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Abstract

We obtain exact formulas for the time-dependence of a few physical observables for the
open XX spin chain with Lindbladian dynamics. Our analysis is based on the fact that
the Lindblad equation for an arbitrary open quadratic system of N fermions is explicitly
solved in terms of diagonalization of a 4N x 4N matrix called structure matrix by fol-
lowing the scheme of the third quantization. We mainly focus on the time-dependence
of magnetization and spin current. As a short-time behavior at a given site, we observe
the plateau regime except near the center of the chain. Basic features of this are ex-
plained by the light-cone structure created by propagations of boundary effects from the
initial time, but we can explain their more detailed properties analytically using our ex-
act formulas. On the other hand, after the plateau regime, the magnetization and spin
current exhibit a slow decay to the steady state values described by the Liouvillian gap.
We analytically establish its O(N—2) scaling and also determine its coefficient.
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1 Introduction

Open non-equilibrium systems, connected with external reservoirs, have been one of the most
important subjects in non-equilibrium statistical mechanics [1,2]. They are known to show var-
ious interesting behaviors and phenomena, which are not seen in systems in thermal equilib-
rium. A classical example is the Bernard convection, in which a characteristic spatio-temporal
pattern appears when the temperature difference between the top and bottom sides of an inter-
mediate liquid becomes large enough [3-5]. To understand basic properties of non-equilibrium
systems, studying simple model systems is useful. In particular, there have been extensive
studies on classical one-dimensional models which show nontrivial phenomena like bound-
ary induced phase transition and anomalous transport and at the same time are analytically
tractable [6-8].

Recently, due to the development of experimental techniques, non-equilibrium states are
realized also in a variety of quantum systems, such as cold atoms [9-12], optics [13, 14],
and quantum walks [15]. Correspondingly studying non-equilibrium properties of open quan-
tum systems from a theoretical point of view is also becoming more and more important. In
addition, for the last few years, connections to studies of non-hermitian systems have been
suggested and attracted attention [ 16-21], since open quantum systems can be interpreted as
non-hermitian systems.

There are a few theoretical frameworks to study the dynamics of open quantum systems. A
conventional one is the use of non-equilibrium Green’s function [22,23], which is an extension
of the standard Green’s function [23, 24] and has been useful to analytically calculate time
dependent correlation functions for systems in equilibrium. Recently, the method has been
generalized to study systems in which the state evolves from a given initial condition to another
[25,26]. It has been already applied to a few concrete models such as the one-dimensional XY
spin chain [27-29]. In this approach, the time evolution is still given by a Hamiltonian, but
calculations tend to be rather cumbersome. It has turned out that a description by a quantum
master equation [30-32] is equally effective and useful to study various properties of non-
equilibrium systems. There are several versions of the quantum master equations, such as the
Lindblad equation and the Redfield equation. In this paper we employ the description by the
Lindblad equation. We remark that relationships between the quantum master equations and
the method of the non-equilibrium Green’s function have been recently examined [33].

The Lindblad equation has been mainly solved numerically, by which one can treat only
relatively small systems. But by taking simple models which are analytically tractable, we may
study non-equilibrium properties of large systems. Indeed there have been already some pre-
vious works for several one-dimensional systems described by the Lindblad equation. In par-
ticular, a few exact solutions for the nonequilibrium steady states(NESSs) have been obtained
by using Matrix Product Ansatz (MPA) [34-42]. As for dynamics, there has been some recent
progress in numerical calculations such as the Matrix Product Operator method [43-45], the
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density matrix renormalization group method [46,47]. It is equally important to develop ana-
lytical techniques to study their dynamics [48-50]. In particular, analytical solutions for some
simple model systems would provide invaluable information for understanding general open
quantum systems.

In this paper, we will give an exact solution for the time-dependence of the magnetization
and the spin current for the XX spin chain with boundary dissipation described by the Lind-
blad equation. We will use the fact that an arbitrary open quadratic system whose dynamics
is described by the Lindblad equation admits an application of the third quantization [51].
Although this method has been already known for about ten years and has been applied to
several fermionic and bosonic systems [51-57], as far as we know, it has not been fully ex-
ploited for obtaining exact formulas for time-dependent physical quantities. In this paper we
will show how we can utilize the third quantization to obtain exact time-dependence of phys-
ical quantities and provide explicit formulas for a few of them.

In previous works [51, 53-57], solving a Lindblad equation describing the dynamics for
open quadratic bosonic/fermionic systems has been shown to reduce to a diagonalization of
a 2N x 2N matrix. In this paper, we show that, in the case of the open XX spin chain, the
problem can be further reduced to a diagonalization of an N x N non-Hermitian matrix and
that this non-Hermitian matrix can be diagonalizable. We remark on the fact that solving a
Lindblad equation describing the dynamics has been shown to reduce a diagonalization of the
N x N non-Hermitian matrix in a few specific cases, such as for the open XX spin chain whose
specific dissipative strengths satisfy the condition 4J2 = ¢, g [56], and the open XY spin chain
without magnetic field [57]. Using our procedure, the non-Hermitian matrix for the open XX
spin chain can be diagonalized for arbitrary dissipative strengths and magnetic field. Then
we will show that the time-dependence of physical quantities can be studied by solving the
continuous-time differential Lyapunov equation [58-60] and that this equation can indeed be
solvable. By combining these we can arrive at explicit formulas for the time-dependence for
an open quantum system described by the Lindblad equation for the first time. We also remark
that a similar reduction of matrix size has been known for the XY spin chain Hamiltonian in
the context of the Kitaev model [61,62].

As an example of applications of our formulas, we consider the time-dependence of the
magnetization and the spin current from the thermal equilibrium state in the high temperature
limit B — 0. First, by taking the limit t — 00, we obtain the exact solutions for the NESS. We
will see that our formulas give a generalization of the formulas in a previous study using MPA
[35], in which only the case of opposite magnetizations at the boundaries was treated. By the
same formulas, we will also analyze behaviors for time-dependent physical observables. We
first observe that the spatio-temporal dependence of the magnetization for the open XX chain
using our formulas shows a light-cone structure. Similar light-cone structures have appeared in
quench dynamics or a dynamics starting from the step initial condition [11,63,64]. Our results
would be useful to discuss similarities and differences with the dynamics of the closed XX spin
chain and the validity of some approximations in the derivation of the QMEs [32]. By carefully
examining the behaviors of physical quantities, we can study various other properties as well.
For example we can analytically show the emergence of the plateau regime and discuss their
behaviors in detail by performing an asymptotic analysis of integral representations of physical
quantities. Also, after the plateau regime, we observe a slow relaxation for the magnetization
and the spin current at a bulk site, corresponding to the Liouvillian gap. By examining our
formulas, we will not only establish the O(1/N?) scaling but also determine its coefficient.

The paper is organized as follows. In the following section 2, we shortly explain the general
theorems of the third quantization to review the previous studies [51,55], and we calculate
the exact spectrum of the Lindbladian. In sections 3 and 4, we explain the main results of this
paper. In section 3, we explain: (i) we can calculate the analytical steady state solutions of



https://scipost.org
https://scipost.org/SciPostPhys.14.5.112

Scil SciPost Phys. 14, 112 (2023)

the magnetization and spin current for open XX spin chain with left-right asymmetric dissipa-
tion strength and bath magnetization, and (ii) the exact solutions of the time-dependence of
magnetization and spin current are obtained. In section 4, we focus on several specific behav-
iors for the dynamics of the open XX spin chain with boundary dissipations. In particular, we
analytically discuss the light-cone structure, the plateau regime where the magnetization does
not change over a duration of time, and the Liouvillian gap. The former two issues appear in
a short time window, and the latter one is related to a long time window. Each time window
is determined by the specific time for this system, and we introduce these in section 4. In
section 5, we summarize this paper, and in appendixes we give more detailed calculations for
the physical observables for steady state and the time-derivative of the magnetization on an
arbitrary site.

2 Spectrum of the open XX spin chain with boundary dissipation

2.1 Lindbladian in Liouvillian-Fock space

We consider the following Hamiltonian of XX spin chain,

y
H= ‘]Z(akak+1+0k Opp1) — BZ% ey

where az’y * are the Pauli operators, J is the coupling constant between a site and nearest-

neighbor sites, and B is denoted as the magnetic field. The Lindblad equation [31] is denoted
as

d . N
S P(O)=Lp(0)=~i[H,p(1)] +;Lup(t)L; — —{ L0}, @)
where p(t) is the density operator and Lindblad dissipative operators are defined as
1+u 1+u
L1:\€L 2 LO“{, L3:\8R 2 RO-;\}’ (3)
1—py _ 1—pp _
L2=\8L 2 O-].’ L4=\€R 2 O-N’ (4)

where o* = (0" £i0”)/2, &, /r are dissipative strength between the system and each reservoir,
and uy /g are the magnetization on each reservoir. We can explain the interpretation of these
parameters and the forms of the operators (3,4) when we derive the Lindblad equation from
the dynamics of the total system including the reservoirs [65,66]. The Lindblad operators
L4, L, (3,4) play the roles of entry and exclusion of the up-spin between the left boundary and
the left end, and Lj, L4 (3,4) play the roles of entry and exclusion for the up-spin between
the right boundary and the right end. These parameters € /g, U /g are related to the coupling
strength in each boundary and each reservoir’s chemical potential, respectively.

In the following, we will determine the spectrum of the Lindbladian £ in (2), which is a
linear operator in the space of density operators. A summary will be given at the end of this
section.

We introduce the Majorana fermion operators w;, j = 1,2,---,2N satisfying the anti-
commutation relations {w is Wk} = 20j,. The XX spin chain is equivalent to the one-
dimensional free Majorana fermion model using the inverse of the Jordan-Wigner transfor-
mation o — w. These operators w; are related to Pauli operators o, as the following Jordan-
Wigner transformation [51],
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IA

k<N. )

— X Z _ Y Z
W2k—1—0k| Ian, Wzk—akl |0n,

n<k n<k

The Hamiltonian in (1) and Lindblad dissipative operators in (3,4) are rewritten in terms of

the Majorana fermion operators w; as
N-1 N
H=—iJ Z (WorWar 1 — Wak—1Wart2) + 1B Z Wok—1Wak > (6)
k=1 k=1
and as
TF +i 1—puwy—iwy
Ly =/ g5t "52, L, = \ L O (7)
/ i 1—ug won_1 —iw
Ly= €R1+2HR W2N712+1W2N Q, L,= \ £r ZUR 2N 12 2N Q, (8)

respectively. Here, Q := (—1)" ]_[121:\[1 wy is a Casimir operator which commutes with all the ele-
ments of the Clifford algebra generated by Majorana operators w;, and satisfies 2" = Q'Q = 1.

Throughout this paper, x = (x7,X,,---)T will designate a vector (column) of appropriate
scalar valued or operator valued symbols x;. Then, the Hamiltonian and the Lindblad dis-
sipative operators (6-8) can be expressed by a quadratic form and linear forms respectively
as

2N

H= Z wiH; w, =w-Hw, )
k=1
2N

Ly= >l wi=1,w, (10)
j=1

where A - B is the inner product between the vectors A and B, and 2N x 2N matrix H can be
chosen to be an antisymmetric matrix H' = —H. From Lindblad dissipative operators, the
matrix M is defined as

M= D il an
U

which is a Hermitian matrix, and My and M; are real and imaginary part of the matrix M,
respectively.

A fundamental concept of the third quantization [51] is the Fock structure on
4N _dimensional Liouville space of operators K, called the operator space. This space is created
as the Hilbert space of density operators with the definition of an inner product
(AIB) = 47N tr(A"'B) where A, B are operators. We use Dirac bra-ket notation for the operator
space K. This means replacing the relation between operators and states over physical Hilbert
space with the one between maps and operators over the operator space. Then, symbols with
a hat shall designate linear maps over the operator space I, and we note the difference be-
tween an operator X over the physical Hilbert space and a map X over operator space K. By
this transformation, the Lindblad equation (2) is rewritten as

d A
a lp(8)) = L1p(0) . (12)
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The Lindblad map £, which may be related to the Lindbradian £ in (2) by a similarity trans-
formation, is written in terms of the self-adjoint Hermitian Majorana fermion maps a,, , [51]
satisfying {&W, d,5f =6,,0,5 and this map takes a quadratic form with the identity map
term 1 as

~

-Ad —Apl, (13)

L=

S

where a matrix A is called the structure matrix

_ [ —2iH+iM; iM
A‘( —iM'  —2iH—iM; ) (14

and the coefficient of identity term A, is equal to the trace of the matrix M. It is known that
eigenvalues and eigenvectors of the Lindblad map £ (or Lindbradian £) can be constructed
from those of the structure matrix A [54].

The Lindblad map conserves its parity. The operator space K can be decomposed into

a direct sum K = K, @ K_ which are defined as K. = lieXp(mz"z(%_ml’kaz’k)IC. Then, the
parity of the Lindblad map in the operator space KC corresponds to that of total number of
the Majorana operator w; in physical Hilbert space H. In this paper, we consider only the
product of an even number of the Majorana fermion operator w;, which is enough to calculate
usual physical observables, for example magnetization, spin current, energy, and so on. Thus,
we can restrict our attention to the subspace K. If the structure matrix A is written as the
Jordan canonical form, the Lindblad map £ becomes the almost-diagonal map. Moreover, we
obtain the exact solution of the time-dependence of physical observables whose dynamics are
described by the Lindblad equation.

2.2 Exact Spectrum of Lindbladian

As shown in [54], the structure matrix A is unitary equivalent to a following block-triangular
matrix,

. —X' 2iM
— T — I
A =UAU _( 0 X ) (15)
where X = —2iH + My is a real matrix, and the matrix U is trivially the 4N x 4N

permutation matrix which corresponds to the cyclic permutation of Pauli operators
(c* - 0,07 - o%,0% - o). Also, as shown in [54], if the matrix X is diagonalizable,
the structure matrix is diagonalizable. Thus, we consider only the eigensystem of a 2N x 2N
matrix X. Moreover it has been known, in the specific cases of the open XX spin chain whose
specific dissipative strengths satisfy the condition 472 = ¢; eg [56] and the open XY spin chain
without magnetic field [57], that the matrix X can be decomposed into N x N matrices. In this
paper, we show that, for the open XX spin chain with general magnetic field and dissipative
parameters, the matrix X can be decomposed into N x N matrices.

Lemma 1. Using a unitary matrix S, the matrix X is unitarily equivalent to a block-diagonal
matrix

) . (iE o0
X = SX§ =( ! o ) (16)

where E is an N x N matrix.
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We can show this lemma easily. First, the matrix X is rewritten by using the Kronecker
product

B J 3
J B 0
X=t : ®07 + ®1,. 17)
-. J 0
J B e
vy
Then, we introduce the following permutation,
1, 2, -, N, N+1, ---, 2N—1, 2N
8 _){ 1, 3, .-+, 2N—1, 2, 4, . ZN}' (18)

The 2N x 2N permutation matrices which correspond to the above permutation and the cyclic
permutation of Pauli operators are defined to be II,. and U, and the unitary matrix S is denoted
as S = UII,.. The matrix X is decomposed into the form of a block matrix as

X:sxst(f 0 ) (19)

—iET

where the matrix 2 is non-Hermitian matrix

. &
B—igy J
J B

m
Il

(20)
B J
. E
J B—lZR

Also, we can decompose the characteristic polynomial of the matrix X into two characteristic
polynomials of the matrix Z, since the matrix X is block-diagonalizable.

Corollary 1. The characteristic polynomial of the matrix X is decomposed into two character-
istic polynomials of the matrix =

px(A) = pe(—iA)pg(—iA*), (21
where px(A) := det(X— A,y ), and pg(A) := det(E — Ally).

Therefore, all the eigenvalues of the Lindblad map £ (or Lindbradian £) for the open XX
spin chain are constructed by the eigenvalues of the N x N matrix 2. Moreover, the matrix 2
is a tri-diagonal matrix and we can obtain the eigenvalues and eigenvectors of the matrix 2
[29,67-69]. Consider the eigenvalue problem 2q = Aq where the k-th(1 < k < N) eigenvector

q(k) = (qgk),qgk), e ,ql(\f))T. In the following we will set qgk) = 1, since the value of qgk) can

be an arbitrary non-zero number. Then, we obtain the eigenvalue and the component of the
eigenvector [67,68]

A0 =B 4+ 27 cos 6y, (22)
and
1
¢ = —[sinj6) + il sin(j — 1)6;] , (23)
J sin 0,
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Re(A)

Figure 1: Eigenvalue distribution of matrix 2. Other parameters are set to N = 30,
J=1.0,B=0.0, and y; = —ug = 1.0.

where the parameter 0, is determined by the following condition,
{2cosO+i(l+r)}sinNO,—(1+1r)sin(N—1)6, =0, (24)

where we defined [ = 25 and r = %.

Distribution of the solutions to (24), and hence that of the eigenvalues of the matrix E,
depend strongly on boundary dissipative strength & z. When &, = &g = 0, the solution of (24)
is simply given by 6, = mk/(N + 1), 0 < k < N and the corresponding eigenvalues (22) are
distributed on the real axis from B —2J to B + 2J. On the other hand, when ¢z are non-
zero, the solutions to (24) and hence the corresponding eigenvalues (22) become complex.
In particular when ¢z are larger than 4J, while most eigenvalues are still close to the real
axis, there appear special eigenvalues which have larger imaginary part than the other ones,
as shown in an example in Fig. 1. Behaviors of eigenvalues in the limit N — oo may be
discussed as follows. First using the knowledge of the recurrence relation for the matrix &, we
obtain the characteristic equation of the matrix = as

BN — N i (1 4+ ) (BN =)= 1r(BN T =V ) =0, (25)

where a + 8 = AJ;B and aff = 1. Therefore, if we can solve the equation (25), we obtain the
eigenvalue A = B+J(B +B71). As discussed in [29], the solutions of the above equation when
N — oo depend on the magnitude of 3. When || > 1, terms containing a” become small
since |a| < 1 and the equation (25) becomes

B2+i(l+r)p—1r=0. (26)

This can be solved easily and the solutions are given by 3 = —il,—ir. Hence these solutions
exist only when ¢, g > 4J. In a similar manner, when |f3| < 1, the solutions of equation (25)
are given by f = il"!,ir™!. Lastly, when || = 1, the solution of equation (25) is in the form
B =e?, 0 € R. We call the eigenvalues without imaginary part Im(1) = 0 normal eigenvalue
expressed as A = B + 2J cos 0 and the eigenvalues with imaginary part Im(A) # O special
eigenvalue expressed as

A=B—iJ(1-17"), B—iJ(r—r1). (27)
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For a large but finite N, there appear eigenvalues close to the real axis and the ones with
larger imaginary part. The former is expected to become normal eigenvalues and the lat-
ter special eigenvalues as N — oo. They will be called the normal and special eigenvalues
respectively even when N is large but not infinite.

Since the matrix E is a complex symmetric matrix, we can diagonalize it by using a complex
orthogonal matrix Q as

= = QDQ’, (28)
where
D = diagA, -+, 2, @ = [, ,QM]. (29)

@
Denoting the normalization factor of the k—th eigenvector by Nj, = ¢%-q®), we set Q(k) = QN{

Then, by Lemma 1 and the diagonalization above, the matrix X is digonalizable as follows,

[ Q0 iD 0 Q" o
=s($ )8 )Y )

Also, the matrix X can be rewritten in a Jordan canonical form,
X =PAP !, (31)

where P is a non-singular matrix, and A is a Jordan canonical form. Let any Jordan cell
size be bigger than 1, and the component of the matrix P be the generalized eigenvectors of
the matrix X. Thus, if and only if the matrix X is diagonalizable, we can consider that these
representation are the same. Then, by using (30,31), we obtain the non-singular matrix P and
its inverse matrix P! as the follows,

_gi[ @0 Q0
P_s(o 6)’ P _( . QT)S. (32)

To summarize the results of this section, we have determined the exact formula of the
eigenvalues of the Lindbradian £ in (2). More precisely, we wrote the Lindblad map £ in
(12) acting on the operator space in the form (13) with (15) and (16), and have obtained the
eigenvalues and the corresponding eigenvectors of the matrix = as in (22) and (23) with (24).

3 Exact solutions for time-dependence of physical observables

In this section we calculate the exact formulas of time-dependent physical observables by using
the exact formula of the eigenvalues and the corresponding eigenvector of the matrix Z in
the previous section. In this paper we focus on the time-dependent magnetization and spin
current. The results will be summarized as (45,46) below,

3.1 Exact formulas for magnetization and current

The physical observables X (t) at time t is defined in Schrodinger picture as X (t) = tr(X p(t))
[51,53,54]. Since the Lindbladian in Hilbert space is difficult to study analytically, we consider
the Heisenberg picture in Liouville-Fock space [70,71]. As presented below in (36,37), the
time-dependent magnetization and spin current are written in terms of quadratic physical
observables [51,54] defined as

Cir(t)= tr(ijkp(t)) . (33)

9
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Then, since the diagonal terms in C; ;(t) are time-invariant C; ;(t) = tr(p(t)) = tr(p(0)), we
define the correlation matrix C(t) = {Cj’k(t)}1 <jk<N by

Cj,k(t) = tr(ijkp(t)) =06k =2(1]ay;()ay 1 (t)|po) — 6> (34)

where the super-Heisenberg picture is defined by d;(t) := e_tééketﬁ. Using the Lindbladian
map L (13), we can obtain the equation of motion for Majorana map as follows,
dace) 2A4(t) (35)
——— =2Ad(t).
dt -
In terms of C‘j,k(t), the magnetization m;(t) on site k and the spin current jy ;41(t) between
sites k and k + 1 can be written by using (5) as follows,

mi(t) = <0'i> (1) = —iCopy 2 (1), (36)
k(0 =(2J(0F0), —0r 05, 1)) (£) = =2JiCo 1 g41 () — 2T Cop g 42 (L) (37)

The time-dependent correlation matrix C(t) satisfies the following differential equation [70,
71],

dfl(tt) = —2{X"C(t) + C()X} —4iM; 8

Since the components of the matrix €(t) correspond to the physical observables as (36,37),
obtaining the exact solution C(t) (34) is equivalent to obtaining the exact formulas of the
time-dependent the physical observables. In some papers [70-73], this equation (38) has
been solved numerically or only its steady state (dfi(tt) = 0) has been examined, since exact
eigenvalues and eigenvectors for the open XX spin chain have not been obtained. By using the
exact spectrum of the matrix  (20) and the solvability of this equation (38) [58-60] which
had been known in a different field, such as the control theory [74,75] and stability analysis
[76], we can solve this equation and obtain the time-dependence of the physical observables
analytically for the first time.
As shown in [58-60], the time-dependence of the correlation matrix is

t
C(t)= e_ZtXTC(O)e_ZtX + J e_stT(—4iMI)e_ZSX ds . (39)
0

For the above formula (39), we can calculate the exact solution for the time-dependence of
the correlation matrix €(t), if the eigenvalues and the (general) eigenvectors of the matrix X
can be exactly calculated and the correlation matrix in the initial time C(0) can be determined
analytically. For the open XX spin chain, we can obtain the eigenvalues and the (general)
eigenvectors of the matrix X can be exactly calculated. Thus, when we choose the correlation
matrix in the initial time €(0) whose components can be determined analytically, we can ob-
tain the exact solution for the time-dependence of the physical observables, and discuss their
behaviors.

In this paper, we introduce the time-dependence from one of the simplest initial states
satisfying the condition about the correlation matrix in the initial time €(0). We choose the
thermal equilibrium state in the high-temperature limit (f — 0) as the initial state. Then,
the correlation matrix €(t) in (34) at the time t = 0 becomes zero (Nlj,k(O) = 0. Thus, the
time-dependence of the correlation matrix takes the following form,

t
C(t) = f e_ZSXT(—4iMI)e_ZSX ds . (40)
0

10
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For the open XX spin chain, since the matrix X is diagonalizable X = PAP™!, the correlation
matrix is calculated as

t
C()=pT ((J e~ 2(Bithy) ds) ® (PT(—4iM1)P)) P, (41)
0 i,j=1,+,2N

where f3; is an eigenvalue of the matrix X, and we define the Hadamard product as
(A®B); ; =A; ;B; ;. Moreover, since the eigenvalues of X are calculated from the eigenvalues
of the matrix 2 from the Corollary 1 and the imaginary parts of the eigenvalues of the matrix
E are negative, the real parts of the eigenvalues of the matrix X are positive Re{[} j} > 0. Thus,
the integral in (41) can be calculated as

t — p—2t(Bi+ ;)
f e~ 2BitB)) g = 16—]' (42)
0 2(B; + B5)
Therefore, we obtain
. 1 — e—2t(Bi+By)
C(t)y=p" (3—1 © (PT(—4iM)P) |P . (43)
z(ﬂl + ﬁ]) i,j=1,-,2N

The magnetization m’(t) takes the following form,

2N e_Zt(ﬁm+[5n) — 1

M= 2 TRy

n,m=1
Substituting imaginary part of dissipative matrix M, non-singular matrix P and that inverse
matrix P! (32) to (44), the magnetization in (36) takes the following spectral decomposition
form,

Py [PT(4M)P] P (44)

m,n " n,2k*

N —2it(AM—x )

I—e (m) (m) ~(n) (M) ()] (R

mi () = ZlRe[ =7y % {em QM + erupQPQ M . (45)
m,n=

Similarly, spin current between sites k and k + 1 jj ;41(t) in (37), and takes the following
spectral decomposition form,

N
Jerer(H)=4J D Im

m,n=1

[ 1 — g~ 2it(A M=)

(m) (m) o (= (m) (] )
2i(Am) — A0+ Qp {EL“LQl Q1" +erurQy Qy }Qk+1]' (46)

In (45,46), the eigenvalues Am = —if3,, and the matrix elements Ql((m) which is the k-th

component of the eigenvector corresponding to the eigenvalue A™ are defined by using (22-
24,29) and the definition of the normalization factor NV, as

) R
[sm k6, + 14—3 sin((k — 1)9m)]

sin0,,

A =B +25cos6,,, Q™= , @4
N 1 e 2
Z( - [sink9m+i—Lsin((k—1)9m)D
“— \sin O 4J
where 0,, satisfies the following equation,
{z cos 0, +i (i + 3)} SinNG, — (1 + iﬁ)sin(w —1)6,, =0. 48)
4J  4J 4J 4J

The exact formulas (45,46) with (47,48) for time-dependent magnetization in (36) and spin
current in (37) are the main results in this paper.
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3.2 Physical observables in steady state

Before going to discussions of dynamical behaviors, in this subsection, we consider briefly the
physical observables in steady state which is realized in the long time limit. Taking the limit
t — 00 in (45,46), magnetization and spin current in steady state are expressed as

& O e + epunQ Rl F Q4"
mk = Z Re Zi(l(m) —A(n)*) 5 (49)
m,n=1
vl e QM + QP QU

Jekr =47 Z Im (50)

a— 2i(A0m) — A (n)+) ’
where (™ and Qg(m) are given by (47,48). After some calculations, we arrive at the following
simple formulas for the magnetization and the spin current for steady state (The detailed
calculations are written in Appendix A.) in terms of model parameters (recall [,r defined
below (24)),

J J A® . ereg (U, — Ur)
mi =u,——D " =ugr+-—D;", = , (51)
R TR 0 s 85+ B)
where D,EL) and D,ER) are defined as
4J € 4J € 4] €
pP==", pPW="Ly > (2<k<N-1), DP="L+24+ R (52
eL 4J g 4] g 4
€ 4] ¢ € 4J 4J
pW=R 2L pW-R, 2 (2<k<N-1), DPP=". (53
4] e 4J 4J  er £R

Our formulas for the magnetization and the spin current are valid for all parametric values
of uy/r, €1/r, and agree with the results in [34-36] obtained by MPA for the case of the anti-
symmetric magnetization on reservoirs (u; = —ug). For Fig.2, we confirm that our formula
(51-53) for magnetization and spin current for steady state coincide with the ones obtained by
MPA [34-36] (when u; = —ug). Our formulas (51-53) are the most general solution for the
magnetization and the spin current in steady state for the open XX spin chain with boundary
dissipation in the sense that they are valid for all parametric values of uy, /g, &/r. It is also in-
teresting to consider whether our results for the general parameters case can also be realized
in terms of MPA.

4 The dynamics of physical observables

Analytical studies of open quantum systems with Lindblad dynamics for large systems have
been challenging, because explicit diagonalization of a Lindbladian is in general difficult, and
most studies so far are numerical. For the open XX spin chain with boundary dissipation, the
solutions in steady state are obtained by using MPA [34-36], but the dynamics have been
much less understood analytically. Since we could diagonalize the Lindbladian in section 2
and obtained the analytical formulas for the time-dependence of magnetization (45) and spin
current (46) in section 3, we can study their behaviors in detail.

4.1 Behaviors of time-dependent physical observables

We first evaluate our formulas (45,46) numerically and observe several behaviors for the time-
dependence of the magnetization and the spin current for the open XX chain. We will examine
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Figure 2: Magnetization (red dots and blue line) and spin current for steady state
(magenta dots and cyan lines). The red and magenta dots are obtained by our for-
mula (51-53), and the blue and cyan lines are obtained in [34-36], respectively. The
parameters are set to N =30, J =1.0, B=0.0, ¢, )g =5 and y;, = —ug = 1.

them analytically in subsequent discussions. In Fig.3, spatio-temporal behaviors of the mag-
netization are displayed. We observe a clear and interesting light-cone structure. In Fig.4, the
time-dependence of the magnetization and the spin current are plotted for several fixed sites
with label k. Behaviors of the physical quantities depend on the position of a site k in the sys-
tem. At the beginning, at sites near a boundary, the magnetization and the spin current show
a rather clear plateau regime as in Figs.4a and 4c. It appears as soon as the time evolution
starts and the magnetization almost does not change during it. It also appears at a bulk site
but becomes shorter and obscure near the center of the chain. See Figs.4b and 4d. After the
plateau regime, the physical quantities show a few steps of small plateaus with oscillations
and then decay to the stationary values.

About shorter time behaviors, a basic mechanism of the appearance of the plateau regime
at a given site may be understood from the wave fronts of the light-cone structures in Fig.3.
From the initial time, effects of the boundary dissipations propagate along the bulk part of the
system, creating the light-cones. The slope of the light cones is expected to be given by 1/4J,
which is numerically checked, and may be interpreted as the fastest group velocity within all
the group velocities for this system as will be discussed in section 4.2.1. According to this
picture, the plateau regime becomes shorter and shorter as a site deviates from a boundary
and vanishes at the site at the center of the chain. These behaviors are seen in the short time
region (0 < 4Jt S O(NY)).

Approach to stationary values of the physical observables after a very long time (t > 1) is
expected to be described by the Liouvillian gap, which is the spectral gap A of the Liouvillian
[51,54]. The finite-size scaling for the Liouvillian gap had been numerically estimated [51-53,
77], and we examine it analytically by using the exact formula of the eigenvalues of the matrix
2 (20) for our system. In the time region after the plateau regime and before the Liouvillian
gap dominates the decay of physical quantities, (O(N') < 4Jt < O(N?3), physical quantities
show rather complicated behaviors.

In the following, we analytically discuss these behaviors by using our formulas(45,46). We first
discuss the two short-time behaviors (0 < 4Jt S O(N1)). The one is the light-cone structures
in Fig.3 using the analogy to that in closed systems. The other is the plateau regime. Second,
we analytically estimate the finite-size scaling for the Liouvillian gap.
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Figure 3: Spatio-temporal dependence of the local magnetization by (45). The pa-
rameters are set to N = 30, ¢, = 5.0, J = 1.0, B=0.0, u;, = —ug = 1.0. The black
lines are Jt = k/4 and Jt = (N — k + 1)/4 which represent the initial and final time
of the plateau regime. The points at the intersection of the green and black lines are
the initial and final time of the plateau regime at the site 5. We show details of the
analysis of the plateau regime later in this section.

4.2 The short time behaviors (0 ~ 4Jt ~ O(N'))
4.2.1 Light-cone structure

For quench dynamics of various quantum many-body systems, it has been discovered that fron-
tiers of local observables show a light-cone structure whose slope should be bounded above
by the Lieb-Robinson velocity [11, 63,78, 79]. In particular, for the quench dynamics in the
closed XX spin chain, the light-cone appears from the free magnon propagation. Its propagat-
ing velocity is calculated as the group velocity |v| = |de(k) / dk| from the dispersion relation
¢ = g(k) = J cos k of the one particle excitation [64,79], where k is a momentum and ¢ is an
eigenenergy, and the slope of the light-cone is given by its maximum, taken at k = /2.

The slope of the light-cones in Fig.3 for our open XX spin chain may be determined by using an
analogy to the quench dynamics in the closed XX spin chain discussed above. More precisely
we may conjecture that eigenvalue A™ of 2 (20,22) would play a similar role as eigenenergy
¢(k) and that the propagation speed of the m-th mode is given by the formula,

d(2alm)

vl = a6,

=|4Jsin6,,|, (54)

where 0,, is determined as(24). This is plausible because the dependence of physical quantities
such as the magnetization on the eigenvalue A of B (20,22), given in (45,46), for our case
of Lindblad dynamics is similar to the one on ¢ for the case of quench dynamics. The factor 2
in front of A,, in (54) may be attributed to the same factor in (35), which could be absorbed
in the definition of the Majorana fermion operator by changing the inner product which the
operator space K is orthonormal with respect to [51,54]. From discussions about distributions
of ) around (22), the velocity approaches, at 6,,, ~ /2, the maximum value |v|,., = 4J, and
the fastest propagation of all effects of each boundary dissipation has this velocity. Thus the
slope of the sharp front in Fig.3 is supposed to be a quarter with the dimensionless time unit
Jt in Fig.3, and this is numerically indeed confirmed. Moreover, by carefully examining our
formula (45), we will derive the slope of the light-cone in the next subsection.
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Figure 4: Time-dependence of the magnetization ((a) and (b)) given by (45) and
the current ((c) and (d)) given by (46) respectively. Different colors in each figure
correspond to different values of dissipative strength ¢;, i.e., the red, blue, green
and black curves correspond to &, = 1.0,2.0,5.0,10.0, ez = 1.0 cases, respectively.
(a) and (c): The time-dependence of the magnetization and the spin current near
the left boundary (k = 1). (b) and (d): The time-dependence of the magnetization
and the spin current at a bulk site (k = 10). The inset in (b) is for a longer time
scale. The magenta vertical lines describe start and finish time of the plateau regime
which is expected from the light-cone structures. The light color dashed lines are
the magnetization and spin current in the steady state. The light color dash-dotted
lines in (a) show the plateau heights calculated by (58). Other parameters in these
pictures are set to N =30, J = 1.0, B =0.0, y;, = —ur = 1.0.

4.2.2 The emergence of the plateau regime

For understanding behaviors of the plateau regime, during which the magnetization does not
change, we calculate the time derivative of magnetization for the site k from (45) as

N
—2itA(m
Ze 2it A an)Ql(cn)

n=1

2 2

, (55)

N

—9it2 M
Ze 2itA QI(\?)QZ(JI)

n=1

om
we(t) == == =gy

+
P ERUR

where label n represents the mode number. The first and the second terms in (55) will be
called the left and right dissipation contributions, respectively. For large system N > 1, after
some calculations (see Appendix. B for details), we obtain

N
Z oo (n d _
e—thl( )Q(n)Q]En) Nf(]; k; t) = Z.eZJt(Z—Z 1)
J c 2mi

n=1

ikl R (g 4 DI TR2
e lz—1 » (36)
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the parameter [ is defined below (24) and the contour C is such that it encloses the origin
counter clockwise with radius less than 1/I. The function f(j, k; t) may also be written as a
series in terms of the Bessel functions (see (B.8)), but the contour integral expression is more
convenient for our discussions below. For large N, (55) is approximated in terms of f(j, k;t)
as

we(t) ~ epp |f (1,k; O + epup |f (N, K 0 (57)

Now let us focus on f(1,k;t). As we show in Appendix B, it is close to zero except near
t ~ k/(4J). By the same reasoning, the function f(N,k;t) is close to zero except near
x ~ (N —k)/(4J). This confirms the slope 1/4J of the light cone, mentioned at the end
of section 4.2.1.

From the above analysis we see that, between t = 4% andt =% _4]}+1 , the time derivative of the
magnetization u;(t) is almost equal to zero, i.e., the magnetization does not change. Then the

duration of time between t = 4% and t = N_4—’j+1 may be identified as the plateau region. Its

duration time 7, = |N _ﬂ‘_l | decreases to zero as the site becomes closer to the center of the
system. This prediction of the plateau regions agree well with the figures of physical quantities
(see Fig. 4).

While the clear plateau is seen near the boundaries (see for instance Fig .4a), additional smaller
changes are observed on top of the plateau in the bulk (see for instance Fig 4b). This may be
explained by the fact that the period of oscillatory behaviors of f (1, k; t) become small when
k is large, see (B.17).

The height of the plateau regime can also be calculated by using the time-derivative of the
magnetization u(t) (57). Since the height of the plateau regime depends on either the left
or right contribution to the time derivative of the magnetization u;(t) (57), we only consider
the left half of the system. In this case, the height of the plateau regime H,(J, ¢, u;; k) at the
site k in the small dissipative case (&, < 4J) is estimated as

. 4‘uL S p+1 n+m
Hp(en sk~ T +2m D, (0™ ()
p,q,m,n=0
k k k k
X (Jk+n+p—q—1(Ti( )) +Jk+n+p—q+1(Ti( ))) (Jk+m—p—q—1(Ti( )) +Jk+m—p—q+1(Ti( ))) >

(58)

where Tl.(k) =4J Tgk) ~ k + 1 and Tgk) is an initial time for the plateau regime at the site
k. For obtaining this formula, we use the integral form of the Bessel function. Of course,
other cases, such as g > 4J, can be derived by using a similar procedure. The formula is

almost exact numerically (see Fig. 4a), with a small error due to finite-size effects. A physical
interpretation of the formula for the height is not very clear for the moment.

4.3 Long time behaviors (4Jt ~ O(N?)) and Liouvillian gap

For systems described by the Lindblad equation, asymptotic long time behaviors of physical
observables are in general expected to be characterized by the Liouvillian gap [77]. See for
instance [51-53, 80]. The double of the Liouvillian gap, denoted by A, is for our system
defined as

A = —2maxIm[A™], (59)

where A is the eigenvalue of the matrix E which is defined as (22,24). The relaxation
time 7 of the system is determined as the inverse of A. The slow convergence at late times,
observed in Fig.4b, is expected to have this relaxation time. In Fig.5, we show more precise
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Figure 5:  Asymptotic behavior of the magnetization after long time:
The time-dependence of the magnetization at the site k = 15 when

N = 30,J = 1.0,B = 0.0,u; = ugr = 1.0. The cyan, yellow and gray lines
represent the fittings to exponential decays. The values of their slopes are given in
the text. The inserted figure exhibits the time-dependence of the magnetization at
the site 1 and the exponential functions fitted to data.

semi-logarithmic plots of the difference of the magnetization at time t to its steady state value.
We observe indeed that its asymptotic behaviors at a site k becomes an exponential decay. In
our numerical results, the inverse of the relaxation times 1/7 which are obtained by fitting
to the data for the time-dependence of the magnetization from ¢t = 500 to t = 1000 using
our formula (45) are 1.71, x 1073(g;, = 2.0,eg = 1.0), 2.035 x 1073(¢g, = 5.0,e = 1.0),
and 1.67s x 1073(g;, = 2.0,ex = 1.0), which should be compared to twice the Liouvillian
gaps 2A = 1.72; x 1073(g;, = 2.0,eg = 1.0), 2.04; x 107 3(¢;, = 10.0,eg = 1.0), and
1.67g x 1073(g;, = 10.0,e = 1.0) computed using (59). We see that the relaxation time T
for these exponential decay agree well with the inverse of the double of the Liouvillian gap
T~ 1/2A.
In previous studies, the Liouvillian gaps for open quantum systems have not been much dis-
cussed analytically. They have been mostly calculated numerically or by using the analogy
from closed infinite systems. For example the Liouvillian gap for open transverse Ising spin
chain and XY spin chain has been estimated by the asymptotic result using analogy from closed
infinite systems [51,52,81]. For our case of the open XX spin chain, we can estimate the mag-
nitude of the Liouvillian gap A by using the exact spectrum of the Lindbladian for a finite-size
system obtained in section 2.2. The Liouvillian gap corresponds to n = 1 case of the eigenvalue
A("), defined as (22,24). Let us write the angle 6, in (24) as 6; = NL-H + x;% Substituting
this into (24) and keeping the leading order terms in 1/N, we see that x and y are given by
_ 1?2 +21%r% 412 (0 +n)Ur+1)
YTl e -0 YT (e -2

Recalling the definitions of [, r which were given below (24), the Liouvillian gap can be ex-
pressed in terms of model parameters as follows,

Ao wra)G@E+l) 1 61
- Gy )Py (s 1)2NY
7T 47 4J

The O(N~3) behaviors have been observed numerically in [48, 51,52, 81] but we have con-

(60)
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firmed it and have also determined the coefficient exactly. Our formula shows great agreement
with numerical diagonalization, including the coefficient.

5 Conclusion

We have applied the general procedure of the third quantization to the open XX spin chain. We
find that the structure matrix of the open XX spin chain is diagonalizable analytically. More-
over, we find that although the structure matrix is ordinarily decomposed into 2N x 2N matrix,
the structure matrix for the open XX spin chain is decomposed into N x N non-Hermitian ma-
trix, and the eigenvalues and eigenvectors of this non-Hermitian matrix are calculated analyt-
ically. The eigenvalue distribution of this non-Hermitian matrix changes dramatically with the
increment of boundary dissipative strength. If a dissipative strength is larger than four times
the coupling constant between sites on the system, we could find the emergence of a special
eigenvalue which has a larger imaginary part than the others. Since the open XX spin chain is
diagonalizable, we can exactly calculate time-evolution from a general initial condition includ-
ing the thermal equilibrium state. We obtain the linear differential equation for the correlation
matrix which is constructed from the expectation value of the product of two Majorana oper-
ators. The several components of the correlation matrix correspond to magnetization on the
site k and spin current between the site k and k + 1.

The exact solutions of time-dependent magnetization on arbitrary site k and spin current be-
tween arbitrary sites k and k+ 1 are the main results of this study. These formulas also include
the solutions for NESS which is defined as t — oo. Our analytical formulas for magnetiza-
tion and spin current in steady state generalize the ones obtained by the MPA solutions for
the special case of antisymmetric magnetization on reservoirs [34-36]. Evaluating the exact
solutions of time-dependent magnetization on arbitrary site k and spin current between arbi-
trary sites k and k + 1 numerically, we observe some specific behaviors. Using our formulas,
we can examine these analytically. As the spatio-temporal regions where the magnetization
is large are displayed, we observe clear and interesting light-cone structures. We have shown
that the wave fronts of the light-cones for our open XX spin chain can be determined by using
an analogy to the quench dynamics in the closed XX spin chain. Between the lightcones from
the left and from the right, there appears the plateau regime, during which the magnetization
does not change. Its duration is called the plateau time. Various properties of the plateau
regime, such as the plateau time, have been clarified by performing the asymptotic analysis of
integral formulas for the time derivative of magnetization. After the plateau regime, physical
quantities approach their stationary values, with the relaxation time characterized by the Li-
ouvillian gap. We could not only establish its O(N2) behavior, which had been observed, but
also determine its coefficient exactly from our formulas.

It is important that one can obtain the exact formula for the time-dependence of physical ob-
servables analytically. Applying this fact, higher-order physical observables will be calculated
analytically. Moreover, since the Lindbladian map takes the Jordan canonical form in an arbi-
trary quadratic fermion chain, XY spin chain, XX spin chain with homogeneous bulk dissipation
and long-range interaction systems can be analyzed. Recently, the analysis of non-Hermitian
systems has been applied to open quantum systems by using the post-selection [82,83], and
many interesting properties for open quantum systems, such as phase transitions [84] and
topological natures [85] have been studied. However, it has been known the dynamics which
is described by the non-Hermitian systems is different from the Lindblad dynamics [82, 83].
We hope that our exact results will be useful for future studies of systems described by the Lind-
blad equation. Our studies in this paper are fully based on exact calculations for microscopic
models. It would be also interesting to study similar dynamical behaviors of open quantum
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systems by using macroscopic or hydrodynamical methods. Some studies in such a direction
have recently been performed, see for instance [86-88].
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A Physical observables for steady state
In the main part of the paper, we find formulas for magnetization and spin current for steady

state as follows,
N

1 (m) (m) (W) (M) ()] ()
M= 2, Re[mc)k {0l + pur@PQy O |, @
m,n=1
S 1 (m) (m) A (n) (m) (] ()
. E3 * *
Jks1 =4 Z Im[mokm {SLMLle Q;"" + erurQy " Qy } krjrl] , (A2)
m,n=1

where eigenvectorf3; = iA0) and the component of eigenvector Q]((j ) is obtained (22,23), and
the parameter 6; satisfies the conditional equation (24). Then, separating left and right bound-
ary contributions,

N

_ 1 (m) (M) oy (M o (M)
mi’L—ELHL Z Re[ka Q; Q; TQ , (A.3)
m,n=1
> 1
= (m) (M) ~ (n)* ~ ()%
mi,R_SR‘U’R ZlRe[ka Qy Qy Qg i|, (A.4)
m,n=
N 1 (m) o (m) (D ()
5 m m n)x n)x
Jik+1,L = 4 ey, Z Im[ka Q; "Q; Qkﬂ], (A.5)
m,n=1
X 1
= () oy () oy (1 o ()
Jkk+1,R = 4J ERUR lem[ka Qy Qy Qkﬂ}- (A.6)
m,n=

Defining [R, ], , = Qf,f )Qflp ), and using eigenvalues and eigenvectors (22,23), magnetization
on site k is obtained as

( AT 2
lu Uv—k| 2 | tirUn—s-1( =
—H_LrRe > = [Ri] .|, (k=1~N-D),
mi’L = < q UN—] (Tq) ? (A7)

lug

_ k=N

@ +r)(A+1r)’ ( )
r
°R (k=1),

((+r)(+Ir)’ . i
mE =1 rue Uk—l(Tq)""ilUk—z(Tq) (A.8)
e |3 ReLr
l+r A
q UN—1 (T)
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and spin current between sites k and k + 1 is obtained as

B\ i
i [0 (F)
tm | [

Jekarn = A q:ll,k+1 ’ (A-9)
— )
( 4Jlr,uR
T N4 TN k =1 >
I+ +1r) ( ) ) )
. < U (AZ)HZU (l‘j) (A.10)
Jekr1R = ) 4J =12 k=2 2 :
TR 1 > _ [R*] . (k=2~N),
l+r A N,k+1
\ q Un-1| 2

where the parameters [, r are defined below (24) and U, (x) is Chebyshev polynomial of the
second kind for order k. Calculating these formulas, we derive the following Lemma.

Lemma 2. For the Hermitian conjugate of normalized matrix 2= (E—B1)/J, the component
of (k —m)-th power of the normalized matrix = is obtained as

il, (m=0),
(&), =11, =1, (A.11)
0, (m=2~k).

This lemma can be proved easily. Since the normalized matrix =" has non-zero term at only
secondary-diagonal part, the (1, k)-component of (k —m)-th power of the normalized matrix

[(

For all m(0 < m < k), the component =

[]:

i k_m] —=f =t =t Lt
) Lk LmtlTm+1lm+27 Smt2,m+3 T S k—1,k (A.12)

&

~+\k—m .
I is equal to 1, so the component [(ET) ]1 L 18

equal to .:1 mi1+ Therefore, the component [(ET)k_m]l is classified by Bl mi1-
By this lemma, magnetization and spin current for steefdy state is simplified. By using the re-
currence relation for Chebyshev polynomial of the second kind U,,;(x) = 2xU,(x)—U,_1(x),
the numerators in (A.7-A.10) is calculated as

Uy_i +irUy_pq = { - -i:rz ()1;)" + % (i;)k_l + O((i;)k_z)} Uy_1, (A.13)

. . il z0\k 1 (z\k1 5 k2
(Up_q +ilU,_o) (Uy_1 —ilUy_y) = (_1+rl () + T (Ax) +o((%) )) Uy_1.
(A.14)

Substituting (A.13,A.14) to (A.7-A.10),

Lug ir &) 4 1+r(r+0) N N
|l Er s SR E @) ] ey,
ML = Ly,

(+rA+1r)’ (k=N),

(A.15)
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MR —
o= | G 0T, k=D, k k
,R R o 1 i —2
[+ e[ 1+ l( N (“) o(&) )} K’ (k=2~N)
(A.16)
. 4Ly, ir  ayk , 1410 +1) ik &i\k—2
k1L = [+7r Im|:1+rl (H,) 147l (H) +O((H,) ):|1,k+1 ’ (a-17)
4Jlrug _
Jexe1r = 4(lr;r)(1+l) e k
4 ’ R &t =t -1 e k—2 —9
[+ tm 1+rl( ) (H) +O((H) )L’kﬂ’(k 2~N).

(A.18)

Applying lemma to the above formulas, the magnetization and spin current in NESS can be
expressed in terms of model parameters as follows,

J J ® . erér (WL — Ug)
=u,——D,;" =ug+-—D, ", = . (A.19)
ST (P ) CREY
The sequences D"/} are defined as
4] € 4] € 4] € 4] ¢
DlgL):{ e A A _R} (A.20)
e 4 e 4l e 4] & 4
€ 4] g € 4J € 4] 4J
p® = { Ry 0 R A R } (A.21)
4] ER 4] 4] ER 4J ER ER

B Calculation of time derivative of magnetization

In this appendix, we study large N behavior of ZQ’: _2lm(n)Q(n)Q(") which appears in the

expression of u(t) in (55) and derive the integral formula (56) We also study some of its
properties. First we divide the sum over n into two parts corresponding to normal eigenstates
and special eigenstates as

N

Z _ZtﬁnQ(n)Q(n) Z ZtﬁnQ(n)Q(n) Z ZtﬁnQ(n)Q(n) (B.1)

n=1 ne{no} ne{sp}

where B, = iA( and {no} = {1,2,---,N}\ {sp}. For large N, the normalization factor \,
for normal eigenstate, defined below (29), can be calculated using the component of the [-th
eigenvector corresponding to a normal eigenvalue (23) as

N
N2~ ——(1+2ilcosh, —1?), (B.2)
" 2sin?0, ( " )
where the parameter [ is defined below (24).
Using f3, = 2iJ cos NLHTC + O(N~2) and (47), the summation can be calculated as

Z —ZtﬂnQ(n)Q(n)

ne{no}

2 T e—4lJtcosx
N — J (sinjx +ilsin(j—1)x)(sinkx + il sin(k —1)x)dx
0

T 1+ 2ilcosx —12
k—j itk j+k—2
_ d_Z'.eZJt(Z_Z—l) A (z+ 1)z ’ B.3)
c 2mi gk=j—1 Iz—1
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where in the last expression the contour C is the unit circle around the origin.
As for the contributions from the special eigenvalues, one can see that the normalization be-
haves as

(1+172)7", a>1),
2 A 27 \2N+2 .
e 2;,,;;3 C>1). (B4)

The leading term for the part of the special eigenstates is calculated as

2 (1) (1+2) (=D, 1>1),

B , B.
—e P01 4 72) (i) 2R (r> 1), (5%

e—ZtASpQESP)QI((SP) ~ {

The two contributions, (B.3) and (B.5), can be combined into a single contour integral formula
(56) by taking the contour C as described. By setting j = k in (B.5) we find |Q§Sp)|2 ~ 1+
when [ > 1, implying that a special eigenstate is a mode localized at the boundary and has a
decay correlation length 1/(21ogl) (the same argument can be applied for r > 1 as well). As
we will show below the special eigenstates do not give particular contributions for quantities
studied in this paper.

Expanding the integrand in powers of [ (when [ < 1, or in powers of 1/l when |I| > 1) and
using the integral form of the Bessel function of nth order

in

T
J.(2)= —f e2¢059 00516 do (B.6)
T Jo

an alternative formulas for f (j, k; t) in terms of Bessel functions are found. They are summa-
rized as follows and are useful for numerical evaluations:

(DM (4T 6) =Ty a(4J0)
o

+ Z =" (Jj+k+n—2(4J )+ Jjprn(4J t)) ,  (ep<4)),
n=0
fro(J, ks t) = 1 Zj,k(4Jf)+(—1)j+k+1, (e, =4J), (B.7)

(1), (4T6) = T4 (4T 1)

+ 2 (D7 (jkopa (BT + T n(4T0)) (o> 4)),
\ p=0

folin ks ) = e~ 2 (=171t (1 + 12) Ik (1) + (_1)N+1e—2J(r—r*1)t (1 + r2) p2N=2jtky ()
(B.8)

where the function I(x) takes the value 1 if x > 1 and 0 if x < 1 and the function Z; ;(4Jt) is
defined as,

(Do (T O =T (AT + 2D (1) jgesn(4T0), (> K,
Zip(4Jt) = n=0 (B.9)

—Jok-1+2 Z {(—1)Japs2(@T ) + (1) n(4I )}, (G =Kk).
n=0

Next we will see that j = 1 case of (56), i.e.,

k+10.k k—2
d_z.eZJt(z—z_l)l (Z +2 )

f(l, k; t) = éc o T B (B.10)
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is close to zero except near t ~ k/(4J). For large t, we may use the saddle point analysis with
t = ak. Let us first write

fLk )= § ;i—zg(z)ekf ®, (B.11)
c2m
with
. 1 _2
f(z)=2Ja(z—1/z)+logz+%, glz) = Z;—Zl . (B.12)

It is easy to check that the two roots of f’(z) = 0 are given by

1 1
=— + —1=:2.. B.13
= T 4a \J 16J2a2 = (B.13)

When 0 < a < 1/4J, the saddle point is at 2 =z, and we find

14272
F(1,k; ) ~(2rn) V2(1—16J%a?) VA ——F(iz, )kH1ekvi-16/%a® (B.14)
2n(lz, —1)
and hence
1422 | witera
If(1,k; ) ~ (2n) 21— 16J2a?) 14| ——L—gk+1|kvV1167% (B.15)
2n(lz, —1)

On the other hand, when a > 1/4J, two saddle points are at the unit circle (z, = e*9) and
we find

f(]. k:t) ~ 2(27Tk)71/2(16J2a2—1)71/4ik Im[(l + e—2i0)(1 + le—i@)eikv 16J2a2—1+i(k+1)0+i1'c/4]

1—2l cos B+12

(B.16)

and hence

rk)12(167%a2 — 1) V4 /1 —1/2Ja+ 12, |
1,k;t)| ~ k(v 16J202—1+0
£k o) AT l/2asiD [sin[k(v'16J2a2 =1+ 0)+ ¢ ]|,
(B.17)
where
1-1/4Ja—14/1—1/16J2a2

tan ¢ = 1@ [16)%a (B.18)

1—1/4Ja+1y/1—1/1672a2°

and in the last equality we used cos@ = —1/4Ja. These asymptotic behaviors indicate that
the function f(1,k;t) becomes quickly small when t < k/(4J) and shows oscillatory decay
when t > k/(4J). The expressions above diverge when a — 1/4J but this may be remedied
by noting that the saddle point becomes degenerate and one has to use a different asymptotics.
For small t and fixed k, we may also discuss as follows. First expand (B.10) in powers of t.

When |l| < 1, we get
)n+p+k—1(2Jt)2n+p+k—1

(-1
f(1,k;t) = E I’ +
e n'(n+p+k—1)! s

(_1)n+p+k+1(2Jt)2n+p+k+1
n(n+p+k+1)!

?. (B.19)

The leading terms for small t are when n = p = 0 and

o (2008 (=200
fAOKO~ S e o (B.20)

By the Stirling formula, these terms are small when t < k/(4J). We can find a similar expan-
sion also when |I| > 1 and come to the same conclusion that it is small when t < k/(4J).
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