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Abstract

We study electrical transport at quantum critical points (QCPs) associated with loop cur-
rent ordering in a metal, focusing specifically on models of the “Hertz-Millis” type. At the
infrared (IR) fixed point and in the absence of disorder, the simplest such models have
infinite DC conductivity and zero incoherent conductivity at nonzero frequencies. How-
ever, we find that a particular deformation, involving N species of bosons and fermions
with random couplings in flavor space, admits a finite incoherent, frequency-dependent
conductivity at the IR fixed point, σ(ω > 0) ∼ ω−2/z, where z is the boson dynam-
ical exponent. Leveraging the non-perturbative structure of quantum anomalies, we
develop a powerful calculational method for transport. The resulting “anomaly-assisted
large N expansion” allows us to extract the conductivity systematically. Although our
results imply that such random-flavor models are problematic as a description of the
physical N = 1 system, they serve to illustrate some general conditions for quantum
critical transport as well as the anomaly-assisted calculational methods. In addition, we
revisit an old result that irrelevant operators generate a frequency-dependent conduc-
tivity, σ(ω > 0) ∼ ω−2(z−2)/z, in problems of this kind. We show explicitly, within the
scope of the original calculation, that this result does not hold for any order parameter.
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1 Introduction

In the last few decades a growing number of metallic systems have been studied which show
striking departures from Fermi liquid physics. Examples include the normal metallic state of
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the cuprate and iron-based high temperature superconductors [1–4], various heavy fermion
metals near zero temperature magnetic phase transitions [5,6], and metallic states in various
two dimensional Moiré heterostructures [7–10]. A common striking property is an electrical
resistivity that varies linearly in temperature, down to scales much lower than the natural
energy scales of the system. Many such non-Fermi liquids (NFLs) also appear to display a
scale-invariant form of the optical conductivity at small frequencies and temperatures [11–13],

σ(ω, T ) =
1

Tα
Σ(ω/T ) , (1)

for some scaling function Σ(x) and exponent α. When α= 1, the famous T -linear DC resistiv-
ity is recovered. Such a scale-invariant form of the conductivity is often viewed as a signature
of quantum criticality.

Nevertheless, finding models of NFLs that actually display scale-invariant transport has
proven to be a challenging problem. One reason is that in general, due to emergent conserved
quantities such as spatial momentum, one expects that in the IR scaling limit the real part of
the conductivity is the sum of a “coherent” Drude peak and an “incoherent” scale-invariant
contribution,

Reσ(ω) =Dδ(ω) + 1
Tα
Σ(ω/T ) . (2)

The first question, then, is to understand how to suppress the Drude weight. This is particu-
larly challenging if one exclusively considers clean systems. A focus on the clean limit is well
motivated phenomenologically: For example, in the cuprate strange metal phase, the slope of
the famous linear resistivity (per Cu – O layer) is roughly the same across different cuprate
materials, each with wildly different levels of disorder [14] (see also Ref. [15] for additional
discussion). Recently, two of us [15,16] addressed this question by showing that a vanishing
Drude weight in a clean, compressible system is possible only if there is a diverging suscep-
tibility for an observable that is odd under time reversal and inversion symmetries, is at zero
crystal momentum, and transforms as a vector under lattice rotations. This mechanism was
dubbed “critical drag” and we will broadly refer to such observables as “loop current” order
parameters [17,18].

However, the situation is actually even more acute than what we described above. As
we showed using general arguments in Ref. [19], the most commonly studied “Hertz-Millis”
models of non-Fermi liquid metals [20–35] only have the delta function conductivity in Eq. (2)
in the IR limit. These models are constructed by coupling a Fermi surface to a bosonic order
parameter at zero momentum near a quantum critical point, or to a fluctuating gauge field
(in the latter case, the conductivity vanishes altogether). Hence, we are led to the guiding
questions of this work: What clean models of compressible non-Fermi liquid metals display any
incoherent conductivity at all in the scaling limit? And can we explicitly calculate the incoherent
conductivity within some controlled theory of the NFL state? Indeed, calculations of transport
are notoriously difficult compared to, say, thermodynamic quantities. Thus, it is important to
develop methods to systematically calculate transport given a controlled access to the infrared
(IR) NFL fixed point.

The mechanism of critical drag, introduced in Refs. [15, 16] and refined for Hertz-Millis
models in Ref. [19], suggests that good starting points are models involving loop current order
parameters. Such order parameters have been subject to much discussion in the cuprate ma-
terials, with many reports of static loop currents in the underdoped regime, along with some
controversies [36–46]. Here we will not wade into the experimental situation, except to the
extent that the possible observation of loop currents may be viewed as further motivation for
studying related models. Our main interest will be in the loop current ordering transition in a
metallic system, which is a quantum phase transition from a symmetry preserving Fermi liquid
metal to a different Fermi liquid metal with static loop current order. This phase transition
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separates two electronic Fermi liquid metals, but the critical point itself will be a non-Fermi
liquid metal with a sharp “critical Fermi surface” but no Landau quasiparticle.

In a provocative body of work dedicated to this phase transition, Varma and collabora-
tors [47–57] have explored a description in terms of a dissipative quantum XY model. The
loop current order parameter is described by the XY field (with some anisotropy that is argued
to be irrelevant), and the dissipation comes from coupling to the fermions. These authors have
emphasized that many experimental features of strange metals are captured by this dissipative
quantum XY model. However, there are important open theoretical questions regarding the
form of the assumed dissipation in these models. Thus, it is appropriate to consider other more
conventional formulations of the quantum critical point associated with the onset of loop cur-
rent order. The results reviewed in Ref. [54] will thus be in a different universality class from
the one studied in this paper, although they may describe the same phase transition (field the-
oretic examples where one phase transition admits multiple universality classes are explored
in Ref. [58]).

We focus this work on theories of metallic loop current criticality formulated within the con-
ventional Hertz-Millis framework, where the bosonic loop current order parameter is coupled
to the Fermi surface via a Yukawa coupling. We begin with a general discussion of these mod-
els and their physical properties. Most importantly, we demonstrate that strict critical drag,
where the Drude weight vanishes due to critical fluctuations, can occur only through fine tun-
ing of the Fermi velocity and/or the momentum-dependence of the boson-fermion coupling
around the Fermi surface. This conclusion was already reached as a special case in Ref. [19],
which focused on general classes of order parameters. Despite an apparent contrast with the
earlier conclusions of Refs. [15,16], we show that this result is still consistent with the diver-
gence of the order parameter susceptibility. The essential reason for this is that the theory of a
Fermi surface coupled to a loop current order parameter actually has infinitely many emergent
conserved quantities: The charge at each point on the Fermi surface is conserved in the low
energy limit. The diverging susceptibility of the order parameter is only sufficient to suppress
the contribution of the Drude weight of finitely many linear combinations of these quantities.
Thus, in the absence of fine-tuning, the weight of the delta function in the frequency depen-
dent conductivity, σ(ω), will not go to zero, although in general it will be reduced from its free
fermion value by critical fluctuations. Moreover, as mentioned above, Ref. [19] demonstrated
that generic theories of this type have vanishing incoherent conductivity in the scaling limit;
hence it appears that the scale invariant conductivity, Eq. (1) is not within reach in this class
of models.

The result of Ref. [19] relied crucially on a general non-perturbative property–known as
an anomaly–of the IR fixed point that the standard Hertz-Millis theory is believed to flow to.
In the quest to find models with non-trivial incoherent conductivity, we should then modify
the anomaly structure so as to evade the restrictions of Ref. [19]. Here we make a first step
towards this goal by finding a deformation of the Hertz-Millis model that does exhibit a modi-
fied anomaly structure and an associated incoherent conductivity at the IR fixed point. In this
deformation, one introduces N flavors of both the fermions, ψI , and the critical boson, φI ,
with a mutual coupling that is random in flavor space,

Sint =
∫

k,q
fa(k)

gI JK

N
ψ†

I (k+ q/2)ψJ (k− q/2)φa
K(q) , (3)

g∗I JK gI ′J ′K ′ = g2δI I ′ δJJ ′ δKK ′ , gI JK = 0 . (4)

Here fa(k) is a form factor specifying the order parameter symmetry: the coupling for a loop
current order parameter changes sign across the Fermi surface, fa(−k) = − fa(k). We also use

the notation,
∫

p ≡
∫ d2p dp0
(2π)3 . These models are translation invariant: The quenched random-

ness is in flavor space, not real space. In the N →∞ limit, these models have been argued to
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be self averaging and yield exactly solvable non-Fermi liquid fixed points [59–61]. Although
we will also show that the large-N model has a number of problematic features that do not
allow viewing it as a controlled description of the N = 1 theory, it serves our purpose of finding
models that answer the guiding questions posed above.

We show how to explicitly compute the incoherent conductivity in the random-flavor large
N model. To that end, we introduce a new calculational technique that leverages the anomaly
structure of the model. We dub this method the anomaly-assisted large N expansion, and we
expect that it will be useful more broadly in other controlled approximations for accessing
NFL fixed points. Because this approach works at large but finite N , we are able to study
the physical order of limits where the low frequency (IR) limit is taken prior to the large
N limit. Indeed, we demonstrate that these limits do not commute due to the presence of
slow modes whose relaxation rates vanish as N →∞. We therefore focus on computing the
conductivity using the memory matrix approach, which naturally handles these slow modes.
In our anomaly-assisted large N expansion, this calculation organizes itself into a perturbative
expansion in the relaxation rates of the slow modes, which we find go like 1/N . The existence
of an anomaly in turn provides non-trivial constraints on the susceptibilities, which greatly
simplify the calculation.

Our final result for the conductivity at T = 0 is of the form,

σ(ω) = N
i
ω

[
D0

π
−

δD
π
[
1− iπNCzω1−2/z/δD

] + . . .

]

= N
i
ω

D0 −δD
π

+ N2 Czω
−2/z + . . . , for ω1−2/z ≪

1
N
≪ 1 , (5)

where z is the boson dynamical exponent, D0 is the Drude weight of a free Fermi gas, and δD
and Cz are constants that vanish for inversion-even order parameters (such as Ising-nematic)
but do not vanish for inversion-odd order parameters. For the commonly considered case of a
z = 3 boson, the incoherent conductivity scales as σ(ω> 0)∼ω−2/3. Notice that in the naïve
order of limits where N → ∞ before ω → 0, the conductivity in Eq. (5) reduces to a free
Fermi gas Drude weight, in agreement with [62, 63], along with a O(1/N) correction with a
different frequency dependence. Therefore, the Drude weight reduction δD and the nontrivial
incoherent conductivity in Eq. (5) are non-perturbative effects (in 1/N) that are invisible to the
naïve large N limit. Moreover, the structure of Eq. (5) indicates that taking the low frequency
limit first leads to an enhancement of the incoherent conductivity by a power of N , reminiscent
of the phenomenon discovered in the ordinary (random phase approximation, or RPA) large
N expansion which renders it uncontrolled [28]. Finally, we find that at finite temperature,
the conductivity becomes dominated by thermal rather than quantum fluctuations, and we are
unable to verify that the incoherent conductivity found above fits into a scale-invariant form at
the lowest temperatures, even though Eq. (5) is a property of the IR fixed point of the model.

Physically, the existence of an incoherent conductivity indicates that the random-flavor
large N model is qualitatively distinct from the N = 1 model studied at length in Ref. [19].
When N is small but not 1, the functional form of the incoherent conductivity is inaccessible
using our methods, though we still expect a nontrivial answer because the theory for any N > 1
does not satisfy the same anomaly constraints as the N = 1 model.

From an RG perspective, the theory for N > 1 describes a multicritical point with N2

relevant operators allowed by symmetry, while the N = 1 model is an ordinary critical point.
For finite N , without fine tuning each disorder realization, the model then generically flows
in the IR to a different critical point with N fermions and a single gapless boson, which is the
traditionally studied large N theory. Despite its resistance to controlled study, we established
in Ref. [19] that this latter theory is subject to the same constraints on optical transport as the
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physical N = 1 theory. While there may have been some hope that these fixed points merge
as N is turned down to unity, our transport results demonstrate that this cannot be the case.

Given our results for the random-flavor model and the conclusions of our earlier non-
perturbative work at N = 1 in Ref. [19], we were also driven to bring fresh eyes to some of
the more traditional approaches to calculating optical conductivity in this class of non-Fermi
liquid metals. In particular, a classic and widely-quoted paper on this subject by Kim, Furusaki,
Wen, and Lee [64] obtains an incoherent conductivity, σ(ω > 0) ∼ ω2(2−z)/z , where z is the
dynamical boson critical exponent. This calculation is based on an RPA-style expansion up
to 2-loop order, and it relies on the presence of irrelevant operators, such as the curvature
of the dispersion and the momentum-dependence of the boson-fermion coupling. This result
should therefore be viewed as a correction to scaling, rather than a genuine quantum critical
conductivity. Interestingly, by carefully performing the same type of calculation for generic
order parameter symmetry, we show that the coefficient ofω2(2−z)/z actually vanishes for arbi-
trary order parameters due to surprising diagrammatic cancellations! To our knowledge, this
is the first time these coefficients have been determined for generic order parameter symme-
try and Fermi surface geometry within the RPA expansion. We note that following the initial
appearance of this work, [63] was updated to reflect similar calculations that were performed
independently (though they did not demonstrate the cancellation for general order parameter
symmetry and Fermi surface geometry).

We proceed as follows. In Section 2, we review the Hertz-Millis framework for the onset
of broken symmetries in metals, focusing on unique features of the loop current critical point
that motivate us to consider its transport properties. In Section 3, we study transport in the
simplest Hertz-Millis model for loop current criticality and re-derive some of the results of
our earlier work, Ref. [19], from a different perspective. We also summarize the effects of
irrelevant operators by revisiting the calculation in Ref. [64]. In Section 4, we compute the
optical conductivity of the random-flavor model using our anomaly-assisted large N approach.
We conclude in Section 5.

2 Loop current criticality in a metal

2.1 Hertz-Millis paradigm for onset of loop order

The loop current ordered state is characterized by a zero-momentum order parameter that
transforms as a vector under lattice rotations and is odd under time reversal and inversion. See
Figure 1 for the standard ordering pattern proposed in the context of cuprates [17,18]. In this
work, we are interested in the quantum critical point (QCP) describing the onset of loop current
order in a metallic system. We first briefly review the standard Hertz-Millis paradigm [20,21]
for addressing phase transitions of this kind and highlight some of its general properties. Then
we compare loop current criticality to criticality associated with the onset of other broken
symmetries and note a number of similarities and differences. This discussion will set the
stage for our analysis of transport later on.

The basic philosophy of the Hertz-Millis paradigm is that universal properties of the phase
transition can be captured by an effective model that couples the electronic quasiparticles near
the Fermi surface to long wavelength and low energy fluctuations of the loop current order
parameter field. Introducing the fermion field, ψ, and the loop current order parameter field,
φ⃗ = (φx ,φy), we can write the Euclidean action of the Hertz-Millis model in two spatial
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Figure 1: The standard Varma loop ordering pattern in a single CuO plane of cuprate
materials. The red and black arrows indicate the direction of current flow.

dimensions as

S = Sψ + Sint + Sφ , (6)

Sψ =
∫
ω,k
ψ†(iω− ε(k))ψ , (7)

Sint =
∫
Ω,q

∫
ω,k

g⃗(k) · φ⃗(q ,Ω)ψ†(k + q/2,ω+Ω)ψ(k − q/2,ω) , (8)

Sφ =
1
2

∫
τ,x

[
m2

c |φ⃗|
2 +λ |∂τφ⃗|2 + J (∇φi) · (∇φ i) + · · ·

]
. (9)

Here we have used the notation,
∫
ω,k ≡

∫ d2kdω
(2π)3 and

∫
τ,x ≡

∫
dτd2x , which we will use

throughout the manuscript. We will generally use boldface to denote spatial vectors except
for the cases of g⃗ and φ⃗, which here are also spatial vectors. Later on, we will consider more
general kinds of inversion-odd order parameters where g⃗, φ⃗ are allowed to have any number
of components.

The first term, Sψ, describes the electronic degrees of freedom with some dispersion ε(k),
while Sφ describes the order parameter fluctuations. The interaction term, Sint, describes the
coupling of the order parameter with particle-hole pairs of the electronic fluid. Importantly,
this coupling involves the form factor, g⃗(k), which incorporates the symmetries of the loop
current order parameter. It is a vector under lattice rotations and satisfies

g⃗(k) = − g⃗(−k) . (10)

The Hertz-Millis model for the onset of other broken symmetries is described by a similar action
but with a different form factor structure. For instance, in the popular case of Ising nematic
criticality, the order parameter is a scalar, has a form factor that is even under k → −k, and
has a characteristic angular variation in k-space.

The exact IR properties of the Hertz-Millis model are challenging to determine. But there is
a large literature of approximate treatments that agree on the general structure of low energy
singularities. The simplest (albeit uncontrolled) treatment of the model is based on a random
phase approximation (RPA) and shows that the dynamics of the boson is determined by the
Landau damping term, Π(ω≪ q) ∼ |ω||q | , generated through the boson-fermion coupling. The

fermions themselves acquire a self-energy, Σ(ω)∼ i|ω|2/3 sgn(ω), showing that this quantum
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critical point (QCP) is a non-Fermi liquid. Thermodynamic properties also deviate from the
predictions of Fermi liquid theory: For example, the low-T heat capacity Cv ∼ T2/3 at the QCP.
These scaling properties signal a divergence of the effective mass of the Landau quasiparticles
throughout the Fermi surface as we tune to the QCP. Nevertheless, the electronic compressibil-
ity – defined by the change of charge density as the chemical potential is varied while staying
on the critical line – and spin susceptibility (if spin is included) stay finite at the QCP. Ap-
proaching from the Fermi liquid side, this may be understood in terms of diverging Landau
parameters that compensate for the diverging effective mass in these susceptibilities.

Although the RPA is uncontrolled, the physical picture it paints is impressively preserved
by a number of more sophisticated treatments of the model [30, 31, 33]. Such treatments
typically involve a deformation of the model that allows for a perturbative expansion about a
tractable limit, facilitating access to a controlled non-Fermi liquid fixed point. Unfortunately,
each such existing approach has some unsatisfactory feature that complicates the extrapolation
to the original (i.e undeformed) model. Nevertheless the study of these different controlled
expansions has yielded much insight, and we will rely on these insights in this Section to draw
some qualitative conclusions about the non-Fermi liquid QCP driven by critical loop current
fluctuations.

First, an important insight that we will return to soon is that the universal critical properties
can be described by a “patch” approach that discretizes the Fermi surface into a large number
of small patches. Boson fluctuations with a momentum q primarily couple strongly to patches
whose normal is perpendicular to q . For simple Fermi surface shapes, this means that a pair
of antipodal patches couple strongly to a single common boson field. The ultimate low energy
properties are obtained by sewing together different pairs of antipodal patches.

The behavior of the form factor under k → −k is thus crucial, as it determines how the
boson couples to the fermions in the two antipodal patches. In the Ising-nematic case (or
other inversion-even order parameters), the boson couples with the same sign to the two an-
tipodal patches. This is to be contrasted with the loop current case, where the boson couples
with opposite signs (the latter also happens in the related problem of fermions coupled to a
dynamical U(1) gauge field). An immediate consequence of this sign difference is an enhance-
ment (suppression) of 2kF –singularities at the loop current (Ising-nematic) QCP compared to
the ordinary Fermi liquid. The relative sign of the form factor also determines the possible
instability of the critical non-Fermi liquid metal to pairing. In the Ising-nematic case, within
the controlled expansion of [30], the pairing instability is enhanced compared to the ordinary
Fermi liquid metal [65], and the putative metallic QCP is pre-empted by the occurence of a
superconducting dome.1 Thus, the QCP is ultimately avoided at the Ising-nematic transition.
In the loop current case, by contrast, the sign difference in the boson-fermion coupling be-
tween antipodal patches renders the quantum critical metal stable to BCS couplings. Hence,
the loop current QCP is a rare opportunity2 to study a “naked” quantum critical metal with-
out the complications of superconductivity. Such naked QCPs have been considered before in
certain large N models, but here it occurs in a physical setting without the need for appealing

1The question of pairing instability of the non-Fermi liquid fixed point was considered in Ref. [66] through a
different expansion where the Fermi surface co-dimension is generalized to dc = 1.5−ε. However for co-dimension
dc > 1 the Fermi surface density of states vanishes in the free theory; hence any possible weak coupling pairing
instability is suppressed even if the low energy physics is controlled by a free fermion fixed point (as happens for
dc ≥ 1.5), and this situation persists for small ε > 0. Thus, as acknowledged in Ref. [66], addressing the pairing
instability requires extrapolation to ε= 0.5 where the co-dimension expansion loses control.

2In Ref. [65], it was suggested that at metallic QCPs driven by order parameter fluctuations - in contrast to those
associated with phenomena like the Mott or Kondo breakdown transitions - superconductivity would generally
be enhanced. The present observations show that this suggestion should be refined further to be generally valid.
Specifically only fluctuations of inversion and time reversal symmetric order parameters enhance superconductivity
at quantum critical points while other kinds of quantum criticality - both those beyond Hertz-Millis and those within
but involving inversion and time-reversal odd order parameters - likely have suppressed superconductivity.
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mc m∗ m

NFL regime

〈φ〉 #= 0 〈φ〉 = 0

T Quantum Critical Fan

SC

Figure 2: The phase diagram for a metal in the vicinity of a loop current ordering
transition as a function of temperature T and tuning parameter m. Unlike the Ising-
nematic case, the loop current QCP at mc and its immediate neighborhood are stable
to weak BCS attraction and a superconducting instability only develops deep in the
disordered phase where m > m∗. The thermal phase transitions occur along the
green and blue curves.

to such deformations.
The suppression of superconductivity at the loop current QCP is perhaps not surprising

if we realize that the corresponding loop current ordered metal breaks time reversal and in-
version symmetries. Thus the usual BCS instability is absent in the ordered state (as fermion
states at k and −k are not degenerate) and it is natural that superconductivity is also absent
at the QCP itself. On the disordered side of the transition, the IR fixed point is determined
by the competition between attractive interactions induced by the BCS coupling and repulsive
interactions mediated by the order parameter field. As a detailed RG analysis in Ref. [65]
shows3 that the symmetry-preserving Fermi liquid phase remains stable in a small neighbor-
hood around the QCP and we end up with an interesting phase diagram shown in Figure 2.

In the rest of this paper, we focus on electrical transport at such naked QCPs. As anticipated
in the introduction, distinct form factor symmetries lead to dramatically differentω, T scalings
of the infrared conductivity. We make some general model-independent statements about
transport at QCPs in the next subsection, which set the stage for calculations in concrete models
that follow.

2.2 Drude weight suppression from critical drag

The starting point of our analysis is a discussion of general constraints on the Drude weight
in a clean metallic QCP. Following the framework of Refs. [15, 16, 68], there is an obstacle to
suppressing the Drude weight in a clean, compressible system. This is because compressibility
is always associated with the existence of emergent conserved quantities (of the IR fixed point
theory) that overlap with the current. Emergent conserved quantities are usually expected to
lead to a nonzero Drude weight, as they prevent the current from relaxing.

For simplicity, we first consider the case where there is exactly one conserved quantity,
M , that overlaps with the current. Then one can show from general thermodynamic argu-
ments [69,70] (see Ref. [71] for a review) that the Drude weight, Di j , should be given by

Di j

π
=
χJ i MχJ j M

χM M
. (11)

3Ref. [65] analysed the vicinity of a continuous Mott transition [67] between a Fermi liquid metal and a quantum
spin liquid insulator with a spinon fermi surface. Though other details of the transition are different from the loop
current criticality, the suppression of superconductivity relies on the same RG analysis.
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Here we have defined the generalized susceptibility of two Hermitian operators, A and B,
according to

χAB = χBA =
d
ds
〈A〉sB

∣∣∣∣
s=0
=
∫ β

0
〈AB(iλ)〉 dλ− β〈A〉〈B〉 , (12)

where the expectation values and imaginary time evolution are defined with respect to the
appropriate thermal equilibrium ensemble, except for 〈·〉sB, where the ensemble is modified
by adding a term −sB to the Hamiltonian. The susceptibility χJ M should be viewed as a
measure of the overlap of M with the current. If χJ M ̸= 0, then the only way for the Drude
weight to go to zero would be if χM M diverges. We should generally expect such a divergence
at a QCP at which there are quantum fluctuations of an operator with the same symmetry
transformation properties as M . At such a QCP, the Drude weight is thus driven to zero by the
critical fluctuations, a mechanism that was referred to as “critical drag” [15,16].

The situation becomes somewhat more complicated when there are Nc conserved quanti-
ties overlapping with the current, M1, · · · , MNc

. In that case, Eq. (11) generalizes to

Di j

π
= χJ i Ma

χJ j Mb
(χ−1)ab , (13)

where we sum over the repeated indices and defined the susceptibility matrix χab = χMa Mb
,

which must be positive-definite by thermodynamic stability. For the Drude weight to vanish,
we then need either: (a) χ−1 = 0, meaning that all of the eigenvalues of χ diverge; or (b) at
least one of the eigenvalues of χ diverges, and χJ i Ma

satisfies an additional condition.
Now suppose that the null space of χ−1 has dimension Ns at the QCP. If Nc > Ns, then χ−1

cannot be zero. Therefore, if there are too many conserved quantities, quantum criticality in
the right symmetry channel is no longer a sufficient condition for the Drude weight to vanish,
although it is still a necessary condition (otherwise χ would not have any diverging eigenval-
ues). In the concrete models of metallic quantum criticality that we study in this work, the
infinite dimensional emergent symmetry group of the IR fixed point puts us precisely in the
regime where Nc ≫ Ns. As a result, we find that the Drude weight of the loop current QCP
is nonzero but significantly reduced relative to QCPs associated with inversion-even order pa-
rameters.

3 Electrical transport in a model of loop current criticality

3.1 The mid-IR theory

We now move on to a detailed study of electrical transport in the Hertz-Millis model of
fermions, ψ, interacting with a general order parameter field, φ⃗ = (φx ,φy), defined via
Eq. (6). Following Ref. [19], we focus primarily on a version of the model in which certain
couplings are switched off. The expectation is that the resulting “mid-IR theory” will flow to
the same IR fixed-point as the orginal microscopic model. The properties of this mid-IR theory
will prove considerably easier to compute than of the original microscopic model.

We start by using the standard decomposition of the Fermi surface into patches, prohibiting
any interaction terms that would scatter a fermion from one patch into another. Such inter-
patch scattering terms are believed to be irrelevant in the renormalization group (RG) sense.4

4Strictly speaking, inter-patch scattering processes should be included for the RG analysis of BCS couplings
developed in Ref. [65]. However, as explained in Section 2.1, there is no superconducting instability at the loop
current QCP when the bare BCS coupling is sufficiently small. Thus, we will turn off BCS couplings altogether and
focus on the order parameter fluctuations. See Ref. [19] for a discussion of the effects of finite BCS couplings on
the types of non-perturbative arguments used in this work.
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Summing over discrete patches labelled by θ = 2π/Npatch, . . . , 2π results in the mid-IR action,

S = Sφ +
∑
θ

Spatch(θ ) , (14)

where Sφ includes all quadratic terms in the microscopic action. We discard additional self-
interaction terms, i.e. the . . . in Eq. (9), as they are believed to be irrelevant.

Spatch(θ ) =
∫

t,x

[
ψ†
θ

{
i∂t + ivF (θ )[w (θ ) ·∇] +κi j(θ )∂i∂ j

}
ψθ + ga(θ )φaψ

†
θψθ

]
. (15)

Here, for each patch θ , we defined the Fermi velocity v F (θ ) = vF (θ )w (θ ), the order parameter
form factor ga(θ ) ≡ ga(k F (θ )). Note that we use a, b, . . . for the boson indices because
although they are spatial indices in the problem of physical interest, one may also be interested
in more general types of order parameters that are still odd under inversion and time reversal.
The matrix κi j(θ ) is the projection of the curvature tensor, ∂ki

∂k j
ε(k)|kF (θ ), onto the direction

parallel to the Fermi surface, i.e. wi(θ )κi j(θ ) = 0. We drop the curvature of the fermion
dispersion in the direction perpendicular to the Fermi surface since it is irrelevant compared
to the term linear in w (θ ) ·∇, which has fewer derivatives. To avoid introducing redundant
fermionic degrees of freedom, we impose a momentum cutoff, Λ(θ ), for the fermionψθ in the
direction parallel to the Fermi surface, such that

∑
θ Λ(θ ) is the length in momentum space

of the Fermi surface. At the end of each calculation, we take Λ(θ )→ 0 and Npatch→∞.
In passing to the mid-IR theory, we have dropped interaction terms irrelevant under a

tree-level scaling scheme within each patch that preserves the curvature of the Fermi surface.
Despite this formal irrelevance, the effects of interactions like large-angle scattering on physical
observables may not be small because the number of patches connected by the scattering
processes diverge in the IR limit. Our working assumption is that contributions from these
interactions are not more singular than the contributions from tree-level marginal terms that
are already included in the mid-IR action. Certainly, a more careful treatment of large-angle
scattering is an important future direction.

3.2 Introducing the anomaly: Why does the boson affect the conductivity?

We now describe how the critical boson fluctuations can affect transport and motivate some of
the non-perturbative relations that will ultimately become the basis for the “anomaly-assisted
large N expansion” we will develop in Section 4. The results derived in the remainder of
this Section were also obtained in Ref. [19], but in the present work we will arrive at them
from a somewhat different perspective that can be more straightforwardly generalized to the
random-flavor large N theory studied in Section 4.

We begin by reviewing a naïve argument for why one might not have expected the critical
fluctuations of the boson to be important for the conductivity. At low energies, the boson
has only very long-wavelength fluctuations, so we do not expect that the boson can scatter
electrons from one point on the Fermi surface to another distant point (i.e. there is only
“forward scattering”). If we assume that the current operator can be expressed, as it can in
Fermi liquid theory, in terms of the occupation numbers of fermions near the Fermi surface, it
would follow that the boson cannot affect the current.

The problem with this argument is that the current operator in the model we are consider-
ing actually involves both the conserved fermion occupation numbers and the order parameter.
This can be transparently seen in the microscopic model, Eq. Eq. (6), by minimally coupling
to a background gauge electric vector potential, A(t), which couples to the current operator,

J(t) =
1
V

∫
k

v(k)ψ†(k)ψ(k) +
1
V

∫
k,q
∂k

[
g⃗(k) · φ⃗(q)

]
ψ†(k + q/2)ψ(k − q/2) , (16)
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where V is the total volume of the system, v(k) = ∂kε(k), and we have suppressed the time
dependence of the fields on the right-hand side. This expression is obtained by replacing
g⃗(k) → g⃗(k + A), ε(k) → ε(k + A) and expanding to linear order in A. Hence, we see that
although forward scattering should not affect the “non-interacting” part of the current given
by the first term of Eq. (16), the current operator is modified by a term that explicitly involves
the boson. Therefore, in understanding the results of this paper, one should not think about
transport purely in terms of the fermions “scattering” off of the bosons, as such a picture fails
to capture the effect of the second term in Eq. (16).

This result admits a simple interpretation in the mid-IR theory, Eqs. (14) – (15). Integrat-
ing the second term in Eq. (16) by parts and approximating ∂k[ψ†(k + q/2)ψ(k − q/2)] by
∂kρ(kF ), the current density in patch θ is given by

j i
θ = v i

F (θ )nθ = v i
F (θ ) ñθ −

Λ(θ )
(2π)2

wi(θ ) ga(θ )φa , (17)

where ñθ and v i
F (θ ) ≡ vF (θ )wi(θ ) are the conserved charge density and the Fermi velocity

vector in the patch. We have also defined what we will sometimes refer to as the “chiral”
patch density, nθ , which unlike ñθ is invariant under independent U(1) gauge transformations
in each patch, ψθ → eiαθ (wi x i)ψθ , ga(θ )φa→ ga(θ )φa +wi(θ )∂iαθ [19].

Conservation of ñθ in the absence of external fields thus implies that conservation of nθ is
broken by an anomaly proportional to the “electric field” generated by φ,

∂t ñθ (t,q = 0) = 0 , (18)

∂t nθ (t,q = 0) = −
Λ(θ )
(2π)2

1
vF (θ )

ga(θ )∂tφa(t,q = 0) . (19)

The details of this anomaly, a cousin of the 1+1-D chiral anomaly, are developed in Ref. [19].
Although the above equations are simply a way of expressing charge conservation on each
Fermi surface patch, they define a family of exact operator relationships (up to contact terms)
relating the fermion current operator and the boson field that will prove crucial in our analysis
in this work.5 From these exact relations, Eqs. (17) – (19), it immediately follows (after
taking into account contact terms in the external field) that the conductivity can be related to
the retarded Green’s function of the boson, GR

φaφb
(q = 0,ω)≡ Dab(ω), according to

σi j(ω) =
i
ω

[
Di j

0

π
− V ia V j b Dab(ω)

]
, (20)

where we have defined constant matrices

Di j
0 = πTrθ

[
v i

F v j
F

]
, V ia = Trθ

[
v i

F ga
]

, (21)

in terms of an inner product, Trθ , which denotes

Trθ [ f g] =
∑
θ

Λ(θ )
(2π)2 vF (θ )

f (θ )g(θ ) . (22)

Here Di j
0 is the free Fermi gas Drude weight, since we have turned off Landau parameters

and consider only interactions with the boson. The vertex factor, V ia, is roughly the overlap

5As a side note, we remark that in the mid-IR theory, the particular expressions for nθ and ñθ in terms of the
fields, ψθ and φ, depend on a choice of UV regularization [19,30]. For example, using the microscopic model in
Eq. (6) as a short distance regulator leads to ñθ =ψ

†
θψθ . A different regularization that is often more convenient

in perturbative calculations instead leads to nθ =ψ
†
θψθ .
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of the Fermi velocity with the form factor. Note finally that, in arriving at Eq. (20), we have
ignored a contribution to the current operator from the dispersion of the fermions parallel to
the Fermi surface. As argued in Ref. [19], this parallel current is expected not to contribute
to the conductivity in the IR fixed-point theory due to emergent momentum conservation in
each patch.

In the case of an order parameter that is even under inversion and time-reversal symmetry
(such as Ising-nematic), the analogue of the second term in Eq. (20) would vanish for sym-
metry reasons. This means that neglecting the explicit contribution to the current from the
boson in Eq. (17) would actually give the right answer. However, in this work we are of course
interested in order parameters that are odd under inversion and time-reversal, in which case
retaining the second term in Eq. (20) will be essential. For instance, in the problem of a Fermi
surface coupled to a fluctuating U(1) gauge field a, the second term cancels the free fermion
Drude weight and leads to a vanishing conductivity, consistent with the fact that an external
gauge field A can be absorbed by a change of variables a→ a+A in the path integral in the IR
limit.

3.3 Drude weight from susceptibilities

The model we are considering, Eq. (6), has a very large emergent symmetry group. This is most
transparently seen in the mid-IR theory, Eqs. (14) – (15), when the number of patches is taken
to infinity. Therefore, in the IR limit there is roughly speaking, a conserved charge associated
with each point on the Fermi surface. The more precise statement, alluded to above, is that,
if we parameterize the Fermi surface by a continuous variable, θ , then we can introduce the
conserved charge distribution operators ñ(θ ), such that the total charge is given by

∫
ñ(θ )dθ .

Nevertheless, in the rest of this section, we will instead work with discrete patches, and con-
tinue to refer to nθ as the conserved charge of a given patch. To recover the full emergent
symmetry group, one should imagine taking Npatch→∞, Λ(θ )→ |∂θk F (θ )| dθ and replacing
sums over patches with integrals over θ at the end of the calculation.

Assuming that there are no other emergent conserved quantities, the general arguments
of Section 2.2 allow us to determine the Drude weight of the system, provided that we know
the susceptibility function χñθ ,ñθ ′ . We showed in Ref. [19] that this susceptibility can be fixed
by general arguments to be

χñθ ,ñθ ′ =
Λ(θ )

(2π)2vF (θ )
δθθ ′ +

1
(2π)4

Λ(θ )g i(θ )
vF (θ )

Λ(θ ′)gi(θ ′)
vF (θ ′)

1
m2 −m2

c
, (23)

where m2−m2
c is the tuning of the boson off of criticality into the disordered phase. From the

results of Ref. [19] one can also show that6

χJ i ñθ =
1

(2π)2
wi(θ )Λ(θ ) . (24)

Substituting Eq. (23) and Eq. (24) into the general formula Eq. (13), one obtains the Drude
weight (see Appendix A),

Di j

π
=

Di j
0

π
− V ia V j b(Π−1

0 )ab , (25)

where Di j
0 , V i j are defined as before by Eqs. (21), and

Πab
0 = Trθ

[
ga g b

]
. (26)

6Actually, the Npatch →∞ version of this result holds not just in the Hertz-Millis theories we are studying but
in any “ersatz Fermi liquid”, i.e. any system with that has an emergent loop group with an anomaly. For example,
see Ref. [15].
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We are now prepared to determine the circumstances under which the Drude weight is
actually zero. In Appendix A, we prove that Di j given by Eq. (25) is zero if and only if there
exists some matrix S i

j (independent of θ) such that

v i
F (θ ) = S i

j g j(θ ) , (27)

for all θ , where we now explicitly denote boson indices as spatial indices i, j, . . .
To interpret this result, let us assume that the Fermi surface is generic, such that any vector

in R2 can be obtained as a linear combination of the unit Fermi surface normals, w (θ ), at
different values of θ (the only way for this not to occur would be if the Fermi surface is a
perfectly straight line). It follows that S is full-rank and therefore invertible. If we define a
vector, a, in terms of the boson fields according to

a j =
(
S−1
)i

j φi , (28)

then writing the boson-fermion coupling in terms of the a field, we find

g i(θ )φiψ
†
θψθ = g i(θ )S j

i a jψ
†
θψ

†
θ = [a · v F (θ )]ψ

†
θψθ . (29)

Thus, we see that a couples to the fermions exactly as a U(1) gauge field would. This makes
sense physically: when the order parameter couples like an internal gauge field, any external
probe gauge field can be “shifted away” by a change of variables. As a result, in the absence
of boson self-interactions the optical conductivity is only affected by the frequency-dependent
terms in the quadratic boson action, which will only correct the conductivity at higher orders
in frequency. In the low energy limit as these terms are taken to zero (they are irrelevant
compared to Landau damping), there is an emergent gauge symmetry: the boson fluctuations
elimate the dependence of the partition function on the probe completely, and the conductivity
vanishes.

One can now ask why the Drude weight is not always zero at the critical point. This reflects
the considerations discussed at the end of Section 2.2 (see also Ref. [19]). Because there
are multiple (in fact, infinitely many) conserved quantities associated with the Fermi surface
that overlap with the current, it follows that even at a quantum critical point with critical
fluctuations where the susceptibility of the order parameter diverges, the Drude weight is not
inevitably zero.

3.4 Full optical conductivity: Coherent and incoherent contributions

In Ref. [19], we examined mid-IR effective theories of the type in Eqs. (14) – (15) using
general arguments leveraging their emergent symmetry and anomaly structure. In that work,
we obtained an exact result for the boson Green’s function and hence, via Eq. (20), the con-
ductivity, in the mid-IR theory. We found that the conductivity at the ultimate IR fixed point
(assuming a second-order transition) is simply

Reσi j(ω) =Di j δ(ω) , (30)

with Di j given by Eq. (25). Thus, the result of Ref. [19] agrees with the value of the Drude
weight predicted from the general susceptibility arguments above.

Crucially, Eq. (30) shows that there is no incoherent conductivity generated by critical fluc-
tuations. Thus, the IR fixed point of the model in Eqs. (14) – (15) does not fulfill our goal of
generating a nontrivial incoherent conductivity at a metallic quantum critical point. This leaves
two possible routes to incoherent conductivity in a clean theory in the Hertz-Millis framework:

1. Introducing irrelevant operators. Importantly, irrelevant operators will give a nontrivial
ω-dependent conductivity but cannot lead toω/T scaling behavior at finite temperature.
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2. Finding models in which the anomaly constraints leading to Eq. (30) are relaxed. In
such models it should be possible to obtain nontrivial frequency scaling intrinsic to the
fixed point without adding any irrelevant operators.

Most transport calculations in the literature that report a nontrivial frequency scaling in the
conductivity require the presence of irrelevant operators and thus fall into the first category.
Unfortunately, irrelevant operators cannot lead to incoherent conductivity at the IR fixed point,
which is the central goal of this work. Therefore, in the next few sections, we choose to focus on
the second route. As foreshadowed in Ref. [19], the random-flavor large N model developed
in Refs. [59–61] manages to evade some of the anomaly constraints valid in the N = 1 theory,
and it is not possible to determine the conductivity exactly at large but finite N . Nevertheless,
we will develop an “anomaly-assisted large N expansion” that allows us to access the most
singular contributions to the conductivity at the IR fixed point.

Readers who are primarily interested in fixed point transport can now skip to Section 4. In
the remainder of this section, we critically reexamine the corrections to scaling in σ(ω > 0)
induced by irrelevant operators and find an important discrepancy with results in the litera-
ture. The starting point of our analysis is a prominent, albeit uncontrolled, calculation of these
effects done by Kim, Furusaki, Wen, and Lee in Ref. [64]. There, they modify the model in
Section 3.1 to include N f fermion flavors coupled to a U(1) gauge field and compute correla-
tion functions order-by-order in powers of 1/N f . The inclusion of leading irrelevant operators
results in a boson self energy Π(ω) and an incoherent conductivity σ(ω > 0) that both scale
as ∼ ω−2(z−2)/z , where z is the dynamical critical exponent of the boson7 (the same scaling
has been found for other order parameters in Refs. [64,73–76]).

In Appendix F, we revisit these calculations in detail. For the boson self energy Π(ω), we
find surprising cancellations between various diagrams that lead to a vanishing coefficient of
ω−2(z−2)/z for all inversion-odd order parameters. Any further frequency dependence must
then come from subleading irrelevant operators that give rise to a higher power of ω. For
inversion-even and non-constant order parameters, no such cancellation happens and the
ω−2(z−2)/z scaling is robust. Taking these results as a starting point, we then evaluate the
current-current correlator and find that the coefficient of ω−2(z−2)/z in the conductivity van-
ishes for all order parameters. We note that a similar claim of “vanishing”ω−2(z−2)/z coefficient
has been emphasized in a recent work [63]. However, their results were obtained for the spe-
cial case of a constant scalar form factor fa(k) = 1 in the random-flavor large N expansion
and for the Galilean invariant form factor in the RPA expansion. It would be interesting to
understand whether the dichotomy between inversion-even and inversion-odd order param-
eters that we found can be reproduced in a generalization of their calculation that includes
arbitrary form factors in the random flavor large N model.

Finally, we emphasize that the 1/N f (i.e. RPA) expansion is only valid in some intermediate
range of ω lower than the energy scale of Landau damping but much higher than the energy
scale where fermionic quasiparticles are destroyed (this latter energy scale is proportional to
N1/(2/z−1)

f ). Therefore, our analysis does not extend down to the IR fixed point, where the
effects of irrelevant operators could potentially lead to a different frequency scaling in σ(ω).
Nailing down the critical exponents of the IR fixed point and the scaling dimensions of leading
irrelevant operators remains a challenging task that we hope to return to in the future.

7If the boson kinetic term is local, then z = 3 at one loop. A correction to z = 3 was calculated at four loops [72],
but whether this correction is ultimately canceled against others has not been settled.
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4 Random-flavor large N model

4.1 Motivation and summary of results

In Ref. [19], we found using general symmetry and anomaly arguments that the boson prop-
agator at q = 0 in the mid-IR theory, Eqs. (14) – (15), is exactly fixed to be a frequency-
independent constant in the IR limit. Related arguments also provide the relation between the
optical conductivity and the boson propagator, Eq. (20), thereby fixing the Drude form of the
conductivity. In order to obtain a non-trivial incoherent conductivity at the IR fixed point, it
would be especially convenient to find a model which retains the anomaly relation in Eq. (20)
without fixing the frequency dependence of the boson propagator.

As explained in Ref. [19], a model which achieves this is the “random-flavor large N” theory
introduced in Refs. [59–61]. In the mid-IR formulation of this model, N species of bosons, φI ,
and N species of fermions, ψθ ,I , are coupled through (spatially uniform) Gaussian random
variables, gI JK ,

Sφψ =
∫

x ,τ

gI JK

N
fa(θ )ψ

†
θ ,I ψθ ,J φ

a
K , (31)

g∗I JK gI ′J ′K ′ = g2δI I ′δJJ ′δKK ′ , gI JK = 0 , (32)

where fa(θ ) is a form factor depending on the Fermi surface angle (patch index), θ , and a is
again an internal index. Because each φI generally couples to a complicated linear combina-
tion of flavor density operators, ψ†

IψJ , rather than the conserved (up to anomaly) total patch
charge, the anomaly structure of this random-flavor large N model no longer fixes the boson
propagator, allowing for the possibility of a nonvanishing incoherent conductivity at the fixed
point.

If one considers the conductivity taking the N →∞ prior to the low frequency (IR) limit,
one finds a vanishing incoherent conductivity [62]. However, the physically correct approach
takes the IR limit first, and the two limits need not commute, as famously occurs in the large
N f , or RPA, expansion [28]. To perform this calculation, we leverage the non-perturbative
anomaly relations explained in Section 3 and developed in detail in Ref. [19]. The anomaly
constraints furnish exact relations between different correlation functions, which are valid in
any order of limits, facilitating the extraction the fixed point conductivity in a procedure we
dub the anomaly-assisted large N expansion.

The relations used in the anomaly-assisted approach are simple to outline. For example,
the nonperturbative susceptibility arguments in Section 3 carry over in a similar way to this
mid-IR theory, leading to a Drude weight,

N Di j = N
[
Di j

0 −
π

N
V iaV j b

(
Π−1

0

)
ab

]
, (33)

with Di j
0 , V ia,Πab

0 respectively having the same expressions as in Eqs. (21) and (26), except
that the form factor 1

N

∑
I J gI I J f a(θ ) replaces ga(θ ). Furthermore, a generalized version of

Eq. (20) persists for the full optical conductivity,

σi j(q = 0,ω) = N
i
ω

[
Di j

0

π
−

1
N

∑
I ,J ,K ,L

gI I J

N
gKK L

N
Trθ
[
v i

F f a
]

Trθ
[
v j

F f b
]

DJ L
ab (q = 0,ω)

]
, (34)

where DJ L
ab =

〈
φa,Jφb,L

〉
is the boson propagator. This relation relates the large-N and small

frequency expansions of the boson propagator to those of the conductivity.
However, the calculation of the conductivity indeed depends on the order of the large N

and IR limits. As mentioned above, the physical order of limits is to take the IR limit before
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the large-N limit. Treating this order of limits improperly by naïvely plugging the N →∞
form of the boson propagator into Eq. (34) would thus lead to incorrect results. This can
be seen immediately from the fact that the second term in Eq. (34) vanishes as N → ∞,
contradicting the exact Drude weight reduction in Eq. (33). Physically, the failure of these
limits to commute reflects the existence of “slow modes” in the system; that is, modes whose
relaxation times become large as N →∞.

The memory matrix formalism (for a review, see Ref. [71]) allows for a transparent treat-
ment of these slow modes. Combining this technique with non-perturbative susceptibility
formulae determined by the anomaly, we obtain a final result for the zero temperature optical
conductivity with both coherent and incoherent contributions,

σi j(ω) = N
i
ω

[
Di j

0

π
− Trθ

[
v i

F f k
]

Trθ
[
v j

F f l
](
Π0 − iCz Nω1−2/z

)−1

kl
+ . . .

]
(35)

=
NDi j

π

i
ω
+ N2 C i j

z ω
−2/z + . . . , for ω1−2/z ≪

1
N
≪ 1 , (36)

where C i j
z and C i j

z are constant matrices depending on z. The ellipses contain terms that are less
singular in ω as ω→ 0. Interestingly, the incoherent conductivity in this expression differs in
an essential way from theω−2(z−2)/z scaling generated by the leading irrelevant operators (see
Appendix F). Being intrinsic to the IR fixed point theory, this result also indicates a problem
with continuing N to unity: as we found in Ref. [19], the incoherent conductivity of the theory
at N = 1 must vanish. Note that we also compute the conductivity at finite temperature, but
we find that thermal effects dominate over quantum critical effects to the order at which we
calculate. It is possible that there is an IR scale at which this is no longer the case, although
it is beyond the scope of the large N analysis performed here [77]. We will discuss the finite
temperature calculation in detail in Section 4.4 and Appendix C.

It is clear from Eq. (35) that our final result depends sensitively on the order of the large-
N and low frequency limits. If the large-N limit is taken first, then the resulting conductivity
contains the free fermion Drude weight, contradicting the exact result in Eq. (33). In this order
of limits, there are also frequency-dependent incoherent terms at sub-leading orders in 1/N .
In contrast, taking the low frequency limit first yields a correct result for the Drude weight
along with a frequency-dependent incoherent conductivity that is enhanced by a power of N .
This signals a breakdown of the large N expansion in evaluating the conductivity.

The remainder of this work will be devoted to the derivation and interpretation of the
result in Eq. (35). In Section 4.2, we write down the model and set up important notations
before briefly reviewing the formalism developed by Ref. [61]. In Section 4.3, we then compute
the conductivity at fixed frequency ω in the N →∞ limit and explain why the perturbative
1/N expansion of Ref. [61] cannot access the true fixed point conductivity. To go beyond the
1/N expansion, we leverage non-perturbative anomaly arguments to improve the conductivity
calculation, first in the memory matrix formalism (Section 4.4), and then in the standard
Kubo formalism (Section 4.5). These complementary approaches ultimately yield the same IR
scaling quoted in Eq. (35), providing a nontrivial consistency check of our calculations.
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4.2 Model and large N expansion

Following Refs. [59–61], we consider N flavors of bosons φI and N flavors of fermions ψI
described by the action,

S = Sφ + Sψ + Sφψ , (37)

Sφ =
1
2

∫
q ,τ
φ⃗I(q ,τ)

[(
−λ∂ 2

τ + |q |
2
)
δI J +m2

I J

]
φ⃗J (q ,τ) , (38)

Sψ =
∫

k,τ
ψ†

I (k,τ) [∂τ + ε(k)]ψI(k,τ) , (39)

Sφψ =
gI JK

N

∫
k,q ,τ

f⃗ (k) · φ⃗K(q ,τ)ψ†
I (k + q/2,τ)ψJ (k − q/2,τ) . (40)

Here we have introduced a form factor f⃗ (k) that is independent of the flavor indices, as well
as the flavor-dependent Yukawa couplings gI JK . The mass matrix, m2

I J , tunes the theory to
a multicritical point where all of the boson species are gapless. As briefly mentioned in Sec-
tion 4.1, we will sample these couplings from a complex Gaussian distribution with gI JK = 0
and g∗I JK gI ′J ′K ′ = g2δI I ′δJJ ′δKK ′ .

In the low energy limit, we can consider the “mid-IR” theory analogous to the one described
in Section 3.1, with action

S = Sφ +
∑
θ

Spatch(θ ) , (41)

where

Spatch(θ ) =
∫

x ,τ
ψ†

I ,θ [∂τ + εθ (∇)]ψI ,θ +
gI JK

N

∫
x ,τ

f a(θ )φa,Kψ
†
I ,θ ψJ ,θ , (42)

where εθ (∇) = ivF (θ )w (θ ) ·∇+ κi j(θ )∂i∂ j is the fermion dispersion expanded to quadratic
order inside the patch θ . We again drop the curvature of the dispersion but retain the curvature
of the Fermi surface.

We now adapt the large N technology developed by [61] to study the mid-IR theory of
loop current order defined in Eq. (41). A crucial simplifying feature of the model is that
for physical quantities that are O(1) in the N → ∞ limit, annealed averaging agrees with
quenched averaging up to O(1/N2) corrections.8 More explicitly, self-averaging is treated as
the statement,

log Z = log Z . (43)

As we now review, this leads to a bilocal collective field description of the original theory that
is valid to leading two orders in the 1/N expansion. While this is a powerful calculational
tool for various correlation functions at finite ω,q in the large N limit, there are interesting
non-perturbative effects that cannot be captured by this formalism if one keeps N finite and
take the limit as ω,q → 0. These non-perturbative subtleties will be explained in the later
sections.

To arrive at the bilocal collective field description, we disorder-average the partition func-

8This self-averaging property was assumed in Ref. [61]. In Appendix B, we provide a concrete diagrammatic
derivation. To our knowledge, ours is the first such derivation in the literature on these models.
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tion over complex Gaussian couplings gI JK

Z =
∫

Dφ e−Sboson Zpatch[φ] , (44)

Zpatch[φ] =
∫ [∏

θ

Dψ†
θ Dψθ

]
exp

{
−
∑
θ

∫
x ,τ
ψ†

I ,θ [∂τ + εθ (∇)]ψI ,θ − |OI JK |2
}

, (45)

OI JK =
∑
θ

∫
x ,τ

f a(θ )φa
Kψ

†
I ,θ ψJ ,θ . (46)

Generalizing the notation of [61] to multiple patches, we introduce bilocal fields,

Dab(x , y) =
1
N

∑
K

φa
K(x)φ

b
K(y) , Gθθ ′(x , y) =

1
N

∑
I

ψ†
I ,θ (x)ψI ,θ ′(y) . (47)

Here we use notation where x , y are coordinates in space and imaginary time, i.e. x = (τ, x ),
and we will denote

∫
x ≡

∫
d3 x . The interacting part of the effective action can now be recast

as

Sint =
g2N

2

∑
θ ,θ ′

∫
x ,y

f a(θ ) f b(θ ′)Dab(x , y)Gθθ ′(x , y)Gθ ′θ (y, x) . (48)

The identification of Dab, Gθθ ′ with boson/fermion bilinears is enforced by Lagrange multipli-
ers Πab and Σθθ ′ coupling as

SΣG = −N
∫

x ,y
Σθ ′θ (y, x)

[
Gθθ ′(x , y)−

1
N

∑
I

ψ†
I ,θ (x)ψI ,θ ′(y)

]
, (49)

SΠD = N
∫ ∫

x ,y
Πab
θ ′θ (y, x)

[
Dab(x , y)−

1
N

∑
K

φa
K(x)φ

b
K(y)

]
. (50)

After integrating out the original fieldsψθ ,I andφI , one obtains a path integral over the bilocal
fields Gθθ ′ ,Σθθ ′ , Dab,Πab,

Z̄ =
∫

G,D,Σ,Π
exp

{
− NSeff[G, D,Σ,Π]

}
, (51)

where the effective action Seff takes the form

Seff[G, D,Σ,Π] = Tr ln [iωn − ε(k)−Σθθ ′] +
1
2

Tr ln
[
|q |2 −Πab

]
+ Sint

−
∑
θ ,θ ′

∫
x ,y
Σθ ′θ (x , y)Gθθ ′(y, x) +

1
2

∫
x ,y
Πab(x , y)Dba(y, x) . (52)

Here we use k and q to respectively denote the fermion and boson momenta, and we use ωn
and Ωn to denote the fermion and boson Matsubara frequencies.

The path integral in Eq. (51) is amenable to a standard large N saddle point expansion.
For simplicity, we will restrict below to models where only a single boson component couples
strongly to the FS, so the indices a, b will be dropped below. The spatial symmetries of the
Yukawa coupling would then be encoded completely in the symmetries of a single function
f (θ ). To leading order in N , classical minimization of Seff yields saddle point equations,

Gθθ (k, iωn) =
1

iωn − ε(k)−Σθθ (k, iωn)
, D(q , iΩm) =

1
|q |2 −Π(q , iΩm)

, (53)
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Σθθ (x)≈ g2 [ f (θ )]2 D(x)Gθθ (x) , Π(x) = −g2
∑
θ

[ f (θ )]2 Gθθ (x)Gθθ (−x) . (54)

Solving these equations for a rotationally invariant Fermi surface is a standard computation
in Migdal-Eliashberg theory. But since we are considering generic Fermi surfaces, we state
slightly more general formulae for the saddle point solutions, leaving a self-contained deriva-
tion to Appendix C. For the boson self energy, we find standard Landau damping in the regime
|Ωm| ≪ |q |,

Π(q , iΩm) = −γq̂
|Ωm|
|q |

, (55)

where the coefficient γq̂ is determined by the choice of form factor f (θ ) and the Fermi surface
parameters kF (θ ), vF (θ ), and it is a function of the orientation of the boson momentum, q̂ . The
fermion self energy decomposes into terms generated by quantum and thermal fluctuations,

Σθθ (k, iωn) = ΣT,θθ (k, iωn) +ΣQ,θθ (k, iωn) , (56)

where the quantum term, ΣQ, obeys quantum critical scaling and the thermal term, ΣT , is
generated by dangerously irrelevant boson self-interactions at finite temperature (more com-
ments on this point will be given in Section 4.4.4). At low ω and T , neither of these terms
depend on the spatial momentum k,

ΣT,θθ (k, iωn) = −i sgn(ωn)hθ

√
T

ln(1/T )
, (57)

ΣQ,θθ (k, iωn) = −i sgn(ωn)λθ T2/z Hz (|ωn|/T ) . (58)

Here λθ , hθ are positive functions of θ while Hz(ξ) approaches a constant as ξ→ 0 and scales
as ξ2/z for ξ ≫ 1. These scaling forms will play an important role in the calculation of the
conductivity.

Going beyond the saddle point, one can expand the action in Eq. (52) to higher order
in the fluctuations of bilocal fields and obtain corrections to various correlation functions in
powers of 1/N . However, we emphasize again that the random-flavor large N theory fails to
be self-averaging beyond order 1/N . This means that the utility of the bilocal field description
is restricted to the level of quadratic fluctuations and higher order corrections are not relevant
to the physical model (see Appendix B). This behavior can be contrasted with the q = 4 SYK
model, where self-averaging only begins to fail at O(1/N3) [78].

4.3 Calculation of the conductivity in the naïve large N limit

To compute the conductivity, we start with the standard Kubo formula

σi j(q = 0,ω) =
i
ω

[
NDi j

0

π
− GJ i J j (q = 0,ω)

]
. (59)

The first diamagnetic term is dictated by electromagnetic gauge invariance and provides the
free-fermion Drude weight. The second term is the current-current correlator. Within the mid-
IR theory, the current operator can be decomposed into contributions from different patches,

J i =
∑
θ

j i
θ , j i

θ = vF (θ )w
i(θ )nθ , (60)

where nθ =
∑

I ψ
†
θ ,Iψθ ,I is the chiral charge density9 within patch θ . In the presence of

Yukawa interactions, the U(1)patch symmetry corresponding to the conservation of nθ becomes

9Note that this operator identification depends on a choice of UV regularization [19,30].
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anomalous and nθ acquires nontrivial dynamics

d
d t

nθ (q = 0, t) = −
Λ(θ )
(2π)2

f (θ )
vF (θ )

∑
I ,J

gI I J

N
d
d t
φ(q = 0, t) . (61)

After substituting the above expression in Eq. (59), we obtain an exact formula for the con-
ductivity in terms of the connected boson correlator, DJ L = 〈φJφL〉,

σi j(q = 0,ω) = N
i
ω

[
Di j

0

π
−

1
N

∑
I ,J ,K ,L

gI I J

N
gKK L

N
V i V j DJ L(q = 0,ω)

]
, (62)

where V i = Trθ
[
v i

F f
]
. We now import some results from the bilocal field formalism in Sec-

tion 4.2. For fixed ω, taking the large N limit gives DJ L(q = 0,ω) ≈ δJ L D⋆(q = 0,ω) up to
subleading in N corrections, where D⋆ is the saddle point solution for the boson propagator.
Under this approximation,∑

I ,J ,K ,L

gI I J

N
gKK L

N
DJ L(q = 0,ω) = g2D⋆(q = 0,ω) +O(1/N) , (63)

and the conductivity simplifies to

σi j(q = 0,ω) =
i
ω

[
NDi j

0

π
− g2 V i V j D⋆(q = 0,ω) +O(1/N)

]
. (64)

Importantly, the saddle point solution D⋆(q = 0,ω) is independent of N and the second term
is subleading in N relative to the first term. Therefore we recover the free-fermion Drude
weight Di j

0 independent of f (θ ). In the bilocal field formalism, this simple result corre-
sponds to an infinite sum of ladder diagrams generated by quadratic fluctuations of the bilocal
fields δG,δΣ,δD,δΠ (we resum these diagrams within the two-patch model in Appendix D.
Ref. [63] contains a more involved calculation that accounts for the full Fermi surface and
obtains the same answer). The matching of these two calculations showcases the power of
anomaly arguments: what seems like a complicated diagrammatic exercise ultimately reduces
to a one-line derivation.

Importantly, this result is only correct for fixed ω in the N →∞ limit. This explains why
the correct Drude weight in Eq. (33) is invisible in the perturbative 1/N expansion. More
generally, since properties of the IR fixed point always require keeping N finite and taking
ω→ 0, the perturbative 1/N expansion would also miss any putative frequency scaling in the
incoherent conductivity. Accessing the ultimate IR conductivity requires more nonperturbative
input, which will be the focus of the next subsection.

4.4 Anomaly-assisted large N expansion: Memory matrix approach

The subtle order of limits between ω→ 0 and N →∞ originates from the existence of slow
modes whose relaxation rates vanish as N → ∞. The method of choice for studying the
conductivity in the presence of slow modes is the memory matrix formalism, which we review
and apply in the rest of this section.

The physical intuition behind the memory matrix formalism is a separation of timescales.
In a strongly interacting quantum many-body system with slow modes (i.e. approximately
conserved quantities), the decay rates of slow modes are generally much smaller than the decay
rates of generic short-lived excitations. When this is the case, IR properties of the system are
governed by fluctuations of the slow modes alone, which live in a low-dimensional subspace
S of the Hilbert space of operators. In the context of generalized transport, the IR property of
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interest is the correlation function CO1O2
which captures the linear response of an operator O1

to a source conjugate to O2. This correlation function is simply related to the retarded Green’s
function GR

O1O2
via

CO1O2
(q = 0,ω, T )≡ GR

O1O2
(q = 0,ω, T )−χO1O2

. (65)

For a time-reversal symmetric system where slow modes dominate in the IR, we therefore
expect the correlation function to take a “generalized Drude form”

CO1O2
(ω, T ) = −

∑
A,B∈S

DO1O2
AB

[
1+ iω−1τ−1(ω, T )

]−1
AB , (66)

where the matrix τ−1
AB encodes the decay rate of an operator A in response to a source conjugate

to B and the matrix DO1O2
AB is a set of generalized Drude weights that measure the overlap of

O1,O2 ∈ S with A, B ∈ S.
The crux of the memory matrix formalism is an explicit recipe for calculating the phe-

nomenological parameters D,τ−1 from microscopic correlation functions

DO1O2
AB =

∑
C∈S

χO1A (χ
−1)BC χO2C , τ−1

AB =
∑
C∈S

χ−1
AC MCB(ω, T ) , (67)

MAB(ω, T ) = iβ(A|Lq(ω− qLq)−1qL|B) , (68)

where M is the eponymous memory matrix. Here we have defined the inner product,
(A|B) = β−1χAB, the Liouvillian operator, L = [H, ·], and the projector q onto the subspace
S⊥ orthogonal to S. A particularly transparent derivation of these results can be found in
Ref. [71]. The electrical conductivity is obtained by noting CJ i J j (ω, T ) ≡ iωσi j(ω, T ), so we
recover the generalized Drude form,

σi j(ω, T ) =
∑

A,B,C∈S
χJ iA

[
−iω+τ−1(ω, T )

]−1
AB (χ

−1)BC χJ j C . (69)

In the context of the random-flavor model of interest, Eqs. (41) – (42), we identify the
slow subspace as the Npatch + N dimensional space spanned by the conserved patch densities
ñθ as well as the boson fields themselves φI ,

S = {ñθ ,φI} . (70)

We will see below that the inclusion of the boson modes in the slow subspace is consistent at
large N . A key assumption of our calculation is the absence of additional slow operators in the
model. One possible effect of additional slow operators could be to generate a more singular
frequency scaling of the conductivity.

By applying anomaly arguments, we can determine the static susceptibilities χ in this sub-
space non-perturbatively. After plugging the exact χ into Eq. (69) and evaluating the memory
matrix M(ω, T ) perturbatively in the 1/N expansion, we can simplify the conductivity to a sum
of coherent and incoherent terms. The exactly conserved operators contribute to the coherent
conductivity and reproduce the nonperturbative Drude weights in Eq. (33); the almost con-
served slow operators contribute to the incoherent conductivity and reproduce the frequency
scaling in Eq. (35). We now proceed to go through these steps.
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4.4.1 Static susceptibilities in the slow subspace

As discussed in Section 3, in the mid-IR theory, the perpendicular current operator J i can be
written as a sum over chiral densities, nθ , on the Fermi surface patches,

J i =
∑
θ

j i
θ , j i

θ = vF (θ )w
i(θ )nθ . (71)

Due to the large emergent symmetry, the current J i overlaps with a large number of conserved
charge densities, ñθ . As for the N = 1 model discussed in Section 3.2, these ñθ ’s are further
related to nθ by a term involving a linear combination of the boson fields

ñθ = nθ +
Λ(θ )
(2π)2

f (θ )
vF (θ )

∑
I ,J

gI I J

N
φJ (72)

= nθ + F(θ )L(θ )
∑

J

GJ φJ , (73)

where we absorbed miscellaneous constants into L(θ ) =
√

Λ(θ )
(2π)2vF (θ )

, F(θ ) = f (θ )L(θ ), and

GJ =
∑

I gI I J/N (these choices of constants will significantly simplify the later calculations).
Since ñθ ’s are exactly conserved, conservation of the chiral densities, nθ , is broken by the
emergent “electric field” generated by the bosons. Thus, the relationship, Eq. (72) may be
thought of as a rewriting of the anomaly of the random-flavor large N model.

The static susceptibilities follow from the same anomaly arguments that we leveraged to
study the N = 1 model in Ref. [19]. Using the anomaly, Eq. (72), and the nθ susceptibility,

χnθ nθ ′ = N L(θ )2δθθ ′ , (74)

we can immediately fix the susceptibility for the conserved densities, ñθ ,

χñθ ñθ ′ = χnθ nθ ′ + F(θ )L(θ ) F(θ ′)L(θ ′)
∑
I ,J

GI GJ χφIφJ
(75)

= N L(θ )2δθθ ′ + F(θ )L(θ ) F(θ ′)L(θ ′) Ḡ2χφφ , (76)

as well as the cross susceptibilities,

χñθφK
= F(θ )L(θ )

∑
I

GI χφIφJ
= F(θ )L(θ )GJ χφφ . (77)

Note that we have tuned the UV mass matrix such that χφIφJ
= χφφ δI J →∞ at criticality.

When N is large, Ḡ2 should be thought of as an O(1) constant,

Ḡ2 =
∑

K

G2
K =

1
N2

∑
I ,J ,K

gI IK gJJK ≈ g2 , (78)

where g2 is the variance of the disorder distribution of gI JK .
With these non-perturbative susceptibilities at hand, we can immediately work out the

structure of the decay rate matrix, τ−1 = χ−1M , at the quantum critical point. We first invert
the block matrix χ to get

(χ−1)θ ,I ;θ ′,J =

(
1

N L(θ )2δθθ ′ − F(θ )
N L(θ )GJ

− F(θ ′)
N L(θ ′)GI χ−1

φφδI J +
1
N F̄2GI GJ

)
, (79)
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where F̄2 =
∫

dθ F(θ )2 = Trθ
[

f 2
]
. Since the operators ñθ are exactly conserved, MñθO = 0

for all operators O. This means that

(
χ−1M

)
θ ,I ;θ ′,J =

(
0 − F(θ )

N L(θ )GK MKJ

0 χ−1
φφMI J +

1
N F̄2GI GK MKJ

)
. (80)

Although χ−1M is not diagonalizable, we can still define its spectrum as solutions of the equa-
tion det

(
λ−χ−1M

)
= 0 (we abuse notations a little bit and continue to call these solutions

eigenvalues). Since λ−χ−1M is upper block triangular, this amounts to the condition

det (λIθθ ′)det
(
λδI J −χ−1

φφMI J −
1
N

F̄2GI GK MKJ

)
= 0 . (81)

The λ = 0 subspace corresponds exactly to the subspace spanned by the Npatch ex-
actly conserved quantities ñθ . The rest of the eigenvalues can be found by diagonalizing
χ−1
φφMI J +

1
N F̄2GI GK MKJ in the boson subspace. After working out the algebraic details (see

Appendix E), we find one eigenvalue λ = O(1/N) and N − 1 eigenvalues λ = O(χ−1
φφ). At

sufficiently small temperatures, the boson susceptibility is controlled by the thermal mass and
diverges as χ−1

φφ ∼ T ln(1/T ). Therefore, for sufficiently low temperatures, all modes in the
subspace S are indeed slow and our choice of slow subspace is self-consistent.

4.4.2 Decomposition into coherent and incoherent contributions

We now plug the nonperturbative susceptibities χ into the generalized Drude formula Eq. (69)

σi j(ω) =
i
ω

∑
A,B∈S

χJ iA [χ +M]−1
AB χJ j B , (82)

where M is related to the memory matrix M by M = −iωM. Since the only nontrivial block
of M in the slow subspace S is the boson block MI J =MφIφJ

, we have

χ +M= L
(

A B
BT C

)
L , (83)

where the subblocks take the simple form

Lθ ,I ;θ ′,J =
(

L(θ )δθθ ′ 0
0 δI J

)
, (84)

Aθθ ′ = Nδθθ ′ + F(θ )F(θ ′)Ḡ2χφφ , Bθ ,L = F(θ )GLχφφ , CK L = χφφδK L +MK L , (85)

(A−1)θθ ′ = N−1

[
δθθ ′ −

χφφ Ḡ2 F̄2

N +χφφ Ḡ2 F̄2

F(θ )F(θ ′)
F̄2

]
. (86)

Since the current operator doesn’t overlap with the boson fields (i.e. χJ iφ = 0), we only need
the projection of the inverse (χ +M)−1 onto the subspace spanned by {ñθ} to compute the
conductivity. After carrying out this tedious computation in Appendix E, we obtain a compact
formula for the conductivity with both coherent and incoherent contributions

σi j(ω, T ) =
i
ω

N

Trθ
[
v i

F v j
F

]
−

Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

Trθ [ f 2]


+

i
ω

N2
Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

Trθ [ f 2]
(

N + Trθ [ f 2]GK

[
M(I+χ−1

φφM)−1
]

K L
GL

) .

(87)
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So far, this expression is exact. The first term reproduces the Drude weight Di j derived in
Eq. (33). The second term simplifies upon taking the χφφ →∞ limit. The end result is

σi j(ω, T ) =
iNDi j

πω
+

iN2

ω

Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

Trθ [ f 2] (N + Trθ [ f 2]GKMK L(ω, T )GL)
. (88)

Before moving on, we comment on an alternative derivation of the same result that is con-
ceptually more transparent but technically more cumbersome. Instead of directly computing
the matrix inverse (χ +M)−1, one could compute the eigenvectors and eigenvalues of the
decay rate matrix τ−1 and identify how each of the Npatch + N eigenmodes contribute to the
conductivity. When this diagonalization is carried out, we find Npatch modes in the subspace
spanned by {ñθ} with λi =O(1/N) independent of ω, T . These coherent contributions reduce
the Drude weight from the free fermion value D0 to D. On the other hand, due to quantum
criticality, there are N −1 modes for which λi ∼ χ−1

φφ → 0. These modes are infinitely slow but
do not overlap with the current operator. Thus they do not contribute to the conductivity. The
only remaining mode mixes the {φI} and {ñθ} sectors and has an eigenvalue λi that depends
nontrivially on ω, T , thereby giving the incoherent contribution in Eq. (88).

4.4.3 Evaluating the memory matrix

The final step is to evaluate the memory matrix M(ω, T ) = −iωM(ω, T ). To do that, we
compute the correlation function CφIφJ

(ω, T ) defined via Eq. (65) in two different ways. In
the memory matrix formalism, this correlation function is obtained by plugging O1 = φI and
O2 = φJ into Eq. (66)

CφIφJ
(ω, T ) = −

∑
A,B,C∈S

χφI A
[
1+ iω−1τ−1

]−1
AB (χ

−1)BCχφJ C . (89)

On the other hand, if one directly plugs χφIφJ
= χφφδI J into Eq. (65), one finds

CφIφJ
(ω, T ) = GR

φIφJ
(q = 0,ω, T )−χφφδI J . (90)

Since all susceptibilities are fixed by anomaly arguments, the only unknown quantity in
Eq. (89) is the memory matrix M (recall that τ−1 = χ−1M) while the only unknown quantity
in Eq. (90) is the boson Green’s function. Equating these two expressions, we thus obtain a
direct relationship between the memory matrix M and the boson Green’s function. After some
simple algebra (see Appendix E), we can reduce this relationship to a transparent form

NGI(ΠM)I J GJ − Trθ f 2GIMI J GJ = −NḠ2 , (91)

where ΠI J = −(D−1)I J is the boson self energy matrix (the bare kinetic term in the boson
propagator can be neglected in the deep IR limit).

Despite the simplicity of the above equation, it is difficult to solve for M at finite N since
we have no analytic control over the O(N2) off-diagonal components of ΠI J in the IR limit.
However, assuming that S = {nθ ,φI} indeed captures all the slow modes, the memory matrix,
which plays the role of an effective “resistivity”, should be insensitive to the order in which
we take the IR limit (ω → 0) and the slow decay rate limit (h ∼ 1/N → 0). Hence, we are
free to take the N →∞ limit at finite ω and use the emergent O(N) invariance in this limit
to deduce

ΠI J (q = 0,ω, T ) = Π⋆(q = 0,ω, T )δI J +O(1/N) . (92)

Since Trθ
[

f 2
]
= O(1), the above equation immediately implies GIMI J GJ ≈ −Ḡ2Π−1

⋆ in the
large N limit. We now plug this relation into Eq. (88). In the denominator of the incoherent
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conductivity, the term proportional to M dominates over the constant term N deep in the IR
limit since Π⋆(q = 0,ω, T )→ 0 as ω, T → 0. Therefore

σi j(ω, T )≈
iNDi j

πω
−

iN2

ω

Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

Ḡ2 (Trθ [ f 2])2
Π⋆(q = 0,ω, T ) . (93)

4.4.4 Frequency and temperature scaling

We are now ready to derive the ω, T scaling of the incoherent conductivity. Recall the saddle
point solution for Π⋆(q = 0,ω, T ) derived in Appendix C

Π⋆(q = 0,ω, T ) =

{
C̃ ω

h(T )π(
ω
T ) , ω≪ T ,

C̃z(−iω)1−2/z , ω≫ T .
(94)

where h(T ) ∼
√

T/ ln(1/T ) and π(ξ) is a scaling function that has a finite limit as ξ → 0.
Using the above form of Π⋆ in Eq. (93), we find

σi j(ω, T ) =
iNDi j

πω
+ N2

{
∼ 1p

T/ ln(1/T )
, ω≪ T ,

∼ω−2/z , ω≫ T .
(95)

The most striking feature of this result is that the incoherent conductivity doesn’t fit into a
scaling function of ω and T . The basic reason is that although the quantum critical point
is well-defined at zero temperature, there are dangerously irrelevant operators that turn on
at finite temperature and overwhelm the effects of critical fluctuations. These dangerously
irrelevant operators generate a thermal mass M2(T ) ∼ T ln(1/T ) for the boson (see e.g.
Refs. [61,73,79,80]), which ultimately leads to the [T/ ln(1/T )]−1/2 conductivity scaling.

If one insists on dropping all dangerously irrelevant operators and focuses strictly on the
fixed point theory at finite temperature, perturbative IR-divergences appear in the fermion self
energy and obscure the effect of critical fluctuations.10 One possibility is that the divergence is
merely an artifact of perturbation theory and physical correlation functions at the fixed point
do fit into a scaling function of ω and T . For the special case of fermions coupled to a U(1)
gauge field, there are some ideas towards curing this IR divergence to leading order in the RPA
expansion [77]. But since the RPA expansion is known to break down at the lowest energy
scales, a fully satisfactory resolution still eludes us.

The other possibility is that the divergence is physical and the fixed point theory fails to
satisfy quantum critical scaling. An interesting example featuring this phenomenon is the
quantum Lifshitz model in 2+1 dimensions considered in Ref. [81]. Since the quantum Lif-
shitz model is Gaussian, one can exactly solve the theory and find power law correlations at
zero temperature but strictly short-ranged correlations at any finite temperature. Determin-
ing whether this sharp distinction between zero and finite temperatures exists in models of
metallic quantum criticality is an open problem that we hope to understand better in future
work.

4.5 Alternate perspective: Kubo formula and anomaly substitution

While physically intuitive, the memory matrix derivation of the conductivity is rather techni-
cally involved. Here we present a simpler but more heuristic derivation of the memory matrix
result by augmenting the standard Kubo formula with anomaly constraints, albeit with one
uncontrolled assumption.

10The same divergence is found across a variety of different perturbative expansion schemes [30,61,64,80].
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The starting point of the derivation is the exact Drude weight derived from susceptibility
arguments in Section 3,

NDi j

π
= lim
ω→0
−iωσi j(q = 0,ω) = N

Di j
0

π
−

Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

Trθ [ f 2]

 . (96)

As shown in Eq. (62) of Section 4.3, the current-current correlation function can be expressed
in terms of the boson propagator

σi j(ω) =
iN
ω

[
Di j

0

π
−

1
N

∑
I ,J ,K ,L

gI I J

N
gKK L

N
Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

DJ L(q = 0,ω)

]
. (97)

For this relation to be consistent with the non-perturbative result for the Drude weight in
Eq. (96), the boson propagator, DJ L(q = 0,ω→ 0), must satisfy

N
Trθ [ f 2]

=
gI I J gKK L

N2
DJ L(q = 0,ω→ 0) . (98)

The above relation is exact. But this single constraint does not fix all components of the
matrix DJ L . To make more progress, we need to make one uncontrolled assumption: Based on
the approximate O(N) symmetry of the disorder averaged theory, we assume that the boson
propagator is approximately an O(N) singlet,

DJ L(q = 0,ω, T )≈ δJ L D(q = 0,ω, T ) . (99)

This assumption, combined with the independent randomness of gI JK , implies that different
terms in the sum over I , J , K , L destructively interfere unless I = K and J = L. The constraint
in Eq. (98) then simplifies to

N
Trθ [ f 2]

≈ −Ḡ2Π−1(q = 0,ω→ 0) = Ḡ2D(q = 0,ω→ 0) , (100)

where Π(q ,ω) is the boson self energy. Plugging this simplified constraint back into the Kubo
formula, Eq. (98), and expressing Π as a sum of its N →∞ saddle point solution, Π⋆, and a
sub-leading constant term dictated by Eq. (100) gives

σi j(ω) =
iN
ω

[
Di j

0

π
−

1
N

Ḡ2 Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

D(q = 0,ω→ 0)

]

+
iḠ2

ω
Trθ
[
v i

F f
]

Trθ
[
v j

F f
]
[D(q = 0,ω→ 0)− D(q = 0,ω)]

=
iNDi j

ωπ
+

iḠ2

ω
Trθ
[
v i

F f
]

Trθ
[
v j

F f
] N

Ḡ2 Trθ [ f 2]

[
1−

(
1−

NΠ⋆(q = 0,ω, T )
Ḡ2 Trθ [ f 2]

)−1
]

≈
iNDi j

ωπ
−

iN2

ω

Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

Ḡ2 (Trθ [ f 2])2
Π⋆(q = 0,ω, T )

=
iNDi j

ωπ
+ N2

Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

Ḡ2 (Trθ [ f 2])2
Czω

−2/z , T ≪ω .

(101)
Note that we neglected corrections with higher powers ofΠ⋆(q = 0,ω, T ). The last line exactly
matches the incoherent conductivity Eq. (93) that we found in the memory matrix formalism.
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5 Discussion

The central theme that underlies this work and its close companion [19] is the quest for quan-
tum critical incoherent conductivity in clean models of non-Fermi liquids. Specifically, our
search is focused on the important class of non-Fermi liquids described by the Hertz-Millis
framework, where gapless bosonic order parameter fields with zero crystal momentum cou-
ple strongly to a Fermi surface. Although we have not yet considered finite-momentum order
parameters, there has been much recent progress in studying that class of theories [82,83].

In Ref. [19], leveraging nonperturbative anomaly constraints, we showed that the incoher-
ent conductivity always vanishes at the IR fixed points of conventional Hertz-Millis models. In
the present work, we demonstrated how one can evade these strict constraints in a random-
flavor large N deformation of the conventional model that possesses a distinct anomaly struc-
ture. A reliable transport analysis at the IR fixed point of this deformed model necessitates
the development of a novel calculational tool dubbed anomaly-assisted perturbation theory that
goes beyond the naïve large N expansion. Using this approach, we found that optical transport
in the IR limit depends strongly on the symmetries of the gapless order parameter: while the
incoherent conductivity continues to vanish for inversion-even order parameters (e.g. Ising-
nematic), it exhibits a nontrivial frequency and temperature scaling for inversion-odd order
parameters including the titular loop current order.

Our results for the random-flavor model provide a positive answer to the guiding ques-
tions posed in Section 1. However, there are a number of undesirable features intrinsic to
the random-flavor model that undermine its physical significance. First of all, since O(N)
symmetry is explicitly broken by random-flavor interactions, the model at any finite N is a
multicritical point with N2 relevant couplings tuned to zero. A priori, one may hope that this
multicritical point merges with the standard Hertz-Millis QCP as N → 1. But our transport re-
sults demonstrate that this is impossible, since the random-flavor model features a nontrivial
incoherent conductivity at any finite N that is absent in the N = 1 model. Thus the random-
flavor model cannot be viewed as the starting point of a controlled expansion that accesses
the physical Hertz-Millis QCP. Moreover, even if we view the random-flavor model as an inter-
esting QCP on its own, the bilocal field formalism used to compute its properties at N =∞
relies on a crucial self-averaging property that only holds to leading two orders in the 1/N ex-
pansion. Extrapolating to small N thus appears intractable. Finally, even at the N =∞ QCP,
the random-flavor model suffers from IR divergences at finite temperature which can only be
cured by dangerously irrelevant operators. Thermal effects induced by these operators over-
whelm the quantum critical fluctuations and ultimately destroy the putative ω/T scaling in
the optical conductivity.

The Hertz-Millis models studied here generically have nonzero Drude weight: thus, in
addition to the incoherent conductivity, the full optical conductivity Reσ(ω) also contains a
narrow “coherent” peak (which becomes a delta function in the IR fixed-point theory). This
Drude weight only goes to zero in certain fine-tuned limits, though for loop current order
parameters it is more generally diminished by the coupling to the boson. This is despite the
diverging susceptibility of an order parameter that is odd under time-reversal and inversion
symmetry, and is due to the presence of an infinite number of emergent conserved quantities
that overlap with the electrical current most of which have finite susceptibilities. The criterion
for vanishing Drude weight discussed in Ref. [15] is thus necessary but not sufficient. For
the future it will be interesting to explore models of clean compressible metals beyond the
Hertz-Millis paradigm where the Drude weight goes to zero. In thinking about experiments,
one could also consider the possibility that disorder has the effect of broadening the coherent
peak to an extent that it cannot be observed, without necessarily substantially affecting the
incoherent conductivity.
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The absence of quantum critical transport in generic Hertz-Millis models describing zero
momentum ordering transitions, along with the presence of unphysical features in the random-
flavor deformation, should not subvert the significance of our results in this paper. Indeed it
is very likely that some of the prominent examples of strange metals observed in experiments
(e.g. in the cuprates or in several quantum critical heavy fermion metals) are not described
within the Hertz-Millis paradigm. Thus, the purpose of studying these Hertz-Millis models is
not to directly explain experiments, but rather to “build muscle” in preparation for analyzing
more realistic theories of strange metals. Such theories may involve, for instance, emergent
gauge fields and multiple emergent matter fields, some of which may form gapless Fermi sur-
faces of their own. For such future studies, what lessons can we learn from our exploration of
transport in the Hertz-Millis models? A crucial lesson is the benefits of focusing on the emer-
gent symmetries and anomalies of the low energy theory. In previous papers, we discussed
how such a focus leads to some general conceptual statements about the IR fixed point. In the
present work, we showed how this focus provides calculational benefits as well. It is our hope
that the anomaly-assisted large-N expansion introduced in the context of the random-flavor
Hertz-Millis models will facilitate controlled transport calculations in more complex models of
metallic QCPs to be explored in the future.

Acknowledgements

We thank Ehud Altman, Andrey Chubukov, Ilya Esterlis, Eduardo Fradkin, Haoyu Guo, Sean
Hartnoll, Steve Kivelson, Sung-Sik Lee, Aavishkar Patel, Sri Raghu, Subir Sachdev, and Cenke
Xu for discussions. HG was supported by the Gordon and Betty Moore Foundation EPiQS
Initiative through Grant No. GBMF8684 at the Massachusetts Institute of Technology. DVE
was supported by the Gordon and Betty Moore Foundation EPiQS Initiative through Grant
No. GBMF8683 at Harvard University. TS was supported by US Department of Energy grant
DE- SC0008739, and partially through a Simons Investigator Award from the Simons Foun-
dation. This work was also partly supported by the Simons Collaboration on Ultra-Quantum
Matter, which is a grant from the Simons Foundation (651446, TS).

A Computing the Drude weight from susceptibilities

In this appendix, we compute the Drude weight, given the susceptibilities described in Sec-
tion 3. Let us define χ(θ ,θ ′) := χñθ ñθ ′ . We start from Eq. (23), which we write as

χñθ ,ñθ ′ =
Λ(θ )

(2π)2vF (θ )
δθθ ′ +

1
(2π)4

g i(θ )g j(θ ′)
vF (θ )vF (θ ′)

(M−1)i jΛ(θ )Λ(θ
′) . (A.1)

Here Λ(θ ) is the momentum cutoff in the direction parallel to the Fermi surface, which ap-

proaches
∣∣∣ d

dθ kF (θ )
∣∣∣ as Npatch→∞. For the sake of greater generality we introduced the boson

mass matrix M i j , such that setting M i j = (m2 −m2
c )δ

i j recovers Eq. (23).
We need to find the inverse function χ−1(θ ,θ ′), which by definition satifies∑

θ ′

χ(θ ,θ ′)χ−1(θ ′,θ ′′) = δθθ ′′ . (A.2)

We make the ansatz that

χ−1(θ ,θ ′) =
(2π)2vF (θ )
Λ(θ )

δθθ ′ − g i(θ )Gi j g
j(θ ′) , (A.3)
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for some matrix G to be determined. Then we compute∑
θ ′

χ(θ ,θ ′)χ−1(θ ′,θ ′′) = δθθ ′′ +
Λ(θ )

(2π)2vF (θ )
g i(θ )g j(θ ′′)(M−1 − G −M−1Π0G)i j , (A.4)

where we defined the matrix Πi j
0 = Trθ g i g j . Hence we can ensure that χ and χ−1 satisfy

Eq. (A.2 ) provided that
M−1 − G −M−1Π0G = 0 , (A.5)

or in other words,
G = (M +Π0)

−1 . (A.6)

Now, the generalization of Eq. (13) is

Di j =
∑
θ ,θ ′
χJ i ñθχJ j ñθ ′χ

−1(θ ,θ ′) . (A.7)

Substituting Eq. (A.3 ) and Eq. (24), we obtain Eq. (25).
Finally, let us give the proof of the result claimed in Section 3.3, that the Drude weight at

the critical point vanishes if and only if there exists some matrix S i
j (independent of θ) such

that
v i

F (θ )≡ wi(θ )vF (θ ) = S i
j g j(θ ) , (A.8)

for all θ . Towards this end, we will rewrite Eq. (25) in a different way. Let us define

w̃i(θ ) = wi(θ )−
1

vF (θ )
V i jG jk gk(θ ) , (A.9)

where V i j = Trθ
[
v i

F g j
]
. Then we find that

1
(2π)2

∑
θ

vF (θ )w̃
i(θ )w̃ j(θ )Λ(θ ) =

1
π
Di j

0 +
1

(2π)2
(
−2V ikV jl Gkl + V ikGkl V

jr GrsΠ
ls
0

)
(A.10)

=
Di j

π
, (A.11)

where Di j is given by Eq. (25), and we have used the fact that at criticality, M = 0 and hence
G = Π−1

0 . It follows that Di j = 0 if and only if w̃i(θ ) = 0 for all θ . Now, if w̃i(θ ) = 0 then we
find that wi(θ )vF (θ ) = S i

j g j(θ ) with S i
j = V ikGk j . Conversely, if there exists S i

j satisfying
Eq. (A.8 ) for all θ , then from the definition of V , we find that

V i j = S i
kΠ

jk
0 . (A.12)

Substituting the above form of V i j into Eq. (A.9 ) gives w̃i(θ ) = 0 for all θ .

B Extent of self-averaging in the random-flavor model

The goal of this section is to show that O(1) thermodynamic observables and dynamical cor-
relation functions within the random-flavor large N model are self averaging up to O( 1

N2 )
corrections.

To avoid notational clutter, we will work in the one-patch model with a scalar form fac-
tor (the same arguments apply to the general case because the nature of the arguments is
completely combinatorial). The action for a fixed set of couplings gI JK is given by

S[g] =
∫

dτd2 xψ†
I [∂τ − ε(k)]ψI +φI(−∂ 2

τ −∇
2)φI +

gI JK

N
ψ†

IψJφK

= S0 +
gI JK

N

∫
dτd2 xψ†

IψJφK .
(B.1)
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Figure 3: The lowest order Feynman diagram that contributes to the annealed av-
erage but not the quenched average of free energy (left) and correlation functions
(right).

The associated partition function is

Z[g] =
∫

DψDφ exp
{
−S0 −

gI JK

N

∫
dτd2 xψ†

IψJφK

}
. (B.2)

In the annealed average, we perform a disorder average of the partition function to get

Z[g] =
∫

DgDψDφ exp

{
−
∑
I JK

g2
I JK

2g2
− S0 −

gI JK

N

∫
dτd2 xψ†

IψJφK

}
. (B.3)

Therefore, within the linked cluster expansion log Z[g]will be a sum over connected diagrams
with g treated as a fluctuating field. On the other hand, log Z[g] will not contain diagrams
that would be disconnected in the absence of g propagators. In exact analogy with SYK [78],
the lowest order term that contributes to the annealed but not the quenched average is shown
on the left half of Figure 3. Here solid lines denote the fermionic propagators, wiggly lines
denote bosonic propagators, and dotted orange lines denote disorder averages over pairs of
vertices. The four interaction vertices bring down a factor of N−4. But the summation over
three internal propagators give N3. Therefore, the overall scaling of this diagram is O(1/N)
which is N−2 suppressed relative to the dominant O(N) contribution to the free energy. Now
for the replicated average Z[g]M , the Gaussian part of the action that we expand around is
replica diagonal. Therefore, the linked cluster expansion only captures the replica diagonal
(RD) saddle. What we have established is then

log Z[g] = log ZRD[g] +O
(

1
N

)
. (B.4)

Since exact diagonalization or quantum Monte Carlo numerics on this model are not available,
we cannot check that Iγ > IRD for all off-diagonal saddles γ. However, there is some quan-
tum Monte Carlo evidence up to N ∼ 40 that the 0+1 dimensional version of the problem
(gI JKψ

†
IψJφK coupling without spatial dependence) is well described by the replica-diagonal

saddle [84]. Therefore, assuming the off-diagonal saddles are suppressed also in the 2+1D prob-
lem, we have

log Z[g] = log Z[g] +O
(

1
N

)
. (B.5)

Since all thermodynamic observables can be obtained from derivatives of the free energy, we
conclude that the non self-averaging corrections are always O(N−2) suppressed relative to the
leading O(N) contribution.

The preceding analysis can be easily generalized to correlation functions. Let us con-
sider singlet operators (i.e. an operator f (ψ,φ) built out of N−1∑

I ψ
†
I (x ,τ)ψI(x ′,τ′) and
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N−1∑
I φI(x ,τ)φI(x ′,τ′)) whose leading correlation functions are O(1). The quenched av-

erages for these operators are defined as

〈 f (ψ,φ)〉quenched =
∫

Dge−
∑

I JK g2
I JK/2g2

(∫
DψDφ f (ψ,φ)exp{−S[g]}∫

DψDφ exp{−S[g]}

)
=
∫

Dge−
∑

I JK g2
I JK/2g2

lim
M→0

∫
DψaDφa exp{−S[g,ψa,φa]} f (ψM ,φM ) ,

(B.6)
where a = 1, . . . , M label the replica indices and S[g,ψa,φa] is the M-fold replicated action
of the fermions. On the other hand, the annealed averages are defined as

〈 f (ψ,φ)〉annealed =

∫
Dge−

∑
I JK g2

I JK/2g2 ∫
DψDφ f (ψ,φ)exp{−S[g]}∫

Dge−
∑

I JK g2
I JK/2g2 ∫ DψDφ exp{−S[g]}

. (B.7)

Within the linked cluster expansion, we again see that the quenched average 〈 f (ψ,φ)〉quenched
is a disorder average of all the connected fermion-boson diagrams, while 〈 f (ψ,φ)〉annealed
contains in addition disconnected fermion-boson diagrams that become connected by g prop-
agators. If we take f (ψ,φ) = N−1∑

I ψ
†
I (x ,τ)ψI(x ′,τ′), then the first diagram of this kind

is shown on the right half of Figure 3.
By O(N) invariance, we can fix the external vertex to be i. The two g propagators give

N−4 and the internal index sums give N2. Therefore this diagram contributes at O(N−2). In
conclusion,〈

1
N

∑
I

ψ†
I (x ,τ)ψI(x

′,τ′)

〉
annealed

=

〈
1
N

∑
I

ψ†
I (x ,τ)ψI(x

′,τ′)

〉
quenched

+O
(

1
N2

)
, (B.8)

which means that in the 1/N expansion of the annealed average, we can only trust the leading
1/N correction and no higher. A similar story holds for higher-point correlation functions. The
general intuition is that diagrams not shared between the annealed and quenched averages
must have n ≥ 4 interaction vertices and the contractions by g-propagators must get rid of
at least two internal loops. This means we always have a 1/N2 suppression relative to the
leading order diagrams.

C Saddle point solutions for boson and fermion self energies in
the random-flavor model

C.1 Computing the boson self energy Π(|q| ≫ |Ωm|, T )

We first evaluate the boson self energy Π(q , iΩm, T ) in the Landau damping regime, where it
doesn’t depend on the precise form of the fermion self energy Σθθ , so long as we make the
self-consistent assumption that Σθθ doesn’t vary with the spatial momentum k. We start with
the last equation in Eq. (54),

Π(q , iΩm) = −g2T
∑
θ

∫
θ

d2k
(2π)2

∑
ωn

| f (θ )|2Gθθ (k, iωn)Gθθ (k + q , iωn + iΩm) , (C.9)

where
∫
θ

d2k
(2π)2 denotes a momentum integral inside the patch θ and φv1v2

is the angle mea-
sured from vector v2 to v1 in the counterclockwise direction. To simplify this integral, we use
the simple identity

Gθθ (k, iωn)Gθθ (k + q , iωn + iΩm)≈
Gθθ (k, iωn)− Gθθ (k + q , iωn + iΩm)

iΩm − |q |vF (θ ) cosφv F (θ )q −Σθθ (iωn + iΩm) +Σθθ (iωn)
.

(C.10)
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Within the patch θ , we can perform a change of variables from kx , ky to ε, θ̄ where ε is an

energy coordinate and θ̄ ∈
[
θ ,θ + 2π

Npatch

]
is a continuous angular coordinate. After accounting

for the appropriate Jacobian factor

d2k = dεdθ̄
kF (θ )

vF (θ ) cosφkF (θ )v F (θ )
, (C.11)

the integral over θ̄ simply gives a factor of Λ(θ ) (the momentum cutoff in the patch) while
the integral over ε can be done by residue since the only ε-dependence in the integrand comes
from the factor G(k, iωn)−G(k+q , iωn+iΩm), in which ε appears linearly in the denominator∫

dε [Gθθ (k, iωn)− Gθθ (k + q , iωn + iΩm)] = πi [sgn(ωn +Ωm)− sgn(ωn)] . (C.12)

Using Eq. (C.12 ) and Eq. (C.11 ) in Eq. (C.9 ), we are left with

Π(q , iΩm)

≈ −
i g2T
4π|q |

∑
ωn

∫
dθ

kF (θ )| f (θ )|2

vF (θ ) cosφkF (θ )v F (θ )

sgn(ωn +Ωm)− sgn(ωn)

i Ωm
|q | − vF (θ ) cosφv F (θ )q −

Σθθ (iωn+iΩm)
|q | + Σθθ (iωn)

|q |

.

(C.13)
To do the last integral over θ , we make the assumption (which we later check to be self-
consistent) that the internal boson fluctuations are dominated by the kinematic regime where
|Ωm|, |Σθθ (iωn + iΩm)−Σθθ (iωn)| ≪ |q |. This means that in the IR limit, we can use the iden-
tity Im 1

x−iε ≈ iπ sgn(ε)δ(x) with ε = [Ωm + iΣθθ (iωn + iΩm)− iΣθθ (iωn)] |q |−1 so that for
every orientation q̂ , the angular integral localizes to patches θq̂ ,θq̂ +π where cosφv F (θq̂ )q = 0
(i.e. q⃗ is tangent to the patches). Finally, summing the contributions from these two patches
and doing the Matsubara sum over ωn gives

Π(q , iΩm)≈ −
i g2

4π|q |
kF (θq̂ )| f (θq̂ )|2

vF (θq̂ ) cosφkF (θq̂ )v F (θq̂ )

Ωm

π
(−iπ) sgn (Ωm)

∫
dθδ

[
vF (θ ) cosφv F (θ )q

]
= −

g2

2π

kF (θq̂ )| f (θq̂ )|2

vF (θq̂ )2 cosφkF (θq̂ )v F (θq̂ )|C ′(θq̂ )|
|Ωm|
|q |

= −γ
(
θq̂
) |Ωm|
|q |

,

(C.14)
where we defined C(θ ) = cosφv F (θ )q̂ and then absorbed all the angular dependence into
γ(θq̂ ) in the last line.11 The final formula has the expected structure: the Landau damping
coefficient depends on data localized to the two anti-podal patches tangent to q̂ .

C.2 Computing the fermion self energy

We now turn to the saddle point solution of the electron self-energyΣθθ (k, iωn) in an arbitrary
patch θ , which is given by a single boson-fermion loop Eq. (54). Since the loop integral is
dominated by small transverse fluctuations of the boson, we can always take |q⊥| ≪ |q||| ≪ kF
where q⊥, q|| are the virtual boson momentum components perpendicular/parallel to the patch
θ . Within this approximation, the loop integral in Σθθ (k, iωn) simplifies to

Σθθ (iωn)≈
g2T
4π2

∫
d2q

∑
iΩm

1

q2
|| + γ(θq̂ )

|Ωm|
|q|||

| f (θ )|2

iωn + iΩm − ε(k)− q⊥vF (θ )−Σθθ (iωn + iΩm)
.

(C.15)
11As a sanity check, note that for a rotationally invariant Fermi surface, kF (θ ) = mvF (θ ) is independent of θ ,

f⃗ (θ ) = vF (cosθ , sinθ ), and all other angular factors evaluate to 1. Therefore we recover the more familiar Landau
damping coefficient g2kF

2π .
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Now we encounter a problem: at finite temperature the above equation suffers from an IR
divergence. This can be seen by decomposing the fermion self energy into a thermal part ΣT
and a quantum part ΣQ

Σθθ (k, iωn) = Σθθ ,T (k, iωn) +Σθθ ,Q(k, iωn) , (C.16)

with

Σθθ ,T (k, iωn) = g2T
∫

d2q
(2π)2

D(q , iΩm = 0)Gθθ (k − q , iωn) , (C.17)

Σθθ ,Q(k, iωn) = g2T
∫

d2q
(2π)2

∑
Ωm ̸=0

D(q , iΩm)Gθθ (k − q , iωn − iΩm) . (C.18)

At the multi-critical point, the quantum part is IR-convergent and gives a scaling form

Σθθ ,Q(iωn) = −iλθ sgn(ωn)T
2/zH1−2/z

(
|ωn| −πT

2πT

)
, (C.19)

where λθ =
g222/3

3
p

3vF (θ )
| f (θ )|2γ(θ )−1/3. On the other hand, the thermal part contains an IR-

divergent momentum integral (which is in fact observed in other perturbative treatments
of Hertz-Millis QCPs [61, 64, 73, 79, 80]). The origin of this IR-divergence is the emergent
U(1)patch gauge invariance in the mid-IR theory which forces the boson to be massless at
all T . While a general resolution of this divergence is not known, Ref. [77] has shown
that, at least within the RPA expansion, the boson self energy and the conductivity are com-
pletely insensitive to the IR-divergence. We interpret this as partial evidence that the diver-
gent fermion self energy might be a pathology of the perturbative expansion that is cured
in a fully non-perturbative treatment. If this conjecture were true, then the self energies
Σ(k = 0, iωn),Π(q = 0, iΩm) must obey quantum critical scaling with boson dynamical ex-
ponent z. However, for the microscopic system at finite T , this putative scaling form would
be overwhelmed by corrections due to dangerously irrelevant terms in the action that we ne-
glected at T = 0. The most important term of this kind is a boson self-interaction, which
generates a boson thermal mass M2(T )∼ T ln(1/T ) and regulates the momentum integral in
Σθθ ,T [61,73,79,80], leading to

Σθθ ,T (iωn) = −i sgn(ωn)h(T ) , Σθθ ,T (ω) = −i sgn(ω)h(T ) , h(T )∼
√

T/ ln(1/T ) . (C.20)

As we take the IR limitω, T → 0 while holdingω/T fixed, Σθθ ,T always dominates overΣθθ ,Q.
In other words, thermal effects hide the quantum critical scaling at finite temperature.

C.3 Computing the boson self energy Π(q = 0,ω, T )

Finally, we compute the leading ω, T -dependence of the boson self energy Π(q = 0,ω, T )
quoted in Section 4.4. Note that since we set q = 0, this is very different from the Landau
damping regime where |ω| ≪ |q |.

C.3.1 Computation at T = 0

At T = 0, it is convenient to work directly in the Matsubara formalism and only perform the
analytic continuation back to real frequency at the very end. Since the singular scalings in
ω are independent of regularization, we will choose regulators Λ⊥,Λω on kx ,Ωm and take
Λ⊥→∞ before Λω→∞. From the saddle point equations, we know that

Π(q = 0, iΩm) = −g2
∑
θ

f (θ )2T
∑
ωn

∫
d2k
(2π)2

Gθθ (k, iωn)Gθθ (k, iωn + iΩm) . (C.21)
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Within each patch θ , we make a change variables d2k = dεθ dθ̄ J(θ ) where εθ , θ̄ are energy
and angle coordinates in the vicinity of the patch and J(θ ) is a Jacobian factor. To obtain the
scaling answer, we take the number of patches to infinity and replace the sum over patches
with an angular integral. After introducing a notation {ωn}= sgn(ωn)|ωn|1−2/z and recalling
the zero temperature fermion self energy Σθθ (k, iωn) = −iλθ{ωn}, we find

Π(0, iΩm≫ T ) (C.22)

= −g2T
∑
ωn

∫
dθ

f (θ )2J(θ )
(2π)2

∫
dεθ

1
iωn + iλθ{ωn} − εθ

1
i(ωn +Ωm) + iλθ{ωn +Ωm} − εθ

(C.23)

= −g2T
∑
ωn

∫
dθ

f (θ )2J(θ )
(2π)2

πi
[

sgn(ωn +Ωm)− sgn(ωn)
iΩm − iλθ{ωn}+ iλθ{ωn +Ωm}

]
(C.24)

≈ −g2
∫

dθ
f (θ )2J(θ )
(2π)2λθ

∫ |Ωm|/2

−|Ωm|/2
dω

1
(ω+ |Ωm|/2)2/z + (|Ωm|/2−ω)2/z

(C.25)

= −C̃z|Ωm|1−2/z . (C.26)

In the last integral over ω, we work in the low Ωm limit where the self energy term dominates
over the iΩm term for all ω ∈ [−|Ωm|/2, |Ωm|/2]. After dropping iΩm in the denominator,

the prefactor C̃z(θ ) is a z-dependent constant multiplied by
∫

dθ f (θ )2J(θ )
(2π)2λθ

. We will not be
interested in the precise value of this constant, noting only that it is real and finite.

Now let us perform the analytic continuation iΩm→ω+ iε with Ωm > 0 with the branch
cut placed on the negative real axis

|Ωm|1−2/z → (−i · iΩm)
1−2/z = (−iω)1−2/z for Ωm,ω> 0 . (C.27)

We can extend the above function to an analytic function in the upper half ω-plane. Thus the
self energy comes out to be

Π(q = 0,ω≫ T )≈ −C̃z(−iω)1−2/z . (C.28)

C.3.2 Computation at T ̸= 0

At finite temperature, it is difficult to directly compute the boson self energy Π(q ,ω, T ) in
the limit ω ≪ T , because the Matsubara frequencies are always larger than T . To get
around this, we use the spectral function representation of the fermion Green’s function
Gθθ (k, iωn) =

∫ Aθθ (k,ω)
ω−iωn

inside Π. This allows us to do the Matsubara sums explicitly and
obtain the following expression

Π(0, iΩm, T ) = −g2
∑
θ

f (θ )2
∫

d2k
(2π)2

∫
dω′dω′′Aθθ (k,ω′)Aθθ (k,ω′′)

nF (ω′/T )− nF (ω′′/T )
ω′′ −ω′ − iΩm

. (C.29)

Now we can analytically continue iΩm → ω + iε and then safely take the ω ≪ T limit. In
terms of the fermion spectral function

Aθθ (k,ω′) = −
1
π

ImΣθθ (ω′)
[ω′ − εθ (k)−ReΣθθ (ω′)]2 + [ImΣθθ (ω′)]2

. (C.30)

The boson self energy can be written as the following integral

Π(0,ω, T ) = −
g2

π2

∫
dθ

f (θ )2J(θ )
(2π)2

dω′dω′′
nF (ω′/T )− nF (ω′′/T )
ω′′ −ω′ −ω− iε

Iθ (ω′,ω′′) , (C.31)
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where

Iθ (ω′,ω′′) =
∫

dεθ

(
ImΣθθ (ω′)

[ω′ − εθ −ReΣθθ (ω′)]
2 + [ImΣθθ (ω′)]

2 ·
(
ω′→ω′′

))
. (C.32)

The εθ integral can be done by residue. There are four poles located at

εθ =ω
′ −ReΣθθ (ω

′)± i ImΣθθ (ω
′) , εθ =ω

′′ −ReΣθθ (ω
′′)± i ImΣθθ (ω

′′) . (C.33)

Let us take two copies of the integral over εθ and close the contour in the UHP
for one copy and in the LHP for the other copy. This gives us a sum over four
poles in the full complex plane. In the low frequency limit, ReΣθθ (ω) ∼ ω2/3

while ImΣθθ (ω) ∼ T1/2. Thus the dominant contributions to the integral come from
ω′ ≪ |ReΣθθ (ω′)| ≪ | ImΣθθ (ω′)|,ω′′ ≪ |ReΣθθ (ω′′)| ≪ | ImΣθθ (ω′′)| and we have the
clean expression:

Iθ (ω′,ω′′)≈ π
sgn
[
ImΣθθ (ω′)

]
sgn
[
ImΣθθ (ω′′)

] [
| ImΣθθ (ω′)|+ | ImΣθθ (ω′′)|

]
(ReΣθθ (ω′)−ReΣθθ (ω′′))2 + (| ImΣθθ (ω′)|+ | ImΣθθ (ω′′)|)2

≈ π
sgn
[
ImΣθθ (ω′)

]
sgn
[
ImΣθθ (ω′′)

]
| ImΣθθ (ω′)|+ | ImΣθθ (ω′′)|

.

(C.34)

Now we plug this approximate expression into the boson self energy integral

Π(0,ω, T )≈ −
g2

π

∫
dθ

f (θ )2J(θ )
(2π)2

dω′dω′′

nF (ω′/T )− nF (ω′′/T )
ω′′ −ω′ −ω− iε

sgn
[
ImΣθθ (ω′)

]
sgn
[
ImΣθθ (ω′′)

]
| ImΣθθ (ω′)|+ | ImΣθθ (ω′′)|

.

(C.35)

Now we recall that |ImΣθθ (ω, T )| ≈ h(T ) ∼
√

T/ ln(1/T ). Rewriting everything in terms of
T and the scaling variables x =ω/T, x ′ =ω′/T, x ′′ =ω′′/T , we find

Π(0, x , T )

≈ −
g2

π

∫
dθ

f (θ )2J(θ )
(2π)2

T
∫

d x ′d x ′′
nF (x ′)− nF (x ′′)
x ′′ − x ′ − x − iε

sgn[x ′] sgn[x ′′]
2h(T )

.
(C.36)

The singular IR contributions come from the integration domain where x ′, x ′′ ∼ O(x). Thus
we can expand nF (x ′)−nF (x ′′)≈ n′F (

x ′+x ′′
2 )(x ′− x ′′)+O(x2) and keep only the leading order

term. This gives us

Π(0, x , T )

≈
g2

π

∫
dθ

f (θ )2J(θ )
(2π)2

T
∫

d x ′d x ′′
nF (x ′)− nF (x ′′)
x ′′ − x ′ − x − iε

sgn[x ′] sgn[x ′′]
2h(T )

= −
g2

π

∫
dθ

f (θ )2J(θ )
(2π)2

T
∫

d x ′d x ′′
e

x′+x′′
2

[e
x′+x′′

2 + 1]2

[
1+

x+

x ′′ − x ′ − x+

]
sgn[x ′] sgn[x ′′]

2h(T )
.

(C.37)
The first term in the bracket is completely independent of x and should be viewed as a renor-
malization of the bare mass in this regularization, which can be tuned to zero. The leading
singular frequency dependence of Π will come from the second term. Taking a factor of x
outside the integral, we find a scaling form

Π(0,ω, T ) = −C̃
ω

h(T )
π
(ω

T

)
, (C.38)
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where

π(x) =
∫

d x ′d x ′′
e

x′+x′′
2

[e
x′+x′′

2 + 1]2
sgn[x ′] sgn[x ′′]

x ′′ − x ′ − x+
. (C.39)

Numerically we have verified that π(x) approaches a nonzero constant as x → 0. On the other
hand, for x ≫ 1, the Taylor expansion of Fermi functions that we performed no long works and
we would resort to the earlier zero temperature computation to findΠ(0,ω, T )∼ sgn(ω)|ω|1/3

to leading order at large ω. To summarize, the leading ω, T -dependent part of the boson self
energy takes the form

Π(0,ω, T ) =

{
−C̃ ω

h(T )π
(
ω
T

)
, ω≪ T ,

−C̃z(−iω)1−2/z , ω≫ T .
(C.40)

Note that these two limiting cases cannot be connected by a scaling function of ω/T . This is
to be expected because the calculation is controlled by Σθθ ,T in the ω≪ T limit and by Σθθ ,Q
in the ω≫ T limit.

D Contributions to the conductivity from quadratic fluctuations of
collective fields

The goal of this appendix is to show, via an explicit diagrammatic calculation in the bilocal field
formalism, that in the unphysical order of limits where N →∞ beforeω→ 0, the conductivity
is simply the free Fermi gas Drude peak, independent of order parameter symmetries. We first
review the structure of 1/N corrections in the bilocal field formalism, and then perform the
conductivity calculation in the two-patch model. A more involved calculation in Ref. [63] that
accounts for the entire Fermi surface gives the same answer.

D.1 Review of the structure of 1/N corrections in the bilocal field formalism

To access the O(1/N) corrections, one can expand the action Eq. (52) to quadratic order in the
fluctuations of bilocal collective fields δGθθ ′ ,δΣθθ ′ ,δD,δΠ and read off the propagators that
emerge. Instead of going through this procedure for the mid-IR theory (which is conceptually
straightforward but notationally heavy), we restrict our attention to two anti-podal patches

and rescale g so that γ(θ ) = g2

4π . As explained in Section 4.3, the conductivity σ(q = 0,ω)
(which is the primary physical quantity of interest in this paper) can be written as a sum
over contributions from different anti-podal patches. Therefore, the two-patch effective action
already contains all the important ingredients for transport.

Now let s = ±1 label the two patches and let G⋆ss,Σ
⋆
ss, D⋆,Π⋆ denote the saddle point so-

lutions with S⋆ the action evaluated at the saddle point. By a simple calculation, one can
organize the Gaussian effective action for δGss′ ,δΣss′ ,δD,δΠ into a matrix multiplication

S = S⋆+
1
2

(
δΠT δΣT δDT δGT)


−1

2 P(ΠΠ) 0 1
2 0

0 P(ΣΣ) 0 −1
1
2 0 0 −1

2 P(DG)

0 −1 P(GD) P(GG)



δΠ

δΣ

δD
δG

 , (D.1)

37

https://scipost.org
https://scipost.org/SciPostPhys.14.5.113


Select SciPost Phys. 14, 113 (2023)

where we defined various kernels

P(ΣΣ)s1s2,s3s4
(1234) = G⋆s1s3

(13)G⋆s4s2
(42) P(ΠΠ)(1234) = D⋆(13)D⋆(42) ,

P(DG)
ss′ (1234) = −g2ss′

[
G⋆s′s(21)δ13δ24 + G⋆s′s(12)δ23δ14

]
,

P(GD)
ss′ (1234) =

g2

2
ss′
[
G⋆ss′(12)δ23δ14 + G⋆ss′(12)δ13δ24

]
,

P(GG)
s1s2,s3s4

(1234) = g2s1s2D⋆(21)δs1s3
δs2s4

δ13δ24 .

(D.2)

In these kernels, 1234 is a short hand for a quadruple of spacetime coordinates and s1s2s3s4
is a quadruple of patch indices. Matrix multiplication involves expressions like δGT P(GG)δG
which mean δGs2s1

(21)P(GG)
s1s2s3s4

(1234)δGs3s4
(34) where repeated patch/spacetime indices are

summed/integrated over.
By introducing a constant matrix Λ = diag(−1/2, 1,1, 1,1) where −1/2 acts on the

bosonic subspace and (1,1, 1,1) acts on the fermionic subspaces with four different choices of
s, s′ = ±1, we can remove the spurious factors of 1

2 in Eq. (D.1 ) so that

S = S⋆ +
1
2

(
δΠT δΣT δDT δGT) (Λ⊕Λ)


P(ΠΠ) 0 −1 0

0 P(ΣΣ) 0 −1
−1 0 0 P(DG)

0 −1 P(GD) P(GG)



δΠ

δΣ

δD
δG

 . (D.3)

Here the direct sum ⊕ is a sum between the “self-energy” subspace spanned by δΠ,δΣ and
the “Green’s function’ subspace spanned by δD,δG. Adapting the notation of [61], we bundle
together the boson and fermion self energies as δΞ = (δΠ,δΣ) and the boson + fermion
Green’s functions as δG = (δD,δG). We can now write Eq. (D.3 ) in a cleaner block notation

S = S⋆ +
1
2

(
δΞT δGT) (Λ⊕Λ)(WΞ −I

−I WG

)(
δΞ

δG

)
, (D.4)

where

WΞ =
(

P(ΠΠ) 0
0 P(ΣΣ)

)
WG =

(
0 P(DG)

P(GD) P(GG)

)
. (D.5)

If one was only interested in the correlation function between different components of G (e.g.
computing the GG correlation function that appears in the Kubo formula for conductivity),
one can integrate out the self-energy variables Ξ to get an effective action for δG

S = S⋆ +
1
2
δGTΛW−1

Ξ (WΞWG − 1)δG = S⋆ +
1
2
δGTΛW−1

Ξ (K − 1)δG , (D.6)

where the important kernel K that determines the soft modes is given by

K =
(

P(ΠΠ) 0
0 P(ΣΣ)

)(
0 P(DG)

P(GD) P(GG)

)
=
(

0 P(ΠΠ)P(DG)

P(ΣΣ)P(GD) P(ΣΣ)P(GG)

)
. (D.7)

D.2 Relating the conductivity to fluctuations of collective fields

We now use the formalism described in Appendix D.1 to directly compute the conductivity to
leading order in the 1/N expansion without leveraging the anomaly. We find that the con-
ductivity is equal to the free-fermion result 1

Nσ(q = 0,ω) = iD(0)
πω independent of the choice

of order parameter form factor f (θ ), in agreement with the anomaly-based arguments in the
N →∞ limit.
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For the purpose of this calculation, it is convenient to work with a regularization where
the cutoff Λ⊥ on kx is sent to∞ first. In this regularization, the Kubo formula relates the
conductivity to the current-current correlator

σi j(q ,ω, T ) =
1

iω
GR

J i J j (q ,ω) =
1

iω
GE

J i J j (q , iωn)
∣∣
iωn→ω+iε . (D.8)

As explained in Section 4.3, the current two-point function is a sum over contributions from
all pairs of anti-podal patches

GJ i J j (q = 0, iΩm) =
∑

θ ,θ ′∈[0,π)

GJ i(θ )J j(θ ′)(q = 0, iΩm) . (D.9)

Within the large N expansion, dominant contributions to the low frequency conductivity will
come from terms with θ = θ ′ (i.e. the external fermion currents have to live in a pair of
anti-podal patches). This observation allows us to drop all the off-diagonal terms and write
the full current-current correlation function as

GJ i J j (q = 0, iΩm) =
∑
θ∈[0,π)

GJ i(θ )J j(θ )(q = 0, iΩm) . (D.10)

Due to this simplification, we can focus on a particular pair of patches labeled by s = ±1
corresponding to θ ,θ +π and import the two-patch Gaussian effective action Eq. (D.6 ).

Within these two patches, we go to a coordinate system where x , y are the di-
rections perpendicular/parallel to the Fermi surface. In terms of the bilocal fields,
J x(x ,τ) = N

∑
s sGss(x ,τ, x ,τ) and the annealed-average of the current-current correlator

is

GE
J x J x (x ,τ)

N2
=

∫
D{G,Σ, D,Π}

∑
ss′ ss
′Gss(x ,τ, x ,τ)Gs′s′(0, 0,0,0)exp{−S[G,Σ, D,Π]}∫

D{G,Σ, D,Π}exp{−S[G,Σ, D,Π]}
. (D.11)

The rest of the calculation is a strenuous but conceptually straightforward evaluation of the
above functional integral, accounting for the structure of the saddle point as well as the
quadratic fluctuations.

To leading order in N , Gss can be approximated by the saddle point solution. Therefore

G⋆ss(x ,τ, x ,τ) = T
∑
ωn

∫
d2k
(2π)2

G⋆ss(k, iωn) = T
∑
ωn

∫
d2k
(2π)2

1
iωn − skx − k2

y −Σ⋆ss(k, iωn)
. (D.12)

Since Σ⋆ss is independent of s, the integral over kx is independent of s and
G⋆++(x ,τ, x ,τ) = G⋆−−(x ,τ, x ,τ). This immediately shows that the leading O(1) contribu-

tion to
GE

J x J x (x ,τ)
N2 vanishes.

To compute the O(1/N) corrections,12 it is convenient to first work in Fourier space so that

J x(q)J x(−q) =
∑
s1,s2

s1s2T
∑
Ωm

∫
d2q
(2π)2

Gs1s1
(q1, q− q1)Gs2s2

(q2, q− q2) , (D.13)

with q = (q , iΩm). The expectation value of this operator follows from the correla-
tors 〈δGssδGs′s′〉. To evaluate this correlator, we recall the Gaussian effective action
Seff =

1
2δGTΛW−1

Ξ (K − 1)δG which implies a propagator
〈
δGTδG

〉
= (1− K)−1WΞΛ

−1. Since
WΞ,Λ are both diagonal in boson/fermion space, the correlator for 〈δGδG〉 is the projection
of
〈
δGTδG

〉
onto the fermionic sector

12Recall that corrections higher order in 1/N are not accessible in the bilocal field description.
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〈
δGs2s1

(21)δGs5s6
(56)

〉
=
[
(1− K)−1

]
s1s2s3s4

(1234)P(ΣΣ)s3s4s5s6
(3456) , (D.14)

where summations over intermediate patch indices s3, s4 and integrations over coordinates
x3, x4 are implied. Using the form of PΣΣ in Eq. (D.2 ) and the fact that G⋆ is translation
invariant and diagonal in patch space, we have

PΣΣs3s4s5s6
(q3, q4, q5, q6) = δs4s6

δs3s5
G⋆s6s6

(q6)G
⋆
s5s5
(−q5)δ(q3 + q5)δ(q4 + q6) . (D.15)

This formula yields a compact momentum space representation of the δGδG correlator〈
δGs2s1

(q2, q1)δGs5s6
(q5, q6)

〉
=
[
(1− K)−1

]
s1s2s5s6

(q1, q2,−q5,−q6)G
⋆
s5s5
(−q5)G

⋆
s6s6
(q6) , (D.16)

as well as the current-current correlator

GE
J x J x (q = 0, iω) = 〈J x(q = 0, iω)J x(q = 0,−iω)〉 (D.17)

=
∑
s1,s2

s1s2

∫
q1,q2,ω1,ω2

〈
δGs1s1

(−q1, iω− iω1,q1, iω1)δGs2s2
(q2, iω2,−q2,−iω− iω2)

〉
=
∑
s1,s2

s1s2

∫
q1,q2,ω1,ω2

∑
ω1,ω2

[
(1− K)−1

]
s1s1s2s2

·

(q1, iω1,−q1, iω− iω1,−q2,−iω2,q2, iω+ iω2) · G⋆s2s2
(−q2,−iω2)G

⋆
s2s2
(−q2,−iω− iω2) .

Above and throughout the appendix, we use
∫

k,ω to denote the integration measure
∫ d2kdω
(2π)3 .

To compute the conductivity is to extract the most singular (in ω) contributions to the above
integral.

This integral in fact has a simple diagrammatic interpretation. If we expand (1−K)−1 as a
geometric series, then the O(K0) term corresponds to the one-loop bubble diagram with G⋆ as
the internal fermion propagators. Since K is an operator acting on bilocal fields, all higher or-
der diagrams in this series can be drawn horizontally as a ladder, where each rung is a vertical
propagator that connects two incoming particles of the same type with two outgoing particles
of the same type. A selection of diagrams that are included/excluded by this geometric series
are shown in Figure 4 and Figure 5 respectively. Remarkably, although fermions with different
patch indices s = ±1 can appear in virtual loops, the structure of the kernel K dictates that
each factor of s is always raised to an even power. This means that to this order, the corre-
lator GE

J x J x (q = 0, iω) does not distinguish between Ising-nematic and loop current order cases.
Therefore, we anticipate that the conductivity in both the loop current order model and the

Ising-nematic model should be a Drude peak σi j(q = 0,ω) =
iND0

i j
π(ω+iε) where D0

i j is the Drude
weight of the non-interacting model with g = 0.

D.3 Eigenmodes of the kernel K in the two-patch model

To carry out the ladder resummation we diagonalize the kernel K . If the spectrum of K is
gapped away from 1, the conductivity scaling would be controlled by the one-loop bubble
with zero rung. However, it turns out that there are two eigenmodes of K with eigenvalues
1+O(Ω1/3). As Ω→ 0, these modes give an anomalously large contribution to (1− K)−1 and
dominate the conductivity. In what follows, we first find these eigenmodes using the methods
of Ref. [61] and then show that the contribution from these modes precisely gives rise to the
Drude peak GE

J x J x (0, iΩ) = −ND0
x x/π.

Instead of the spacetime coordinates x1, x2 for the bilocal fields, we work with the 3-
momentum k = (ω, k) and the center-of-mass 3-momentum p = (Ω, p). The Fourier transform
is defined so that

f (k, p) =
∫

d3 x1d3 x2ei(k+p/2)·x1+i(p/2−k)·x2 f (x1, x2) . (D.18)
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Figure 4: A subset of diagrams that are selected by the Gaussian effective action
Eq. (D.6 ) for bilocal field fluctuations to leading order in 1/N . The top three di-
agrams are the first three terms in the an infinite series of virtual fermion pair in-
teractions mediated by the boson, while the bottom two diagrams are more exotic
diagrams involving two boson to two fermion scattering mediated by a fermion.

Figure 5: Examples of diagrams not captured by the Gaussian effective action
Eq. (D.6 ). Viewed horizontally, virtual processes in these diagrams do not obey the
two-in-two-out structure. These diagrams will be suppressed by additional factors of
1/N and will not be captured by the bilocal fields due to failure of self-averaging at
this order.

From here, one can easily work out the action of K on a general vector (B(k, p), Fss′(k, p))T(
B̃(k, p)

F̃ss′(k, p)

)
= K

(
B(k, p)

Fss′(k, p)

)
. (D.19)

For the purpose of the conductivity calculation, since the operator insertions are in the
fermionic subspace, it is natural to look for eigenvectors of K with B = B̃ = 0.13 The full
action of the kernel on this subspace takes the simple form

F̃ss(k, p) = g2Gss(k+
p
2
)Gss(k−

p
2
)
∫

d3k′

(2π)3
D(k− k′)Fss(k

′, p) . (D.20)

Now recall that under sliding symmetry, the relative momentum k transforms in the fermionic
representation (kx , ky) → (kx − θky −

sθ2

4 , ky +
sθ
2 ) while the center-of-mass momentum p

transforms in the bosonic representation (px , py) → (px − θ py , py). Since F̃ss is taken to be
sliding-symmetric, it must depend only on the three invariants py , skx+k2

y , px+2spy ky and the
frequencies. From here, we will separate the spatial momentum and frequency components
k = (ω, k), p = (Ω, p) and consider only the case where px = py = 0, which is relevant for the
conductivity subject to a spatially uniform probe

Fss(k, p) = Fss(ω,Ω, skx + k2
y , py , px + 2spy ky) = Fss(ω,Ω, skx + k2

y)δ
2(p) . (D.21)

13This is in fact justified since [61] demonstrated numerically that eigenvalues of K outside of this subspace are
gapped away from 1.
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Using the above ansatz, and working in the k-first regularization, we can make a change of
variables k̃x = skx + k2

y and simplify the action of K as

F̃ss(k, p) = g2Gss

(
ω+

Ω

2
, k
)

Gss

(
ω−

Ω

2
, k
)∫

dω′dk̃x

(2π)2
dk′y
2π

Fss(k̃x ,ω′,Ω)δ2(p)

(ky − k′y)2 +
g2|ω−ω′|
4π|ky−k′y |

= g2Gss

(
ω+

Ω

2
, k
)

Gss

(
ω−

Ω

2
, k
)∫

dω′dk̃x

(2π)2
·

25/3π1/3

3
p

3g2/3|ω−ω′|1/3
Fss(k̃x ,ω′,Ω)δ2(p) .

(D.22)
The LHS depends on k only through the product of two G’s. Thus, if Fss were a unit eigenvector,
it must also depend on the product of two G’s with some additional frequency-dependent
factors to compensate for the integral over the internal boson propagator. The correct structure
turns out to be

Fss(k, p) = i fs[Gss(ω−
Ω

2
, k)− Gss(ω+

Ω

2
, k)]δ2(p) . (D.23)

It is not difficult to check by doing the residue integral over k̃x = skx + k2
y that

F̃ss(k, p) = g2Gss(k+ p/2)Gss(k− p/2)(− fs)
3
2

[(
ω+

Ω

2

)2/3

+
(
−ω+

Ω

2

)2/3
]

25/3

6
p

3g2/3π2/3

= Gss(k+ p/2)Gss(k− p/2)(− fs)g
4/3

(
ω+ Ω2

)2/3
+
(
−ω+ Ω2

)2/3

21/3
p

3π2/3

= Gss(k+ p/2)Gss(k− p/2)i fs

[
Σss

(
ω−

Ω

2

)
−Σss

(
ω+

Ω

2

)]
,

(D.24)
where in the last step we used Σss(ω) = −isgn(ω) g4/3|ω|2/3

π2/321/3
p

3
. Now comparing Fss(k, p) with

F̃ss(k, p), we see that

F̃ss(k, p) =
Σ(ω− Ω2 )−Σ(ω+

Ω
2 )

iΩ+Σ(ω− Ω2 )−Σ(ω+
Ω
2 )

Fss(k, p) . (D.25)

Therefore, in the limit |Ω| → 0, Fss(k, p) is indeed a unit eigenvalue.

D.4 Contributions to the conductivity from the near-unit eigenvalue of K

In the limit of small external frequency |Ω| ≪ g, the ladder sum (1 − K)−1 is dominated by
the eigenmodes of K with eigenvalues closest to 1. In the previous section, we have identified
these eigenmodes when Ω → 0. In this section, we first do a simple 1st order perturbation
theory to compute the shift of these eigenvalues away from 1 in the limit Ω ≪ g. Then we
demonstrate that taking only these modes into account precisely recover the Drude weight.

To leading order in Ω, the eigenvectors do not shift and the eigenvalue shift can be com-
puted by taking the expectation value

〈Fss|Fss〉=
∫

k,ω

[
1

i(ω− Ω2 )− kx − k2
y −Σ(ω−

Ω
2 )
−

1

i(ω+ Ω2 )− kx − k2
y −Σ(ω+

Ω
2 )

]

·

[
1

−i(ω− Ω2 )− kx − k2
y +Σ(ω−

Ω
2 )
−

1

−i(ω+ Ω2 )− kx − k2
y +Σ(ω+

Ω
2 )

]
.

(D.26)
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There are a total of four terms. Two of them consists of products of propagators with matching
frequencies. The total contribution is

4πΛy

∫ ∞
0

dω
ω+ Cω2/3

, (D.27)

where Λy is the momentum cutoff within a single patch in the direction paralell to the Fermi
surface. The other two consists of products of propagators with frequencies that differ by Ω.
The total contribution is

−4πΛy

∫ ∞
0

sgn(ω+ Ω2 ) + sgn(ω− Ω2 )
2ω+ Csgn(ω+ Ω2 )|ω+

Ω
2 |2/3 + Csgn(ω− Ω2 )|ω−

Ω
2 |2/3

. (D.28)

Each of these terms is individually UV divergent. But when we add them together, the UV
divergences cancel out and we are left with a finite answer dominated by the small ω part of
the integration domain. This means we can drop linear in ω terms in the denominator (for
safety, we have checked that this works numerically). Therefore, to leading order in Ω, we
find

〈Fss|Fss〉=
4πΛy

C

(
Ω

2

)1/3(
3−

∫ ∞
1

(
2

(x − 1)2/3 + (x + 1)2/3
−

2
2x2/3

)
d x
)

=
4πΛy

C

(
Ω

2

)1/3

I0 .

(D.29)

Similarly, we can compute the eigenvalue correction by recalling that

〈k,ω, p = 0,Ω| (K − 1) |Fss〉=
Ω 〈k,ω, p = 0,Ω|Fss〉

C[sgn(ω− Ω2 )|ω−
Ω
2 |2/3 − sgn(ω+ Ω2 )|ω+

Ω
2 |2/3]

. (D.30)

This means that

〈Fss| (K − 1) |Fss〉=
4πΛyΩ

C

∫ ∞
0

dω
1

sgn(ω− Ω2 )|ω−
Ω
2 |2/3 − sgn(ω+ Ω2 )|ω+

Ω
2 |2/3[

1
ω+ Cω2/3

−
sgn(ω+ Ω2 ) + sgn(ω− Ω2 )

2ω+ Csgn(ω+ Ω2 )|ω+
Ω
2 |2/3 + Csgn(ω− Ω2 )|ω−

Ω
2 |2/3

]
.

(D.31)
Again the UV divergences of various terms cancel and the dominant contribution at small Ω
comes from the integration region ω ∼ Ω. This justifies dropping linear in ω terms in the
denominator. Thus we find

〈Fss| (K − 1) |Fss〉=

4πΛyΩ

C2

(
Ω

2

)−1/3 [∫ ∞
0

d x
1

x2/3[sgn(x − 1)|x − 1|2/3 − sgn(x + 1)|x + 1|2/3]

−
∫ ∞

1

2
(x + 1)2/3 + (x − 1)2/3

1
−(x + 1)2/3 + (x − 1)2/3

]
=

4πΛyΩ

C2

(
Ω

2

)−1/3

IK .

(D.32)
Therefore, we find that the normalized eigenvalue shift is

δk =
4πΛyΩ

C2
(
Ω

2
)−1/3 IK ·

C
4πΛy I0(

Ω
2 )1/3

=
Ω1/3

C
22/3 IK

I0
. (D.33)
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Now let us compute the leading in Ω contribution to the ladder sum. Recall that

GE(0, iΩ)
−vF N

=

∑
s

∫
q1,q2,ω1,ω2

〈q1,ω1, 0,Ω|Fss〉 〈Fss|q2,ω2, 0,Ω〉G⋆ss(q2,ω2 +
Ω
2 )G

⋆
ss(q2,ω2 −

Ω
2 )

(−δk) 〈Fss|Fss〉
.

(D.34)
Since the integral factorizes, we can evaluate the integral over q1,ω1 first:∫

q1,ω1

〈q1,ω1, p = 0,Ω|Fss〉=
∫

q1,ω1

[
G⋆ss

(
q1,ω1 −

Ω

2

)
− G⋆ss

(
q1,ω1 +

Ω

2

)]
=
Λy

2π

∫
dω1

2π
2πi
2π

[
sgn(ω1 +

Ω
2 )− sgn(ω1 −

Ω
2 )

2

]

=
iΛyΩ

4π2
.

(D.35)

As for the integral over q2,ω2, we first make the observation that

G⋆ss

(
q2,ω2 +

Ω

2

)
G⋆ss

(
q2,ω2 −

Ω

2

)[
iΩ−Σss(ω2 +

Ω

2
+Σss(ω−

Ω

2
)
]

= G⋆ss(q2,ω2 −
Ω

2
)− G⋆ss

(
q2,ω2 +

Ω

2

)
. (D.36)

Hence, the integral over q2,ω2 simplifies to

I =
∫

q2,ω2

〈Fss|q2,ω2, 0,Ω〉 [iΩ−Σss(ω2 +
Ω
2 ) +Σss(ω−

Ω
2 )]
−1 〈q2,ω2, 0,Ω|Fss〉

〈Fss|Fss〉
. (D.37)

We know that the ω2 integral is dominated by ω2 ∼ Ω. Thus, for Ω sufficiently small, the
iΩ term can be dropped. After dropping iΩ, the remaining integral is directly related to the
computation of δk as δk ≈ −iΩI . Using this relationship, we immediately see that

GE(q = 0, iΩ) = −vF N
∑

s

iΛyΩ

4π2

1
−δk
·
δk
−iΩ

= −
N vFΛy

2π2
. (D.38)

Now we simply have to sum over all pairs of patches. Within each patch, J x should be identi-
fied with vF (θ )wi(θ )nθ + vF (θ +π)wi(θ +π)nθ+π and Λy should be replaced with a patch-
dependent cutoff Λ(θ ). After summing over all patches and using inversion symmetry, we
recover the Drude weight of the non-interacting model

GE
J i J j (q = 0, iΩ) = −N

∑
θ

Λ(θ )
(2π)2

vF (θ )w
i(θ )w j(θ ) = −

NDi j
0

π
. (D.39)

E Technical aspects of the memory matrix approach

E.1 Eigenvalues of the decay rate matrix τ−1 = χ−1M

From Section 4.4, we learned that the spectrum of χ−1M contains N nonzero eigenvalues λ
determined by the condition

det
(
λδI J −χ−1

φφMI J −
1
N

F̄2GI GK MKJ

)
= 0 . (E.1)
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To solve for the eigenvalues, it is convenient to introduce a bra-ket notation in the boson
subspace where |G〉 represents the normalized vector with coefficients

〈K |G〉= GK∑
K G2

K
. (E.2)

In this notation, the eigenvalue condition can be rewritten as

det
(
λ−χ−1

φφM −
1
N

F̄2Ḡ2 |G〉 〈G|M
)
= 0 . (E.3)

As χφφ → ∞,
(
χ−1
φφ +

Ḡ2

N F̄2 |G〉 〈G|
)

approaches a rank-one matrix whose only nontrivial

eigenvector is |G〉. Since M is full rank,
(
χ−1
φφ +

Ḡ2

N F̄2 |G〉 〈G|
)

M is also rank-one as χ →∞.

Therefore, for χφφ finite but large, we expect
(
χ−1
φφ +

Ḡ2

N F̄2 |G〉 〈G|
)

M to have one nontriv-

ial eigenvector almost parallel to |G〉 and N − 1 eigenvectors almost orthogonal to |G〉. To
check this more explicitly, we can decompose an arbitrary vector in the boson subspace as
α |G〉+ β |W〉 with 〈G|W〉= 0 and rewrite the eigenvalue equation as(

αχ−1
φφ +

αḠ2

N
F̄2
)
|G〉+ βχ−1

φφ |W〉= λM−1 (α |G〉+ β |W〉) . (E.4)

Assuming the invertibility of (1−λχφφM−1), this is equivalent to

|W〉= −αβ−1
(
1−λχφφM−1

)−1

(
1−λχφφM−1 +

Ḡ2χφφ

N
F̄2

)
|G〉 (E.5)

= −αβ−1 |G〉 −αβ−1
(
1−λχφφM−1

)−1 Ḡ2χφφ

N
F̄2 |G〉 . (E.6)

1. If λ approaches a nonzero finite value as χ →∞, then

|W〉 → 1
β

(
F̄2 Ḡ2Mλ−1

N
− 1
)
|G〉 , (E.7)

subject to the constraint

〈G|W〉 ∝ F̄2Ḡ2λ−1 〈G|M |G〉 − N = 0 → λ= F̄2 Ḡ2 〈G|M |G〉
N

. (E.8)

2. If λ approaches zero as χ → ∞, then any |W〉 that is orthogonal to |G〉 can be con-
structed by carefully tuning λχ to be close to eigenvalues of M . These generate the
N − 1 remaining eigenvalues which scale as λ∼ χ−1

φφ .

Since |G〉 is a normalized vector, 〈G|M |G〉 does not scale with N , assuming that the memory
matrix components MI J (ω, T ) are at most O(1) (which can be checked a posteriori). There-
fore, the only nonzero eigenvalues satisfy λ=O( 1

N ) or λ=O(χ−1
φφ), which is the result stated

in Section 4.4.

E.2 Matrix algebra in the decomposition of σ(ω) into coherent and incoherent
parts

Here we evaluate the matrix inverse (χ +M)−1
θθ ′ en route to the conductivity formula. Recall

that

χ +M= L
(

A B
BT C

)
L , (E.9)
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where the subblocks are defined as

Lθ ,I ;θ ′,J =
(

L(θ )δθθ ′ 0
0 δI J

)
, (E.10)

Aθθ ′ = Nδθθ ′ + F(θ )F(θ ′)Ḡ2χφφ , Bθ ,L = F(θ )GLχφφ , CK L = χφφδK L +MK L . (E.11)

Using the explicit inversion formula for 2× 2 block matrices, we immediately deduce that

(χ +M)−1
θθ ′ = L(θ )−1(A− BC−1BT )−1

θθ ′ L(θ
′)−1 . (E.12)

To compute these inverses, it is helpful to introduce normalized vectors in the slow subspace
|F〉 , |G〉 such that

〈θ |F〉= F(θ )/F̄ , 〈I |F〉= 0 , 〈θ |G〉= 0 , 〈I |G〉= GI/Ḡ . (E.13)

In this bra-ket notation, we can then write

A= NI+χφφ Ḡ2 F̄2 |F〉 〈F | , B = χφφ Ḡ F̄ |F〉 〈G| , C = χφφI+M . (E.14)

Using the fact that |F〉 , |G〉 are normalized, we can easily compute

A− BC−1BT = NI+χφφ Ḡ2 F̄2 |F〉 〈F | −χφφ Ḡ F̄ |F〉 〈G| (χφφI+M)−1χφφ Ḡ F̄ |G〉 〈F |
= NI+ Ḡ2 F̄2 〈G|M(I+χ−1

φφM)−1 |G〉 |F〉 〈F | , (E.15)

(A− BC−1BT )−1 = N−1

[
I−

Ḡ2 F̄2 〈G|M(I+χ−1
φφM)−1 |G〉

N + Ḡ2 F̄2 〈G|M(I+χ−1
φφM)−1 |G〉 |F〉 〈F |

]
. (E.16)

This formula immediately implies

(χ +M)−1
θθ ′ = N−1

[
δθθ ′

L(θ )L(θ ′)
−

Ḡ2 〈G|M(I+χ−1
φφM)−1 |G〉

N + Ḡ2 F̄2 〈G|M(I+χ−1
φφM)−1 |G〉

F(θ )F(θ ′)
L(θ )L(θ ′)

]
. (E.17)

Using the above expression in the generalized Drude form and summing over repeated patch
indices, we find the conductivity for finite χφφ which matches results in Section 4.4 upon
taking χφφ →∞

σi j(ω) =
i
ω
χJ i nθ (χ +M)−1

θθ ′χJ j nθ ′

=
i
ω

N v i
F (θ ) L(θ )2 v j

F (θ
′) L(θ ′)2

×

[
δθθ ′

L(θ )L(θ ′)
−

Ḡ2 F̄2 〈G|M(I+χ−1
φφM)−1 |G〉

N + Ḡ2 F̄2 〈G|M(I+χ−1
φφM)−1 |G〉

F(θ )F(θ ′)
F̄2 L(θ )L(θ ′)

]

=
i
ω

N

Trθ
[
v i

F v j
F

]
−

Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

Trθ [ f 2]


+

i
ω

N2
Trθ
[
v i

F f
]

Trθ
[
v j

F f
]

Trθ [ f 2]
(

N + Ḡ2 Trθ [ f 2] 〈G|M(I+χ−1
φφM)−1 |G〉

) . (E.18)
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E.3 Matrix algebra in the evaluation of the memory matrix

Following the strategy put forth in Section 4.4, we need to evaluate the correlation function
CφIφJ

(ω, T ) using the memory matrix formalism. For this calculation, it is more convenient to
make a change of basis from {ñθ ,φI} to {nθ ,φI} so that the susceptibility matrix χ is block
diagonal

χ =
(

L(θ )2δθθ ′ 0
0 χφφδI J

)
. (E.19)

Using the anomaly equation
dnθ
d t
= −GI F(θ )L(θ )

dφI

d t
, (E.20)

one can easily show that

Mθ ,I ;θ ′,J =
(

GIMI J GJ F(θ )L(θ )F(θ ′)L(θ ′) GIMI J F(θ )L(θ )
F(θ ′)L(θ ′)MI J GJ MI J

)
. (E.21)

Therefore, we can again write

χ +M= L
(

A B
BT C

)
L , (E.22)

where L takes the same form as before while

A= NI+ F̄2Ḡ2 〈G|M |G〉 |F〉 〈F | , B = F̄ Ḡ |F〉 〈G|M , C = χφφI+M . (E.23)

The advantage of this choice of basis is that the response function now involves only a projec-
tion onto the boson subspace

CφIφJ
(ω, T ) = −

∑
A,B∈S

χφI A [χ +M]−1
AB χφJ B = −χ2

φφ [χ +M]−1
I J . (E.24)

To evaluate (χ +M)−1
I J = CI J − (BT A−1B)I J , we simply need

(BT A−1B)I J =
F̄2Ḡ2

N
〈I |M |G〉 〈F |

[
I−

F̄2Ḡ2 〈G|M |G〉
N + F̄2Ḡ2 〈G|M |G〉 |F〉 〈F |

]
|F〉 〈G|M |J〉

=
Ḡ2 F̄2 〈I |M |G〉 〈G|M |J〉

N + F̄2Ḡ2 〈G|M |G〉 .

(E.25)

Matching with the Eq. (65) and using DI J to denote the matrix of boson Green’s functions
GR
φIφJ
(q = 0,ω, T ), we obtain a nontrivial matrix identity

(
χφφ − D

)(
χφφ +M− Ḡ2 F̄2M |G〉 〈G|M

N + F̄2Ḡ2 〈G|M |G〉

)
= χ2

φφ . (E.26)

Deep in the IR limit, the boson self energy matrix Π is related to the boson Green’s function
matrix via D = −Π−1. Multiplying the identity above by Π and then taking an expectation
value in |G〉, we find

Nχφφ 〈G|ΠM |G〉+ N 〈G|M |G〉
N + F̄2Ḡ2 〈G|M |G〉 +χφφ = 0 . (E.27)

In the χφφ →∞ limit, this identity reduces to the identity quoted in the main text

N 〈G|ΠM |G〉 − F̄2Ḡ2 〈G|M |G〉= −N . (E.28)
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F RPA calculation of the boson self energy and the conductivity

Following the notation of Ref. [64], we consider a UV Euclidean action describing N species of
fermions with a generic inversion-symmetric dispersion ε(k) coupled to some order parameter
field φa

S = Sφ + Sψ + Sint , (F.1)

where the kinetic terms and interaction terms are given by

Sψ =
∫
ψ†

i (k,τ) [∂τ + ε(k)]ψi(k,τ) , Sφ =
1
2

∫
φa(q ,τ)

[
−∂ 2

τ + |q|
z−1
]
φa(−q ,τ) , (F.2)

Sint =
1√
N f

∫
f a(k, q̂) ·φa(q)ψ†

i

(
k +

q
2

)
ψi

(
k −

q
2

)
. (F.3)

The fermion flavor index i runs from 1 ∼ N f and the boson flavor index a runs from 1 ∼ Nb.
Within RPA, we keep Nb finite and perform a 1/N f expansion. The fermion propagator remains
free to leading order in the 1/N f expansion

G(k, iω) =
1

iω− ε(k)
, (F.4)

while the effective propagator for the boson field takes the Landau damping form

Dab(q , iν) =
[
|q |z−1 + Γ

|ν|
|q |

]−1

ab
, (F.5)

where Γ is a constant matrix with non-vanishing off-diagonal components to leading order in
ν/|q |. Since the conclusions we draw later on will only depend on the transformation law
of f a(k,q) under inversion, we restrict our attention to the simplest family of models where
Nb = 1 and f a(k,q) = f (k,q). In that case, the boson propagator reduces to

D(q , iν) =
1

|q |z−1 + γq̂
|ν|
|q |

, (F.6)

where γq̂ is now a scalar that depends on the orientation of q̂ .
The original calculation in Ref. [64] corresponds to taking f (k,q) = v⃗F (k) × q̂

and taking φ(q) to be the transverse component of the gauge field (the longitudi-
nal component is screened). The standard Ising-nematic setup corresponds to taking
f (k,q) = cos(kx) − cos

(
ky
)
. In the calculation that follows, we will use the more general

notation f (k,q) and specialize to specific physical cases only towards the end. In expres-
sions involving the external momentum, we will take |q | → 0 and use the notation f (k, q̂) to
emphasize that only the orientation q̂ matters.

F.1 Recap of previous results

For both gauge fields and Ising-nematic order parameters, calculations in Refs. [64, 73–76]
invariably found the leading frequency scaling of the boson self energy (valid for fixed ω and
at asymptotically large N f ) to be

Π(ω) = N f

[
C0 +

Cz

N f
ω(4−z)/z + . . .

]
, (F.7)
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where C0, Cz are constants and z is the boson dynamical critical exponent. Since the most
singular frequency scaling in the boson self energy controls the most singular frequency scaling
in the conductivity (up to a factor of ω), Eq. (F.7 ) led to the expectation that

σ(ω) = N f

[
D
π

i
ω
+
σz

N f
ω−2(z−2)/z + . . .

]
, (F.8)

where D is the Drude weight and σz is a z-dependent constant. A precise analysis of the
Feynman diagrams contributing to the conductivity reveals that this frequency dependence is
generated entirely by irrelevant operators that invalidate the anomaly constraints [19]. Within
the mid-IR formulation of Eq. (15), the leading irrelevant operators come from allowing the
boson-fermion coupling, f⃗ (θ ), to vary within patches of the Fermi surface, f⃗ (θ , k). Indeed,
expanding f⃗ (θ , k) in powers of k around kF (θ ) and keeping only the linear term, we find that
the resulting Feynman diagrams scale as ω−2(z−2)/z .

F.2 Summary of new results

Although all previous works found the same scaling exponent as in Eq. (F.7 ), the numeri-
cal prefactor Cz has never been explicitly reported. Interestingly, its value depends strongly
on the order parameter symmetry. In what follows, we compute Cz for a completely general
inversion-symmetric Fermi surface. Surprisingly, we find that the value of Cz is non-zero for
inversion-even order parameters ( f a(θ ) = f a(θ +π)), but vanishes for generic “loop-current”
order parameters ( f a(θ ) = − f a(θ +π)). This means that for any inversion-odd order param-
eter, it is necessary to include even higher-dimension irrelevant operators to obtain non-trivial
frequency scaling in the boson self energy. The ultimate result is

Π(ω) = N f

[
C0 +

1
N f

{
0 , f⃗ (θ ) = − f⃗ (θ +π)
Czω

−2(z−2)/z , f⃗ (θ ) = f⃗ (θ +π)
+ less singular than ω−2(z−2)/z

]
. (F.9)

For general order parameters, the diagrams that contribute to the boson self energy are not
simply related to those that contribute to the current-current correlators and our results for
Π(ω) do not immediately determine the scaling of σ(ω). Nevertheless, after carefully ac-
counting for all diagrams that contribute to the conductivity, we demonstrate that

σ(ω)
N f

=
D
π

i
ω
+ less singular than ω−2(z−2)/z . (F.10)

Based on the large-N f expansion, then, it appears that it is more difficult to generate incoherent
conductivity from irrelevant operators than previously believed. Note, however, that even at
T = 0, for any finite N f , these perturbative calculations cannot be trusted down to ω = 0
due to infrared singularities [28]. We also emphasize that the above frequency dependence
of σ(ω) in Eq. (F.10 ) is not a property of the infrared fixed point, meaning that it will not fit
into scaling function of ω/T at finite temperature, T .

In the rest of the Appendix, we will first calculate the boson self energy to leading two or-
ders in the 1/N f expansion and recover Eq. (F.9 ). Then we evaluate some additional diagrams
to arrive at the conductivity formula in Eq. (F.10 ).

F.3 Organization of diagrams for the boson self energy

We now proceed to organize the diagrams that we need to compute to extract Eq. (F.9 ) (see
Figure 6). At leading order in 1/N f , the boson self energy is just given by a one-loop integral

Π(0)(q , iν) = −N f

∫
k,ω

f (k, q̂)2 G
(

k +
q
2

, iω+ iν
)

G
(

k −
q
2

, iω
)

. (F.11)
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Π(SE,1)Π(0) Π(SE,2) Π(MT)

Π(AL,1) Π(AL,2)

Figure 6: The set of diagrams contributing to the boson self energy to leading two
orders in the 1/N f expansion. All vertex factors are taken to be f (k,q), although
analogues of our results hold when the external vertices are not equal to the internal
vertices (see Eq. (F.57 )). The free fermion bubble Π(0) evaluates to a constant in
accordance with the general nonperturbative arguments in Section 3. The remaining
diagrams give the leading frequency scaling of the boson self energy.

This integral gives a constant contribution N f C0 that depends on the form factor but not onω.
The leading 1/N f corrections are organized into five diagrams: two fermion self-energy correc-
tions Π(SE,1),Π(SE,2), the Maki-Thompson correction Π(MT), and the Aslamazov-Larkin correc-
tions Π(AL,1),Π(AL,2) (the arguments of these functions are always understood to be q = 0, iν).
It is convenient to split the Maki-Thompson correction into Π(MT,1)+Π(MT,2) where Π(MT,1) ex-
cludes irrelevant operator insertions on the external vertex (while keeping irrelevant operators
in the internal loops).

F.4 Precise cancellation between Π(SE,1), Π(SE,2) and Π(MT,1)

The contributions Π(SE,1), Π(SE,2) and Π(MT,1) each contains a single fermion loop and comes
with a (−1) prefactor. Using

∫
k,ω to denote

∫ d2kdω
(2π)3 , the one-loop fermion self energies will

involve the following integrals

Σ(k, iω) =
∫

q ,ν
f (k +

q
2

, q̂)2G(k + q , iω+ iν)D(q , iν) . (F.12)

In terms of these self energy integrals,

Π(SE,1) = −
∫

k,ω
f (k, q̂)2Σ(k, iω)G(k, iω)2G(k, iω+ iν)

= −
1
iν

∫
k,ω

f (k, q̂)2Σ(k, iω)G(k, iω) [G(k, iω)− G(k, iω+ iν)] , (F.13)

Π(SE,2) = −
∫

k,ω
f (k, q̂)2Σ(k, iω+ iν)G(k, iω)G(k, iω+ iν)2

= −
1
iν

∫
k,ω

f (k, q̂)2Σ(k, iω+ iν)G(k, iω+ iν) [G(k, iω)− G(k, iω+ iν)] . (F.14)

When added together, these diagrams partially cancel each other and we find

Π(SE,1) +Π(SE,2) =
∫

k,ω
f (k, q̂)2G(k, iω)G(k, iω+ iν)

Σ(k, iω)−Σ(k, iω+ iν)
iν

. (F.15)
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We now contrast the above expression with the Maki-Thompson diagram

Π(MT) =
∫

k,ω
G(k, iω)G(k, iω+ iν) f (k, q̂)Γ (k, q̂ , iω, iν) , (F.16)

where

Γ (k, q̂ , iω, iν) =−
∫

q ′,ν′
f (k + q ′, q̂) f

(
k +

q ′

2
,q ′
)2

G(k + q ′, iω+ iν′)G(k + q ′, iω+ iν+ iν′)D(q ′, iν′) .
(F.17)

Pictorially, the Maki-Thompson diagram describes a process in which two fermions exchange
a boson and then annihilate. Before and after the exchange, the fermion momenta shift by
q ′, which is small compared to the Fermi momentum. Therefore, in the low energy limit, we
can decompose the external vertex factor f (k + q ′, q̂) = f (k, q̂) + [ f (k + q ′, q̂) − f (k, q̂)],
anticipating that the second term will give a subleading contribution relative to the first. This
motivates the definitions

Γ (1)(k, q̂ , iω, iν) = −
∫

q ′,ν′
f (k, q̂) f

(
k +

q ′

2
,q ′
)2

G(k + q ′, iω+ iν′)

· G(k + q ′, iω+ iν+ iν′)D(q ′, iν′) , (F.18)

Γ (2)(k, q̂ , iω, iν) = −
∫

q ′,ν′
[ f (k + q ′, q̂)− f (k, q̂)] f

(
k +

q ′

2
,q ′
)2

· G(k + q ′, iω+ iν′)G(k + q ′, iω+ iν+ iν′)D(q ′, iν′) . (F.19)

It is now easy to demonstrate that

Π(MT,1) = −
∫

k,ω
f (k, q̂)2G(k, iω)G(k, iω+ iν)

·
∫

q ′,ν′
f
(

k +
q ′

2
,q ′
)2 G(k + q ′, iω+ iν′)− G(k + q ′, iω+ iν+ iν′)

iν
D(q ′, iν′)

= −
∫

k,ω
f (k, q̂)2G(k, iω)G(k, iω+ iν)

Σ(k, iω)−Σ(k, iω+ iν)
iν

. (F.20)

Comparing with (F.15 ), we find a perfect cancellation

Π(SE,1) +Π(SE,2) +Π(MT,1) = 0 . (F.21)

F.5 Reduction of Π(MT,2),Π(AL,1),Π(AL,2) to combinations of one-loop diagrams

The cancellations in the previous section show that any frequency dependence in the boson
self energy at order 1/N f must come from Π(MT,2),Π(AL,1),Π(AL,2). In what follows we will use
general symmetry arguments to reduce each diagram to a sum of one-loop integrals which are
much simpler to evaluate.

For the Maki-Thompson diagram, via a linear shift of the fermionic momentum k → k− q ′
2 ,

we have

Π(MT,2) = −
∫

q ′,ν′,k,ω
[ f (k +

q ′

2
, q̂)− f (k −

q ′

2
, q̂)] f (k −

q ′

2
, q̂) f (k,q ′)2D(q ′, iν′)

× G(k −
q ′

2
, iω)G(k −

q ′

2
, iω+ iν)G(k +

q ′

2
, iω+ iν′)G(k +

q ′

2
, iω+ iν+ iν′) . (F.22)
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If we make a different change of variables q ′→−q ′,ν′→−ν′ and use D(q ′, iν′)=D(−q ′,−iν′),
we find an alternative expression

Π(MT,2) =
∫

q ′,ν′,k,ω
[ f (k +

q ′

2
, q̂)− f (k −

q ′

2
, q̂)] f (k +

q ′

2
, q̂) f (k,q ′)2D(q ′, iν′)

× G(k −
q ′

2
, iω)G(k −

q ′

2
, iω+ iν)G(k +

q ′

2
, iω+ iν′)G(k +

q ′

2
, iω+ iν+ iν′) . (F.23)

Adding up these two expressions for the same diagram, and using the Landau damping form
of D(q ′, iν′), we obtain

Π(MT,2) =
1
2

∫
q ′,ν′,k,ω

[ f (k +
q ′

2
, q̂)− f (k −

q ′

2
, q̂)]2 f (k,q ′)2D(q ′, iν′)

× G(k −
q ′

2
, iω)G(k −

q ′

2
, iω+ iν)G(k +

q ′

2
, iω+ iν′)G(k +

q ′

2
, iω+ iν+ iν′) . (F.24)

Using the Landau damping form of D(q ′, iν′), we can rewrite the integral over ν′ as∫
ν′

D(q ′, iν′)G(k +
q ′

2
, iω+ iν′)G(k +

q ′

2
, iω+ iν+ iν′)

=
1
iν

∫
ν′

D(q ′, iν′)
[

G(k +
q ′

2
, iω+ iν′)− G(k +

q ′

2
, iω+ iν+ iν′)

]
=

1
iν

∫
ν′

[
D(q ′, iν′)− D(q ′, iν′ + iν)

]
G(k +

q ′

2
, iω− iν′)

=
γq̂ ′

iν|q ′|

∫
ν′

D(q ′, iν′)D(q ′, iν′ + iν)
[
|ν′ + ν| − |ν′|

]
G(k +

q ′

2
, iω− iν′) . (F.25)

Plugging the final line into the expression for Π(MT,2), we find

Π(MT,2) =
1

2ν2

∫
q ′,ν′

D(q ′, iν′)D(q ′, iν′ + iν)
[
|ν′ + ν| − |ν′|

] γq̂ ′

|q ′|
[
π(MT)(q ′,ν′ + ν)−π(MT)(q ′,ν′)

]
,

(F.26)
where the one loop-integral that we need to evaluate is

π(MT)(q ′,ν′) =∫
k,ω

[
f
(

k +
q ′

2
, q̂
)
− f

(
k −

q ′

2
, q̂
)]2

f (k,q ′)2G
(

k −
q ′

2
, iω
)

G
(

k +
q ′

2
, iω+ iν′

)
.

(F.27)
Instead of evaluating π(MT)(q ′,ν′) right away, we will massage the Aslamazov-Larkin diagrams
to a similar form. By applying the Feynman rules directly to the two diagrams, we get

Π(AL,1) =
∫

q ′,ν′
D(q ′, iν′)D(q ′, iν′ + iν)I(q ′,ν,ν′)2 , (F.28)

Π(AL,2) =
∫

q ′,ν′
D(q ′, iν′)D(q ′, iν′ + iν)I(q ′,ν,ν′)I(−q ′,ν,−ν′ − ν) , (F.29)

where

I(q ′,ν,ν′) =
∫

k,ω
f (k, q̂) f (k+

q ′

2
,q ′)2G(k, iω)G(k, iω+ iν)G(k+q ′, iω+ iν+ iν′) . (F.30)
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By a simple change of variables q ′ →−q ′,ν′ →−ν− ν′, we obtain a succinct representation
of the sum of two Aslamazov-Larkin diagrams

Π(AL,1) +Π(AL,2) =
1
2

∫
q ′,ν′

D(q ′, iν′)D(q ′, iν′ + iν)
[
I(q ′,ν,ν′) + I(−q ′,ν,−ν− ν′)

]2
. (F.31)

In analogy with the manipulations we performed for the Maki-Thompson diagrams, we can
define

π(AL)(q ′,ν′) =∫
k,ω

[
f (k +

q ′

2
, q̂)− f (k −

q ′

2
, q̂)
]

f (k,q ′)2G
(

k +
q ′

2
, iω+ iν′

)
G
(

k −
q ′

2
, iω
)

,
(F.32)

in terms of which

Π(AL,1) +Π(AL,2) = −
1

2ν2

∫
q ′,ν′

D(q ′, iν′)D(q ′, iν′ + iν)
[
π(AL)(q ′,ν+ ν′)−π(AL)(q ′,ν′)

]2
. (F.33)

F.6 Evaluation of one-loop diagrams and extraction of frequency scaling

One can only avoid explicit integrals for so long. To reach our final conclusion, we have to
evaluate π(AL) and π(MT). It is helpful to consider a more general case

πF (q
′,ν) =

∫
k,ω

F(k,q ′)G
(

k +
q ′

2
, iω+ iν′

)
G
(

k −
q ′

2
, iω
)

, (F.34)

where π(MT) and π(AL) correspond to taking F(k,q ′) = [ f (k + q ′
2 , q̂)− f (k − q ′

2 , q̂)]2 f (k,q ′)2

and F(k,q ′) = [ f (k+ q ′
2 , q̂)− f (k− q ′

2 , q̂)] f (k,q ′)2. We now make a change of variables from
k → ε(k),θ (k)where θ is an angular coordinate parametrizing the Fermi surface. We assume
that the Fermi surface is sufficiently smooth so that the Jacobian J(θ ,ε) of this transformation
is nonsingular. This allows us to conclude that

πF (q
′,ν) =

1
8π3

∫
dεdθ

J(θ ,ε)F(θ ,ε,q ′)

iν− ε(k + q ′
2 ) + ε(k −

q ′
2 )

·
∫

dω
[

G(k −
q ′

2
, iω)− G(k +

q ′

2
, iω+ iν)

]

=
1

8π2

∫
dεdθ J(θ ,ε)F(θ ,ε,q ′)

sgn
[
ε(k + q ′

2 )
]
− sgn

[
ε(k − q ′

2 )
]

iν− ε(k + q ′
2 ) + ε(k −

q ′
2 )

. (F.35)

The most singular contributions to this integral come from a region in phase space where k
is on the Fermi surface and |q ′| ≪ |k|. Hence, to leading order in frequency we can make
the approximation ε(k ± q ′

2 ) ≈ ε±
1
2q ′ · ∇kε. By evaluating J(θ ,ε) and F(θ ,ε,q ′) exactly at

ε= εF (and dropping the ε argument from now on), we can perform the ε integral and get

πF (q
′,ν) =

1
4π2

∫
dθ J(θ )F(θ ,q ′)

q ′ · v F (θ ) +O(q3)
iν− q ′ · v F (θ ) +O(q3)

= π0(q
′) +

iν
4π2|q ′|

∫
dθ

J(θ )F(θ ,q ′)
i ν|q ′| − q̂ ′ · v F (θ )

= π0(q
′) +

ν

4π2|q ′|

∫
dθ J(θ )F(θ ,q ′)

ν
|q ′| − iq̂ ′ · v F (θ )∣∣∣ ν|q ′| ∣∣∣2 + ∣∣q̂ ′ · v F (θ )

∣∣2 , (F.36)

where we have isolated a term π0(q ′) independent of ν and decomposed the other term into
real and imaginary parts. Now let us consider different choices of F in turn.
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1. If F(θ ,q ′) = f (θ ,q ′)2, then under spatial inversion θ → θ + π, J(θ ), F(θ ,q ′) are in-
variant while v F (θ ) flips sign. This means the imaginary part vanishes. To evaluate the
real part, we recall that the internal bosons have z = 3 scaling and |ν|/|q ′| should be
regarded as a small parameter δ. Using δ

δ2+x2 ≈ πδ(x), we thus have

πF (q
′,ν) = π0(q

′) +
|ν|

4π|q ′|

∫
dθ J(θ ) f (θ ,q ′)2δ

[
q̂ ′ · v F (θ )

]
= π0(q

′) +
γq̂ ′ |ν|
|q ′|

, (F.37)

where we identified the Landau damping coefficient

γq̂ ′ =
1

4π

∫
dθ J(θ ) f (θ ,q ′)2δ

[
q̂ ′ · v F (θ )

]
. (F.38)

2. For the Maki-Thompson diagram, we take

F(k,q ′) =
[

f (k +
q ′

2
, q̂)− f (k −

q ′

2
, q̂)
]2

f (k,q ′)2 . (F.39)

To leading order in |q ′|/k,

F(θ ,q ′)≈ |q ′|2
∣∣q̂ ′ · ∇ f (θ , q̂)

∣∣2 f (θ ,q ′)2 . (F.40)

Under spatial inversion, J(θ ), F(θ ,q ′) are still invariant while v F (θ ) flips sign. Like in
the previous case, the imaginary part of πF thus vanishes, and we are left with

πF (q
′,ν) = π0(q

′) +
|ν|

4π|q ′|
|q ′|2

∫
dθ J(θ )

∣∣q̂ ′ · ∇ f (θ , q̂)
∣∣2 f (θ ,q ′)2δ

[
q̂ ′ · v F (θ )

]
. (F.41)

For every q̂ ′, there are precisely two antipodal angles θq̂ ′ ,θq̂ ′+π for which q̂ ′ ·v F (θ ) = 0.

Since
∣∣∣q̂ ′ · ∇ f (θq̂ ′ +π, q̂)

∣∣∣2 = ∣∣∣q̂ ′ · ∇ f (θq̂ ′ , q̂)
∣∣∣2, we conclude that the Maki-Thompson

diagram have the following structure independent of order parameter symmetries

π(MT)(q ′,ν′) = π0(q
′) + γq̂ ′ |ν

′||q ′|
∣∣∣q̂ ′ · ∇ f (θq̂ ′ , q̂)

∣∣∣2 . (F.42)

3. For the Aslamazov-Larkin diagrams, we take

F(θ ,q ′)≈ |q ′|q̂ ′ · ∇ f (θ , q̂) f (θ ,q ′)2 . (F.43)

Unlike the Maki-Thompson diagram, the Aslamazov-Larkin diagrams are sensitive to
the choice of order parameter symmetry. Under a spatial inversion θ → θ +π, J(θ ) is
always even and v F (θ ) is always odd; but the parity of F(θ ,q ′) is opposite to the parity
of f (θ ,q ′). Therefore, for an inversion-odd order parameter, ReπF (q ′,ν) survives; for
an inversion-even order parameter, ImπF (q ′,ν) survives. After evaluating the integrals,
we find

π(AL)(q ′,ν′) = π0(q
′) +

{
γq̂ ′ |ν′|q̂

′ · ∇ f (θq̂ ′ , q̂) , inversion-odd ,

−i ν
′

4π2I(q ′,ν′) , inversion-even ,
(F.44)

where I is an undetermined real function that will not be too important.

We now plug the above expressions forπ(MT) andπ(AL) into the Maki-Thompson and Aslamazov-
Larkin diagrams to get

Π(MT,2) =
1

2ν2

∫
q ′,ν′

D(q ′, iν′)D(q ′, iν′ + iν)
[
|ν′ + ν| − |ν′|

]2
γ2

q̂ ′

∣∣∣q̂ ′ · ∇ f (θq̂ ′ , q̂)
∣∣∣2 , (F.45)
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Π(AL,1) +Π(AL,2) = −
1

2ν2

∫
q ′,ν′

D(q ′, iν′)D(q ′, iν′ + iν) (F.46)

·


[
γq̂ ′ q̂

′ · ∇ f (θq̂ ′ , q̂)
]2 [
|ν′ + ν| − |ν′|

]2
, inversion-odd ,[ iν

4π2I(q ′,ν′)
]2

, inversion-even .
(F.47)

By comparing (F.46 ) and (F.45 ), we immediately see that when the order parameter is odd
under inversion,

Π(MT,2) +Π(AL,1) +Π(AL,2) = 0 . (F.48)

On the other hand, when the order parameter is even under inversion, since D(q ′, iν′) is
positive, the integrand for Π(MT,2) and Π(AL,1)+Π(AL,2) are positive functions of q ′,ν′ that add
together. Therefore, without explicitly computing I(q ′,ν′), we can already conclude that

Π(MT,2) +Π(AL,1) +Π(AL,2) ̸= 0 . (F.49)

Finally, to estimate the leading frequency scaling, we can evaluate the above expressions in
the special case with rotational invariance. We find, in agreement with Kim et al., that

Π(MT,2) , Π(AL,1) +Π(AL,2) ∼ |ν|
4−z

z . (F.50)

Hence, neglecting corrections with higher powers of 1/N f and ω, our final results for the
boson self energy for generic dispersion and form factor symmetry are

Π(q = 0, iν)≈ N f C0 +

{
0 , inversion-odd ,

Cz|ν|
4−z

z , inversion-even .
(F.51)

The above formula exactly agrees with Eq. (F.9 ). From here, it is simple to realize that an
even stronger result (which we will later need for the conductivity) holds: Suppose we define
a new functionΠV V that has the same diagrammatic expansion asΠ, but with external vertices
f (k,q) replaced by some different V (k,q). After going through the same manipulations as
before, we find that

Π
(SE,1)
V V +Π(SE,2)

V V +Π(MT,1)
V V = 0 , (F.52)

for all V , generalizing Eq. (F.21 ). Similarly, we can relate Π(MT,2)
V V ,Π(AL,1)

V V ,Π(AL,2)
V V to one loop

integrals

Π
(MT,2)
V V =

1
2ν2

∫
q ′,ν′

D(q ′, iν′)D(q ′, iν′ + iν)

·
[
|ν′ + ν| − |ν′|

] γq̂ ′

|q ′|
[
π(MT)

V V (q
′,ν′ + ν)−π(MT)

V V (q
′,ν′)

]
,

(F.53)

Π
(AL,1)
V V +Π(AL,2)

V V = −
1

2ν2

∫
q ′,ν′

D(q ′, iν′)D(q ′, iν′ + iν)
[
π(AL)

V V (q
′,ν+ ν′)−π(AL)

V V (q
′,ν′)

]2
, (F.54)

where we have new definitions for the one-loop integrals

π(MT)
V V (q

′,ν′) =∫
k,ω

[
V
(

k +
q ′

2
, q̂
)
− V

(
k −

q ′

2
, q̂
)]2

f (k,q ′)2G
(

k −
q ′

2
, iω
)

G
(

k +
q ′

2
, iω+ iν′

)
,

(F.55)
π(AL)

V V (q
′,ν′) =∫

k,ω

[
V (k +

q ′

2
, q̂)− V (k −

q ′

2
, q̂)
]

f (k,q ′)2G
(

k +
q ′

2
, iω+ iν′

)
G
(

k −
q ′

2
, iω
)

.
(F.56)
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When evaluating these integrals, we find that the inversion parity of f doesn’t play a role
and the inversion parity of V alone determines the final result. Hence, we arrive at the more
general result

ΠV V (q = 0, iν)≈ N f C0,V +

{
0 , V is inversion-odd ,

Cz,V |ν|
4−z

z , V is inversion-even .
(F.57)

F.7 From boson self energy to conductivity

Finally, we relate the boson self energy to the conductivity. For a general order parameter form
factor f (k,q), it is useful to decompose the current operator at zero momentum J(t) in the
following way (see Section 3.2) with implicit summation over repeated fermion flavor indices,

J(t) = J0(t) +
1√
N f

J1(t) , (F.58)

J0(t) =
∫

k
v(k)ψ†

i (k)ψ
†
i (k) , J1(t) =

∫
k,q
[∂k f (k,q)]φ(q)ψ†

i

(
k +

q
2

)
ψi

(
k −

q
2

)
. (F.59)

Using the standard Kubo formula, we can relate the conductivity to the current-current corre-
lation function

σi j(ω) =
i
ω

[
D− GR

J i J j (q = 0,ω)
]

. (F.60)

The diamagnetic term D contributes to the Drude weight but not to the incoherent conductiv-
ity. Therefore, we focus on GR

J i J j . Using the decomposition of the current operator above, we
can write

GR
J i J j (q = 0,ω) = GR

J0J0
(q = 0,ω) +

2√
N f

GR
J0J1
(q = 0,ω) +

1
N f

GR
J1J1
(q = 0,ω) . (F.61)

The diagrams in GR
J1J1
(q = 0,ω) and GR

J0J1
(q = 0,ω) that contribute to the conductivity to

leading two orders in the 1/N f expansion are shown in Figure 7. By scaling arguments, one
can demonstrate that the frequency dependent parts of GR

J0J1
(q = 0,ω) and GR

J1J1
(q = 0,ω)

are both less singular than ω(4−z)/z for all values of 2< z ≤ 3.

GR
J0J1

GR
J1J1

vk vk

fk

fk

∇kfk∇kfk

∇kfk ∇kfk ∇kfk ∇kfk

Figure 7: Additional diagrams that contribute to the conductivity but not the boson
self energy. The solid square is a source for J0(q = 0,Ω) and the cross is a source for
J1(q = 0,Ω). The vertex factors are marked explicitly for clarity. In the lower right
diagram, the double wiggly line corresponds to a geometric sum of one-loop bubble
diagrams that all contribute to the same order in 1/N f .
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Finally we evaluate GR
J0J0
(q = 0,ω) to leading two orders in the 1/N f expansion. The

leading order term is O(N f ) and corresponds to a geometric series of one-loop bubbles that
contribute to the Drude weight. The subleading O(1) term comes from diagrams that are
structurally identical to Figure 6 but with external vertices f (k,q) replaced by velocities
vk = ∇kε(k). Since vk is inversion-odd independent of the order parameter symmetry, we
can simply apply Eq. (F.57 ). We therefore conclude that to leading two orders in the 1/N f
expansion, all diagrams contributing to the conductivity have a frequency scaling less singular
than ω−2(z−2)/z . This leads to the conclusion in Eq. (F.10 ).
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