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Abstract

Natural optical activity is the paradigmatic example of an effect originating in the weak
spatial inhomogeneity of the electromagnetic field on the atomic scale. In molecules,
such effects are well described by the multipole theory of electromagnetism, where the
coupling to light is treated semiclassically beyond the electric-dipole approximation.
That theory has two shortcomings: it is limited to bounded systems, and its building
blocks – the multipole transition moments – are origin dependent. In this work, we recast
the multipole theory in a translationally-invariant form that remains valid for crystals.
Working in the independent-particle approximation, we introduce “intrinsic” multipole
transition moments that are origin independent and transform covariantly under gauge
transformations of the Bloch eigenstates. Electric-dipole transitions are given by the
interband Berry connection, while magnetic-dipole and electric-quadrupole transitions
are described by matrix generalizations of the intrinsic magnetic moment and quantum
metric. In addition to multipole-like terms, the response of crystals at first order in the
wavevector of light contains band-dispersion terms that have no counterpart in molec-
ular theories. The full response is broken down into magnetoelectric and quadrupolar
parts, which can be isolated in the static limit where electric and magnetic fields be-
come decoupled. The rotatory-strength sum rule for crystals is found to be equivalent to
the topological constraint for a vanishing chiral magnetic effect in equilibrium, and the
formalism is validated by numerical tight-binding calculations.
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1 Introduction

As the wavelength of optical radiation is large compared to atomic dimensions, the interaction
of light with matter is generally well described by taking the long-wavelength limit (electric-
dipole approximation). In that approximation, the response of the medium to an electromag-
netic perturbation is treated as local in space. When nonlocality is taken into account, the
response acquires a dependence on the wavevector q of light, and this is known as spatial
dispersion [1,2].

Although the effects of spatial dispersion can often be treated as small corrections, they are
significant in that they lead to qualitatively new phenomena. One example is natural optical
activity [1], whose most familiar manifestation is the rotation of the plane of polarization of
linearly-polarized light travelling through chiral molecules in solution. Lesser-known mani-
festations of spatial dispersion include gyrotropic birefringence and nonreciprocal directional
dichroism [3, 4]; these are magneto-optical effects that occur in acentric magnetic materials
without requiring a net magnetization.

Because of the fundamental and industrial importance of chiral molecules, molecular quan-
tum theories of natural optical activity – and, by extension, of other spatially-dispersive optical
effects – have been developed over many decades, on the basis of the multipole theory of elec-
tromagnetism [5–8]. This has led to the development, starting in the mid 1990s, of several ab
initio methods for calculating optical rotatory dispersion and natural circular dichroism spectra
of molecules. Some of those methods rely on sum-over-states formulas [9]; in others, the ex-
plicit summation over a truncated set of excited states is avoided using either static-limit [10]
or finite-frequency [11] linear-response schemes, or real-time propagation approaches [11,12]
(see Refs. [13–15] for reviews).

By comparison, there have been relatively few attempts to formulate bulk theories of opti-
cal spatial dispersion [16–18], particularly within the one-electron band picture [19–26]. As
a result, only a small number of ab initio calculations of natural optical activity [20,21,27–29]
and of nonreciprocal directional dichroism [30, 31] have been carried out for crystals. Such
effects provide valuable information about broken structural and magnetic symmetries, and
their study in novel bulk [30–32] and quasi-two-dimensional [33–37] materials calls for im-
proved theoretical descriptions.
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In this work, we develop a microscopic theory of optical spatial dispersion in crystals that is
firmly rooted in the molecular multipole theory. We work in the independent-particle approx-
imation neglecting local-field effects [21], and focus on the electronic response with frozen
ions. We proceed by evaluating the optical conductivity at first order in q, including both in-
terband and intraband contributions, and arrive at a sum-over-states expression in terms of
well-defined multipole-like transition moments.

To set the stage, let us introduce the multipole transition moments as defined in the stan-
dard molecular theory [7,8]. The electric dipole (E1) appears at leading order in the multipole
expansion, followed at the next order by the magnetic dipole (M1) and electric quadrupole
(E2). These are the needed ingredients to describe natural optical activity, gyrotropic birefrin-
gence, and nonreciprocal directional dichroism. In the independent-particle approximation,
they take the form

dnl = −e〈φn|r|φl〉 , (1a)

mnl = −
e
2
〈φn|r× v|φl〉 , (1b)

qab
nl = −e〈φn|rarb|φl〉 , (1c)

where φn(r) and φl(r) are occupied and empty energy eigenstates of the molecule, respec-
tively, and −e is the electron charge. (The M1 transition moment also has a spin part; we omit
it for now, but it will be included later.)

In trying to extend the multipole theory to periodic crystals, one is faced with the problem
of how to define the transition moments when the molecular orbitals φn(r) are replaced by
Bloch eigenstates ψnk(r) = eik·runk(r), given that the matrix elements in Eq. (1) involve the
nonperiodic position operator r. For E1 transitions between nondegenerate bands n and l,
there is a well-known prescription, namely dnl(k) = −e〈unk|i∂kulk〉 [38,39].

The situation is less clear when it comes to defining M1 and E2 transition moments in the
Bloch representation. Already for molecules, their definitions in Eq. (1) are somewhat prob-
lematic, as they give values that change under a rigid shift of the coordinate system. Molecular
properties should be origin independent, and for spatially-dispersive optical coefficients that is
generally ensured by a cancellation between the origin dependences of different terms of the
same order in the multipole expansion [6–9]. This is not entirely satisfactory from a formal
standpoint, and moreover it leads to slightly origin-dependent numerical results, because the
cancellation is not exact for incomplete basis sets [8,9].

In our independent-particle formulation, the optical conductivity at first order in q is writ-
ten in terms of “intrinsic” multipole transition moments Ē1, M̄1, and Ē2 that are origin in-
dependent and well defined for both molecules and crystals. For molecules, these modified
transition moments take the form

d̄nl = −e〈φn|r− (r̄n + r̄l)/2|φl〉 , (2a)

m̄nl = −
e
2
〈φn| [r− (r̄n + r̄l)/2]× v|φl〉 , (2b)

q̄ab
nl = −e〈φn|
�

ra −
�

r̄a
n + r̄a

l

�

/2
��

rb −
�

r̄ b
n + r̄ b

l

�

/2
�

|φl〉 . (2c)

As they are defined relative to an intrinsic origin located halfway between the centers
r̄n = 〈φn|r|φn〉 and r̄l = 〈φl |r|φl〉 of the two orbitals, the matrices d̄, m̄, and q̄ are manifestly
origin independent. For crystals, we find that they acquire “quantum-geometric” forms when
expressed in terms of the cell-periodic Bloch eigenstates: d̄ is given by the interband Berry con-
nection, while m̄ and q̄ are described by generalizations – with both intraband and interband
parts – of the intrinsic orbital moment [40] and of the quantum metric [41], respectively.
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The intraband orbital moment and quantum metric were already known to contribute to
the spatially-dispersive optical response in metals [23–25]; we clarify that the quantum metric
appears quite generally and not just in two-band models, and identify additional Fermi-surface
terms. As for the interband counterparts of the intrinsic orbital moment and quantum metric,
they had not been clearly identified in previous theoretical studies of spatial dispersion in
band insulators [19–22], where the optical matrix elements were written in velocity form, and
without isolating the magnetic and quadrupolar parts.

The paper is organized as follows. In Sec. 2, we introduce some basic definitions and
relations. Section 3 contains the derivation and analysis of our main result: an expression
for the bulk optical conductivity at first order in q. The derivation is split into several steps.
We start in Sec. 3.1 from the Kubo formula for the frequency- and wavevector-dependent
optical conductivity in the velocity gauge. That formula suffers from apparent divergences
at zero frequency, and we recast it in a form that is manifestly divergence free. We then
expand the Kubo formula to linear order in q, treating the q dependence coming from the
band dispersion and from the matrix elements in Secs. 3.2 and 3.3, respectively. In Sec. 3.4,
we convert the optical matrix elements from velocity to length form, and express them in
terms of intrinsic multipole transition moments between Bloch eigenstates. In Sec. 3.5 we
collect terms, and report the final expression for the optical conductivity at first order in q.
Finally, in Sec. 3.6 we briefly discuss its decomposition into magnetoelectric and quadrupolar
parts, and the associated physical effects in the static limit. In Sec. 4 we consider the molecular
limit of our formalism, and its relation to the standard multipole theory. The formal part of the
paper ends in Sec. 5 with an analysis of optical sum rules, and in Sec. 6 we present numerical
results for a tight-binding model. We conclude in Sec. 7 with a summary and discussion.

2 Basic definitions and relations

Consider the response of a medium to a monochromatic electromagnetic field. We work in
the “temporal gauge” [2], where the electromagnetic field is fully described by the vector
potential A(t, r) = Re

�

A(ω,q)ei(q·r−ωt)
�

. To linear order in the field amplitude, the induced
current density reads

ja(ω,q) = Πab(ω,q)Ab(ω,q) =
1

iω
Πab(ω,q)Eb(ω,q) , (3)

so that one may define an effective conductivity as σab(ω,q) = (1/iω)Πab(ω,q) [1–3]. If the
spatial dispersion is weak, the effective conductivity can be expanded as

σab(ω,q) = σab(ω,0) +σab,c(ω)qc +O(q2) , (4)

where a summation over the repeated Cartesian index c is implied. The zeroth-order term is
the optical conductivity in the long-wavelength limit, that is, in the electric-dipole approxima-
tion. The next term in the expansion captures the effects of spatial dispersion to the order of
magnetic dipoles and electric quadrupoles, and will be the focus of our study. Let us split it
into symmetric (S) vs antisymmetric (A), and into Hermitian (H) vs anti-Hermitian (AH) parts
with respect to its first two indices,

σS
ab,c = ReσH

ab,c + i ImσAH
ab,c , (5a)

σA
ab,c = ReσAH

ab,c + i ImσH
ab,c . (5b)

The H and AH parts are absorptive and reactive, respectively [1, 2]. Regarding the S and A
parts, they transform differently when time reversal T is applied to the material, that is, under

4

https://scipost.org
https://scipost.org/SciPostPhys.14.5.118


SciPost Phys. 14, 118 (2023)

reversal of its magnetic order parameter. According to the Onsager reciprocity relation [1,2],
the A part is T even, and the S part is T odd; the former describes natural optical activity,
and the latter describes spatially-dispersive magneto-optical effects. The entire σab,c tensor is
odd under spatial inversion P , and hence it vanishes in centrosymmetric systems. If both P
and T are broken but the combined PT symmetry is present, σA

ab,c vanishes but σS
ab,c can be

nonzero.

3 The bulk formula for σab,c(ω)

3.1 Kubo formula for the effective conductivity σab(ω,q)

We now specialize to a three-dimensional crystal described by a single-particle Pauli Hamilto-
nian H [38] with a local external potential, and introduce the electromagnetic perturbation
via an interaction Hamiltonian HI expressed in the velocity gauge [42]. To linear order in the
vector potential A(t, r), the interaction Hamiltonian can be written as [23]

H(η)I (t, r) =
e
2

�

Ã(η)(t, r) · v+ v · Ã(η)(t, r)
�

+
e

me
S · ∂r × Ã(η)(t, r) , (6)

where me is the electron mass, v= (1/iħh)[H, r] is the unperturbed velocity operator, and S is
the spin operator. In addition, we have defined Ã(η)(t, r) = eηtA(t, r), where the parameter
η is formally a positive infinitesimal that controls the adiabatic turning on of the coupling
between the electromagnetic field and the crystal [8,43–46].

A standard perturbative calculation yields the following Kubo formula for the optical con-
ductivity in the spectral representation [23,44],

σ
(η)
ab (ω,q) = δab

ie2N
meω

+
ie2

ħhω

∑

n,l

∫

k

flnk(q)
ωlnk(q)−ω− iη

Mab
nlk(q) . (7)

Here
∫

k =
∫

BZ dk/(2π)3, ωlnk(q) = ωl(k+ q/2)−ωn(k− q/2), where ħhωn(k) = ϵn(k) is the
band energy, and flnk(q) = fl(k+ q/2)− fn(k− q/2), where fn(k) = f [ωn(k)] is the Fermi-
Dirac occupation factor. In the first term, N is the total number of electrons per unit volume;
in the second, the matrix element is defined as

Mab
nlk(q) =
�

Ia
lnk(q)
�∗

I b
lnk(q) , (8)

where Ilnk(q) is a sum of orbital and spin contributions [23],

Iorb
lnk(q) = 〈ul(k+ q/2)|v(k)|un(k− q/2)〉 , (9a)

Ispin
lnk (q) =

i gs

2me
〈ul(k+ q/2)|S|un(k− q/2)〉 × q . (9b)

In Eq. (9a), v(k) = (1/ħh)∂kH(k) with H(k) = e−ik·rHeik·r, and in Eq. (9b), gs ≈ 2 is the spin
g-factor of the electron. Henceforth, the index k will be omitted for brevity.

The 1/ω prefactors in Eq. (7), inherited from Eq. (3), make it singular at ω = 0. That
singularity is only apparent [46], and it can be removed as follows. First, split Eq. (7) into
reactive and absorptive parts using limη→0+(x − iη)−1 = 1/x + iπδ(x). Next, notice that the
reactive part can be rewritten by invoking the Kramers-Krönig relation

σAH
ab (ω0,q) = −

i
π

P

∫ ∞

−∞
dω

σH
ab(ω,q)

ω−ω0
, (10)
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while in the absorptive part the factor 1/ω can be replaced with 1/ωln thanks to the delta
function. Finally, recombine the two parts to obtain

σab(ω̃,q) =
e2

ħh

∑

n,l

∫

k

Eln(ω̃,q)Mab
nl (q) , (11)

where we have defined ω̃=ω+ iη and

Eln(ω̃,q) =
fln(q)
ωln(q)

i
ωln(q)− ω̃

. (12)

At zeroth order in q Eq. (11) reduces to Eq. (25) of Ref. [46], and at first order it becomes,
in the notation of Eq. (4),

σab,c(ω̃) =
e2

ħh

∑

n,l

∫

k

�

E ,c
ln(ω̃)M

ab
nl (0) + Eln(ω̃,0)Mab,c

nl

�

. (13)

In Sec. 5, we discuss how the equivalence between the Kubo formulas (7) and (11) at zeroth
and first orders in q is related to the oscillator-strength and rotatory-strength sum rules, re-
spectively. In the context of tight-binding calculations the diamagnetic term in Eq. (7) changes
form [47], while Eq. (11) remains unchanged.

In the following subsections, we evaluate the expansion coefficients of the E and M ma-
trices appearing in Eq. (13). We start in Sec. 3.2 with the expansion of E , and then devote
Secs. 3.3 and 3.4 to the expansion and subsequent manipulations of M, which is where our
treatment differs more substantially from that of previous works.

The terms in the resulting expression for σab,c(ω̃) can be classified as either “band dis-
persive” or “molecular”, depending on whether or not they vanish for a crystal composed of
nonoverlapping units. The first term in Eq. (13) is clearly band dispersive, because the quan-
tity E ,c

ln(ω̃) involves the band velocities vn = ∂kωn (see Eqs. (14c) and (14d) below). While
less obvious, the second term in Eq. (13) is not purely molecular; as we will see, it has a
band-dispersion component that went unnoticed in previous works [19,22].

3.2 Expansion in q of the band-energy terms

When expanding Eq. (12) in powers of q, the intraband (l = n) and interband (l ̸= n) parts
must be treated separately. To first order in q, one finds

Enn(ω̃,0) = −
i
ω̃

f ′n , (14a)

Eln(ω̃,0) = i
fln

ωln
(ωln + ω̃)Zln(ω̃) , (14b)

E ,c
nn(ω̃) = −

i
ω̃2

f ′n vc
n , (14c)

E ,c
ln(ω̃) =

i
2

vc
l f ′l + vc

n f ′n
ωln

(ωln + ω̃)Zln(ω̃)

− i fln
Z2

ln(ω̃)

ω2
ln

�

(ωln + ω̃)
2 (ωln − ω̃/2)
�

(vc
l + vc

n) , (14d)

where f ′n = ∂ fn/∂ωn, fln = fl − fn, ωln = ωl −ωn, and Zln(ω̃) = 1/(ω2
ln − ω̃

2). For the
intraband identities, we used

fnn(q)
ωnn(q)

= f ′n +O(q2) , (15)

which follows fromωnn(q) = (∂aωn)qa+O(q3) and fnn(q) = (∂a fn)qa+O(q3), where ∂a = ∂ka
.
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3.3 Expansion in q of the optical matrix elements

3.3.1 Nondegenerate bands

Energy eigenstates are only defined up to overall phase factors, and observable quantities can-
not depend on this phase arbitrariness. In the case of nondegenerate Bloch bands, physical
observables must remain invariant under single-band quantum-mechanical “gauge transfor-
mations” of the form |un〉 → e−iβn |un〉, where βn is a real function of k.

As the M matrix defined by Eqs. (8) and (9) is clearly gauge invariant, the same must
be true for its expansion coefficients entering Eq. (13) for σab,c(ω̃). When evaluating those
coefficients, we would like to insist that each individual contribution – and not just their sum –
is gauge invariant. Doing so will lead to a physically transparent and numerically robust ex-
pression for σab,c(ω̃) in terms of origin-independent quantities.

The coefficient Mab(0) appearing in the first term of Eq. (13) is trivially gauge invariant,
as it involves a single term,

Mab
nl (0) = va

nl v
b
ln , (16)

which is a product of gauge-covariant velocity matrix elements (clearly, those matrix elements
are also origin independent). Instead, the coefficient Mab,c appearing in the second term
comprises several terms, not all of which are individually gauge invariant. The problem-
atic terms are those that contain matrix elements such as 〈un|va|∂cul〉, because Bloch-state
derivatives transform noncovariantly as |∂kun〉 → e−iβn (|∂kun〉 − i(∂kβn)|un〉). This can be
fixed by writing |∂kun〉 as |Dkun〉− iAn|un〉, where |Dkun〉 is the covariant derivative [39] and
An = 〈un|i∂kun〉 is the intraband Berry connection. The terms containing Berry connections
cancel out, leaving

Mab,c
nl =

1
2

�

va
nl〈Dcul |vb|un〉+ 〈un|va|Dcul〉vb

ln − 〈Dcun|va|ul〉vb
ln − va

nl〈ul |vb|Dcun〉
�

+
i gs

2me

�

εacdSd
nl v

b
ln − εbcdSd

lnva
nl

�

, (17)

where every term is a gauge-invariant product of gauge-covariant matrix elements, just like in
Eq. (16).

3.3.2 Degenerate bands

Gyrotropic birefringence and nonreciprocal directional dichroism occur in antiferromagnetic
crystals such as Cr2O3 [3, 4], where the energy bands are doubly degenerate at every k as
a result of the combined PT symmetry [48]. To treat such cases, we introduce degeneracy
indices λ and ν for the Bloch states in bands l and n, respectively. The Kubo formula (11)
remains unchanged, but the matrix element therein becomes a trace over the degeneracy
indices, Mab

nl =
∑

λ,ν (I
a
lλ,nν)

∗ I b
lλ,nν. The reasoning leading up to Eq. (17) follows through,

provided that the covariant derivative is generalized as |Dkunν〉 = |∂kunν〉+ i
∑

ν′ |unν′〉Aν′ν
n ,

where Aν′ν
n = 〈unν′ |i∂kunν〉 [39]. The object |Dkunν〉 transforms covariantly under multiband

gauge transformations of the form |unν〉 →
∑

ν′ |unν′〉Uν
′ν

n , where Un is a k-dependent uni-
tary matrix in the degeneracy indices. To alleviate the notation, from now on we will assume
nondegenerate bands.

3.4 Conversion to length (multipole) form

As we started out from the Kubo formula in the velocity gauge, the optical matrix elements
(16) and (17) entering Eq. (13) for σab,c(ω̃) are written in terms of the velocity operator.
Now, we would like to recast those matrix elements in a “length form” that brings out their
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multipole character. In the case of molecules [9, 49], this is achieved by means of identities
such as 〈φl |v|φn〉= iωln〈φl |r|φn〉.

In periodic crystals, where the velocity operator is given by the gradient of the Hamiltonian,
the conversion from velocity to length form follows from the identity

(∂kH)|un〉= (∂kϵn)|un〉 − (H − ϵn)|Dkun〉 , (18)

which can be obtained by differentiating H|un〉 = ϵn|un〉, and then writing |∂kun〉 as
|Dkun〉 − iAn|un〉. Contracting with 〈ul | gives vln = δlnvn + iωlnAln, where vn is the band
velocity, and

Aln = 〈ul |iDun〉= (1−δln)〈ul |i∂kun〉=

¨ vln
iωln

, if l ̸= n ,

0 , if l = n ,
(19)

is the interband Berry connection.
With Eqs. (18) and (19), one can split Eq. (17) for Mab,c

nl as

Mab,c
nl = i
�

va
nl B

bc
ln − vb

lnBac
nl

�

+
ωln

2

�

(va
n + va

l )A
b
lnAc

nl + (v
b
n + vb

l )A
a
nlA

c
ln

�

, (20)

where we have defined

Bbc
ln =

1
2iħh
(〈Dbul |H − ϵl |Dcun〉 − 〈Dcul |H − ϵn|Dbun〉)−

gs

2me
εbcdSd

ln . (21)

The first term in Eq. (20) is molecular for l ̸= n and band dispersive for l = n, whereas
the second term is purely band dispersive and vanishes for l = n (the distinction between
molecular and band-dispersive contributions was introduced in Sec. 3.1).

From the gauge-covariant and Hermitian matrices Aa and Bbc , we can now define for crys-
tals the intrinsic multipole transition moments that were introduced in Eq. (2) for molecules.
The intrinsic electric-dipole matrix is d̄a = −eAa, while the intrinsic magnetic-dipole and
electric-quadrupole matrices are related to the antisymmetric and symmetric parts of Bbc as
follows,

m̄a
ln =

e
2
εabcB

bc
ln , (22a)

q̄bc
ln =

ie
ωln

�

Bbc
ln + Bcb

ln

�

. (22b)

Thus,

d̄nl = −e〈un|iDkul〉 , (23a)

m̄ln =
e

2iħh
〈Dkul | ×
�

H −
ϵl + ϵn

2

�

|Dkun〉 −
egs

2me
Sln , (23b)

q̄bc
ln = −

e
2
(〈Dbul |Dcun〉+ 〈Dcul |Dbun〉) , (23c)

where m̄ln comprises orbital and spin contributions. By expanding the covariant derivatives
and then setting l = n, one finds that d̄nn = 0 [see Eq. (19)], and that m̄nn and −q̄bc

nn/e are
respectively the intrinsic magnetic moment mn [40] and the quantum metric g bc

n [41] of a
Bloch eigenstate.
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Using Eq. (19) for Aln together with the completeness relation, Eq. (23) can be recast in a
more convenient form for numerical work,

d̄nl =

¨

ie vnl
ωnl

, if l ̸= n ,

0 , if l = n ,
(24a)

m̄orb
ln =

e
4i

∑

p ̸=l,n

�

1
ωpl
+

1
ωpn

�

vl p × vpn , (24b)

q̄bc
ln = −

e
2

∑

p ̸=l,n





vb
lpvc

pn

ωplωpn
+ (b↔ c)



 . (24c)

As they are written in terms of matrix elements of the velocity operator, these expressions are
manifestly origin independent. The correspondence with the molecular expressions in Eq. (2)
will be established in Sec. 4.

In the case of degenerate bands, Eq. (23) gets modified in the manner described in
Sec. 3.3.2. The modified Eq. (24) remains nonsingular, as its energy denominator only con-
tains energy differences between nondegenerate bands.

There is at present considerable interest in quantum-geometric quantities associated with
interband optical responses [50]. In this regard, we note that the quantity −q̄bc

ln /e is dis-
tinct from the “band-resolved quantum metric” g bc

ln =
�

Ab
lnAc

nl + Ac
lnAb

nl

�

/2 that has been in-
troduced in connection with nonlinear optical responses [51–53]. The quantity g bc

ln is gauge
invariant for every l and n, and when summed over l it gives the quantum metric of band n,
g bc

n = Re 〈∂bun|∂cun〉 −Ab
nAc

n. Instead, −q̄bc
ln /e is gauge covariant for l ̸= n, and for l = n it

reduces to g bc
n .

3.5 Final expression

We have now gathered all the needed ingredients to evaluate Eq. (13) for σab,c(ω̃), namely
the expansion coefficients of E in Eq. (14), and those of M in Eqs. (16) and (20). In Eqs. (26)
and (31) below, we break down the resulting expression into antisymmetric (T -even) and
symmetric (T -odd) parts. The real and imaginary parts of those two equations are either
absorptive or reactive, as per Eq. (5).

To arrive at Eqs. (26) and (31), several terms containing double band summations were
eliminated by exchanging the l and n indices (note also that the l = n terms therein vanish,
because fnn = ωnn = Aa

nn = 0). Those equations are written in terms of the Aa and Bbc

matrices, which in turn are related to the intrinsic multipole transition moments by

Aa
nl = −

1
e

d̄a
nl , Bbc

ln =
1
e

m̄a
lnεabc +

ωln

2ie
q̄bc

ln . (25)

According to Eq. (24), the Aa and Bab matrices depend exclusively on band energies and
interband velocity matrix elements. From the restrictions imposed on these quantities by the
presence of P , T , or PT symmetry [48], the restrictions on Aa and Bab can be deduced. In
this way, it may be verified that the expressions given below satisfy the symmetry constraints
discussed at the end of Sec. 2.
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3.5.1 Antisymmetric (time-even) part

The antisymmetric part of σab,c(ω̃) takes the form

ħh
e2
σA

ab,c(ω̃) = ω̃
∑

n,l

∫

k

Zln(ω̃)
§

− flnIm
�

Aa
nl B

bc
ln − (a↔ b)
�

+ fln

�

1
2

�

va
n + va

l

�

Im
�

Ab
nlA

c
ln

�

− (a↔ b)
�

+ fln

�

3ω2
ln − ω̃

2
�

Zln(ω̃)Im
�

Aa
nlA

b
ln

� 1
2

�

vc
n + vc

l

�

− f ′nωlnIm
�

Aa
nlA

b
ln

�

vc
n

ª

+
1
ω̃

∑

n

∫

k

f ′n
�

va
n Bbc

nn − vb
n Bac

nn

�

. (26)

The five terms in this expression can be classified as follows. The first is molecular, while
the others are band dispersive; the four inside curly brackets are interband, while the fifth is
intraband; and the first three are Fermi-sea-like, while the last two are Fermi-surface-like.

In insulators and cold semiconductors, only the Fermi-sea terms survive, and one can com-
pare with previous treatments of optical activity in nonconducting crystals. In Refs. [19, 22],
the sole band-dispersion contribution to σA

ab,c(ω̃) came from differentiating the E matrix, that
is, from the first term of Eq. (13) for σab,c(ω̃). It went unnoticed in those works that the
other term in that equation – where one differentiates the M matrix instead – is not purely
molecular, as shown in Eq. (20). This is why we have not two but three Fermi-sea terms in
Eq. (26), one molecular and two band dispersive.

In conductors, the Fermi-surface terms contribute as well. Using Eq. (25), the last term in
Eq. (26) becomes (εacd Kbd − εbcd Kad)/(eω̃), where

Kab = −
∑

n

∫

k

f ′n va
n mb

n =
∑

n

∫

k

fn∂amb
n . (27)

This intraband contribution to optical activity involving the intrinsic magnetic moment of con-
duction electrons was identified in Refs. [23,24], and was evaluated for p-doped tellurium in
Refs. [28, 54]. The fourth term in Eq. (26) gives an additional interband contribution to the
optical activity of conductors that was overlooked in previous works.

The low-frequency behavior of the optical rotatory dispersion is different in insulators and
in conductors. For simplicity, let us consider the propagation of light along the optical axis z
of a uniaxial crystal. The rotatory power is given by [1]

ρ(ω,τ) =
ω

2c2ε0
Re
�

σA
x y,z(ω+ iτ−1)
�

, (28)

where ε0 is the vacuum permittivity and c is the speed of light. To deal with absorption, the
positive infinitesimal η in ω̃=ω+ iη has been reinterpreted heuristically as a phenomenologi-
cal scattering rate τ−1 [6,46,55]. For frequencies and scattering rates well below the threshold
for interband transitions, ω,τ−1≪ωgap, Eq. (26) yields

ρ(ω,τ) =
(ωτ)2

1+ (ωτ)2
a+ bω2 . (29)

The coefficient b comes from the interband terms which have ω̃ prefactors, and
a = −(e/c2ε0ħh)Kx x (with Kx x = Ky y) comes from the intraband term with a 1/ω̃ prefactor.
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In insulators the coefficient a vanishes, and hence the rotatory power displays the familiar ω2

dependence at low frequencies [6]; in conductors that coefficient is nonzero, and one can
distinguish two different regimes as follows,

ρ(ω,τ)≃

¨

(τ2a+ b)ω2 , if ωτ≪ 1 ,

a+ bω2 , if ωτ≫ 1 .
(30)

In Sec. 6, we will illustrate these low-frequency profiles for a concrete tight-binding model.

3.5.2 Symmetric (time-odd) part

The symmetric part of σab,c(ω̃) reads

ħh
e2
σS

ab,c(ω̃) = i
∑

n,l

∫

k

Zln(ω̃)
§

flnωlnRe
�

Aa
nl B

bc
ln + (a↔ b)
�

+ flnωln

�

1
2

�

va
n + va

l

�

Re
�

Ab
nlA

c
ln

�

+ (a↔ b)
�

− flnω
3
lnZln(ω̃)Re
�

Aa
nlA

b
ln

� �

vc
n + vc

l

�

+ f ′nω
2
lnRe
�

Aa
nlA

b
ln

�

vc
n

ª

−
i
ω̃2

∑

n

∫

k

f ′n va
n vb

n vc
n . (31)

The first three terms are Fermi-sea-like, and can be compared with the expressions obtained
for insulators in Ref. [22]. The third is band dispersive, and it corresponds to Eq. (31) in that
work, while the first two add up to Eq. (30) therein, revealing its mixed molecular/dispersive
character.

The remaining two terms in Eq. (31) are Fermi-surface-like, and they can be compared
with the expressions obtained for metals in Ref. [25]. The last term was identified in that
work. Writing ω2

lnZln(ω̃) as 1+ ω̃2Zln(ω̃) and noting that Re
∑

l Aa
nlA

b
ln is the quantum metric

gab
n = −q̄ab

nn/e [this can be seen from Eqs. (19) and (24c)], the fourth term in Eq. (31) splits
into intraband and interband parts as follows,

i
∑

n

∫

k

f ′n gab
n vc

n + iω̃2
∑

n,l

∫

k

f ′n Zln(ω̃)Re
�

Aa
nlA

b
ln

�

vc
n . (32)

The intraband piece is similar to the quantity Kab in Eq. (27), but with the intrinsic magnetic
moment replaced by the quantum metric (intrinsic quadrupole moment). An equivalent result
was obtained in Ref. [25] for two-band models, but without invoking the identities leading up
to Eq. (32), which is what allowed us to isolate a quantum-metric contribution in the general
multiband case.

3.6 Magnetoelectric and quadrupolar responses

As recognized in Ref. [3], the physical basis for σab,c(ω) is provided by quadrupolar and mag-
netoelectric couplings. The quadrupolar couplings are described by a T -odd totally-symmetric
tensor γabc(ω), and the magnetoelectric ones by a T -odd traceless tensor α̃ab(ω) together with

11

https://scipost.org
https://scipost.org/SciPostPhys.14.5.118


SciPost Phys. 14, 118 (2023)

a T -even tensor α̌ab(ω). Those tensors are defined as [3,22]

γabc(ω) =
1
3i

�

σS
ab,c(ω) +σ

S
bc,a(ω) +σ

S
ca,b(ω)
�

, (33a)

α̃ab(ω) =
1
3i
σS

ac,d(ω)εcd b , (33b)

α̌ab(ω) =
1
4i
εbcd

�

σA
cd,a(ω)− 2σA

ac,d(ω)
�

, (33c)

so that

σS
ab,c(ω) = i [εacd α̃bd(ω) + εbcd α̃ad(ω)] + iγabc(ω) , (34a)

σA
ab,c(ω) = i [εacd α̌bd(ω)− εbcd α̌ad(ω)] . (34b)

Inserting Eq. (34) in Eq. (3) for the induced current density and then using the Maxwell-
Faraday equation yields the constitutive relation

jω,q
a = (∇×Mω,q)a + [α̃ab(ω)− α̌ab(ω)]∂t B

ω,q
b + γabc(ω)∇bEω,q

c , (35)

where Xω,q denotes X(ω,q)ei(q·r−iωt), and Mω,q
a = [α̃ba(ω) + α̌ba(ω)] Eω,q

b .
In the quasi-static limit the electric and magnetic fields become decoupled, and the three

terms in Eq. (35) describe separate physical responses. The first corresponds to a magnetiza-
tion current induced by a uniform electric field; the second to a current induced by a time-
varying magnetic field; and the third to a current induced by a spatially-varying electric field.
The first two are direct and inverse magnetoelectric effects [1], and the third is an electric
quadrupolar effect.

The T -even magnetoelectric tensor α̌ab describes a “kinetic” magnetoelectric effect in gy-
rotropic conductors [56], while the T -odd tensor α̃ab describes magnetoelectric effects in both
insulators and conductors. In the case of insulators, the inverse magnetoelectric response can
be expressed as as a polarization current, ∂t P

ω,q
a = α̃ab(ω)∂t B

ω,q
b ; integrating the adiabatic

current in the quasi-static limit, one obtains the familiar form Pa = α̃abBb of the inverse mag-
netoelectric effect [1]. The full T -odd magnetoelectric tensor includes an additional trace
(“axion”) piece (θ e2/2πh)δab; the axion angle θ is boundary sensitive [39], and this is why it
is not captured by the present formalism, which is based on the electromagnetic response of a
bulk medium.

Quantum-mechanical expressions for the static magnetoelectric and quadrupolar suscep-
tibilities can be obtained by inserting in Eq. (33) the formulas given in Sec. 3.5 for σS

ab,c(ω)
and σA

ab,c(ω), evaluated at ω = 0. This has been done in previous works for selected terms
only: in Ref. [22], the Fermi-sea orbital contribution to α̃ab(0) was shown to give the traceless
part of the orbital magnetoelectric susceptibility tensor of insulators [57]; and in Ref. [23],
the intraband contribution to α̌ab(0) was shown to reproduce the kinetic magnetoelectric sus-
ceptibility obtained from Boltzmann transport in the relaxation time approximation combined
with the modern theory of orbital magnetization [58].

Compared to those previous works, the present formalism provides a more complete de-
scription. In particular, it captures T -odd magnetoelectric and electric-quadrupolar effects in
conductors that so far have only been treated semiclassically [25, 59–61], and which were
found to involve the quantum metric. A detailed account of magnetoelectric and electric-
quadrupolar responses on the basis of the present formalism will be given in a separate work.

4 Molecular limit

In this section, we analyze the molecular limit of our formalism. First, we show how in that
limit the bulk expressions for the intrinsic transition moments d̄, m̄, and q̄ reduce to those in
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Eq. (2). We then show how the formulas for σA
ab,c(ω̃) and σS

ab,c(ω̃) reduce to the standard
molecular expressions in terms of the ordinary transition moments d, m, and q in Eq. (1).

Consider an idealized molecular crystal composed of nonoverlapping units. For such a
crystal, the cell-periodic Bloch states assume the form [62,63]

unk(r)
.
= e−ik·ξ(r)φn[ξ(r)] , (36)

where ξ(r) = r−R(r) is the intracell coordinate, R(r) is the lattice vector that folds the absolute
coordinate r into the home unit cell, φn(r) is vanishingly small outside that cell, and

.
= denotes

an equality that only holds in the molecular limit. The intraband Berry connection can now
be easily evaluated by integrating over the home cell,

An
.
=

∫

cell

dr φ∗n(r)e
ik·r i∂k

�

e−ik·rφn(r)
�

= r̄n , (37)

and the covariant derivative of a Bloch state reduces to

Dkunk(r)
.
= −ie−ik·r (r− r̄n)φn(r) , (38)

for r in the home cell. Using this identity in Eq. (23) for d̄, m̄, and q̄, we recover after some
manipulations the expressions in Eq. (2). In the case of m̄, it is necessary to invoke the operator
identity [va, rb] = [vb, ra] to rewrite (r× v− v× r)/2 as r× v.

With these relations in hand, we can address the molecular limit of Eqs. (26) and (31) for
σA

ab,c(ω̃) and σS
ab,c(ω̃). Since the energy bands become dispersionless in that limit, all band-

dispersion terms in those equations vanish, leaving only the first term in each of them; and
since the transition moments also become independent of k, we can set

∫

k
.
= 1/Vc in those

terms (Vc is the cell volume) to find

Vcσ
A
ab,c

.
= Ḡ′adεd bc +

ω̃

2
āabc − (a↔ b) , (39a)

iVcσ
S
ab,c

.
= −Ḡadεd bc +

ω̃

2
ā′abc + (a↔ b) , (39b)

where we dropped the ω̃ dependence for brevity, and defined the (extensive) molecular tensors

Ḡab =
1
ħh

∑

n,l

fnlωlnZlnRe
�

d̄a
nl m̄

b
ln

�

, (40a)

Ḡ′ab = −
1
ħh

∑

n,l

fnlω̃ZlnIm
�

d̄a
nl m̄

b
ln

�

, (40b)

āabc =
1
ħh

∑

n,l

fnlωlnZlnRe
�

d̄a
nl q̄

bc
ln

�

, (40c)

ā′abc = −
1
ħh

∑

n,l

fnl
ω2

ln

ω̃
ZlnIm
�

d̄a
nl q̄

bc
ln

�

. (40d)

Writing fnl as fn(1− fl)− fl(1− fn), the fnl factors in the expressions above can be replaced
with 2 fn(1− fl). In that form, Ḡ, Ḡ′ and ā become single-particle versions of the multipolar
susceptibility tensors G, G′ and a defined in Eqs. (2.83), (2.85) and (2.86) of Ref. [7], with one
difference: the ordinary transition moments d, m, and q have been replaced with d̄, m̄, and
q̄. It is not immediately clear that the same is true for ā′, since Eq. (40d) contains a factor of
ω2

ln/ω̃ in place of the ω̃ factor appearing in Eq. (2.84) of Ref. [7] for a′. However, those factors
are interchangeable in the expression for a′, as can be seen in the manner described around
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around Eqs. (2.75–2.78) of Ref. [7]. Thus, (Ḡ, Ḡ′, ā, ā′) are origin-independent versions of the
molecular tensors (G, G′, a, a′) entering the standard multipole theory.

Next, let us consider the propagation of light inside our idealized molecular crystal.
For a given propagation direction n̂, we define (intensive) optical-activity and gyrotropic-
birefringence tensors as βA

ab(n̂) = −σ
A
ab,c n̂c and βS

ab(n̂) = iσS
ab,c n̂c , respectively. Using

Eq. (39), we obtain Eqs. (5.8) and (5.9) of Ref. [7] for those tensors, but with (Ḡ, Ḡ′, ā, ā′) in
place of (G, G′, a, a′). Inserting Eq. (2) in Eq. (40), the terms containing the orbital centers
drop out from the combinations of molecular tensors appearing in Eq. (39). Thus, (d̄, m̄, q̄)
can be safely replaced by (d, m, q) for the purpose of evaluating the optical properties of an
idealized molecular crystal. This completes the proof that our formalism correctly reduces to
the standard single-particle multipole theory in the molecular limit.

In summary, we have in Eqs. (39) and (40) a reformulation of the molecular multipole
theory of optical spatial dispersion at linear order in q in terms of translationally-invariant
property tensors. This is in contrast to the standard formulation, where translational invari-
ance is achieved by a cancellation between the origin dependences of the magnetic-dipole and
electric-quadrupole terms [6–9].

5 Sum rules

In Sec. 3.1, we wrote two alternative Kubo formulas for σab(ω,q), namely Eqs. (7) and (11).
The former displays apparent 1/ω divergences at ω= 0, whereas the latter is explicitly diver-
gence free. In this section, we scrutinize the mathematical identities that underlie the equiva-
lence between those two formulas at zeroth and first order in q, and relate those identities to
the oscillator- and rotatory-strength sum rules.

5.1 Equivalence between the two forms of the Kubo formula

Let us denote as (ie2/ω)∆ab(q) the difference between the reactive parts of the Kubo formu-
las (7) and (11). Writing 1/[x(a− x)] as (1/a)[1/x + 1/(a− x)], we find

∆ab(q) = δab
N
me
+

1
ħh

∑

n,l

∫

k

fln(q)
ωln(q)

M ab
nl (q) , (41)

and using

ωln(q) = −ωnl(−q) , (42a)

fln(q) = − fnl(−q) , (42b)

M ab
nl (q) =
�

M ab
ln (−q)
�∗

, (42c)

M ab
nl (q) =
�

M ba
nl (q)
�∗

, (42d)

we obtain

Re∆ab(q) = Re∆ba(q) = Re∆ab(−q) , (43a)

Im∆ab(q) = −Im∆ba(q) = −Im∆ab(−q) . (43b)

For the two Kubo formulas to be equivalent, ∆ab(q) must vanish identically, and according to
the derivation in Sec. 3.1 this is guaranteed by the Kramers-Krönig relations. To analyze the
behavior of ∆ab(q) at zeroth and first order in q, we expand it as

∆ab(q) =∆ab(0) +∆ab,cqc +O(q2) . (44)
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Let us start with the zeroth-order term in the expansion. Writing the electron density N
in the first term of Eq. (41) as

∑

n

∫

k fn, and using the identity in Eq. (15), followed by an
integration by parts, to deal with the l = n contribution to the second term, we obtain

∆ab(0) =
∑

n

∫

k

fn





δab

me
+ 2
∑

l ̸=n

Re
�

va
nl v

b
ln

�

ϵn − ϵl
−

1

ħh2

∂ 2ϵn

∂ ka∂ kb



= 0 . (45)

The quantity in square brackets is formally real and symmetric in accordance with Eq. (43a),
and it vanishes identically by virtue of the effective-mass theorem. We note that the same
theorem was invoked in Ref. [64] to remove the apparent divergence atω= 0 in the dielectric
function of insulators and semiconductors.

In preparation for analyzing the first-order term in Eq. (44), let us compare Eq. (41) for
∆ab(q) with the ω → 0 limit of Πab(ω,q) = iωσab(ω,q) [see Eq. (3)], evaluated using the
Kubo formula (7). This gives −e2∆ab(q) = Πab(0,q), and so −e2∆ab,c = ∂qc

Πab(0,q)
�

�

q=0.
From the analysis of this quantity in Ref. [23] (see Sec. III.A.1 of its Supplemental Material),
we conclude that

∆ab,c = −
i
ħh
εabc

∑

n

∫

k

fn vn ·Ωn = 0 , (46)

where Ωn is the Berry curvature. In agreement with Eq. (43b), the expression above is purely
imaginary and antisymmetric in a and b. It vanishes identically for topological reasons, and
that amounts to a no-go theorem for the chiral magnetic effect in equilibrium [23].

In a recent work [36], an expression was derived for σab,c(ω) that contains a term diverg-
ing as 1/ω. The authors found that the prefactor of that term was neglibible for a specific
tight-binding model, but they were unable to confirm analytically that it vanishes in general.
The removal of that apparent divergence can be achieved by means of Eq. (46).

The vanishing of ∆ab(q) dictates the high-frequency behavior of the optical conductivity
as follows. Suppose there is a frequency ωmax above which the system does not absorb [6];
setting ω≫ωmax in Eqs. (11) and (12) and comparing with Eq. (41), we can deduce that

σab(ω≫ωmax,q) = δab
ie2N
ωme
−

ie2

ω
∆ab(q) . (47)

Thus, at high frequencies the optical conductivity reduces to the diamagnetic term; and since
that term is independent of q, we conclude that σab(ω,0) decays as 1/ω.

In Sec. 5.2.4 of Ref. [6], the high-frequency behavior of the optical activity of molecules
was inferred from the rotatory-strength sum rule. This is consistent with the present analysis,
because that sum rule is a direct consequence of the vanishing of ∆ab,c , as we will now show.

5.2 Optical sum rules

Consider the sum rules obtained by integrating over positive frequencies the absorptive part of
the optical conductivity, taking into account both interband and intraband absorption. Writing
∫∞

0 f (ω)dω as 〈 f (ω)〉 and using Eq. (5) yields




σH
ab(ω,q)
�

=



ReσS
ab(ω,q)
�

+ i



ImσA
ab(ω,q)
�

. (48)

To evaluate this quantity, we begin by taking the Hermitian part of Eq. (11) for η→ 0+,

σH
ab(ω,q) = −

πe2

ħh

∑

n,l

∫

k

fln(q)
ωln(q)

Mab
nl (q)δ [ω−ωln(q)] . (49)
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Making the substitution

fln(q) = fl(k+ q/2) [1− fn(k− q/2)]− fn(k− q/2) [1− fl(k+ q/2)] , (50)

and noting that at zero temperature only the second term contributes to Eq. (49) when ω> 0
and q≈ 0, we obtain




ReσS
ab(ω,q)
�

+ i



ImσA
ab(ω,q)
�

= Rab(q) + i Iab(q) , (51)

where we have defined

Rab(q) =
πe2

ħh

∑

n,l

∫

k

fn(k− q/2) [1− fl(k+ q/2)]
Re
�

Mab
nl (q)
�

ωln(q)
, (52a)

Iab(q) =
πe2

ħh

∑

n,l

∫

k

fn(k− q/2) [1− fl(k+ q/2)]
Im
�

Mab
nl (q)
�

ωln(q)
. (52b)

Let us split Rab(q) and Iab(q) in Eq. (51) into even and odd parts in q. Using the identities in
Eq. (42), one finds that the even part of Rab(q) plus the odd part of i Iab(q) is proportional to
the second term in Eq. (41) for ∆ab(q). Therefore,




ReσS
ab(ω,q)
�

=
πe2

2
[δabN/me −Re∆ab(q)] +

1
2
[Rab(q)− Rab(−q)] , (53a)




ImσA
ab(ω,q)
�

= −
πe2

2
Im∆ab(q) +

1
2
[Iab(q) + Iab(−q)] , (53b)

where we keep track of the vanishing quantity ∆ab(q).
The expansion of Eq. (53) in powers of q generates a series of sum rules. Since, according

to Eq. (43), the terms Re∆ab and Im∆ab only contribute (formally) at even and odd orders
in q, respectively, and since the reverse is true for the second terms in Eqs. (53a) and (53b),
we obtain




ReσS
ab(ω,0)
�

=
πe2

2
[δabN/me −∆ab(0)] , (54a)




ImσA
ab(ω,0)
�

= Iab(0) , (54b)
¬

ReσS
ab,c(ω)
¶

= Rab,c , (54c)
¬

ImσA
ab,c(ω)
¶

= −
πe2

2
∆ab,c , (54d)

to linear order in q. Below, we consider each of these identities in turn.
Once we set ∆ab(0) = 0 in accordance with Eq. (45), Eq. (54a) becomes the oscillator-

strength sum rule [1]



ReσS
ab(ω,0)
�

=
ω2

p

8
δab , (55)

where ωp = (4πe2N/me)1/2 is the plasma frequency. As already mentioned, for tight-binding
models the diamagnetic term in Eq. (7) changes form while Eq. (11) remains unchanged,
which leads to a modified oscillator-strength sum rule [47].

Equation (54b) is the rotatory-strength sum rule for magnetic circular dichroism. At q= 0,
the intraband part of Eq. (52b) vanishes because Mab

nn(0) is real, and from the interband part
we recover the bulk expression given in Ref. [65] for that sum rule. If a single band is occupied,
the integrated magnetic circular dichroism spectrum is proportional to the intrinsic orbital
magnetic moment of the Bloch states in that band [65,66].
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Equation (54c) is a sum rule for nonreciprocal directional dichroism. An explicit expression
can be obtained by expanding Eq. (52a) to first order in q.

Finally, by setting ∆ab,c = 0 in Eq. (54d) in accordance with Eq. (46), we arrive at the
rotatory-strength sum rule for natural circular dichroism,

¬

ImσA
ab,c(ω)
¶

= 0 . (56)

This sum rule is well known for molecules in solution [5], as well as for oriented molecules [6].
Here, we have relied on a topological argument [23] to show that it remains valid for crystals,
both insulating and conducting. Alternative discussions restricted to insulators are given in
Refs. [19,20].

The above derivation highlights the connection between the oscillator-strength and natural
rotatory-strength sum rules for crystals, and the equivalence between the Kubo formulas (7)
and (11) – that is, the vanishing of ∆ab(q) – at zero and first order in q, respectively. More
generally, the expansion of Eq. (53) in powers of q yields at each order two optical sum rules,
one of which relies on the vanishing of ∆ab(q) at that order.

6 A tight-binding example

In this section, we use numerical tight-binding calculations to validate our formalism, and to
illustrate the distinctive low-frequency profiles of the rotatory power in insulators and conduc-
tors.

As a simple model of a bulk crystal with nonzero σA
ab,c , we take the tight-binding model

of Ref. [58], which consists of honeycomb layers coupled by a chiral pattern of interlayer
hoppings. To break time-reversal symmetry, so that σS

ab,c becomes nonzero as well, we add
complex intralayer hoppings. The resulting model is depicted in Fig. 1(a), and its Hamiltonian
reads

H =∆
∑

i

ξic
†
i ci + i t1

∑

〈i, j〉

ξ jc
†
i c j +

iλ1

a

∑

〈i, j〉

c†
i

�

σ ·δi j

�

c j +
iλ2

a

∑

[i, j]

c†
i

�

σ · di j

�

c j . (57)

The first term is a staggered on-site potential, with ξi = ±1 for the two sublattices in each layer.
The second and third terms describe intralayer hoppings between nearest-neighbor sites i and
j: the second is the complex hopping responsible for breaking time reversal, and the third is a
spin-orbit coupling term; therein, σ is the vector of Pauli matrices and δi j is the vector taking
from site j to site i. The last term is the helical pattern of interlayer hoppings that renders
the model chiral, with di j the vector taking from site j to site i in adjacent layers. We choose
the distance a between nearest-neighbor sites on the same layer as the unit of length, and
the nearest-neighbor hopping amplitude t1 as the unit of energy. For our tests, we set c = 1,
∆= 0.5, λ1 = −0.06, and λ2 = 0.05.

Exploiting the translational symmetry of the crystal, we replace the site indices {i} with
{Ri}, where the lattice vector R labels the cell, and i is now an intracell site index. The Hamil-
tonian matrix elements are denoted by Hi j(R) = 〈φ0i|H|φR j〉, where φR j(r) = ϕ j(r−R−τ j) is
a basis orbital centered at R−τ j [39]. The tight-binding Hamiltonian in k space is constructed
as

Hk
i j =
∑

R

eik·(R+τ j−τi)Hi j(R) , (58)

leading to the eigenvalue equation Hk · Cnk = ϵnkCnk.
The energy bands of the model are displayed in Fig. 1(b). There are two composite groups

with two bands each, separated by a gap. We treat the lowest group as occupied, and calculate
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Figure 1: (a) The tight-binding model of Eq. (57). The crystallographic vectors are
a1 = (

p
3a, 0, 0), a2 = (

p
3a/2,3a/2,0), and a3 = (0,0, c), with a the distance be-

tween nearest-neighbor sites on the same layer, and c the interlayer distance. The
on-site energies and hoppings are indicated schematically. As shown on the right,
the complex intralayer hoppings from +∆ sites to −∆ sites have amplitude i t1; the
reverse hoppings (not shown) have amplitude −i t1. (b) Band structure of the model
for the Hamiltonian parameters given in the main text.

σA
ab,c and σS

ab,c at zero temperature using Eqs. (26) and (31), respectively. The Aa and Bab

matrices are evaluated from Eqs. (24) and (25), with effective velocity matrix elements given
by [47]

vnl(k) =
1
ħh

C†
nk · (∂kHk) · Clk . (59)

As the system is insulating, the only nonzero contributions to σab,c come from the Fermi-sea
terms in Eqs. (26) and (31); we will restrict our calculations to frequencies well below the
threshold for interband absorption, where one can safely set η= 0 in those equations.

The magnetic point group of the model is 32. Of the four independent tensor components
that are allowed by symmetry [67, 68], σA

yz,x , σA
x y,z , σS

x x ,y and σS
xz,y , only the first three

are actually nonzero when the Fermi level ϵF lies in the gap. Converged results, obtained by
sampling the Brillouin zone on a uniform mesh of 50× 50× 50 k points, are shown as solid
lines in Fig. 2.

For comparison, we show as filled circles in Fig. 2 the results obtained from calculations
on finite crystallites. We treat them as “molecules,” and evaluate σA

ab,c and σS
ab,c from Eq. (39)

under open boundary conditions. Calculations are performed for samples with L+1 unit cells
in each crystallographic direction, with L ranging from 4 to 12. The results are extrapolated
to L→∞ by fitting them to the function

f (L) = f0 + f1/L + f2/L2 + f3/L3 , (60)
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Figure 2: Numerical results for the nonzero components of σab,c for the model of
Eq. (57) and Fig. 1, with the two lowest bands treated as occupied. The results are
plotted as a function of frequency up to ħhω= 0.3, which is well below the threshold
for interband absorption (ϵgap ≈ 0.53). Filled circles: extrapolation from finite-size
crystallites. Solid lines: bulk crystal. The tensor σab,c has been divided by e2/ħh to
make it dimensionless.

where f0 is the extrapolated value to be compared with the result of the bulk calculation, and
f1/L, f2/L2, and f3/L3 account for face, edge, and corner corrections, respectively [69]. The
excellent agreement seen in Fig. 2 between the two types of calculations confirms the validity
of our formalism for band insulators.

In Fig. 3, we take the σA
x y,z curves from Fig. 2 and split them into origin-independent

contributions. For the extrapolated crystallites (left panel), there are two types of contributions
in Eq. (39): those containing m̄ are denoted as M̄1, and those containing q̄ are denoted as Ē2.
For the bulk crystal (right panel), there are, in addition to M̄1 and Ē2 contributions from the
first term in Eq. (26), band-dispersion contributions from the second and third terms, which
are denoted as v.

A comparison between the two panels of Fig. 3 reveals that the M̄1 and Ē2 contributions
are different for the extrapolated crystallites and for the bulk crystal, with the difference be-
ing exactly compensated by the v contributions that are only present in the latter. A similar
situation occurs for the ground-state orbital magnetization of a crystal, whose bulk expres-
sion contains a subtle Berry-curvature term without an obvious counterpart in the molecular
theory [69, 70]. For a two-dimensional insulator with a single valence band, that term reads
−(e/2ħh)
∫

k ϵk(∂xAy−∂yAx) or, after integrating by parts, (e/2)
∫

k(vxAy−vyAx). As in Fig. 3,
this additional band-dispersion contribution must be included in the bulk calculation to recover
the net orbital magnetization of a large flake [69,70].

To conclude, let us illustrate the different low-frequency behaviors of the rotatory power in
insulating and conducting states of our model. We evaluate ρ(ω,τ) for the bulk model from
Eqs. (26) and (28), setting ħh/τ= 2×10−3. The frequency range is chosen as 0≤ ħhω≤ 10−2,
and the calculation is carried out at zero temperature for ϵF = 0.0 (insulator) and ϵF = 1.0
(metal). In both cases, a uniform mesh of 100 × 100 × 100 k points is used to sample the
Brillouin zone; to improve the convergence of the calculation in the metallic case, the Fermi-
surface terms in Eq. (26) are evaluated as Fermi-sea integrals by performing an integration by
parts.

The resulting ρ(ω) profiles, plotted in Fig. 4 as solid lines, display the behavior dictated
by Eq. (29). The insulator displays a simple ρ∝ ω2 decay with a negligible influence from
the scattering time τ. Instead, for the metal one can distinguish two different parabolic
regimes (dashed lines) delimited by ωτ ∼ 1, in accordance with Eq. (30). This distinctive
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Figure 3: Decomposition of the σA
x y,z curves in Fig. 2 into three types of

origin-independent contributions: intrinsic magnetic dipole (M̄1), intrisic electric
quadrupole (Ē2), and band dispersive (v). The latter is only present in the bulk cal-
culation on the right, and it must be included to obtain the same total result as in the
extrapolated crystallite calculations on the left.

low-frequency profile of the optical rotatory dispersion in conducting crystals awaits experi-
mental verification.

7 Summary and discussion

In summary, we have developed a band-theoretical description of optical spatial dispersion in
insulating and conducting crystals. The novelty with respect to previous formulations resides
in the fact that the current induced by the optical field is given in a physically-transparent form,
as a sum of contributions that are individually origin independent, and which remain invariant
under single-band gauge transformations of the Bloch eigenstates. Although we have focused
on the optical conductivity σab,c(ω) at first order in q, higher-order responses can in principle
be treated in a similar manner.

For a crystal composed of nonoverlapping units, our formula for σab,c(ω) reduces to the
standard multipole-theory expression for molecules, but with the transition moments (d, m, q)
of Eq. (1) replaced by their intrinsic (origin-independent) counterparts (d̄, m̄, q̄) given by
Eq. (2). Away from the molecular limit, σab,c(ω) changes in two ways. First, the intrinsic
transition moments between delocalized Bloch eigenstates are no longer given by Eq. (2);
instead, one should use either the quantum-geometric expressions in Eq. (23), or their sum-
over-states counterparts in Eq. (24). The second change is that σab,c(ω) acquires additional
band-dispersion contributions associated with electron transfer between crystal cells; this is in
line with the modern theories of electric polarization and orbital magnetization in crystals [39].

There were two key aspects to our derivation. The first was the use of covariant Bloch-
state derivatives to expand the optical conductivity in powers of q; this allowed us to eliminate
spurious noncovariant terms, and to isolate the physically relevant matrix elements d̄, m̄,
and q̄. The second was the choice of the nonsingular form of the Kubo formula in Eq. (11),
rather than Eq. (7), as the starting point for the expansion in q. An order-by-order analysis
of the equivalence between the Kubo formulas (7) and (11) led us to identify a hierarchy of
optical sum rules. In particular, we found that the well-known rotatory-strength sum rule from
molecular physics remains valid for crystals, thanks to a topological argument involving the
k-space Berry curvature.
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Figure 4: Low-frequency optical rotatory dispersion of the model of Eq. (57) and
Fig. 1 in an insulating state (ϵF = 0.0), and in a metallic state (ϵF = 1.0). Numerical
results based on Eq. (26) and Eq. (28) are shown as solid lines. The dashed lines are
guides to the eye, indicating the distinct parabolic behaviors in the metallic state for
ωτ ≪ 1 and for ωτ ≫ 1, as per Eq. (30), and the faint vertical line indicates the
crossover frequency ω= 1/τ. The rotatory power has units of radians per length.

Our work opens up new prospects for realistic ab initio calculations of spatially-dispersive
optical responses in crystals, and of static magnetoelectric and quadrupolar responses as well.
An implementation based on the sum-over-states formulas for (d̄, m̄, q̄) in Eq. (24) has already
been carried out in a concurrent work done in coordination with the present one [71], and
we also envision evaluating the k-derivative formulas in Eq. (23) using Wannier interpola-
tion [72].

In closing, we mention a possible connection with the theory of the orbital Hall effect.
It was recently proposed [73–75] to evaluate the orbital Hall conductivity using an orbital-
current operator whose matrix elements in the Bloch-eigenstate basis are proportional to
∑

l

�

mz,orb
ml va

ln + va
ml m

z,orb
ln

�

. Here, morb
ln is the bulk generalization of Eq. (1b), given by the

same expression as in Eq. (23b) for m̄orb
ln , but with the covariant derivatives therein replaced

by ordinary derivatives. The two definitions are related by

m̄orb
ln =morb

ln −
e
4i
ωln (Al +An)×Aln , (61)

and therefore they agree for l = n only. For l ̸= n, the two terms on the right-hand side of
Eq. (61) are not separately gauge covariant, and the lack of gauge covariance of morb

ln makes
the orbital Hall conductivity gauge dependent. This suggest that one should generally use m̄orb

ln
instead of morb

ln when evaluating the orbital Hall conductivity. In other words, one is allowed
to work with morb

ln only in the parallel-transport gauge, where Al =An = 0.
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