changing the Luttinger parameter K in the Hamiltonian in (1) between
two different values, K1 and K2, see Figs. 1(a) and 1(b). For consistency, we also change the
velocity v between v1 and v2, although these can conveniently be absorbed into dimensionless
times

¨

τ1 = v1 t1/L ,

τ2 = v2 t2/L ,

¨

q1 = e−2πiτ1 ,

q2 = e−2πiτ2 ,
(4)

using which all our results for the drive can be stated (and similarly for the quench). On
the other hand, changing K is non-trivial. Indeed, H2 = Hv2,K2

can be shown to correspond
to a J J̄ deformation of H1 = Hv1,K1

. Within the compactified free boson formulation, this is
a marginal deformation that effectively changes the compactification radius from R1 to R2.
Alternatively, within TLL theory, K can be shown to determine the partitioning of excitations
(quasi-particles) into right or left movers propagating with velocity v and −v, respectively, and
changing from K1 to K2 thus corresponds to a repartitioning.

The two non-equilibrium protocols we study are:

1. Quantum quench. Consider an initial state ρ̂ defined with respect to the undeformed
Hamiltonian H1. For instance, its ground state ρ̂ = |Ω〉〈Ω|, an arbitrary excited state
ρ̂ = |Ψ〉〈Ψ| obtained by acting on |Ω〉 (or any primary state) with bosonic creation
operators, or a thermal state ρ̂ = e−βH1/Tr[e−βH1] with inverse temperature β . We
study the expectation values of observables when the system is evolved in time t under
H2:

Tr
�

ρ̂ eiH2 tOe−iH2 t
�

, (5)

where O is an operator such as the energy density associated with the Hamiltonian
H1, see Fig. 1(a). Another quantity of interest that we study is the Loschmidt echo
LΨ(t) =

�

�〈Ψ|e−iH2 t |Ψ〉
�

�

2
of the state |Ψ〉 following a quantum quench.

2. Floquet drive. We consider a two-step drive of a TLL such that the Hamiltonian switches
periodically between H1 and H2, see Fig. 1(b). The Floquet operator describing such a
time evolution is

UF = e−iH1 t1e−iH2 t2 , (6)

where t1, t2 ∈ R are parameters of the drive. We study the stroboscopic (discrete) time
evolution

U−M
F OU M

F (7)

of observables O for an integer number M of cycles as well as the Loschmidt echo
LΨ(M[t1 + t2]) =

�

�〈Ψ|U M
F |Ψ〉

�

�

2
of the state |Ψ〉.

2Here ϕ = ϕ(x , t) with X = Rϕ taking values on the circle [0, 2πR] for (x , t) on the cylinder [−L/2, L/2]×R.
As usual, x0 = vt, x1 = x , ∂µ = ∂ /∂ xµ for µ= 0,1, and the metric is diag(1,−1).
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Figure 1: Illustrations of our (a) quantum quench and (b) Floquet drive with (c)–(d)
selections of obtained results. (c) Exact zeros signalling dynamical quantum phase
transitions in the Loschmidt echo for initial states |Ψ〉 that mix right- and left-moving
excitations (green and red curves) compared to a state that do not mix them (blue
curve) following a quench with K1/K2 = 1.2. (d) Stable (white) and unstable (black)
regions in (τ1,τ2)-parameter space from su(1,1)-stability analysis of the Floquet op-
erator U (n)F for a single bosonic mode (n= 1) corresponding to a two-step drive with
K1/K2 = 1.4.

Our Floquet drive can be seen as a discrete-time version of the continuous interaction drives
in [46, 47] and as a generalization of the equal-period two-step drive in [17]. We stress that
our protocol and presented approach can be directly generalized to an arbitrary number of
steps in the drive.

The key to our approach is the well-known existence of a unitary operator [10] that maps
H2 to H1 (up to zero modes, which are handled separately) incorporating underlying su(1,1)-
algebraic properties. Indeed, this operator, here denoted Iν, implements a Bogoliubov trans-
formation of the theory with K = K2 to the one with K = K1, which can be thought of as a
‘rotation’ by an ‘angle’

ν= log
Æ

K1/K2 = log(R1/R2) . (8)

Geometrically, ν is the Zamolodchikov distance, defined as the geodesic length between two
points in the conformal manifold of the compactified free boson CFT, also called Narain moduli
space [39]. Strictly speaking, Iν is well defined only with an ultraviolet cutoff, which also has
physical interpretations and significance for condensed-matter applications. However, for our
purposes, we will mostly avoid such technical details, as every step and result can be repeated
or restated with a cutoff in place. Lastly, we note that Iν bears a resemblance to interface
operators in boundary CFT [52,53] in that it effectively “glues” two different bosonic theories
along time interfaces in our quench and drive protocols.
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Summary of results

In the present paper, we derive and present the following results:

1. Quantum quench. We obtain exact analytical results for the Loschmidt echo
LΨ(t) = |〈Ψ|e−iH2 t |Ψ〉|2 following a quench from H1 to H2 for any eigenstate |Ψ〉 of
H1. This generalizes earlier results in [17] that were limited to the ground state |Ω〉.
Our expressions notably factorize into the ground-state result LΩ(t) and excitation con-
tributions that feature a hypergeometric function. Besides exhibiting periodic revivals,
which were observed previously, we find that excited states |Ψ〉 that mix right- and left-
moving excitations lead to temporal orthogonality in LΨ(t) at particular times where the
return probability is exactly zero due to the hypergeometric function, signaling dynami-
cal quantum phase transitions arising periodically in time, see Fig. 1(c). We also obtain
exact analytical results for the quenched time evolution of the energy density for initial
pure and thermal states. Starting from a thermal state at temperature β−1, we show
that the expectation value of the energy density equilibrates at late times to a thermal
expectation with an effective temperature β−1

eff = β
−1
�

K1/K2 + K2/K1

�

/2.

2. Floquet drive. We show stability or instability of time-evolved physical quantities de-
pendent on the drive parameters and the Zamolodchikov distance between the TLLs
defining the drive. Specifically, using a decomposition into bosonic modes (of the theory
with K = K1), the Floquet operator can be shown to be expressible as a product

UF =
�

zero modes
�

×
∏

n>0

U (n)F , U (n)F = exp
�

c(n)0 K(n)0 + c(n)− K(n)− + c(n)+ K(n)+
�

, (9)

where c(n)0 and c(n)± are computable coefficients and K(n)0 and K(n)± are combinations of
oscillator modes that satisfy the defining relations of the su(1, 1) algebra. The squared
trace of the individual drive U (n)F provides a stability measure, which can be obtained
using properties of the su(1, 1) algebra:

σn =
�

Tr
�

U (n)F

��2
= 4cosh2

�r

�

c(n)0

�2 − 4c(n)+ c(n)− /2
�

, (10)

which is smaller (larger) than 4 if
�

c(n)0

�2−4c(n)+ c(n)− is negative (positive), which in turn
corresponds to stability (instability). More concretely, we show that σn depends on
(τ1,τ2) in (4) and ν in (8) through

σn =

�

(qn
1 + q−n

1 )(q
n
2 + q−n

2 ) + (q
n
1 − q−n

1 )(q
n
2 − q−n

2 ) cosh(2ν)

2

�2

. (11)

This allows us to straightforwardly draw dynamical phase diagrams for each mode, see
Fig. 1(d), with stable (unstable) regions corresponding to σn < (>)4. We show that
this is observable in exact analytical results obtained for the Loschmidt echo, starting
from any excited state, and in the evolution of the particle and energy densities. We also
identify natural order parameters, and, by numerically studying their critical behavior
near the boundary between stable and unstable regions, show that they have critical
exponents of 1/2.

3. Rényi divergence. We provide a non-perturbative computation of the Rényi divergence

Dα(ρ̂1||ρ̂2) =
1

α− 1
logTr

�

ρ̂α1 ρ̂
1−α
2

�

(12)
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between thermal states ρ̂1 and ρ̂2 of the two different TLL Hamiltonians H1 and H2, or
equivalently of a compactified free boson CFT and its marginally deformed counterpart.
While the Rényi divergence is an equilibrium property of TLLs, it can also be seen as
a Euclidean quench [54, 55], which enables us to use the formalism developed in our
(Lorentzian) quantum-quench analysis of TLLs. We remark that the Rényi divergence has
several mathematical properties that were recently used to put constraints in addition to
the second law of thermodynamics from a holographic perspective [54, 55]. Most QFT
computations of the Rényi divergence have been perturbative so far. However, as we will
show, the Rényi divergence for marginal deformations of a free boson CFT is amenable
to a non-perturbative analysis. Upon taking the α → 1 limit in (12), we recover the
relative entropy S(ρ̂1||ρ̂2) = Tr [ρ̂1 log ρ̂1] − Tr [ρ̂1 log ρ̂2], which defines a quantum
information-theoretic measure of distinguishability between the two TLLs. We show
that the relative entropy between thermal states of two theories with different Luttinger
parameters behaves as (setting v1 = v2 = 1 for simplicity)

S(ρ̂1||ρ̂2)≈
πL
3β

sinh2(ν) , (13)

which becomes exact in the thermodynamic limit. This gives a novel non-perturbative
relation between an information-theoretic distance measure S(ρ̂1||ρ̂2) and the Zamolod-
chikov distance ν in (8) in the space of CFTs. Some perturbative relations and similar
ideas along these lines were presented previously in [56].

Organization of the paper

The rest of this paper is organized as follows. In Sec. 2, we discuss a number of applications
of TLL theory to motivate the interpretation of our quench and drive protocols as interaction
modulations. We also discuss how our setup translates to the dynamics of the bosonic string.
In Sec. 3, we provide the necessary technical background and tools used for computations
in the subsequent sections, including justifications for interpreting changes in the Luttinger
parameter or the compactification radius as marginal J J̄ deformations. In Secs. 4 and 5, we
present our main results for quantum quenches and Floquet drives, respectively. In Sec. 6,
we present the computation of the Rényi divergence and the relative entropy. Concluding
remarks are given in Sec. 7. A regularization based on the Lerch zeta function and certain
computational details are deferred to Appendices A and B.

2 Applications

To motivate the interpretation of our quench and drive protocols as effectively describing in-
teraction modulations, we briefly discuss a number of applications of TLL theory and recall
how the propagation velocity v and the Luttinger parameter K depend on model parameters.
At the end of the section, we also briefly describe how our setup concretely translates to the
dynamics of the bosonic string.

Interacting massless fermions – The Luttinger model. The prototype for TLLs is the Lut-
tinger model of interacting massless fermions in one spatial dimension [8–10]. The fermions
are either right or left moving, described by fermionic fields ψ+(x) and ψ−(x), respectively,
satisfying

�

ψr(x),ψr ′(x ′)†
	

= δr,r ′δ(x− x ′) and
�

ψr(x),ψr ′(x ′)
	

= 0 (r, r ′ = ±) and suitable
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boundary conditions. The Hamiltonian can be written as

H =
∑

r=±

∫ L/2

−L/2
dx :ψr(x)

† (−irvF∂x)ψr(x):

+
∑

r,r ′=±

∫ L/2

−L/2
dx
πvF

2

�

δr,−r ′ g2 +δr,r ′ g4

�

:ψr(x)
†ψr(x)::ψr ′(x)

†ψr ′(x): , (14)

where vF > 0 denotes the Fermi velocity and g2,4 are coupling constants satisfying |g2|< 2+g4.
The notation for the couplings is from ‘g-ology’ in condensed matter physics, see, e.g., [57],
with g2 and g4 corresponding to different four-fermion interaction terms. The Luttinger model
is well known to be exactly solvable by bosonization, using which H is mapped precisely to
the TLL Hamiltonian in (1) with

v = vF

Æ

(1+ g4/2)2 − (g2/2)2 , K =

√

√

√1+ g4/2− g2/2
1+ g4/2+ g2/2

, (15)

see, e.g., [57–59] and references therein. Modulating g2,4 in time thus corresponds to our
interaction quenches or drives changing K and v.

Quantum XXZ spin chain in the gapless regime. An example of a one-dimensional lat-
tice model that falls into the TLL class is the spin-1/2 quantum XXZ Heisenberg chain for
certain values of the anisotropy. This is a famous Bethe-ansatz integrable model of nearest-
neighbor coupled spins described by spin operators S x

j , S y
j , and Sz

j that act on lattice site

j = 1, . . . , N . These satisfy [Sαj , Sβj′] = iδ j , j′εαβγS
γ
j (α,β ,γ ∈ {x , y, z}), where εαβγ is the to-

tally anti-symmetric tensor (εx yz = 1), and we impose periodic boundary conditions. The XXZ
Hamiltonian is

H = −J
N
∑

j=1

�

S x
j S x

j+1 + S y
j S y

j+1 −∆Sz
j S

z
j+1

�

− h
N
∑

j=1

Sz
j , (16)

where J is the exchange-coupling strength,∆ is the anisotropy, h is an external magnetic field,
and L = Na with a the lattice spacing. We recall that the anisotropy term corresponds to
four-fermion interactions after a Jordan-Wigner transformation. In fact, for |∆| < 1 and near
(but not exactly at) half filling, applying this transformation to the Hamiltonian in (16) and
taking a scaling limit effectively yields the Luttinger model in (14), see, e.g., [57,58]. Indeed,
in this regime, the low-energy description is given by TLL theory with

v = Ja
π

2

p
1−∆2

arccos(∆)
, K =

π

2[π− arccos(∆)]
, (17)

obtained from the exact Bethe-ansatz solution when h= 0, see, e.g., [58]. As before, modula-
tions in ∆ corresponds to our interaction quenches or drives changing K and v.

Interacting massless bosons – The Lieb-Liniger model. Another well-known example of
a Bethe-ansatz integrable model is the Lieb-Liniger model of interacting bosons in one spatial
dimension. In second quantization, the Hamiltonian is

H =

∫ L/2

−L/2
dx

�

1
2m
∂xΨ(x)

†∂xΨ(x) + cΨ(x)†Ψ(x)Ψ(x)†Ψ(x)
�

, (18)

where m is the particle mass, c ≥ 0 is a repulsive coupling constant, and Ψ(x) is a bosonic field
satisfying [Ψ(x)†,Ψ(x ′)] = δ(x − x ′). If we define the dimensionless coupling γ = 2mc/ρ0,
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where ρ0 is the density of particles, then v = v(γ) and K = K(γ) are functions of γ for which
analytical expressions are not known in general but whose product must equal vF = πρ0/m.
As limiting cases for large and small γ,

v =
vF

K
, K ∼

(

1+ 4
γ for γ≫ 1 ,

πp
γ

�

1−
p
γ

2π

�−1/2
for γ≪ 1 ,

(19)

see, e.g., [60, 61]. Once again, modulations in γ, or rather in c assuming ρ0 is fixed, corre-
sponds to our non-equilibrium protocols changing K and v.

Trapped ultra-cold atoms. Besides its theoretical significance, TLL theory has direct experi-
mental relevance to low-dimensional quantum many-body systems. Well-known and intensely
studied examples are quasi-one-dimensional condensates of ultra-cold atoms. For a single con-
densate of bosons, such a system can be modeled by the Hamiltonian

H =

∫ L/2

−L/2
dx

�

1
2m
∂xΨ(x)

†∂xΨ(x) +
g
2
Ψ(x)†Ψ(x)Ψ(x)†Ψ(x) + [V (x)−µ]Ψ(x)†Ψ(x)

�

, (20)

where m is the atom mass, g ≥ 0 is the effective interaction strength, V (x) is the trapping
potential, and µ is the chemical potential, see, e.g., [6,60–62].3 In the Thomas-Fermi regime,
(20) can be approximated as an inhomogeneous TLL following the harmonic-fluid approach
[63], setting Ψ(x)† =

p

ρ0(x) +πΠ(x)eiϕ(x) and keeping only terms quadratic in the fields,
with position-dependent

v(x) =
Æ

ρ0(x)g/m , K(x) = π
Æ

ρ0(x)/mg , (21)

where ρ0(x) = [µ− V (x)]/g denotes the mean-atom-density distribution. The effect of v(x)
and K(x) on non-equilibrium dynamics was recently studied in [64]. It would be interesting
to study quenched or driven inhomogeneous TLLs modulating v(x) and K(x) in time, which
would be directly applicable to trapped ultra-cold atoms. However, this is beyond the scope of
the present paper, as we only consider the homogeneous case, but which can be viewed as a
first step in this direction. We remark that a related but different question concerns modulated
tunnel couplings between pairs of quasi-one-dimensional condensates, see, e.g., [65,66].

Quantum circuits. Another important application of TLL theory is to one-dimensional arrays
of superconducting junctions. These have been proposed to simulate TLLs, the map between
the parameters given by

v ∼ a
Æ

2EC0
EJ , K ∼

1
2π

√

√

√

2EC0

EJ
, (22)

to lowest order in the regime EJ ≫ EC0
, where EJ is the Josephson energy, EC0

is the charging
energy, and a is the array spacing, see, e.g., [67, 68]. It would be interesting if an array of
driven junctions could be realized to simulate quenches and drives in TLLs.

String theory. The single compactified free boson in (2) also describes the closed bosonic
string with target space being a circle of radius R. In this context, the bosonic field ϕ plays the
role of the target-space coordinate while x and t are the worldsheet coordinates. A sudden

3This model is that of a trapped Lieb-Liniger gas with c = g/2 using the notation in (18).
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change in the radius from R1 to R2, with R2 > R1, realizes a toy scenario of sudden infla-
tion. From a purely field-theoretic standpoint, one can imagine studying quenches caused by
current-current deformations of more general sigma and WZW models [69]. These are inte-
grable deformations and, therefore, the quench dynamics should be tractable. The analysis
we are about to present is a first step in this direction.

3 Algebraic framework and Bogoliubov transformations

To establish our notation and conventions, following [70–72], we recall that the TLL Hamil-
tonian in (1) can equivalently be written as

Hv,K =

∫ L/2

−L/2
dx v

�

T+(x) + T−(x)
�

, (23)

using the right- and left-moving components T+(x) and T−(x) of the energy-momentum tensor
in light-cone coordinates. The latter can, in turn, be expressed in terms of current operators

T±(x) =
π

K
:J±(x)

2: −
π

12L2
, (24)

where

J±(x) =
1

2π

�

πΠ(x)∓ K∂xϕ(x)
�

(25)

are the right- and left-moving components of a conserved U(1) current in TLL theory. In
general, consider a 1+1-dimensional CFT with central charge c (in our case c = 1) and a
conserved U(1) current with K appearing as the current-algebra central charge. Passing to
Fourier space,

T+(x) =
2π
L2

∞
∑

n=−∞
e+2πinx/L

�

Ln −
c

24
δn,0

�

, J+(x) =
1
L

∞
∑

n=−∞
e+2πinx/LJn ,

T−(x) =
2π
L2

∞
∑

n=−∞
e−2πinx/L

�

L̄n −
c

24
δn,0

�

, J−(x) =
1
L

∞
∑

n=−∞
e−2πinx/L J̄n ,

(26)

the operators Ln and Jn for n ∈ Z satisfy the commutation relations

�

Ln, Lm

�

= (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 ,

�

Jn, Jm

�

= Knδn+m,0 ,
�

Ln, Jm

�

= −mJn+m,
(27)

and commute with all L̄n and J̄n, which in turn satisfy relations analogous to (27). We refer
to [70] for an introduction to these and related topics.

3.1 Marginal deformations and the moduli space

Changes in the Luttinger parameter K or equivalently the compactification radius R = 2
p

K
correspond to marginal deformations of the TLL or free boson CFT.4 One way to arrive at
this interpretation from a Lagrangian point of view is by identifying the marginal operator Φ
responsible for changes in R, which by definition is a primary field with conformal weights
(h, h̄) = (1,1), see, e.g., [2]. The aim below is to identify this operator and explain how this
gives a geometric interpretation to our space of marginal deformations.

4Recall that we set α′ = 2.
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An infinitesimal change from R to R+δR implies the following change in the action (2):

δS = SR+δR − SR =
RδR
4π

∫

d2 x (∂ µϕ)(∂µϕ) . (28)

Therefore, the marginal operator is

Φ=
RδR
4π
(∂ µϕ)(∂µϕ) =

1
4π
δR
R

J(z)J̄(z̄) , (29)

where we identified the currents J(z) = −2πJ+(x−)/
p

K and J̄(z̄) = −2πJ−(x+)/
p

K in com-
plex coordinates z = x + ivτ= x− and z̄ = x − ivτ= x+ with τ= it denoting imaginary time
[cf. (25)]. The change is thus exactly in the form of a J J̄ deformation.

The geometry of the ‘theory space’ generated by marginal deformations, known as the
moduli space or conformal manifold, here denoted by M, is given by the Zamolodchikov
metric [39].5 This is obtained from the ground-state correlation function of a pair of marginal
operators on the sphere (or the infinite plane):

〈Φ(z, z̄)Φ(0, 0)〉=
ds2

M
|z|4

, ds2
M =

1
(4π)2

�

dR
R

�2

. (30)

Thus, up to an overall constant, the geodesic distance between two CFTs of compactification
radii R1 and R2 in M is

∫ R1

R2

dR
R
= log

�

R1

R2

�

, (31)

which is exactly ν in (8), giving it the geometric interpretation as the Zamolodchikov distance.
It will turn out that the dynamics of our non-equilibrium protocols will crucially depend on
this parameter.

3.2 Quantization using bosonic operators

Given our non-equilibrium protocols featuring H1 = Hv1,K1
and H2 = Hv2,K2

, see Fig. 1, we find
it convenient to let H1 be our ‘undeformed’ theory, i.e., we set K = K1 in (24), (25), and (27),
and view H2 = Hv2,K2

as our ‘deformed’ theory. To this end, we introduce two commuting
sets of bosonic operators an and ān, n ∈ Z, for right- and left-moving excitations, respectively,
satisfying a†

n = a−n,

[an, am] = nδn+m,0 = [ān, ām] , [an, ām] = 0 , (32)

and
an|Ω〉= ān|Ω〉= 0 ∀ n≥ 0 , (33)

which also defines the vacuum |Ω〉. The operators in the theory with K = K1 can then be
constructed as

Jn =
p

K1an , J̄n =
p

K1ān (34)

and

Ln =
1
2

∞
∑

m=−∞
:an−mam: , L̄n =

1
2

∞
∑

m=−∞
:ān−mām: , (35)

where the Wick ordering :· · ·: is with respect to |Ω〉 (discussed further in Sec. 3.5). We recall
that the latter identities are examples of the Sugawara construction, see, e.g., [70]. These

5The moduli space of the free boson CFT is parametrized by the radius R ∈ [
p
α′,∞], obtained by quotienting

[0,∞] by the action of T-duality R↔ α′/R.
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operators can be shown to satisfy (27) with K = K1 and c = 1. The Fourier modes of the
bosonic fields ϕ(x) and Π(x) in (1) can then be constructed as

ϕn =
1

2
p

K1

i
n

�

an − ā−n

�

, Πn =
p

K1

�

a−n + ān

�

(36)

for all n ̸= 0, satisfying [ϕn,Πm] = iδn,m and [ϕn,ϕm] = 0 = [Πn,Πm] for n, m ̸= 0. As usual,
the case n= 0 has to be be handled separately. To fix our terminology, we will refer to an and
ān for n ̸= 0 as oscillator modes and a0 and ā0 as zero modes.

Given the above, we can express the undeformed Hamiltonian

H1 =
2πv1

L

�

L0 + L̄0

�

−
πv1

6L
(37)

in terms of the oscillator and zero modes: H1 = H(0)1 +H(osc)
1 −πv1/6L with

H(osc)
1 =

πv1

L

∑

n ̸=0

:(a−nan + ā−nān): ,

H(0)1 =
πv1

L

�

a2
0 + ā2

0

�

.
(38)

It follows that H1 does not couple right and left movers and has |Ω〉 in (33) as its ground state.
Let us also write the deformed Hamiltonian H2 using the modes of the undeformed theory:6

H2 = H(0)2 +H(osc)
2 −πv2/6L with

H(osc)
2 =

πv2

L

∑

n̸=0

�

cosh(2ν) :
�

a−nan + ā−nān

�

: + 2sinh(2ν)anān

�

+ E0
2 ,

H(0)2 =
πv2

L

�

cosh(2ν)
�

a2
0 + ā2

0

�

+ 2 sinh(2ν)a0ā0

�

,
(39)

for the Zamolodchikov distance ν in (8) as a function of the two Luttinger parameters K1,2 (or
the two radii R1,2), where E0

2 = −(2πv2/L)
∑

n>0[cosh(2ν)− 1]n is a diverging constant due
to Wick ordering with respect to |Ω〉 (see Sec. 3.5). We note the presence of terms that couple
right and left movers if ν ̸= 0, which makes it manifest that H2 is a J J̄ deformation of H1 [cf.
(34)]. For completeness and future reference, we note the following analogue of (37) for the
deformed Hamiltonian:

H2 =
2πv2

L
cosh(2ν)(L0 + L̄0) +

2πv2

L
sinh(2ν)

K1

∞
∑

n=−∞
Jn J̄n −

πv2

6L
+ E0

2 , (40)

where all ingredients are operators of the undeformed theory with K = K1.7

3.3 Underlying su(1, 1) algebras

The combinations of oscillator modes appearing in H1 and H2 in (38) and (39) can conve-
niently be written in terms of the generators of a countably infinite number of copies of the
su(1,1) algebra, labeled by n ∈ Z+ = {1,2, . . .}. More precisely, for n> 0, let

K(n)0 =
1

2n
(a−nan + ā−nān + n) , K(n)− =

1
n

anān , K(n)+ =
1
n

a−nā−n , (41)

6The expression in (39) can also be derived from (50). We note that the coefficients cosh(2ν) and sinh(2ν) can
be interpreted as coupling constants and correspond to 1 + g4/2 and g2/2 in (14), respectively, if the latter are
defined with respect to the theory with K = K1 (instead of K = 1 as usual).

7Under an infinitesimal change of the Luttinger parameter, K2 = K1 + δK1, the deformed Hamiltonian (40) is
related to the undeformed one as H2/v2 ≈ H1/v1 − (2π/L)(δK1/K

2
1 )
∑

n Jn J̄n.
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which satisfy
�

K(n)−
�†
= K(n)+ and

[K(n)− , K(m)+ ] = 2K(n)0 δn,m , [K(n)0 , K(m)± ] = ±K(n)± δn,m , (42)

see, e.g., [73]. For later reference, one can show that the associated Cartan-Killing form is

K(X , Y ) =
�

x0 x− x+
�





2 0 0
0 0 −4
0 −4 0









y0
y−
y+



 (43)

for X = x0K(n)0 + x−K(n)− + x+K(n)+ and Y = y0K(n)0 + y−K(n)− + y+K(n)+ . We recall that the
corresponding group, SU(1, 1), is non-compact and, therefore, all unitary irreducible repre-
sentations are infinite dimensional, see, e.g., [73]. However, one can construct a non-unitary
2× 2-matrix representation of the generators:

K(n)0

�

�

�

2×2
=

�

−1/2 0
0 1/2

�

, K(n)−

�

�

�

2×2
=

�

0 1
0 0

�

, K(n)+

�

�

�

2×2
=

�

0 0
−1 0

�

. (44)

Additionally, it is also useful to note the following commutation relations:

[K(n)− , am] = δn+m,0ā−m , [K(n)− , ām] = δn+m,0a−m , (45a)

[K(n)+ , am] = −δn+m,0ā−m , [K(n)+ , ām] = −δn+m,0a−m . (45b)

The Hamiltonians can also be written in terms of the su(1,1) generators as

H1 = H(0)1 +
2πv1

L

∑

n>0

2n
�

K(n)0 −
1
2

�

−
πv1

6L
(46)

and

H2 = H(0)2 +
2πv2

L

∑

n>0

2n
�

cosh(2ν)
�

K(n)0 −
1
2

�

+ sinh(2ν)
�

K(n)− + K(n)+
�

�

−
πv2

6L
, (47)

with ν in (8).

3.4 Bogoliubov transformations

It is well-known that a TLL Hamiltonian can be ‘diagonalized’ by a Bogoliubov transformation,
which effectively ‘rotates’ the oscillator modes by an ‘angle’ ν, for a suitable choice of the latter.
Below, we discuss the operator that implements this transformation and show that the relevant
choice of ν is exactly the one in (8).

As explained in [10], the Bogoliubov transformation is implemented by the unitary oper-
ator8

Iν = exp



ν
∑

n̸=0

1
n

anān



=
∏

n>0

exp
�

ν
�

K(n)− − K(n)+
��

, (48)

defined for any ν ∈ R. The second equality rewrites the operator as it appears in [10] in
terms of the su(1, 1) generators, which will prove convenient later. Indeed, using (45), it is
straightforward to show

IνanI†
ν = an cosh(ν) + ā−n sinh(ν) , (49a)

IνānI†
ν = ān cosh(ν) + a−n sinh(ν) (49b)

8Note that we use an and ān of the undeformed theory with K = K1 to define Iν rather than the usual choice
corresponding to K = 1.
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for n ̸= 0. The inverse relations are obtained by noting that I†
ν = I−1

ν = I−ν. Note that one
must take the latter as a definition of I†

ν when using (48) with the non-unitary representation
in (44). By picking ν as in (8), one can show that

I†
νH(osc)

2 Iν =
v2

v1
H(osc)

1 + E0
2 , (50)

up to the diverging constant E0
2 due to Wick ordering with respect to |Ω〉 (see Sec. 3.5). This

allows us to write the Floquet operator in (6) as

UF = e−iE0
2 t2e−iH1 t1Iνe

−iH1 t̃2I†
νe
−i
�

H(0)2 t2−H(0)1 t̃2

�

, t̃2 = (v2/v1)t2 , (51)

where the overall phase e−iE0
2 t2 will be of no consequence to the dynamical observables we

study. The above expression for UF is the key to most of our subsequent computations. (The
quantum quench can be studied as a special case by setting t1 = 0 and t2 = t.)

In Sec. 1, we noted that Iν brings to mind interface operators in boundary CFT since it
connects two different bosonic theories along time interfaces in our non-equilibrium protocols.
One can also observe that this operator, as defined in (48), has the form of a two-mode squeeze
operator [74]. This class of operators play an important role in quantum optics, where they
are associated to degenerate parametric amplification. In our present setup, the two modes
correspond to the right- and left-moving sets of oscillator modes.

We also find it useful to introduce the q-modified operator

I(q)ν = qL0+ L̄0Iνq−L0− L̄0 = exp



ν
∑

n ̸=0

q−2n

n
anān



=
∏

n>0

exp
�

ν
�

q−2nK(n)− − q2nK(n)+
��

(52)

for q ∈ U(1). In the second equality, we used that

qL0+ L̄0 anq−L0− L̄0 = anq−n , qL0+ L̄0 ānq−L0− L̄0 = ānq−n . (53)

(The latter is nothing but the inverse time evolution of an and ān under H1 in (38) if one sets
q = e−2πiv1 t/L .) The q-modified operators transform the oscillator modes as

I(q)ν an

�

I(q)ν
�†
= an cosh(ν) + ā−n sinh(ν)q2n , (54a)

I(q)ν ān

�

I(q)ν
�†
= ān cosh(ν) + a−n sinh(ν)q2n , (54b)

generalizing (49). Moreover, it also allows us to further rewrite (51) as

UF = e−iE0
2 t2qL0+ L̄0

1 Iν
�

I(q2)
ν

�†
qL0+ L̄0

2 e−i
�

H(0)2 −(v2/v1)H
(0)
1

�

t2 , (55)

for q1,2 in (4), where we reiterate that the phase e−iE0
2 t2 will be of no consequence in practice.

Lastly, as for Iν = I(1)ν , unitarity implies
�

I(q)ν
�†
=
�

I(q)ν
�−1
= I(q)−ν , which must be taken as a

definition when using (52) with the non-unitary representation in (44).

3.5 Wick ordering

The Wick ordering :· · ·: we use is with respect to |Ω〉 in (33) and is therefore the ordering of the
Hilbert space of H1 constructed from its primary states and their descendants. For bilinears of
the form anam and ānām, this ordering is equivalent to subtracting the ground-state expectation
value,

:anam: = anam − 〈Ω|anam|Ω〉= anam −δn+m,0nθ (n) , (56)
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where θ (·) is the Heaviside function, and similarly for ānām.9

The constant E0
2 in (39) and (50) appears due to re-ordering of the right-hand side, and

diverges due to that the J J̄ deformation affects all modes. A more rigorous approach would
be to include an ultraviolet cutoff on the deformation, effectively a momentum dependence in
the Luttinger parameter K(n)2 so that it tends to K1 sufficiently fast for large |n|. As mentioned,
this is related to making Iν well defined: This operator provides a map between the Hilbert
spaces of our two theories with different Luttinger parameters, which strictly speaking become
unitarily inequivalent in the absence of a cutoff, manifested by that the ‘true ground state’ of H2
is separated from its ‘ground state’ Iν|Ω〉 in the Hilbert space of H1 by a diverging constant.
This necessitates an additive renormalization of I†

νH2Iν for it to make sense on the Hilbert
space of H1, see, e.g., [59] for further discussion. We remark, however, that the presence of a
cutoff can be motivated by physical applications and that all steps in this paper can be repeated
with it in place since our quenched or driven theory corresponds to an infinite sequence of
uncoupled (discrete-time) quantum (parametric) oscillators.

4 Quantum quench

In this section, we study the dynamics of a TLL after an interaction quench, starting from
an arbitrary eigenstate of H1, and switching the Luttinger parameter from K1 to K2 at time
t = 0, see Fig. 1(a). As discussed in Sec. 3, this corresponds to quenching the original TLL
Hamiltonian with a marginal (J J̄) deformation. We compute the exact time-evolution after
the quench of the following two quantities:

1. The Loschmidt echo, defined for a pure initial state |Ψ〉 as

L(t) = |〈Ψ|e−iH2 t |Ψ〉|2 . (57)

This quantifies the time-dependent return probability of a state and can thereby be used
to measure the probability of quantum revivals. Moreover, non-analyticities in log[L(t)]
after a quantum quench can reveal rich dynamics and are a typical signature of dynam-
ical quantum phase transitions [49].

2. The energy-density expectation, defined for a pure initial state |Ψ〉 as

EΨ(x , t) = 〈Ψ|eiH2 tv1[T+(x) + T−(x)]e
−iH2 t |Ψ〉 . (58)

In addition to pure states, we also compute the time evolution of the energy-density
expectation with respect to initial thermal states. For all the cases considered, the spatial-
homogeneity of the initial state significantly simplifies the computations.

We note that, since the initial states we consider are spatially homogeneous, time evolution
of the particle density would be trivial, which is why we do not study this observable in the
present work. However, for spatially inhomogeneous initial states, the expectation value of
particle density would generically have a non-trivial time evolution.

4.1 Loschmidt echo

For the ground state

We first compute the Loschmidt echo after the quench from the ground state |Ω〉 of H1,

LΩ(t) =
�

�〈Ω|e−iH2 t |Ω〉
�

�

2
. (59)

9Starting from the usual definition of placing all creation operators to the left of all annihilation operators, (56)
can be verified by identifying an and ān for n < (>) 0 as creation (annihilation) operators, meaning that the only
non-trivial case is n> 0> m, and using (32) and (33).
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Using the framework introduced in Sec. 3, it can be shown that

〈Ω|e−iH2 t |Ω〉= e−iE0
2 t〈Ω|Iν

�

I(q)ν
�†|Ω〉 . (60)

Indeed, since (6) implies UF = e−iH2 t for t1 = 0 and t2 = t, the above follows from (55) for
q1 = 1 and q2 = q = e−2πiv2 t/L and (33). Note that LΩ(t) is insensitive to the overall phase
e−iE0

2 t . Our strategy to compute the right-hand side of (60) is to use the decomposition of
Iν
�

I(q)ν
�†

in terms of the su(1, 1) generators in (41):

〈Ω|Iν
�

I(q)ν
�†
|Ω〉=

∏

n>0

〈Ω|exp
�

ζ
(n)
+ K(n)+

�

exp
�

ζ
(n)
0 K(n)0

�

exp
�

ζ
(n)
− K(n)−

�

|Ω〉

=
∏

n>0

〈Ω|exp
�

ζ
(n)
0 K(n)0

�

|Ω〉=
∏

n>0

exp
�

ζ
(n)
0 /2

�

, (61)

where we used 〈Ω|K(n)+ = 0 = K(n)− |Ω〉, which follows from (33). One efficient way to find the
coefficients ζ(n)0 and ζ(n)± is to use the non-unitary 2× 2-matrix representation of the su(1, 1)

in (44). In this representation, using (48) and (52) with
�

I(q)ν
�†
= I(q)−ν as a definition,10 we

obtain

Iν
�

I(q)ν
�†
�

�

�

(n)

2×2
=

�

cosh2(ν)− sinh2(ν)q2n 1
2 sinh(2ν)

�

1− q−2n
�

1
2 sinh(2ν)

�

1− q2n
�

cosh2(ν)− sinh2(ν)q−2n

�

(62)

for the nth mode. Comparing this with the product

eζ
(n)
+ K(n)+ eζ

(n)
0 K(n)0 eζ

(n)
− K(n)−

�

�

�

2×2
=

�

e−ζ
(n)
0 /2 ζ

(n)
− e−ζ

(n)
0 /2

−ζ(n)+ e−ζ
(n)
0 /2 eζ

(n)
0 /2 − ζ(n)− ζ

(n)
+ e−ζ

(n)
0 /2

�

, (63)

we deduce that the Loschmidt echo after the quench starting from the ground state is

LΩ(t) =
∏

n>0

1
�

�cosh2(ν)− sinh2(ν)q2n
�

�

2 . (64)

Considering all the modes by taking the infinite product in (64) into account, the resulting
Loschmidt echo has a Dirac comb structure, i.e., it is zero at all times t apart from t = kL/2v2
for k ∈ N = {0, 1,2, . . .}, at which there are exact quantum revivals. These can be under-
stood from a quasiparticle picture [75]: Right- and left-moving quasiparticles emitted from
any position meet again after half-integer multiples of L with periodic boundary conditions.
A similar result was found in [76] for the Loschmidt echo by starting from a boundary state
and quenching with a uniform CFT Hamiltonian, while we started from the ground state of
a uniform compactified free boson CFT, and quenched with a J J̄ deformed CFT. To compare
with critical lattice systems, see Sec. 2, it is necessary to apply a cutoff on the number of mo-
mentum modes that appear in the infinite product. This in turn leads to a cutoff dependent
Loschmidt echo, as shown in Fig. 2. Finally, we note that the Loschmidt echo starting from a
primary state |h, h̄〉 of conformal dimension (h, h̄) is the same as starting from the ground state
|Ω〉. We present a proof for this statement in Appendix B.1.

For excited states

We now compute the exact time evolution of the Loschmidt echo starting from an initial state
of the form

|Ψp,p̄〉=
1

Æ

Np,p̄

∞
∏

n=1

ā p̄n
−napn
−n|Ω〉 , Np,p̄ =

∞
∏

n=1

(npn pn!)(np̄n p̄n!) (65)

10At a practical level, this is done in order to bypass the unitarity requirement on the SU(1, 1) representation.
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Figure 2: Time evolution of the Loschmidt echo LΩ(t) in (64) following a quench
with K1/K2 = 7/6 starting from the ground state. The results are plotted for a cutoff
on the number of modes at n = 10,20, . . . , 100 (top to bottom). We observe that by
increasing the number of terms in the product, LΩ(t) tends to the exact CFT result
of a Dirac comb with revivals at kL/2v2, k ∈ N.

for p = (pn)∞n=1 and p̄ = (p̄n)∞n=1 with pn, p̄n ∈ N, i.e., any possible descendant state from the
ground state |Ω〉. Following the above reasoning, the Loschmidt echo has the form

Lp,p̄(t) =
�

�〈Ψp,p̄ |e−iH2 t |Ψp,p̄〉
�

�

2
=

1

N 2
p,p̄

�

�Cp,p̄

�

�

2
, (66)

where

Cp,p̄ = 〈Ω|

�∞
∏

n=1

apn
n ā p̄n

n

�

Iν
�

I(q)ν
�†
�∞
∏

n=1

ā p̄n
−napn
−n

�

|Ω〉 (67)

is the non-trivial part we need to compute.
Let us start by considering the initial state

�

1/
p

npp!
�

ap
−n|Ω〉, writing p = pn to lighten the

notation. We thus need to compute

Cp = 〈Ω|ap
nIν

�

I(q)ν
�†

ap
−n|Ω〉 . (68)

This can be achieved by using (49) and (54) to move one a−n past Iν
�

I(q)ν
�†

, which yields

Cp = 〈Ω|ap
n

�

Ana−n + Bnān

�

Iν
�

I(q)ν
�†

ap−1
−n |Ω〉 , (69)

with An = An(t) and Bn = Bn(t) given by

An(t) = cosh2(ν)− sinh2(ν)q−2n , Bn(t) =
1
2

sinh(2ν)
�

1− q−2n
�

, (70)

using q = e−2πiv2 t/L . Noting that 〈Ω|ap
na−n = pn〈Ω|ap−1

n , we obtain

Cp = npAnCp−1 + Bn〈Ω|ap
n ānIν

�

I(q)ν
�†

ap−1
−n |Ω〉 . (71)

The second term can be simplified by moving ān to the right, leading to

〈Ω|ap
n ānIν

�

I(q)ν
�†

ap−1
−n |Ω〉= An〈Ω|ap

nIν
�

I(q)ν
�†

ānap−1
−n |Ω〉 − BnCp , (72)
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Figure 3: (a) Time evolution of the Loschmidt echo Lp1
(t)/LΩ(t) in (75) following

a quench with K1/K2 = 4/3 for initial states of the form ap1
−1|Ω〉 for p1 = 1,2, . . . , 12

(top to bottom). (b) Time evolution of the Loschmidt echo Lp1,p̄1
(t)/LΩ(t) in (83)

following the same quench for initial states of the form ap1
−1ā p̄1
−1|Ω〉 for p1 = 0, 1,2, 3,4

(top to bottom) and p̄1 = 2. Temporal orthogonality and non-analyticities of the
Loschmidt echo at discrete times can only be observed if the initial state mixes right-
and left-moving excitations for a given mode n. On the other hand, quantum revivals
at integer multiples of L/2 happen for any choice of pure initial state.

with the complex conjugated Bn = Bn(−t) given by (70). The first term vanishes and we
conclude that Cp must satisfy the recursion relation

Cp = np
An

1+ |Bn|2
Cp−1 , C0 = 〈Ω|Iν

�

I(q)ν
�†
|Ω〉 . (73)

Solving this recursion relation, we conclude that

Cp = npp!
�

An

1+ |Bn|2

�p

〈Ω|Iν
�

I(q)ν
�†
|Ω〉 . (74)

Thus, using (66) with Npn
= npn(pn!), the Loschmidt echo starting from an initial state of the

form
�

1/
p

npn pn!
�

apn
−n|Ω〉 is obtained by multiplying LΩ(t) in (64) by a time-dependent factor.

The result is

Lpn
(t) = LΩ(t)

� |An(t)|
1+ |Bn(t)|2

�2pn

, (75)

with An(t) and Bn(t) in (70). A direct consequence of (75) is that Lpn
(t) decreases exponen-

tially with pn by starting from such an excited state instead of the ground state. However, the
quantum revivals at times t = kL/2v2 remain unchanged, see Fig. 3(a).

We now consider an initial state that mixes right- and left-moving excitations for a given
mode n,

|Ψp,p̄〉=
1

p

(npp!)(np̄ p̄!)
ā p̄
−nap
−n|Ω〉 , (76)

again writing p = pn and p̄ = p̄n to lighten the notation. The Hamiltonian H2 after the quench
acts non-trivially on such an initial state because the marginal (J J̄) deformation effectively
repartitions excitations into right and left moving. As before, we compute

Cp,p̄ = 〈Ω|ap
n ā p̄

nIν
�

I(q)ν
�†

ā p̄
−nap
−n|Ω〉 . (77)

Once again, using (49) and (54) to move one ā−n from the right to the left, we obtain

Cp,p̄ = np̄AnCp,p̄−1 + Bn〈Ω|ap+1
n ā p̄

nIν
�

I(q)ν
�†

ā p̄−1
−n ap

−n|Ω〉 , (78)
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with An = An(t) and Bn = Bn(t) given by (70). The second term can be simplified by succes-
sively moving ān from the left to the right, eventually leading to

Bn〈Ω|ap+1
n ā p̄

nIν
�

I(q)ν
�†

ā p̄−1
−n ap

−n|Ω〉= −|Bn|2
p̄−1
∑

j=0

(p̄− 1)!
(p̄− j − 1)!

(nAn)
jCp+1,p̄−1− j . (79)

Plugging into (78), we find the following two-variable recursion relation for Cp,p̄:

Cp,p̄ = np̄AnCp,p̄−1 − |Bn|2
p̄−1
∑

j=0

(p̄− 1)!
(p̄− j − 1)!

(nAn)
jCp+1,p̄−1− j , (80)

with (initial) conditions Cp,0 = Cp and C0,p̄ = Cp̄ given by (74). The solution to (80) takes the
general form

Cp,p̄ = (n
pp!)(np̄ p̄!)

�

An

1+ |Bn|2

�p+p̄ min{p,p̄}
∑

j=0

�

p
j

��

p̄
j

�

(−|Bn|2) j〈Ω|Iν
�

I(q)ν
�†
|Ω〉 . (81)

Alternatively, this can be stated in terms of the hypergeometric function 2F1(a, b; c; z) as

Cp,p̄ = (n
pp!)(np̄ p̄!)

�

An

1+ |Bn|2

�p+p̄

2F1(−p,−p̄; 1;−|Bn|2)〈Ω|Iν
�

I(q)ν
�†
|Ω〉 , (82)

from which the Loschmidt echo is obtained using (66) with Np,p̄ = (npp!)(np̄ p̄!). In conclu-

sion, the final result starting from initial states of the form
�

1/
p

(npn pn!)(np̄n p̄n!)
�

ā p̄n
−napn
−n|Ω〉

is

Lpn,p̄n
(t) = LΩ(t)

� |An(t)|
1+ |Bn(t)|2

�2(pn+p̄n) �
�

�2F1(−pn,−p̄n; 1;−|Bn(t)|2)
�

�

�

2
, (83)

with An(t) and Bn(t) in (70). Note that this is consistent with (75) if pn = 0 or p̄n = 0 since

2F1(0, b; c; z) = 1= 2F1(a, 0; c; z).
It follows from (83) that mixing right- and left-moving excitations in the initial state leads

to an additional factor of 2F1(−pn,−p̄n; 1;−|Bn|2), which is a consequence of the repartition-
ing of the excitations due to the J J̄ deformation in H2. Note that this hypergeometric func-
tion is a polynomial of order min{pn, p̄n}. Thus, if such a polynomial admits real zeros, the
Loschmidt echo might in turn admit exact zeros at particular values of t, leading to non-
analytic times in log[L(t)]. In particular, we apply Theorem 2(v) in [77] to conclude that
all zeros of 2F1(−pn,−p̄n; 1; y) for the variable y are real and negative. On the other hand,
in order for the Loschmidt echo to develop an exact zero at finite times, a given zero y∗ of

2F1(−pn,−p̄n; 1; y) is required to fulfill

y∗ ∈
�

−4 cosh2(ν) sinh2(ν), 0
�

. (84)

In particular, in the limit where ν → ∞, all the min{pn, p̄n} zeros correspond to different
values of t for which the Loschmidt echo is exactly zero. As can be seen on Fig. 3(b), the
Loschmidt echo is non-analytic in the vicinity of these exact zeros. Thus, we interpret our
result for the Loschmidt echo as dynamical quantum phase transitions arising periodically in
time. We stress that this phenomena of temporal orthogonality [78] can only be observed for
our quench protocol if the initial state mixes right- and left-moving excitations for the same
mode n, and can be seen as Lee-Yang-Fisher zeros [49] in the complex Loschmidt amplitude
crossing the real time axis whenever the condition in (84) is fulfilled.
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Finally, we note that the non-normalized return amplitude Cp,p̄ in (67) for a general excited
state of the form in (65) can be obtained as Cp,p̄ =

∏

n Cpn,p̄n
. Therefore, we conclude that

the Loschmidt echo after a quantum quench starting from a general excited state is

Lp,p̄(t) = LΩ(t)
∞
∏

n=1

� |An(t)|
1+ |Bn(t)|2

�2(pn+p̄n) �
�

�2F1(−pn,−p̄n; 1;−|Bn(t)|2)
�

�

�

2
, (85)

with An(t) and Bn(t) in (70). As discussed in Appendix B.1, the result would be unchanged
by considering excited states in the form of descendant states from other primary states than
the ground state. Consequently, (85) is the most general result for the Loschmidt echo after
an interaction quench starting from any eigenstate of H1.

4.2 Energy density

We now turn to the energy density of the system initialized in an arbitrary eigenstate or a
thermal state of H1 and subsequently evolved in time under H2. In each case, the initial state
is spatially homogeneous and can be denoted by a density matrix ρ̂. The corresponding energy
density can be written as

Eρ̂(x , t) = Tr
�

ρ̂ eiH2 tv1

�

T+(x) + T−(x)
�

e−iH2 t
�

=
2πv1

L2

∞
∑

n=−∞
Tr
�

ρ̂ eiH2 t
�

Lne2πinx/L + L̄ne−2πinx/L
�

e−iH2 t
�

−
πv1

6L2
, (86)

where we used (26). The basic problem is therefore to study the quenched time evolution of
the Virasoro generators Ln and L̄n. For Ln, and analogously for L̄n, we can write

eiH2 t Lne−iH2 t = UI(q)ν I†
νLnIν

�

I(q)ν
�† U† , (87)

with

U = q−(L0+ L̄0)ei
�

H(0)2 −(v2/v1)H
(0)
1

�

t (88)

and q = e−2πiv2 t/L , where we used e−iH2 t = UF and (55) for t1 = 0 and t2 = t. Momentarily,

neglecting U , the remaining object I(q)ν I†
νLnIν

�

I(q)ν
�†

can be computed using (49) and the
decomposition of Ln into oscillator modes in (35). It takes the general form

I(q)ν I†
νLnIν

�

I(q)ν
�†
=

1
2

∞
∑

m=−∞

�

C (n)aa (m)an−mam + C (n)āā (m)ā−n+mā−m

+ C (n)āa (m)ā−n+mam + C (n)aā (m)an−mā−m −δn,0mθ (m)
�

, (89)

for certain coefficients C (n)(·)(·)(m), where the last term comes from undoing the Wick ordering
using (56). One can explicitly show that, when taking the trace in (86) with a spatially ho-
mogeneous ρ̂, that the contributions from ā−n+mam and an−mā−m vanish for all n, while those
from an−mam and ā−n+mā−m vanish unless n = 0, a fact which U in (88) cannot change. It
follows that the only contributions we need to evaluate come from L0 and L̄0 and that the
energy density is constant in space. More concretely, Eρ̂(x , t) = Eρ̂(t) with

Eρ̂(t) =
2πv1

L2
Tr
�

ρ̂ UI(q)ν I†
ν

�

L0 + L̄0

�

Iν
�

I(q)ν
�† U†

�

−
πv1

6L2
, (90)

where the only coefficients in (89) we need are

C (0)aa (m) =
1
4

��

1+ q−2m
� �

1+ q2m
�

+ cosh2(2ν)
�

1− q−2m
� �

1− q2m
��

,

C (0)āā (m) =
1
4

sinh2(2ν)
�

1− q−2m
� �

1− q2m
�

,
(91)
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which manifestly satisfy C (0)aa (−m) = C (0)aa (m) and C (0)āā (−m) = C (0)āā (m).
To proceed, we specialize to different choices of the state ρ̂ in which the system is initial-

ized.

For the ground state

Consider the position-independent energy density EΩ(t) = Eρ̂(t) in (90) for ρ̂ = |Ω〉〈Ω| given
by the ground state |Ω〉 of the theory with K = K1. In this case, the contributions from U in
(88) vanish since a0|Ω〉= 0= ā0|Ω〉 and L0|Ω〉= 0= L̄0|Ω〉. It follows that

Tr
�

ρ̂ UI(q)ν I†
νL0Iν

�

I(q)ν
�† U†

�

= 〈Ω|I(q)ν I†
νL0Iν

�

I(q)ν
�†
|Ω〉= 〈L0〉Ω(t) , (92)

which defines the time-dependent expectation

〈L0〉Ω(t) =
1
2

∑

m

�

C (0)aa (m)〈Ω|a−mam|Ω〉+ C (0)āā (m)〈Ω|āmā−m|Ω〉 −mθ (m)
�

=
1
2

∑

m>0

m
�

C (0)aa (m) + C (0)āā (m)− 1
�

=
1
2

∑

m>0

m
�

cosh2(2ν)− sinh2(2ν) cos(4πmv2 t/L)− 1
�

, (93)

where we used (91) and q = e−2πiv2 t/L in the last step. The corresponding expectation 〈L̄0〉Ω(t)
can be shown to be exactly the same.

We stress that the result in (93), in general, is not convergent when summing over m and
needs to be regularized. The appropriate regularization in this case is provided by the Lerch
zeta function, ζ(s|v, w), see Appendix A.11 This function satisfies the required finiteness and
periodicity properties and is a natural generalization of the Riemann zeta function ζ(s) used
in the regularization of the Casimir energy of the undeformed TLL theory. Using this function,

〈L0〉Ω(t) =
1
2

�

cosh2(2ν)− 1
�

ζ(−1)−
1
4

sinh2(2ν)
�

ζ(−1|0, 2v2 t/L) + ζ(−1|0,−2v2 t/L)
�

, (94)

where ζ(−1) = −1/12 through analytic continuation. Inserting the above into (90), it follows
that the ground-state energy density after the quantum quench is

EΩ(t) = −
πv1

6L2

�

cosh2(2ν) + 6 sinh2(2ν)
�

ζ(−1|0, 2v2 t/L) + ζ(−1|0,−2v2 t/L)
�

�

. (95)

At t = 0, the function ζ(−1|0,±2v2 t/L) reduces to the Riemann zeta function, since
ζ(−1|0,0) = ζ(−1). This implies that the energy density at t = 0 is the familiar ground-state
energy density of a TLL theory:

EΩ(0) = −
πv1

6L2
. (96)

We note that the revivals observed in the Loschmidt echo at t = kL/2v2 for k ∈ N are also
present in the energy density. These lead to discontinuities at these discrete times, as seen
in Fig. 4(a). Physically, the discontinuity in the vicinity of t = 0 appear due to the abrupt
nature of the interaction quench, while the periodic revivals occur due to the integrability of
the system.

11We are grateful to Pierre Vanhove for discussions on this.
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Figure 4: (a) Time evolution of the ground-state energy density EΩ(t) in (95) fol-
lowing a quench with K1/K2 = 4/3. We observe discontinuities in the evolution at
v2 t/L = k/2, k ∈ N, where the energy density goes back to its equilibrium value. (b)
Time evolution of the excitation contribution Ep,p̄(t)− EΩ(t) given by (100) follow-
ing the same quench for initial states of the form a−mā−m|Ω〉, m= 1, ..., 8 (bottom to
top).

For excited states

Consider now instead the system initialized in the state ρ̂ = |Ψp,p̄〉〈Ψp,p̄ | with |Ψp,p̄〉 of the
form in (65). As for the computation of the ground-state energy density, the contributions
from U and U† given by (88) can be shown to cancel each other. Thus, similar to before,

Tr
�

ρ̂ UI(q)ν I†
νL0Iν

�

I(q)ν
�† U†

�

= 〈Ψp,p̄ |I(q)ν I†
νL0Iν

�

I(q)ν
�†
|Ψp,p̄〉= 〈L0〉p,p̄(t) , (97)

with

〈L0〉p,p̄(t) =
1
2

∑

m

�

C (0)aa (m)〈Ψp,p̄ |a−mam|Ψp,p̄〉+ C (0)āā (m)〈Ψp,p̄ |āmā−m|Ψp,p̄〉 −mθ (m)
�

=
1
2

∑

m>0

�

C (0)aa (m)(2pm + 1)m+ C (0)āā (m)(2p̄m + 1)m−m
�

= 〈L0〉Ω(t) +
∑

m>0

m
�

C (0)aa (m)pm + C (0)āā (m)p̄m

�

. (98)

In the second step, we used 〈Ω|apn
n a−nanapn

−n|Ω〉= npn(npn pn!) for n> 0 to show that

〈Ψp,p̄ |a−mam|Ψp,p̄〉= mpm , 〈Ψp,p̄ |ama−m|Ψp,p̄〉= m(pm + 1) ,

〈Ψp,p̄ |āmā−m|Ψp,p̄〉= m(p̄m + 1) , 〈Ψp,p̄ |ā−mām|Ψp,p̄〉= mp̄m
(99)

for all m ∈ Z+, as well as the symmetry properties of the coefficients in (91). The first term
in (98) is the ground-state contribution in (94), while the second term is the additional con-
tribution depending on the occupation numbers of the excited initial state in (65). For the
corresponding expectation 〈L̄0〉p,p̄(t) one simply needs to swap the roles of Caa and Cāā.

It follows by inserting the above into (90) that the position-independent energy density
Ep,p̄(t) = Eρ̂(t) for ρ̂ = |Ψp,p̄〉〈Ψp,p̄ | given by (65) is

Ep,p̄(t) = EΩ(t) +
2πv1

L2

∑

m>0

�

C (0)aa (m) + C (0)āā (m)
�

m(pm + p̄m)

= EΩ(t) +
2πv1

L2

∑

m>0

�

cosh2(2ν)− sinh2(2ν) cos(4πmv2 t/L)
�

m(pm + p̄m) , (100)
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with EΩ(t) in (95), where we used (91) and q = e−2πiv2 t/L . We plot the time evolution of
the excitation contribution Ep,p̄(t)− EΩ(t) in Fig. 4(b). The energy density still oscillates in
time with period L/2v2 and reaches its minimum at the energy density of the given level
∑

m>0 m(pm+ p̄m). In contrast to the Loschmidt echo, the time evolution of the energy density
does not crucially depend on whether or not the initial state mixes right- and left-moving
excitations.

As a remark, note that we only considered initial states that are descendants of the ground
state |Ω〉. Non-zero contributions from the zero modes appear if one considers initial states that
are descendants of other primary states than the ground state. These are, however, constant
shifts of the energy density corresponding to the conformal dimensions of the primary states
and are sub-leading in the system size.

For thermal states

Lastly, we study the position-independent energy density Eβ(t) = Eρ̂(t) for an initial thermal
state given by ρ̂ = Z−1

1 e−βH1 , where Z1 = Tr
�

e−βH1
�

is the partition function of the undeformed
theory with K = K1. To compute Eβ(t), it follows from (89) and (90) (and the discussion
between them) that we need to evaluate

Tr
�

ρ̂UI(q)ν I†
νL0Iν

�

I(q)ν
�†U†

�

=
1
2

∑

m

�

C (0)aa (m)
Tr
�

e−βH1 a−mam

�

Tr
�

e−βH1

� + C (0)āā (m)
Tr
�

e−βH1 ām ā−m

�

Tr
�

e−βH1

� −mθ (m)

�

, (101)

together with the corresponding expectation for L̄0. In the second line, we used that U and
U† given by (88) cancel due to cyclicity of the trace. The remaining traces appearing in (101)
are thermal expectation values of bosonic occupation numbers and can be calculated using the
following manipulation for the oscillator modes (m ̸= 0):

Tr
�

a−mamzL0+ L̄0
�

= zm Tr
�

a−mzL0+ L̄0 am

�

= zm Tr[ama−mzL0+ L̄0]

= mzm Tr
�

zL0+ L̄0
�

+ zm Tr
�

a−mamzL0+ L̄0
�

. (102)

Setting z = e−2πv1β/L in the above, we obtain

Tr
�

e−βH1 a−mam

�

Tr
�

e−βH1
� =

Tr
�

a−mamzL0+ L̄0

�

Tr
�

zL0+ L̄0
� =

mzm

1− zm
=

m
e2πmv1β/L − 1

= 〈a−mam〉v1β/L (103)

for m ̸= 0, which reproduces the expected Bose-Einstein occupation number 〈a−mam〉v1β/L .
The same result is true for 〈āmā−m〉v1β/L . The corresponding time-dependent expectation of
L0 can therefore be expressed as

〈L0〉v1β/L(t) = Tr
�

ρ̂ UI(q)ν I†
νL0Iν

�

I(q)ν
�† U†

�

= 〈L(0)0 〉v1β/L + 〈L
(osc)
0 〉v1β/L(t) , (104)

where 〈L(0)0 〉v1β/L and 〈L(osc)
0 〉v1β/L(t) are the contributions to the expectation value from the

zero- and oscillator-mode parts of L0, respectively. The zero-mode part is constant in time
and sub-leading in the system size L, and thus not relevant to the post-quench dynamical
properties. However, we present it here for completeness:

〈L(0)0 〉v1β/L =
1

4Θ(v1β/L)

∑

n,w∈Z

�

n2

2K1
+ 2w2K1

�

exp

�

−π
v1β

L

�

n2

2K1
+ 2w2K1

��

= −
L

4πv1

∂ lnΘ(v1β/L)
∂ β

, (105)
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where Θ is the Siegel theta function [cf. (171)]. On the other hand, the oscillator part depends
non-trivially on time:

〈L(osc)
0 〉v1β/L(t) =

1
2

∑

m̸=0

�

C (0)aa (m)〈a−mam〉v1β/L + C (0)āā (m)〈āmā−m〉v1β/L −mθ (m)
�

, (106)

with C (0)aa (m) and C (0)āā (m) in (91) and q = e−2πiv2 t/L . From (56), we have

〈 :a−mam:〉v1β/L = 〈a−mam〉v1β/L +mθ (−m) ,

where

〈 :a−mam:〉v1β/L =
|m|

e2π|m|v1β/L − 1
, (107)

which implies

〈L(osc)
0 〉v1β/L(t) = 〈L0〉Ω(t) +

∑

m>0

m
�

cosh2(2ν)− sinh2(2ν) cos(4πmv2 t/L)
�

e2πmv1β/L − 1
, (108)

where the first term 〈L0〉Ω(t) is given in (93). By inserting the above together with the analo-
gous expressions for 〈L̄(0)0 〉v1β/L into (90), we obtain the final result:

Eβ(t) = EΩ(t)−
1
L
∂ lnΘ(v1β/L)

∂ β
+

4πv1

L2

∑

m>0

m
�

cosh2(2ν)− sinh2(2ν) cos(4πmv2 t/L)
�

e2πmv1β/L − 1
, (109)

with EΩ(t) in (95).
As a consistency check, the equilibrium expectation value can be obtained from (105) and

(108) by setting t = 0, yielding

〈L0〉v1β/L(0) = −
L

4πv1

∂ lnΘ(v1β/L)
∂ β

+
∑

m>0

m
e2πmv1β/L − 1

, (110)

which is consistent with 〈L0〉v1β/L obtained from (35) using (107).12 The oscillator part can
be expressed using a quasimodular form E2(τ) known as the Eisenstein series of weight 2:

〈L(osc)
0 〉v1β/L(0) =

∑

m>0

m
e2πmv1β/L − 1

=
∑

m>0

mzm

1− zm
= −

E2(τ)
24

+
1
24

, (111)

where z = e2πiτ and τ= iv1β/L. The S-modular transformation

E2(τ) = (−1/τ)2E2(−1/τ)− 6/πiτ

can be used to extract the asymptotic behavior of (111) for L/v1β ≫ 1:

E2(iv1β/L)≈ −
L2

v2
1β

2
+

6L
πv1β

≈ −
L2

v2
1β

2
, (112)

which yields

〈L(osc)
0 〉v1β/L ≈

L2

24v2
1β

2
. (113)

12This is also consistent with the relation between the torus one-point function of the holomorphic stress tensor
and the partition function: 〈L0 − c/24〉τ = (2πi)−1∂τ log Z(τ, τ̄). For our case τ = iv1β/L and the partition
function is given in (171).
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Figure 5: Time evolution of the thermal-state energy density limL→∞ Eβ(t) in (117)
in the thermodynamic limit following a quench with K1/K2 = e2ν, ν= 0.4, 0.5, ..., 1.2
(from bottom to top). We observe that the TLL equilibrates to different energies
depending on ν according to (118) with the effective temperature β−1

eff in (119).

This gives the expected equilibrium energy density in the thermodynamic limit L →∞. In-
deed, by inserting the above into (90), it follows that

lim
t→0

lim
L→∞

Eβ(t) =
π

6v1β2
, (114)

which is exact in the thermodynamic limit.
The evolution of the energy density from the thermal state can be evaluated analytically

in the thermodynamic limit by replacing the sums over m in (108) by integrals with respect to
the dimensionless variable ξ= 2πmv1β/L. The integrals can then be performed by using the
following identities:

∫ ∞

0

dξ
ξ

eξ − 1
=
π2

6
,

∫ ∞

0

dξ
ξ cos(wξ)

eξ − 1
=

1
2w2
−

π2

2sinh2(πw)
(w ∈ R+) . (115)

In our case, w= 2v2 t/v1β . We conclude that

〈L(osc)
0 〉v1β/L(t)− 〈L0〉Ω(t)≈

L2 cosh2(2ν)
24v2

1β
2
−

L2 sinh2(2ν)
8v2

1β
2

�

�

v1β

2πv2 t

�2

− csch2
�

2πv2 t
v1β

�

�

(116)

in the regime L/v1β ≫∞, with the same result for 〈L̄(osc)
0 〉v1β/L(t). In the thermodynamic

limit, at which point the results become exact, it finally follows from (90) that the energy
density for the quenched thermal state is

lim
L→∞

Eβ(t) =
π cosh2(2ν)

6v1β2
−
π sinh2(2ν)

2v1β2

�

�

v1β

2πv2 t

�2

− csch2
�

2πv2 t
v1β

�

�

, (117)

where we used that 〈L0〉Ω(t), 〈L̄0〉Ω(t), and the zero modes give sub-leading contributions in
the system size L. In particular, the late-time asymptotic behavior in this regime is13

lim
t→∞

lim
L→∞

Eβ(t) =
π

6v1β
2
eff

, (118)

13Note that (114) is also recovered from (117) using that csch(ξ) = ξ−1 − ξ/6+O(ξ3) for small ξ.
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where we defined the effective temperature

β−1
eff = β

−1 cosh(2ν) = β−1 K1/K2 + K2/K1

2
. (119)

We thus observe, in the thermodynamic limit, an equilibration of the original TLL following
the quench from an initial temperature β−1 to an emergent temperature: The time evolution
of the energy-density expectation reaches that of a steady state at an effective temperature
β−1

eff given by (119), as seen in Fig. 5. We note that a similar large-scale equilibration to an
effective temperature was observed in quenched TLLs in [79] for a different type of quenching
protocol and through different physical observables.

5 Floquet drive

In this section, we study a two-step driven TLL whose Hamiltonian switches periodically be-
tween H1 and H2 with periods t1 and t2, respectively, as illustrated in Fig. 1(b). We recall
that the two Hamiltonians H1 and H2 are particular combinations of the su(1,1) generators
K(n)0 and K(n)± in (41) for each individual mode n > 0 [see (46) and (47)]. It follows that the

Floquet operator U (n)F in (9) for the nth mode can be expressed as U (n)F = e−iH(n)F (t1+t2) using a

Floquet Hamiltonian H(n)F that is also a combination of the su(1,1) generators:

H(n)F =
i

t1 + t2
C (n)F , C (n)F = c(n)0 K(n)0 + c(n)− K(n)− + c(n)+ K(n)+ , (120)

for certain coefficients c(n)0 and c(n)± . Our driven TLL thus corresponds to an infinite sequence
of uncoupled discrete-time quantum parametric oscillators labeled by n. Consequently, as
for harmonic oscillators with continuously and periodically driven frequency, see, e.g., [80,
81], famously leading to the Mathieu equation, similar algebraic stability arguments can be
employed here. Namely, for each mode, a characterization into stable or unstable can be
deduced from the different classes of orbits of su(1,1), see Table 1. These are delineated by
the value K(H(n)F , H(n)F ) = −2(t1 + t2)−2

�

�

c(n)0

�2 − 4c(n)+ c(n)−
�

of the Cartan-Killing form K(·, ·)

in (43), or equivalently by the squared trace σn =
�

Tr[U (n)F ]
�2

, which are related through

σn = 4cosh2
�
Ç

K(C (n)F , C (n)F )/8
�

= 4 cos2
�

(t1 + t2)
Ç

K(H(n)F , H(n)F )/8
�

. (121)

Using the 2 × 2-matrix representation of the su(1, 1) generators in (44), the coefficients in
(120) can be computed, which inserted into (121) yields exactly σn in (11) with q1,2 in (4).
This can be rewritten as

σn = 4ω2
n , ωn = cos(2πnτ1) cos(2πnτ2)− sin(2πnτ1) sin(2πnτ2) cosh(2ν) , (122)

which shows the explicit dependence on the dimensionless times (τ1,τ2) = (v1 t1/L,v2 t2/L)
and the Zamolodchikov distance ν. Note thatωn andσn are manifestly invariant under change
of sign in n.

Dynamical phase diagrams in the parameter space (τ1,τ2) can be straightforwardly drawn
using (122) for a given mode n and Zamolodchikov distance ν, computed for a pair of Luttinger
parameters (K1, K2) or radii (R1, R2) through (8). Note that the phase diagram for any mode
n ∈ Z+ is simply a rescaling of the phase diagram of that for n= 1, obtained by replacing L by
L/n, with each of its individual unstable regions having the shape of a leaf that shrinks to a
line as ν→ 0 and grows to approximate a square as |ν| →∞, as illustrated in Fig. 6. The total
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Table 1: Classes for a given mode n ∈ Z+ depending on the value K(H(n)F , H(n)F ) of the
Cartan-Killing form or the squared trace σn in (121) along with the corresponding
stability characterization.

Class K(H(n)F , H(n)F ) σn Stability characterization
Elliptic > 0 < 4 Stable phase
Parabolic = 0 = 4 Phase boundary
Hyperbolic < 0 > 4 Unstable phase

τ 2 τ 2 τ 2

τ1 τ1 τ1

(a) (b) (c)

Figure 6: Dynamical phase diagrams in (τ1,τ2) space for a single mode n = 1 and
(a) K1/K2 = 16/15, (b) K1/K2 = 7/5, and (c) K1/K2 = 7/3.

τ 2 τ 2 τ 2

τ1 τ1 τ1

(a) (b) (c)

Figure 7: Dynamical phase diagrams in (τ1,τ2) space for K1/K2 = 1.2 for a finite
number of modes. The unstable regions are colored black. (a) Single mode n = 1.
(b) Two modes n= 1,2. (c) Four modes n= 1, ..., 4. Note that the lines (k/2,τ2) and
(τ1, k/2), k ∈ N remain critical or stable even when an arbitrary number of modes
are included. The phase diagrams are plotted for (τ1,τ2) ∈ [0, 1]× [0,1] since they
repeat themselves outside this domain.

phase diagram is obtained by overlaying the phase diagrams of each individual mode, with
the unstable phase being the union of the unstable regions, see Fig. 7. Any remaining stable
phase thus depends crucially on ν and the number of modes included. In particular, imposing
a (physical) cutoff on the total number of allowed modes would ensure that an extended stable
phase remains.

Below we investigate the physical consequences of the dynamical phases in Table 1 on
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λ+
n

λ−
n

Reλn

Imλn

Figure 8: Eigenvalues λ+n (red curve) and λ−n (blue curve) in (123) as functions of
σn for the case sgn(ωn)> 0. If σn <(>)4, the eigenvalues lie on the unit circle (real
line) and the nth-mode contribution is stable (unstable). The green dot corresponds
to σn = 4, i.e., the value where λ±n coincide.

certain physical quantities, specifically the Loschmidt echo and the particle and energy densi-
ties. We also identify natural order parameters and study their critical behavior near the phase
boundary when approaching from the stable or the unstable phase. In a nutshell, we will show
that the evolution of these physical quantities in stroboscopic time M(t1 + t2) enters through
factors of the form (λ±n )

M with

λ±n =ωn ± sgn(ωn)
q

ω2
n − 1= sgn(ωn)

p
σn ±

p

σn − 4

2
, (123)

which depends on (τ1,τ2) and ν through σn and ωn in (122). The factors λ±n can be inter-
preted as eigenvalues of a 2× 2-matrix representation of our Floquet drive and have distinct
behaviors for the following three cases:14

1. If σn < 4, then λ±n = sgn(ωn)e±iφ for φ = arctan
�

p

(4−σn)/σn

�

∈ (0,π/2].

2. If σn = 4, then λ±n = sgn(ωn).

3. If σn > 4, then |λ+n |> 1> |λ−n |> 0.

In other words, λ±n lie on segments of the unit circle in the complex plane when 0 < σn < 4,
starting at ±i sgn(ωn) for σn = 0+ and moving toward sgn(ωn) as σn grows toward 4, coincid-
ing at sgn(ωn) exactly when σn = 4, and then moving on the real line in ±sgn(ωn) directions
as σn grows beyond 4, see Fig. 8. Given that the stroboscopic time evolution enters as (λ±n )

M ,
this agrees with our stability discussion for individual modes based on classes of su(1, 1), see
Table 1. In particular, if σn > 4, there are parametric instabilities since |λ+n |

M diverges as M
increases, while if σn < 4, there are oscillations of the form e±iMφ with M .

The above stability analysis is analogous to the well-known discussion of the quantum
parametric oscillator, see, e.g., [81]. Indeed, while our periodic drive is step-like and not con-
tinuous, we can identify the corresponding quantities to construct phase diagrams of the same
form as in [46] obtained from the Mathieu equation for a continuously driven TLL, see Fig. 9. In
particular, the Mathieu characteristic exponent is identified with φ = arctan

�

p

(4−σn)/σn

�

introduced above, see Fig. 9(b), and the amplitude of the drive with the ratio of Luttinger
parameters, see Fig. 9(a).

14In the last case, we use that ∂ λ±n /∂ σn ≷ 0.
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(a) (b)
τ τ

ϕ

K
1
/K

2

Figure 9: (a) Phase diagram for n = 1 when τ1 = τ2 parametrized in terms
of τ = τ1 + τ2 and K1/K2, interpreted as the period and the amplitude of
the drive, respectively. The unstable regions are colored black. (b) Plot of
φ = arctan

�

p

(4−σ1)/σ1

�

, interpreted as the Mathieu characteristic exponent,
using σ1 in (122) as a function of τ = τ1/2 = τ2/2 along the red dashed line
(K1/K2 = 6) in (a). The blue curves give the plotted values when φ is real, and the
shaded areas correspond to the unstable regions.

5.1 Loschmidt echo

The first quantity we study is the Loschmidt echo for the system initialized in the ground state
or any excited state of H1. We recall that the Floquet operator in (6) can be written as in (55).
Similarly, it will also be convenient to express the M -cycle Floquet operator as a concatenation
of several q-modified operators:

U M
F = e−iM E0

2 t2qL0+ L̄0
1





M−1
∏

j=0

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†



 (qM−1
1 qM

2 )
L0+ L̄0e−iM

�

H(0)2 −(v2/v1)H
(0)
1

�

t2 (124)

for M = 1,2, . . ., generalizing (55). We recall that the overall phase e−iM E0
2 t2 will be of no

consequence to our computations.

For the ground state

We begin by computing the Loschmidt echo LΩ(M[t1 + t2]) =
�

�〈Ω|U M
F |Ω〉

�

�

2
for the ground

state |Ω〉 of H1 after M cycles. Using (124) and the fact that L0, L̄0, and H(0)1,2 annihilate |Ω〉,
we have

LΩ(M[t1 + t2]) =

�

�

�

�

�

〈Ω|
M−1
∏

j=0

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†

|Ω〉

�

�

�

�

�

2

. (125)

As in Sec. 4.1, our strategy to compute the product of the q-modified operators I(q)ν is to first
decompose them in terms of exponentials of the su(1,1) generators in (41):

〈Ω|
M−1
∏

j=0

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†

|Ω〉=
∏

n>0

〈Ω|exp
�

ξ
(n)
+ K(n)+

�

exp
�

ξ
(n)
0 K(n)0

�

exp
�

ξ
(n)
− K(n)−

�

|Ω〉

=
∏

n>0

exp
�

ξ
(n)
0 /2

�

, (126)
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repeating the same steps as for the quench. Again, one efficient way to find the coefficients
ξ
(n)
0 and ξ(n)± is to use the 2 × 2-matrix representation of the su(1,1) generators in (44). In

this representation, using (48) and (52) with
�

I(q)ν
�†
= I(q)−ν as a definition, we find that the

jth factor in the product of q-modified operators has the form

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�† �
�

�

(n)

2×2
=

�

cosh2(ν)− sinh2(ν)q2n
2

1
2 sinh(2ν)

�

1− q−2n
2

�

q−2 jn
2 q−2 jn

1
1
2 sinh(2ν)

�

1− q2n
2

�

q2 jn
2 q2 jn

1 cosh2(ν)− sinh2(ν)q−2n
2

�

(127)

for the nth mode. In analogy with (63), we have

eξ
(n)
+ K (n)+ eξ

(n)
0 K (n)0 eξ

(n)
− K (n)−

�

�

�

2×2
=

�

e−ξ
(n)
0 /2 ξ

(n)
− e−ξ

(n)
0 /2

−ξ(n)+ e−ξ
(n)
0 /2 e−ξ

(n)
0 /2 − ξ(n)− ξ

(n)
+ e−ξ

(n)
0 /2

�

, (128)

meaning that, at a practical level, we only need the (1,1)-component in the 2 × 2-matrix
representation to determine exp

�

ξ
(n)
0 /2

�

and thereby evaluate (126). Let us denote

M−1
∏

j=0

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�† �
�

�

(n)

2×2
=

�

I (n,M)
1,1 I (n,M)

1,2

I (n,M)
2,1 I (n,M)

2,2

�

, (129)

which implies, using (126) and (128),

〈Ω|
M−1
∏

j=0

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†

|Ω〉=
∏

n>0

1

I (n,M)
1,1

. (130)

From (127) and (129), we obtain the following recursion relation:

�

I (n,M)
1,1 I (n,M)

1,2

I (n,M)
2,1 I (n,M)

2,2

�

=

�

I (n,M−1)
1,1 I (n,M−1)

1,2

I (n,M−1)
2,1 I (n,M−1)

2,2

�

×
�

cosh2(ν)− sinh2(ν)q2n
2

1
2 sinh(2ν)

�

1− q−2n
2

�

q−2(M−1)n
2 q−2(M−1)n

1
1
2 sinh(2ν)

�

1− q2n
2

�

q2(M−1)n
2 q2(M−1)n

1 cosh2(ν)− sinh2(ν)q−2n
2

�

.

(131)

This can be solved for I (n,M)
1,1 , see Appendix B.2. The result is

I (n,M)
1,1 = (qn

2qn
1)

M

�

�

�

�

�

�

1− ϵn

��

λ−n
�M
+
�

1+ ϵn

��

λ+n
�M

2

�

�

�

�

�

2

, (132)

with λ±n in (123) and

ϵn = −
2
�

sin(2πnτ1) cos(2πnτ2) + cos(2πnτ1) sin(2πnτ2) cosh(2ν)
�

Æ

4−σ2
n

, (133)

using σn in (122). In conclusion, the Loschmidt echo after M cycles for the ground state is

LΩ(M[t1 + t2]) =
∏

n>0

L(n)Ω (M[t1 + t2]) ,

L(n)Ω (M[t1 + t2]) =

�

�

�

�

�

2
�

1− ϵn

��

λ−n
�M
+
�

1+ ϵn

��

λ+n
�M

�

�

�

�

�

2

,
(134)

with λ±n in (123) and ϵn in (133).
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Figure 10: (a) Stroboscopic time evolution of the single-mode Loschmidt echo
L(n=1)
Ω (M[t1 + t2]) in (134) for the ground state |Ω〉 of H1 in a two-step drive with

K1/K2 = 4/3 and different driving parameters τ1 = τ2 = 8/50,9.8/50, 12/50 (blue,
green red). In the stable phase, the Loschmidt echo displays periodic revivals with a
period that depends on the driving parameters. In the unstable phase, the Loschmidt
echo decays exponentially to zero. (b) Stroboscopic time evolution of the single-
mode Loschmidt echo L(n=1)

p1,p̄1
(M[t1 + t2]) in (152) for different initial states of the

form ap1
−1ā3
−1|Ω〉 with p1 = 0, 1, 3 (purple, cyan, orange) in a two-step drive with

K1/K2 = 4/3 and driving parameters (τ1,τ2) = (0.5, 0.51). The periodicity of the
Loschmidt echo does not depend on the initial state, but temporal orthogonality can
be observed for more general initial states.

Single-mode analysis and order parameters

We now restrict our analysis to the ground-state Loschmidt echo L(n)Ω (M[t1 + t2]) for a single
mode n. Its behavior as a function of the stroboscopic time M(t1 + t2) depends crucially on
the driving parameters (τ1,τ2) and the Zamolodchikov distance ν between H1 and H2 due to
the different properties of λ±n in (123). Indeed, if σn < 4, we recall that λ±n = sgn(ωn)e±iφ for
φ ∈ (0,π/2], which leads to an overall oscillation with M of the form

L(n)Ω (M[t1 + t2]) =

�

�

�

�

2
(1− ϵn)e−iMφ − (1+ ϵn)eiMφ

�

�

�

�

2

. (135)

On the other hand, if σn > 4, we recall that |λ+n | is larger than one, which implies that

L(n)Ω (M[t1 + t2]) decays exponentially,

L(n)Ω (M[t1 + t2])∼ e−λL M(t1+t2) , (136)

with the rate

λL =
log |λ+n |
t1 + t2

. (137)

These two distinct dynamical behaviors of the single-mode Loschmidt echo can be observed
in Fig. 10(a) and compared with the stability characterizations in Table 1.

We stress that the Loschmidt echo LΩ(M[t1 + t2]) is a product over all possible modes
n, such that it would generically decay exponentially in time when all modes are taken into
account. However, as discussed previously, one usually needs to impose a cutoff on the number
of modes in order to connect with physical applications. Depending on the value of such a
cutoff and the value of the Zamolodchikov distance, ν= log

p

K1/K2, some extended regions
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Figure 11: Critical properties of the order parameters in a two-step drive with
K1/K2 = 4/3 when approaching the phase boundary from the stable or the unsta-
ble phase for a single mode n = 1. (a) The period TL/(t1 + t2) as a function of
τ = τ1 = τ2 when approaching the phase boundary at τ∗ ≈ 0.2048 from the stable
phase. (b) Red curve: TL/(t1 + t2) as a function of |τ− τ∗|. Blue curve: Expected
scaling as |τ − τ∗|−1/2. (c) The rate (t1 + t2)λL as a function of τ = τ1 = τ2 in
the unstable phase. (d) Red curve: 1/λL(t1 + t2) as a function of |τ− τ∗| when ap-
proaching the phase boundary at τ∗ ≈ 0.2048 from the unstable phase. Blue curve:
Expected scaling as |τ−τ∗|−1/2.

in the parameter space (τ1,τ2) may still be stable, leading to non-trivial phase diagrams with
phase transitions between oscillating and exponentially decaying Loschmidt echo.

As a final consideration, we study the behavior of the Loschmidt echo for a single mode
when approaching the phase boundary from the stable phase. As can be observed in Fig. 10(a),
the period TL of the Loschmidt echo in the stable phase increases as we approach the boundary
and can be interpreted as a natural order parameter. We can explicitly write the period as

TL =
π(t1 + t2)
arg(λ+n )

. (138)

As we approach the phase boundary, say by varying τ = τ1 = τ2,15 the period diverges as a
power law

TL ∼ |τ−τ∗|−βT , (139)

where τ∗ lies on the phase boundary and βT is the critical exponent at the transition, as
seen in Fig. 11(a). By fitting the critical exponent, we infer that βT = 1/2, see Fig. 11(b).
Alternatively, the phase boundary can be approached from the unstable phase, in which case

15Note that τ here should not be confused with a modular parameter, such as the one in (111).
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the natural order parameter is the rate λL , which is understood formally as the inverse of TL
by comparing (138) and (137). Close to the phase boundary, see Fig. 11(c), λL approaches
zero as

λL ∼ |τ−τ∗|βλ , (140)

with the critical exponent βλ = 1/2 inferred from Fig. 11(d). In conclusion, the rate λL and
the inverse period 1/TL for the Loschmidt echo are natural order parameters for the stable-to-
unstable transition in the respective phases and have the same critical exponent βT = βλ = 1/2
when approaching the phase boundary from each side. We note that such a critical scaling for
the period in the stable phase and for the rate in the unstable phase has been observed in other
classes of integrable Floquet systems [40].

For excited states

We now study the stroboscopic time evolution of the Loschmidt echo for general excited states
of the form in (65).

First, we consider the state
�

1/
p

npp!
�

ap
−n|Ω〉, as before writing p = pn to lighten the

notation. The Loschmidt echo after M cycles is

Lp(M[t1 + t2]) =
1
N 2

p

�

�〈Ω|ap
nU M

F ap
−n|Ω〉

�

�

2
, Np = npp! . (141)

Analogous to Sec. 4.1 for the quench, the computation reduces to evaluating

C (M)p = 〈Ω|ap
n

M−1
∏

j=0

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†
ap
−n|Ω〉 . (142)

To this end, we consider the following generalized rotation relations:

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†

a−nI
(q j

1q j+1
2 )

ν

�

I(q
j
1q j

2)
ν

�†

= Ana−n + (q1q2)
−2n jBnān ,

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†

ānI
(q j

1q j+1
2 )

ν

�

I(q
j
1q j

2)
ν

�†

= Anān + (q1q2)
2n jBna−n ,

(143)

with An = An(q2), An = An(q2), Bn = Bn(q2), and Bn = Bn(q2) given by

An(q2) = cosh2(ν)− sinh2(ν)q−2n
2 , Bn(q2) =

1
2

sinh(2ν)(1− q−2n
2 ) . (144)

Written in matrix form, this amounts to an SU(1,1) rotation:

T j

�

a−n
ān

�

=

�

An (q1q2)−2n jBn

(q1q2)2n jBn An

��

a−n
ān

�

. (145)

The rotation in the other direction is given by

T−1
j

�

a−n
ān

�

=

�

An −(q1q2)−2n jBn

−(q1q2)2n jBn An

��

a−n
ān

�

. (146)

For M cycles, we need to apply these rotations M times. The matrices implementing these
rotations can be written

0
∏

j=M−1

T j =

�

An Bn

Bn An

�

,
M−1
∏

j=0

T−1
j =

�

An −Bn

−Bn An

�

, (147)
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which define An = An(M) and Bn = Bn(M) as functions of M , see Appendix B.3 for how to
obtain analytical expressions for the latter.

It follows from the above that

C (M)p = npAn〈Ω|ap−1
n

M−1
∏

j=0

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†

ap−1
−n |Ω〉+Bn〈Ω|ap

n ān

M−1
∏

j=0

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†

ap−1
−n |Ω〉 . (148)

By moving ān from the left to the right in the second term, we obtain the recursion relation

C (M)p = np
An

1+ |Bn|2
C (M)p−1 , C (M)0 = 〈Ω|

M−1
∏

j=0

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†

|Ω〉 . (149)

This has the solution

C (M)p = npp!
� An

1+ |Bn|2

�p

〈Ω|
M−1
∏

j=0

I(q
j
1q j

2)
ν

�

I(q
j
1q j+1

2 )
ν

�†

|Ω〉. (150)

We conclude that the Loschmidt echo after M cycles for the state
�

1/
p

npn pn!
�

apn
−n|Ω〉 is

Lpn
(M[t1 + t2]) =

� |An(M)|
1+ |Bn(M)|2

�2p

LΩ(M[t1 + t2]) , (151)

with An(M) and Bn(M) given by (144)–(147). The result in (151) is a generalization of the
quench result in (75) to our Floquet drive. The Loschmidt echo after a quantum quench can
be obtained as a special case by setting q1 = 1, q2 = q = e−2πiv2 t/L , and M = 1, for which
An(M = 1) = An(t) and Bn(M = 1) = Bn(t) given by (70).

Finally, following the derivation in Sec. 4.1 for excited states, we can write down the
Loschmidt echo for the most general excited state of the form in (65). The result is

Lp,p̄(M[t1 + t2]) =
1

N 2
p,p̄

�

�

�

�

�

〈Ω|
∞
∏

n=1

apn
n ā p̄n

n U M
F

∞
∏

n=1

ā p̄n
−napn
−n|Ω〉

�

�

�

�

�

2

=
∞
∏

n=1

L(n)pn,p̄n
(M[t1 + t2]) ,

L(n)pn,p̄n
(M[t1 + t2]) ,= L(n)Ω (M[t1 + t2])

� |An(M)|
1+ |Bn(M)|2

�2(pn+p̄n) �
�

�2F1(−pn,−p̄n; 1;−|Bn(M)|2)
�

�

�

2
,

(152)

with An(M) and Bn(M) given by (144)–(147). As was the case for (151), the result in (152)
generalizes that in (85), which can be seen as a special case with q1 = 1, q2 = q = e−2πiv2 t/L ,
and M = 1. It thus provides the most general form of the stroboscopic time evolution of the
Loschmidt echo under a periodic drive starting from any eigenstate of the theory with K = K1.
As shown in Fig. 10(b), the periodicity of the Loschmidt echo is independent of the choice
of initial state, and the discussion of the critical exponents of TL and λL across the transition
is thus unchanged. As already discussed in the quench case, by considering general initial
states that mix right- and left-moving excitations, the stroboscopic Loschmidt echo can display
non-analytic behavior. However, we note that the Loschmidt echo is now evaluated at discrete
times M(t1 + t2), and thus the zeros in the return probability are only approximate, showing
a pseudo-orthogonality at stroboscopic times.

5.2 Particle density

In TLL theory, the total particle density is

ρ(x) = J+(x) + J−(x) , (153)
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which is expressible in terms of an and ān using (26) and (34). Thus, to study the Floquet time
evolution of the particle density, it suffices to consider the evolution of the oscillator modes.
It should be noted that (32) implies conservation of the particle-number charges J0 =

p

K1a0
and J̄0 =

p

K1ā0, since they commute with all modes and thus with H1 and H2. However, in
general, at the level of operators, the chiral densities J±(x) evolve non-trivially, unless evalu-
ated with respect to a spatially homogeneous state, in which case trivially, since only the zero
modes J0 and J̄0 contribute.

To this end, consider the evolution of the operators an and ā−n under one full cycle of the
Floquet drive. (The change of sign in the subscript for the latter is for convenience, due to the
way our drive mixes the modes.) From (49), (51), and (53), it follows that

U−1
F

�

an
ā−n

�

UF = C(n)

�

an
ā−n

�

, (154)

with the 2× 2 matrix

C(n) =

�

[qn
2 cosh2(ν)− q−n

2 sinh2(ν)]qn
1 (qn

2 − q−n
2 ) cosh(ν) sinh(ν)qn

1
(q−n

2 − qn
2) cosh(ν) sinh(ν)q−n

1 [q−n
2 cosh2(ν)− qn

2 sinh2(ν)]q−n
1

�

, (155)

using q1 and q2 in (4). This matrix lies in SU(1,1) and is non-trivial unless n = 0, in which
case it is the identity matrix, consistent with particle-number conservation. It follows that the
result after M cycles is obtained by multiplication by C(n)M ,

U−M
F

�

an
ā−n

�

U M
F = C(n)M

�

an
ā−n

�

, (156)

meaning that all information can be obtained by studying the properties of C(n).
One can show that the eigenvalues of C(n) are precisely λ±n = ωn ± sgn(ωn)

Æ

ω2
n − 1 in

(123) in terms of ωn in (122). As direct consequences,

det[C(n)] = λ+nλ
−
n = 1 , tr[C(n)] = λ+n +λ

−
n = 2ωn = Tr

�

U (n)F

�

, (157)

for U (n)F = e−iH(n)F (t1+t2) with H(n)F in (120). More importantly, the effect of the M -cycle drive
in (156) enters precisely through factors of the form (λ±n )

M . Thus, following the discus-
sion below (123), the stability characterizations in Table 1 are directly observable in the
particle density ρ(x). Indeed, the nth-mode contribution exhibits parametric instability if
σn = 4ω2

n > 4, since this implies exponential growth in discrete time M(t1+ t2) with the same
rate λL = (t1 + t2)−1log |λ+n | as in (137). Similarly, if σn < 4, one can deduce that it features
oscillations with the same period TL = π(t1 + t2)/arg(λ+n ) as in (138).

A related quantity of interest are density fluctuations in ρ(x), or phrased differently,
density-density correlations in the form of expectations of ρ(x1)ρ(x2). Again, it follows from
(26) and (34) that the relevant objects in Fourier space are the bilinears anam, anā−m, ā−nam,
and ā−nā−m. From (154) and elementary linear algebra, the evolution of these under one full
cycle is given by the Kronecker product C(n)⊗C(m), whose eigenvalues are

λ1
n,m = λ

+
nλ
+
m , λ2

n,m = λ
+
nλ
−
m , λ3

n,m = λ
−
nλ
+
m , λ4

n,m = λ
−
nλ
−
m , (158)

with λ±n in (123). As before, it follows that

det[C(n)⊗C(m)] = 1 , tr[C(n)⊗C(m)] = 4ωnωm = Tr
�

U (n)F

�

Tr
�

U (m)F

�

. (159)

Crucially, the discussion on stability involving λ±n translates directly to λ j
n,m for j = 1,2, 3,4.

The above results for C(n)⊗ C(m) are particularly important when considering expectations
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with respect to homogeneous states, since not only zero modes but also expectations of ana−n
and ā−nān (n ̸= 0) then contribute, meaning that the eigenvalues λ1

n,n = (λ+n )
2 and

λ4
n,n = (λ

−
n )

2 for n ̸= 0 are always relevant to study. This implies that the stability charac-
terizations in Table 1, including the exponential growth with M for σn > 4 indicating para-
metric instability, are always observable in density-density correlations, which were the objects
considered in [46,47] as probes of instabilities.

5.3 Energy density

As seen earlier in Sec. 4.2, the energy density can be expressed as

E(x) = v1

�

T+(x) + T−(x)
�

(160)

at an operator level. Using (26) and (35), it follows that the relevant objects to study in
order to understand its Floquet time evolution are :an−mam: and :ā−n+mā−m: , cf. Sec. 4.2.
(Again, the change of signs in the subscripts for the latter is for convenience.) However, as
seen for particle-density fluctuations in Sec. 5.2, under individual cycles, our drive generates
contributions of the form an−mā−m and ā−n+mam. It is thus necessary to consider all four of
these bilinears. By the same argument as before, it follows from (154) that

U−1
F







:an−mam:
an−mā−m
ā−n+mam

:ā−n+mā−m:






UF = A(n, m)







:an−mam:
an−mā−m
ā−n+mam

:ā−n+mā−m:






+δn,0|m|B(m) , (161)

with the 4× 4 matrix
A(n, m) = C(n−m)⊗C(m) (162)

obtained as the Kronecker product of two 2× 2 matrices of the form in (155) and the vector

B(m) =









(q−m
2 − qm

2 )(q
m
2 − q−m

2 ) cosh2(ν) sinh2(ν)
[q−m

2 cosh2(ν)− qm
2 sinh2(ν)](q−m

2 − qm
2 ) cosh(ν) sinh(ν)q−2m

1
[qm

2 cosh2(ν)− q−m
2 sinh2(ν)](qm

2 − q−m
2 ) cosh(ν) sinh(ν)q2m

1
(q−m

2 − qm
2 )(q

m
2 − q−m

2 ) cosh2(ν) sinh2(ν)









. (163)

We note that the presence of B(m) is due to re-ordering of the right-hand side using (56).
As before, the result of our Floquet drive after M cycles can be understood from the prop-

erties of the matrix in (162). More precisely,

U−M
F







:an−mam:
an−mā−m
ā−n+mam

:ā−n+mā−m:






U M

F = A(n, m)M







:an−mam:
an−mā−m
ā−n+mam

:ā−n+mā−m:






+δn,0|m|

M−1
∑

j=0

[A(0, m)] jB(m) . (164)

Note that the second term still contributes even if the above expression is evaluated with
respect to the ground state |Ω〉 of the theory with K = K1. Indeed,

〈Ω|U−M
F LnU M

F |Ω〉= δn,0〈Ω|U−M
F L0U M

F |Ω〉= δn,0

∞
∑

m=−∞

|m|
2

�

1 0 0 0
�

M−1
∑

j=0

[A(0, m)] jB(m) ,

〈Ω|U−M
F L̄nU M

F |Ω〉= δn,0〈Ω|U−M
F L̄0U M

F |Ω〉= δn,0

∞
∑

m=−∞

|m|
2

�

0 0 0 1
�

M−1
∑

j=0

[A(0, m)] jB(m) ,

(165)
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where the vectors
�

1 0 0 0
�

and
�

0 0 0 1
�

were inserted to project the results to give
the energies of right- and left-moving excitations. We recall the need to renormalize the above
expressions, as discussed in Sec. 4.2, unless an ultraviolet cutoff is imposed on the interaction
modulation.

From the above, it is clear that we are interested in the eigenvalues λ j
n−m,m of A(n, m) in

(162) as well as those of
∑M−1

j=0 [A(0, m)] j . As before, using standard properties for Kronecker

products, λ j
n−m,m are given by (158) and thus directly obtained from the eigenvalues of C(n).

Setting n= 0, the eigenvalues of A(0, m)M are

(λ1
−m,m)

M = (λ+m)
2M , (λ2,3

−m,m)
M = 1 , (λ4

−m,m)
M = (λ−m)

2M , (166)

which also implies that the eigenvalues of
∑M−1

j=0 [A(0, m)] j are16

M−1
∑

j=0

(λ1
−m,m)

j =
1− (λ+m)

2M

1− (λ+m)2
,

M−1
∑

j=0

(λ2,3
−m,m)

j = M ,
M−1
∑

j=0

(λ4
−m,m)

j =
1− (λ−m)

2M

1− (λ−m)2
, (167)

in terms of λ±m in (123). Again, this results in the same stability characterizations depending
on σm as described in the beginning of this section, see Table 1 and Fig. 8: If σm > 4, there are
parametric instabilities observable in the mth-mode contribution to (the L0- and L̄0-parts of)
the energy density in the form of exponential growth with the rate in (137), while if σm < 4,
there are oscillations with the period in (138).

6 Rényi divergence and relative entropy

In this section we turn to a Euclidean setup. We consider a measure from quantum information
theory, the so-called Rényi divergence, which quantifies the difference between thermal states
of the undeformed Hamiltonian H1 and the deformed Hamiltonian H2. It is defined as the
one-parameter generalization of the relative entropy, in the same way that Rényi entropy is
the one-parameter generalization of von Neumann entropy. For any two normalized density
matrices ρ̂1 and ρ̂2, the Rényi divergence Dα(ρ̂1||ρ̂2) is defined as [50]

Dα(ρ̂1||ρ̂2) =
1

α− 1
logTr

�

ρ̂α1 ρ̂
1−α
2

�

. (168)

The quantity Dα = Dα(ρ̂1||ρ̂2) possesses several mathematical properties: (i) it is positive,
Dα ≥ 0, (ii) monotonic, Dα1

≥ Dα2
if α1 > α2, (iii) continuous, and (iv) (1−α)Dα is concave in

α. Furthermore, the limit α→ 1 enables us to recover the relative entropy or Kullback-Leibler
divergence

S(ρ̂1||ρ̂2) = Tr [ρ̂1 log ρ̂1]− Tr [ρ̂1 log ρ̂2] , (169)

which defines a measure of the distance between two density matrices that is of importance
in quantum information [51], holography [82, 83], and CFT [84–86]. The concept of Rényi
divergence recently attracted attention in the context of holography, where it was used to put
additional constraints than the second law of thermodynamics using the monotonicity of Dα
[54,55]. In this context, the Rényi divergence for two-dimensional CFTs was computed from
Euclidean quenches in a path integral formalism, and its computation amounts to evaluating
new classes of generalized partition functions of deformed theories.

The goal of this section is to derive expressions for the Rényi divergence and the relative
entropy between a thermal state ρ̂1 = e−βH1/Z1(β)with Z1(β) = Tr

�

e−βH1
�

of the TLL or com-
pactified free boson theory H1 with Luttinger parameter K1 or radius R1 and a thermal state

16Clearly, all four eigenvalues in (167) are equal to M if λ±m = 1.
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ρ̂2 = e−βH2/Z2(β) with Z2(β) = Tr
�

e−βH2
�

of the marginally deformed theory H2 with Lut-
tinger parameter K2 or radius R2. The Rényi divergence as a measure of the distance between
two TLLs at finite temperature is defined in (168). As mentioned earlier, existing calculations
of (168) in QFTs have been perturbative, namely, order-by-order in the deformation parameter
µ if S2 = S1+µ

∫

d2 x O for actions S1 and S2, where O is some operator. Here we will demon-
strate that the TLL or compactified free boson CFT offers an example to evaluate the object
in (168) non-perturbatively as a function of K1 and K2, i.e., by taking O to be the marginal
operator Φ∼ J J̄ in Sec. 3 [cf. (2), (29), and (40)].

For simplicity we set v1 = v2 = 1 throughout this section.

6.1 Rényi divergence

For convenience, we introduce α̃ = 1 − α. The Rényi divergence in (168) for the thermal
density matrices ρ̂1 and ρ̂2 then takes the form

Dα(ρ̂1||ρ̂2) = −
1
α̃

log
�

Z(α̃,β)
Z2(β)α̃Z1(β)1−α̃

�

, (170)

where Z j(β) = Tr
�

e−βH j
�

for j = 1, 2 is the partition function of the TLL or compactified free
boson Hamiltonian H j and Z(α̃,β) = Tr

�

e−α̃βH2e−(1−α̃)βH1
�

. The former are given by [7]

Z j(β) =
1

|η(iβ/L)|2
∑

m,w∈Z
exp

�

−π
β

L

�

m2

2K j
+ 2w2K j

��

=
Θ j(β/L)

η(iβ/L)2
, (171)

where η(·) denotes the Dedekind eta function17 and Θ j(·) is the Siegel theta function with
j indicating the dependence on the Luttinger parameter K j . Therefore, the crucial object to
evaluate is the generalized partition function Z(α̃,β) in the numerator of the logarithm in
(170). In terms of path integrals, this quantity is a Euclidean quench amplitude, see [54]
for more details. The evolution in the (periodic) imaginary time direction is under H2 for a
duration α̃β and under H1 for the remaining time (1− α̃)β . We can write this quantity as

Z(α̃,β) = Tr
h

Iν(I(q
α̃)

ν )†q
�

L(osc)
0 + L̄(osc)

0 +α̃H(0)2 +(1−α̃)H
(0)
1

�
i

q−1/12 , (172)

for q = e−2πβ/L , where we have used (55) along with the cyclicity of the trace.18 The above
trace can be conveniently factorized into contributions from the primaries and their descen-
dants, analogous to the usual torus partition function of the compactified free boson CFT. The
quantity above then takes the form

Z(α̃,β) = Θ̃(β/L)Ξ(β/L)〈Ω|Iν(I(q
α̃)

ν )†|Ω〉eπβ/6L . (173)

We now spell out the factors of the above expression in turn.
The contribution from the primary states is Θ̃(β/L), where we take into account zero

modes from H1 as well as H2 in (39):

Θ̃(β/L) =
∑

m,w∈Z
exp

�

−π
α̃β

L

�

m2

2K2
2

+ 2K2
2 w2

�

−π
(1− α̃)β

L

�

m2

2K2
1

+ 2K2
1 w2

��

. (174)

Meanwhile, the contribution Ξ(β/L) from the descendant states is given by the following: We
introduce

Ξ(z, z̄) =
TrVm,w

h

Iν(I
(qα̃)
ν )†zL(osc)

0 z̄ L̄(osc)
0

i

〈Ω|Iν(I
(qα̃)
ν )†|Ω〉

=
∑

p,p̄

〈Ψp,p̄ |Iν(I
(qα̃)
ν )†|Ψp,p̄〉

〈Ω|Iν(I
(qα̃)
ν )†|Ω〉

z
∑

npn z̄
∑

np̄n , (175)

17We recall that η(τ) = eiπτ/12
∏∞

n=1

�

1− e2πniτ
�

for complex τ satisfying Im(τ)> 0.
18The E0

2 contribution is omitted since the computations conspire to cancel it for Dα(ρ̂1||ρ̂2).
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where the trace is over a single Verma module, Vm,w, of a primary operator with momentum
m and winding number w. In the second equality, we have used the same notation for de-
scendants (i.e., excited states) as in Sec. 4.1. The quantity above is the generating function
for normalized and analytically continued return amplitudes for descendant states; we have
qα̃ = e−2πα̃β/L as opposed to q = e−2πit/L . This can be explicitly computed using (67) and
(82), yielding

Ξ(z, z̄) =
∞
∏

n=1

∞
∑

pn,p̄n=0

�

An

1+ BnB−n

�pn+p̄n

2F1(−pn,−p̄n; 1;−BnB−n)z
npn z̄np̄n , (176)

where

An = cosh2(ν)− sinh2(ν)e4πα̃βn/L , Bn =
1
2

sinh(2ν)
�

1− e4πα̃βn/L
�

. (177)

Using the definition of the hypergeometric function 2F1(a, b; c; z) as well as properties of the
binomial coefficients, the generating function in (176) simplifies to the infinite product

Ξ(z, z̄) =
∞
∏

n=1

∞
∑

pn,p̄n=0

∞
∑

j=0

�

pn

j

�

ζpn
n

�

p̄n

j

�

ζ̄p̄n
n β

j
n =

∞
∏

n=1

1

(1− ζn)(1− ζ̄n)− βnζnζ̄n
, (178)

where ζn = znAn/(1− βn) and βn = −BnB−n. The standard undeformed generating function
for the descendant states is thus recovered by setting ν = 0, leading to

∏∞
n=1

1
(1−zn)(1−z̄n) . On

the other hand, the analytically continued generating function Ξ(β/L) for z = z̄ = e−2πβ/L in
(178), which takes into account the contribution from the deformed descendant states, takes
the form

Ξ(β/L) =
∞
∏

n=1

1

(1− ζn)(1− ζ̄n)− βnζnζ̄n
, (179)

where

ζn = ζ̄n =
An

1− βn
e−2πβn/L , βn = sinh2(2ν) sinh2(2πα̃βn/L) , (180)

with An in (177). Finally, we recall that the analytically continued ground-state return ampli-
tude appearing in (173) is

〈Ω|Iν(I(q
α̃)

ν )†|Ω〉=
∞
∏

n=1

1

cosh2(ν)− sinh2(ν)e−4πα̃βn/L
. (181)

Putting everything together in (173), one can readily verify that (170) implies that the trivial
limit of two identical TLLs (ν→ 0) consistently yields limν→0 Dα(ρ̂1||ρ̂2) = 0.

As a first step toward the evaluation of the Rényi divergence between two different TLLs,
let us find the contribution from the zero modes to (170). To this end, we compute

Θ̃(β/L)
Θ2(β/L)α̃Θ1(β/L)1−α̃

=
ϑ3

�

iπ β
2L

�

α̃
K2
+ 1−α̃

K1

��

ϑ3

�

iπ2β
L [α̃K2 + (1− α̃)K1]

�

�

ϑ3

�

iπ β
2L

1
K2

�

ϑ3

�

iπ2β
L K2

��α̃ �

ϑ3

�

iπ β
2L

1
K1

�

ϑ3

�

iπ2β
L K1

��1−α̃ , (182)

where we used the Jacobi theta function ϑ3(·).19 This allows us to use its modular properties
to derive the high-temperature limit of the zero-mode contribution to the Rényi divergence:
Using the S-modular transformation

ϑ3(τ) = (−iτ)−1/2ϑ3(−1/τ) , (183)

19We recall that ϑ3(τ) =
∑

n∈Z eπiτn2
for complex τ satisfying Im(τ)> 0.
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we find that in the high-temperature regime β/L≪ 1, (182) simplifies to

Θ̃(β/L)
Θ2(β/L)α̃Θ1(β/L)1−α̃

≈





π2 β2

L2

�

α̃
K2
+ 1−α̃

K1

�

[α̃K2 + (1− α̃)K1]

π2 β
2

L2





−1/2

=
�

cosh2(ν)− (1− 2α̃)2 sinh2(ν)
�−1/2

, (184)

which yields

D(0)α (ρ̂1||ρ̂2) = −
1
α̃

log

�

Θ̃(β/L)
Θ2(β/L)α̃Θ1(β/L)1−α̃

�

≈
log
�

cosh2(ν)− (1− 2α̃)2 sinh2(ν)
�

2α̃
. (185)

In particular, taking the limit α→ 1, i.e., α̃→ 0, gives the zero-mode contribution

S(0)(ρ̂1||ρ̂2)≈ 2sinh2(ν) (186)

to the relative entropy. Since this contribution does not scale with temperature, it will be
sub-leading and can thus be ignored in the high-temperature regime.

We now consider the contribution from the oscillator modes. Their contribution to
Z(α̃,β)e−πβ/6L is

Ξ(β/L)〈Ω|Iν(I(q
α̃)

ν )†|Ω〉=
∞
∏

n=1

1
�

(1− ζn)2 − βnζ2
n

� �

cosh2(ν)− sinh2(ν)e−4πα̃βn/L
� . (187)

For α= 1, i.e., α̃= 0, this yields

Ξ(β/L)〈Ω|Iν(I(q)ν )
†|Ω〉eπβ/6L =

1
η(iβ/L)2

, (188)

where q = e−2πβ/L , in which case this cancels with the contribution from the oscillator modes
to Z2(β)α̃Z1(β)1−α̃ in (170) for the Rényi divergence, cf. (171) and (173). It follows that

D(osc)
α (ρ̂1||ρ̂2) = −

1
α̃

�

log
�

Z(α̃,β)
Z2(β)α̃Z1(β)1−α̃

�

− log

�

Θ̃(β/L)
Θ2(β/L)α̃Θ1(β/L)1−α̃

��

= −
1
α̃

log
�

η(iβ/L)2Ξ(β/L)〈Ω|Iν(I(q
α̃)

ν )†|Ω〉eπβ/6L
�

=
1
α̃

∞
∑

n=1

log

 
�

(1− ζn)2 − βnζ
2
n

� �

cosh2(ν)− sinh2(ν)e−4πα̃βn/L
�

�

1− e−2πβn/L
�2

!

, (189)

with ζn and βn in (180), where we recall that α̃ = 1− α. Similar to previous results in this
paper, since individual terms in the sum in (189) tends to log cosh2(ν) for large n, the sum must
be renormalized unless an ultraviolet cutoff is imposed. In Fig. 12(a), we plot the result for the
oscillator part of the Rényi divergence for a fixed cutoff on the number of modes. Its properties
of positivity, monotonicity, and continuity are clearly visible in the figure. Furthermore, the
concavity of (1−α)D(osc)

α (ρ̂1||ρ̂2) is shown in Fig. 12(b). We stress that the formula in (189)
for the Rényi divergence was obtained non-perturbatively.

As a last step, we take the limit α→ 1 for D(osc)
α (ρ̂1||ρ̂2) in (189) to compute the oscillator

part of the relative entropy between two TLLs. Formally taking the limit inside the sum and
recalling that α̃= 1−α, one obtains

S(osc)(ρ̂1||ρ̂2) =
∞
∑

n=1

4πβn
L

sinh2(ν) coth(πβn/L) . (190)
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Figure 12: Plots of (a) the oscillator part of the Rényi divergence Dα = D(osc)
α (ρ̂1||ρ̂2)

in (189) and (b) the corresponding (1− α)Dα as functions of α ∈ (0,1). The posi-
tivity, monotonicity, and continuity of Dα and the concavity of (1− α)Dα are clearly
visible. The parameters used in both (a) and (b) are β/L = 0.01 and K1/K2 = e2ν

for ν = 0.1,0.2, ..., 1 (bottom to top), and the results are plotted for a cutoff on the
number of modes at n= 100.

This sum can be regularized (cf. Sec. 4.2) by writing it as

S(osc)(ρ̂1||ρ̂2) =
∞
∑

n=1

4πβn
L

sinh2(ν)
�

coth(πβn/L)− 1
�

+
4πβ

L
sinh2(ν)ζ(−1) , (191)

where ζ(−1) = −1/12 through analytic continuation. In the high-temperature regime
β/L≪ 1, the sum in (191) can be approximated by an integral with respect to the dimension-
less variable ξ= πβn/L and computed analytically, yielding

S(osc)(ρ̂1||ρ̂2)≈
4L
πβ

sinh2(ν)

∫ ∞

0

dξξ
�

coth(ξ)− 1
�

−
πβ

3L
sinh2(ν) =

πL
3β

�

1−
β2

L2

�

sinh2(ν) . (192)

Recalling that the zero-mode contribution in (186) is sub-leading in L, we conclude that the
relative entropy between two TLLs with Luttinger parameters K1 and K2 is

S(ρ̂1||ρ̂2)≈
πL
3β

sinh2(ν) (193)

for large system sizes L≫ 1.

6.2 Relative entropy

As a consistency check of our results for the Rényi divergence and the formula in (193) for the
relative entropy as its α→ 1 limit, we now provide a direct calculation of the latter.

We start with the definition in (169). Since ρ̂1 and ρ̂2 are normalized thermal density
matrices, we can rewrite the relative entropy as

S(ρ̂1||ρ̂2) = β
�

Tr [ρ̂1H2]− Tr [ρ̂1H1]
�

− log
�

Z2(β)
Z1(β)

�

. (194)

As before, we are interested in results for large system sizes. The last term vanishes due
to the universality of high-temperature partition functions for CFTs: Z(β)≈ exp(πcL/6β) for
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β/L≪ 1. The trace Tr [ρ̂1H1] appearing in (194) is simply the total energy of the undeformed
theory at high temperatures. From (114), this is

Tr[ρ̂1H1] = LEβ ≈
πL
6β2

. (195)

We are then left to calculate the trace Tr[ρ̂1H2] at high temperatures. In order to proceed,
we use the expression of the deformed Hamiltonian in (40) (omitting any constant terms
subleading in L) together with (34) to obtain

Tr[ρ̂1H2] = cosh(2ν)Tr[ρ̂1H1] +
2π sinh(2ν)

L
Tr

�

ρ̂1

∞
∑

n=−∞
anān

�

≈
πL
6β2

cosh(2ν) +
2π sinh(2ν)

L
Tr [ρ̂1a0ā0] . (196)

In the second step we used (195) and the fact that the contribution from the trace in the second
term only comes from the zero modes. The last term vanishes in the thermodynamic limit;
this is shown in Appendix B.4 using the flavoured partition function. Therefore, the relative
entropy takes the form

S(ρ̂1||ρ̂2)≈
πL
3β

sinh2(ν) =
πL
3β
(K1 − K2)2

4K1K2
(197)

for L≫ 1, reproducing the result in (193). It obeys the general property of being non-negative
and, as expected, gives zero when the Luttinger parameters (compactification radii) are equal.
We stress that (197) yields a remarkably simple dependence on the Zamolodchikov distance
ν and that it is an example of a relation between two different distance measures, namely a
quantum information-theoretic distance and a geodesic distance in the space of theories.

7 Concluding remarks

In this paper, we studied the non-equilibrium dynamics of TLLs under interaction modulations
modeled by quenching or periodically driving the Luttinger parameter. These modulations are
marginal (J J̄) deformations in the low-energy description of TLLs as compactified free bosons,
which is the simplest CFT that belongs to a continuous family of CFTs. Two protocols were
considered, a quantum quench and a two-step Floquet drive, switching between Hamiltonians
H1 and H2 with different Luttinger parameters K1 and K2, or equivalently different compact-
ification radii. Using Bogoliubov transformations and an underlying su(1, 1)-algebraic struc-
ture, we derived a number of exact analytical results that depend crucially on the ratio of
the Luttinger parameters, which corresponds to the Zamolodchikov distance ν = log

p

K1/K2
between the theories H1 and H2 in the space CFTs.

For the quench, we computed the Loschmidt echo and the time evolution of the energy den-
sity for the system initialized in any arbitrary eigenstate of H1. We showed that the Loschmidt
echo exhibits periodic revivals for all initial states, while if the initial state mixes right- and
left-moving excitations, it also has Lee-Yang-Fisher zeros, which are defining features of dy-
namical quantum phase transitions. For the evolution of the energy-density expectation, we
observed periodic discontinuities at times corresponding to the revivals in the Loschmidt echo.
Moreover, starting from thermal states, its asymptotic (late-time) expression in the thermody-
namic limit was shown to agree with that of the energy density evaluated in a thermal state
at an effective temperature βeff that depends on ν.
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For the two-step drive, we used a factorization of the Floquet operator into uncoupled
discrete-time quantum parametric oscillators to obtain explicit criteria for stability or instabil-
ity based on the value of the su(1,1) Cartan-Killing form for the Floquet Hamiltonian for each
individual mode. We showed that this is observable in physical quantities such as the strobo-
scopic time evolution of the Loschmidt echo for arbitrary eigenstates of H1 and the particle
and energy densities. In the stable phase, these quantities oscillate in time with a period that
diverges as one approaches the phase boundary. On the other hand, in the unstable phase,
the Loschmidt echo decays and the densities grow exponentially with a rate that vanishes as
one approaches the phase boundary. This period and rate were identified as natural order
parameters and shown to have critical exponents of 1/2.

Lastly, we used our formalism to non-perturbatively compute the Rényi divergence be-
tween thermal states corresponding to the two Hamiltonians H1 and H2, while earlier QFT
computations of the Rényi divergence have been perturbative. Taking a certain limit of our re-
sult, we obtained the relative entropy, which defines a quantum information-theoretic distance
between density matrices, and which in our case has a remarkably simple dependence on ν in
the thermodynamic limit. This relation between the relative entropy and the Zamolodchikov
distance provides a concrete correspondence between two distance measures: It directly trans-
lates the geodesic distance in the moduli space to a quantum information-theoretic distance
between thermal density matrices of the corresponding CFTs.

A common thread in all of our exact analytical results for TLLs is their dependence on the
geometric distance in the space of theories related by marginal deformations. In this sense, the
present work motivates further exploration of these connections between dynamics, quantum
information-theoretic distance measures, and the geometry of moduli spaces.

There are several extensions of the present work that would be interesting to pursue:

Quasi-periodic and random drives. One direct extension is to consider drives that fully
break time-translation invariance, either deterministically or randomly, in the form of quasi-
periodic or random drives. The methods we used to compute, e.g., the Loschmidt echo for
a periodic drive (see Sec. 5.1) are readily generalizable to these new drive protocols. One
way is to use the generalized SU(1, 1) rotation relations and properties of products of random
SU(1,1) matrices and trace-map formulas for, e.g., Fibonacci quasi-periodic drive sequences,
cf. [42,45].

Trapped ultra-cold atoms. To relate to experiments, it would be interesting to generalize
the constant Luttinger parameters K1,2 in this work to functions K1,2(x) of position x . This
arises naturally in cold-atom experiments as a consequence of the trapping potential [see (20)
and (21)]. The dynamics in such a static environment was recently studied in [64], but the
full quench problem or its driven counterpart have yet to be considered. To paint a complete
picture, this would optimally also include a quantitative discussion of relevant length scales
and effects of physical cutoffs on the number of modes. Another way to connect with exper-
iments is to consider spatially inhomogeneous initial states, e.g., localized excitations on top
of the ground state, which is realizable in cold-atom experiments. We expect that the way
these excitations propagate under the periodic drive would lead to intricate spatial patterns of
energy and particle density in both the stable and unstable phase.

Driven dissipative TLLs The solvability of the marginally driven TLL was greatly facilitated
by identifying a closed su(1,1) algebraic structure in the time-dependent Hamiltonian. A
similar algebraic structure was identified and used to solve a dissipative harmonic oscillator
in [87,88]. It would be interesting to explore driven dissipative TLLs using methods developed
in these works.

Multi-component TLLs and strings with higher-dimensional target spaces. It is natural to
consider quenches and periodic drives by marginal deformations in D-component TLLs, which
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have U(1)D current algebras generated by J I
n and J̄ I

n (n ∈ Z, I = 1, . . . , D). These deformations
generate the Narain moduli space of the toroidally compactified D-component free boson CFT
or D-dimensional bosonic string. The action is [cf. (2)]

S =
1

4πα′

∫

d2 x
�

GI Jδ
αβ + iBI Jε

αβ
�

∂αX I∂βX J , (198)

where the space of marginal deformations is parametrized by the symmetric target-space met-
ric G I J and the anti-symmetric Kalb–Ramond field B I J . Applications include the low-energy
description of a system of multiple copies of XXZ spin chains with the Hamiltonian [cf. (16)]

H = −J
D
∑

I ,I ′=1

N
∑

j=1

�

δI ,I ′S
x ,I
j S x ,I ′

j+1 +δI ,I ′S
y,I
j S y,I ′

j+1 −∆I ,I ′S
z,I
j Sz,I ′

j+1

�

, (199)

where ∆I ,I ′ is the anisotropy matrix, which is modulated in time. It would be interesting to
study how the non-equilibrium dynamics depends on the Zamolodchikov distance in this case.

Compactified orbifold boson CFT. The moduli space of c = 1 CFTs contains two lines
(that meet at a point) [2]. The first corresponds to the compactified free boson CFT and is
parametrized by the compactification radius. Here we have studied the physical consequences
of dynamically exploring this line. The second corresponds to the Z2 orbifold CFT and is
parametrized by the radius of the orbifolded circle. Much of the formalism developed in this
work can be adapted to marginal quenches or drives of this second line. Such protocols could
be realized in the Ashkin-Teller quantum spin chain.

Wess-Zumino-Witten (WZW) models. A large class of CFTs that admit J J̄ deformations is
provided by G-WZW models, which have dim(g) holomorphic and anti-holomorphic currents,
where g is the Lie algebra associated with the compact and simply connected Lie group G. A
subset of the current-current deformations formed from these are exactly marginal and gen-
erate a moduli space of CFTs. More precisely, a J J̄ -type deformation is exactly marginal if
(and only if) both the holomorphic and anti-holomorphic currents belong to a commutative
current algebra [69, 89]. How our results generalize to the dynamics of WZW models under
time-dependent exactly marginal deformations is an open question.

T T̄ deformations. The recently introduced T T̄ deformation of CFTs and integrable QFTs
[90, 91] provides another arena to explore the dynamics of quenches and drives. This is an
irrelevant deformation where the spectrum of the deformed theory is exactly solvable in terms
of the undeformed spectrum and degeneracies remain unchanged. A practical starting point
to study such dynamics would be to consider a T T̄ quench of the free fermion CFT. As the
deformation brings about changes in signal propagation velocities, it would be tantalizing to
see how individual quantities, such as return probabilities and correlation functions, evolve
following the quench. Some work in this direction was carried out in [92].

Holography. It would be interesting to consider how the dynamics of marginal quenches
and drives translate into bulk or gravitational terms through the AdS/CFT correspondence. In
the prototypical example of AdS3/CFT2 described by the D1-D5 system, the holographic CFT
contains exactly marginal operators [93].20 The marginal deformations in this case allow an
interpolation between stringy and (classical) gravity regimes in AdS3. Since we have structures
reminiscent of boundary states and conformal interfaces (cf. Sec. 3.4), it is natural to expect
that these will have counterparts in the bulk.

20Exactly marginal operators do not acquire anomalous dimensions upon deformation, i.e., they are protected
by supersymmetry.
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A Lerch zeta function and regularization

In this appendix, we provide formulas that are crucial in order to regularize the sum in (93).
As a first step we re-express the sum in terms of the Lerch zeta function

ζ(s|v, w) =
∞
∑

m=0

(m+ v)−se2πimw . (A.1)

Note that the Lerch zeta function reduces to the Riemann zeta function ζ(−1) at s = −1 and
v = w= 0, i.e.,

ζ(−1|0,0) = −
1
12

. (A.2)

The divergence in (93) can be regularized using

∞
∑

m=1

me2πimw = ζ(−1|0, w) , (A.3)

where the right-hand side is defined through the following analytic continuation of the Lerch
zeta function [94]:

ζ(s|v, w) = ie−2πivw(2π)s−1Γ (1− s)
�

e−πis/2ζ(1− s|w,−v)− eπis/2e2πivζ(1− s|1−w,v)
�

. (A.4)

B Computational details

B.1 Primary state contribution to return amplitudes

Below we give an argument as for why the return amplitude starting from a primary state
|h, h̄〉 gives the same result as starting from the ground state |Ω〉, i.e., for why

〈h, h̄|Iν
�

I(q)ν
�†
|h, h̄〉= 〈Ω|Iν

�

I(q)ν
�†
|Ω〉 , (B.1)

up to a zero-mode contribution which is an overall phase.
Let us first use the operator-state correspondence and write

〈h, h̄|Iν
�

I(q)ν
�†
|h, h̄〉= lim

z,z̄→0
ω,ω̄→0

〈Ω|O†(ω, ω̄)Iν
�

I(q)ν
�†

O(z, z̄)|Ω〉 , (B.2)

where O(z, z̄) is a primary field with conformal weights (h, h̄). The following commutation
relations can be derived from the OPEs of O(z, z̄) with the conserved U(1) currents J(z) and
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J̄(z̄) [cf. Sec. 3.1]:

[an, O(z, z̄)] = qOznO(z, z̄) , (B.3)

[anān, O(z, z̄)] = [q̄Oz̄nan + qOznān − qOq̄O(zz̄)n]O(z, z̄) . (B.4)

Here, qO and q̄O are the charges of the U(1)+ and U(1)− current algebras, respectively, for the
primary field O(z, z̄); equivalently, these are the right and left momenta of the vertex operators.

As a consequence, it is clear that

lim
z,z̄→0

[anān, O(z, z̄)] = 0 , lim
z,z̄→0

�

�

I(q)ν
�†

, O(z, z̄)
�

= 0 , (B.5)

where we used (48), which implies

〈h, h̄|Iν
�

I(q)ν
�†
|h, h̄〉= lim

z,z̄→0
ω,ω̄→0

〈Ω|IνO†(ω, ω̄)O(z, z̄)
�

I(q)ν
�†
|Ω〉 . (B.6)

Using the fact that the primary states of the compactified free boson CFT are vertex operators,
we conclude that limz,z̄→0 limω,ω̄→0 O†(ω, ω̄)O(z, z̄) = I and thus the equality in (B.1) holds.

B.2 Solving the Floquet recursion relation

Here we solve the recursion relation in (131) for the matrix in (129), restated here for ease of
reference:
�

I (n,M)
1,1 I (n,M)

1,2

I (n,N)
2,1 I (n,M)

22

�

=

�

I (n,M−1)
1,1 I (n,M−1)

1,2

I (n,M−1)
2,1 I (n,M−1)

2,2

�

×
�

cosh2(ν)− sinh2(ν)q2n
2

1
2 sinh(2ν)(1− q−2n

2 )q−2(M−1)n
2 q−2(M−1)n

1
1
2 sinh(2ν)(1− q2n

2 )q
2(M−1)n
2 q2(M−1)n

1 cosh2(ν)− sinh2(ν)q−2n
2

�

. (B.7)

Note that it is enough to solve the recursion for I (n,M)
1,1 and I (n,M)

1,2 , since they are coupled to
each other but decoupled from the rest:

I (n,M)
1,1 =

�

cosh2(ν)− sinh2(ν)q2n
2

�

I (n,M−1)
1,1

+
1
2

sinh(2ν)
�

1− q2n
2

�

q2(M−1)n
2 q2(M−1)n

1 I (n,M−1)
1,2 ,

I (n,M)
1,2 =

1
2

sinh(2ν)
�

1− q−2n
2

�

q−2(M−1)n
2 q−2(M−1)n

1 I (n,M−1)
1,1

+
�

cosh2(ν)− sinh2(ν)q−2n
2

�

I (n,M−1)
1,2 . (B.8)

The seed conditions for the recursion is I (n,0)
1,1 = 1 and I (n,0)

1,2 = 0. The second equation above
can be written more symmetrically as

I (n,M)
1,2 q2(M−1)n

2 q2(M−1)n
1 =

1
2

sinh(2ν)
�

1− q−2n
2

�

I (n,M−1)
1,1

+
�

cosh2(ν)− sinh2(ν)q−2n
2

�

I (n,M−1)
1,2 q2(M−1)n

2 q2(M−1)n
1 . (B.9)

Therefore, multiplying by x M for an arbitrary x ∈ R,

I (n,M)
1,1 x M =

�

cosh2(ν)− sinh2(ν)q2n
2

�

I (n,M−1)
1,1 x M

+
1
2

sinh(2ν)
�

1− q2n
2

�

I (n,M−1)
1,2 q2(M−1)n

2 q2(M−1)n
1 x M ,

I (n,M)
1,2 q2(M−1)n

2 q2(M−1)n
1 x M =

1
2

sinh(2ν)
�

1− q−2n
2

�

I (n,M−1)
1,1 x M

+
�

cosh2(ν)− sinh2(ν)q−2n
2

�

I (n,M−1)
1,2 q2(M−1)n

2 q2(M−1)n
1 x M .

(B.10)
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Summing over M from 1 to∞, we obtain

I (n)1,1(x)− 1=
�

cosh2(ν)− sinh2(ν)q2n
2

�

x I (n)1,1(x)

+
1
2

sinh(2ν)
�

1− q2n
2

�

x I (n)1,2(q
2n
2 q2n

1 x) ,

q−2n
2 q−2n

1 I (n)1,2(q
2n
2 q2n

1 x) =
1
2

sinh(2ν)
�

1− q−2n
2

�

x I (n)1,1(x)

+
�

cosh2(ν)− sinh2(ν)q−2n
2

�

x I (n)1,2(q
2n
2 q2n

1 x) , (B.11)

where we defined the generating functions

I (n)1,1(x) =
∞
∑

M=0

I (n,M)
1,1 x M , I (n)1,2(x) =

∞
∑

M=0

I (n,M)
1,2 x M . (B.12)

The solutions to the generating functions are

I (n)1,1(x) =
2− 2xq2n

1

�

cosh2(ν)q2n
2 − sinh2(ν)

�

2x2q2n
2 q2n

1 − x
�

1+ q2n
2

� �

1+ q2n
1

�

− x cosh(2ν)
�

1− q2n
2

� �

1− q2n
1

�

+ 2
,

I (n)1,2(q
2n
2 q2n

1 x) =
x sinh(2ν)

�

q2n
2 − 1

�

q2n
1

2x2q2n
2 q2n

1 − x
�

1+ q2n
2

� �

1+ q2n
1

�

− x cosh(2ν)
�

1− q2n
2

� �

1− q2n
1

�

+ 2
.

(B.13)

We note that the first expression can be rewritten as

I (n)1,1(x) =
1−αnqn

2qn
1 x

1− βnqn
2qn

1 x + (qn
2qn

1 x)2
=

1−αnqn
2qn

1 x

(qn
2qn

1 x − [βn − γn]/2)(qn
2qn

1 x − [βn + γn]/2)
, (B.14)

with
αn =

�

cosh2(ν)qn
2 − sinh2(ν)q−n

2

�

qn
1 ,

βn =

�

qn
1 + q−n

1

� �

qn
2 + q−n

2

�

+
�

qn
1 − q−n

1

� �

qn
2 − q−n

2

�

cosh(2ν)

2
,

γn =
q

β2
n − 4 .

(B.15)

Noting that (βn ± γn)/2= λ±n in (123) and re-expanding I (n)1,1(x) =
∑∞

M=0 I (n,M)
1,1 x M as a power

series in x , we obtain

I (n,M)
1,1 = (qn

2qn
1)

M

�

αn −λ−n
��

λ−n
�M −

�

αn −λ+n
��

λ+n
�M

p

σn − 4
. (B.16)

Finally, using that αn = ωn − i(ϵn/2)
Æ

4−σ2
n in terms of ωn in (122) and ϵn in (133), the

desired result for I (n,M)
1,1 in (132) follows.

B.3 SU(1, 1) matrix elements for M-cycle rotations

Below we explain how to obtain analytical expressions for An = An(M) and Bn = Bn(M) in
(147). We recall that these are defined by products of SU(1,1) matrices,

�

An Bn

Bn An

�

=
0
∏

j=M−1

T j ,

�

An −Bn

−Bn An

�

=
M−1
∏

j=0

T−1
j , (B.17)
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implementing M -cycle rotations, where T j and T−1
j are given by (145) and (146), respectively.

To compute such products explicitly, consider a general matrix of the form

A j =

�

a be−iφ j

beiφ j a

�

(B.18)

for a, b ∈ C and φ ∈ R. Noting that

A j =

�

0 e−i(φ/2) j

ei(φ/2) j 0

��

a b
b a

��

0 e−i(φ/2) j

ei(φ/2) j 0

�

= S jBS j (B.19)

and defining D= S j−1S j = diag(eiφ/2, e−iφ/2), products of A js can be written

A0A1 . . .AM−1 = S0(BD)
M−1BSM−1 ,

AM−1 . . .A1A0 = SM−1B(DB)
M−1S0 .

(B.20)

Thus, the products of matrices in (B.17) implementing the M -cycle rotations can be expressed
as simpler products of new matrices, which straightforwardly can be used to compute explicit
coefficients for the M -cycle rotation of a−n and ān.

B.4 Evaluation of Tr
�

e−βH a0ā0

�

We encountered the following trace in (196) while calculating the relative entropy:

Tr

�

e−βH
∞
∑

n=−∞
anān

�

= Tr
�

e−βH a0ā0

�

. (B.21)

The above object can be evaluated in general by taking derivatives with respect to the chemical
potentials of the flavoured partition function

Z(τ, τ̄,χ, χ̄) = Tr
�

qL0−c/24q̄ L̄0−c/24e2πiχa0e−2πiχ̄ ā0
�

, (B.22)

1
4π2

∂χ∂χ̄Z(τ, τ̄,χ, χ̄)
�

�

χ,χ̄=0 = Tr
�

qL0−c/24q̄ L̄0−c/24a0ā0

�

, (B.23)

where q = e2πiτ and χ and χ̄ are chemical potentials conjugate to the right and left U(1)
currents, respectively. As we are interested in the high-temperature regime, we need the
S-modular transformation of the partition function above. It is well known that the object
transforms in a manner similar to a weak Jacobi form [95, Appendix A]:

Z(τ, τ̄,χ, χ̄) = exp

�

−
iπχ2

τ
+

iπχ̄2

τ̄

�

Z
�

−
1
τ

,−
1
τ̄

,
χ

τ
,
χ̄

τ̄

�

, (B.24)

where τ = iβ/L in our case. The dominant contribution at low temperatures arises from
the vacuum. S-modular transforming this result using the above, we get the universal high-
temperature behavior

Z(β/L,χ, χ̄)≈ exp

�

−
iπL(χ2 + χ̄2)

β
+
πL
6β

�

(B.25)

for β/L ≪ 1. Corrections beyond this are exponentially suppressed. Now taking derivatives
and setting the chemical potentials to zero, as prescribed by the second equation in (B.22), we
get Tr

�

e−βH a0ā0

�

= 0 in the thermodynamic limit.
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