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Abstract

We initiate the recently proposed w -ensemble one-particle reduced density matrix func-
tional theory (w -RDMFT) by deriving the first functional approximations and illustrate
how excitation energies can be calculated in practice. For this endeavour, we first study
the symmetric Hubbard dimer, constituting the building block of the Hubbard model, for
which we execute the Levy-Lieb constrained search. Second, due to the particular suit-
ability of w -RDMFT for describing Bose-Einstein condensates, we demonstrate three con-
ceptually different approaches for deriving the universal functional in a homogeneous
Bose gas for arbitrary pair interaction in the Bogoliubov regime. Remarkably, in both
systems the gradient of the functional is found to diverge repulsively at the boundary of
the functional’s domain, extending the recently discovered Bose-Einstein condensation
force to excited states. Our findings highlight the physical relevance of the generalized
exclusion principle for fermionic and bosonic mixed states and the curse of universality
in functional theories.
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1 Introduction

The Penrose and Onsager criterion [1] identifies one-body reduced density matrix functional
theory (RDMFT) as a potentially ideal approach to describe Bose-Einstein condensation (BEC).
Indeed, BEC is present whenever one eigenvalue of the one-particle reduced density matrix
(1RDM) is proportional to the total particle number N . The 1RDM in turn is the natural
variable in RDMFT, which is, at least in-principle, an exact approach to describe interacting
N -particle quantum systems. The absence of complete condensation for interacting bosons is
strongly tied to the concept of quantum depletion which characterizes the fraction of bosons
outside the BEC ground state [2]. It has been one of the recent achievements of RDMFT [3,4]
to provide a universal explanation for quantum depletion, independently of the microscopic
details of the system: The distinctive shape of the universal functional reveals the existence
of a BEC force which explains from a purely geometric point of view why not all bosons can
condense.

This and other recent progress in the field of ground state RDMFT for bosons [3–7] and
w -ensemble RDMFT for excited states [8–10] urges us to systematically derive in this paper
the first functionals for w -ensemble RDMFT. To initiate the development of w -ensemble func-
tionals in different fields of physics we derive analytically the universal functional for both
the symmetric Hubbard dimer with on-site interaction and the homogeneous Bose gas in the
Bogoliubov regime. The latter functional constitutes the bosonic analogue of the Hartree-Fock
functional for fermions [11]. Both systems do not only allow us to obtain an analytic expression
for the universal functional but are also well-suited to illustrate conceptually different routes
for their derivation. Besides illustrating the application of w -ensemble RDMFT for the first
time, we extend the concept of a BEC force based on the diverging gradient of the functional
close to the boundary of its domain to excited state RDMFT.

The paper is structured as follows. To keep our work self-contained, we recall in Sec. 2
the basic formalism of w -ensemble RDMFT. We illustrate w -ensemble RDMFT and derive the
exact universal functionals for the symmetric Hubbard dimer in Sec. 3 and the homogeneous
BECs in Sec. 4.

2 Recap of ensemble RDMFT for neutral excitations

Before deriving the first w -ensemble functionals in Secs. 3 and 4 we introduce in this section
the required foundational concepts of w -ensemble RDMFT which has recently been proposed
by us for bosons in Ref. [10] and for fermions in Ref. [8,9]. From a general perspective, RDMFT
is based on the observation that in each field of physics the interaction W between the particles
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is usually kept fixed. As a consequence, one considers all Hamiltonians Ĥ on the D-dimensional
N -boson Hilbert space HN that are parameterized by the one-particle Hamiltonian ĥ,

Ĥ(ĥ)≡ ĥ+ Ŵ . (1)

To arrive at a corresponding functional theory, the ensemble RDMFT for excited states com-
bines a variational principle proposed by Gross, Oliveira and Kohn (GOK) [12–14] with the
Levy-Lieb constrained search [15, 16]. In the GOK variational principle, the weighted sum
Ew ≡
∑

j w j E j of the increasingly ordered eigenenergies Ei , E1 ≤ E2 ≤ . . .≤ ED, of the Hamil-

tonian Ĥ and decreasingly ordered weights w1 ≥ w2 ≥ ... ≥ wD with
∑D

i=1 wi = 1 follows
from minimizing the energy TrN [Γ̂ Ĥ] over all N -boson/fermion density operators with spec-
trum given by the weight vector, spec↓(Γ̂ ) = w . This spectral condition defines the set EN (w )
of N -particle density operators

EN (w )≡
�

Γ̂ | Γ̂ = Γ̂ †, Γ̂ ≥ 0, TrN [Γ̂ ] = 1, spec↓(Γ̂ ) = w
	

. (2)

Then, the GOK variational principle reads [12]

Ew ≡
D
∑

j=1

w j E j = min
Γ̂∈EN (w )

TrN

�

Γ̂ Ĥ
�

. (3)

Applying the Levy-Lieb constrained search [15, 16] to this variational principle for excited
states yields

Ew (ĥ) = min
Γ̂∈EN (w )

TrN [(ĥ+ Ŵ )Γ̂ ]

= min
γ̂∈E1

N (w )

�

min
EN (w )∋Γ̂ 7→γ̂

TrN [(ĥ+ Ŵ )Γ̂ ]
�

= min
γ̂∈E1

N (w )

�

Tr1[ĥγ̂] +Fw (γ̂)
�

,

(4)

where we defined the universal functional Fw whose domain is given by
E1

N (w ) = NTrN−1(EN(w )). For simplicity we used in Eq. (3) the same symbol for the one-
particle Hamiltonian ĥ on the N -particle and the one-particle Hilbert space. It is worth stress-
ing here that the set E1

N (w ) is typically not convex [17, 18]. Moreover, Fw is usually not
(locally) convex, i.e., there exist convex regions on which Fw is not convex, even for those
special cases with convex domain E1

N (w ). A well-known example for the latter scenario is the
ground state Hubbard dimer functional for the singlet spin sector which is recovered for the
weight vector w = (1, 0, . . .) [6,19,20].

One of the main achievements of Refs. [8–10, 18] was to overcome the too intricate w -
ensemble N -representability constraints that define the domain E1

N (w ) of the universal func-
tional Fw . In analogy to Valone’s ground state RDMFT [21] this was achieved by performing
an exact convex relaxation. Indeed the energy Ew (ĥ) remains unaffected by replacing the
non-convex sets EN(w ) and E1

N (w ) by their respective convex hulls,

EN(w ) ≡ conv
�

EN(w )
�

,

E1
N (w ) ≡ NTrN−1

�

EN(w )
�

= conv
�

E1
N (w )
�

. (5)

In particular, inserting Eq. (5) in the Levy-Lieb constrained search replaces Fw by its lower
convex envelope

Fw (γ̂) ≡ min
EN(w )∋Γ̂ 7→γ̂

TrN [Γ̂ Ŵ ]

= conv (Fw (γ̂)) . (6)
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It was exactly this convex relaxation which allowed us in Refs. [8–10] to obtain a feasible
functional theory thanks to a comprehensive characterization of the set E1

N (w ) for bosons and
fermions. To be more specific, we derived a compact description of the corresponding spectral
set

Σ(w )≡ spec(E1
N (w )) , (7)

in terms of finitely many linear constraints [8–10, 18]. Those conditions represent nothing
else than a complete generalization of Pauli’s exclusion principle to mixed states of bosons
and fermions, respectively. Therefore, the challenging task addressed in this paper is to derive
the first w -ensemble functionals. This should initiate the development of more elaborated
functional approximations in analogy to the developments of ground state RDMFT functionals
for fermions [22–34] which were inspired by or even based on the Hartree-Fock functional
introduced in the seminal work by Lieb [11].

3 Derivation of the universal functional for the symmetric Bose-
Hubbard dimer

As our first proof-of-principle for w -ensemble RDMFT, we derive in this section the exact w -
ensemble functional for the symmetric Bose-Hubbard dimer. Due to the equivalence of this
system to the Fermi-Hubbard dimer for two electrons in their singlet sector, the correspond-
ing results can be translated to fermionic w -ensemble RDMFT in a straightforward manner.
Understanding the w -ensemble functional and its domain for this model is particularly in-
teresting since the Bose-Hubbard dimer constitutes the building block of the Hubbard model
widely used in the field of ultracold quantum gases. Besides this, the Hubbard dimer model is
widely used throughout RDMFT and density functional theory to illustrate conceptual aspects
of functional theory [19,20,35–50]. The Hamiltonian for spinless bosons on two lattice sites
reads

Ĥ = −t
�

â†
L âR + â†

RâL

�

+ U
∑

j=L,R

n̂ j

�

n̂ j − 1
�

, (8)

where the first term describes hopping at a rate t between the left (L) and right (R) lattice
site. The second term describes the Hubbard on-site interaction with coupling strength U and
n̂ j = â†

j â j is the occupation number operator.
In the case of periodic boundary conditions, the Hamiltonian in Eq. (8) is translationally

invariant. This implies that the total momentum P is conserved, i.e., P is a good quantum
number. As a result, the minimization in the constrained search formalism in Eq. (4) can
be restricted to all Γ̂ ∈ EN (w , P) in the chosen symmetry sector with fixed P. Then, it is
possible to establish a separate functional in each symmetry sector instead of a single more
involved functional referring to all P. Moreover, every 1RDM γ̂ is diagonal in momentum
representation. In the following, we consider the case of N = 2 spinless bosons and restrict
to repulsive interactions, i.e., U > 0. Then, the natural occupation numbers are given by the
momentum occupation numbers np ≥ 0 restricted through the normalization

∑

p np = 2.
It is also worth noticing that for the symmetric Bose-Hubbard dimer the translational invari-

ance is equivalent to the inversion symmetry. To explain this, we now skip the periodic bound-
ary conditions and instead restrict to the even symmetry sector. The corresponding symmetry-
adapted one-boson basis consists of the two states |e〉= (|L〉+|R〉)/

p
2 and |o〉= (|L〉−|R〉)/

p
2

which actually coincide with the two one-particle momentum states. The two-dimensional sub-
space with even inversion-symmetry is then spanned by the two basis states |e, e〉 and |o, o〉.
This implies that the 1RDM γ̂ is diagonal and thus depends on only one free parameter ne,
the occupation number of |e〉. Thus, the resulting w -ensemble functional Fw is equivalent to
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Fw in the symmetric Bose-Hubbard dimer with periodic boundary conditions and restricted to
P = 0 in (10) with n0 replaced by ne.

In the following, we consider the P = 0 momentum sector. For two lattice sites, the single
particle momentum can take the discrete values pν = πνwith ν= 0,1. We denote the creation
(annihilation) operator referring to the momentum ν by â†

ν (âν) and the occupation number
operators by n̂ν = â†

νâν. The only two configurations satisfying
∑

ν=1,2 ν(mod2) = 0 are (0, 0)
and (1,1) corresponding to the two basis states |1〉= 1p

2
(â†

0)
2|0〉 and |2〉= 1p

2
(â†

1)
2|0〉, where

|0〉 denotes the vacuum state. Since (0,0) and (1, 1) are the only allowed configurations in the
P = 0 sector, it follows from Ref. [10] that the larger value of n0 and n1 = 2− n0 is bounded
from above by 2w1 and the lower one from below by 2w2. In particular, this means that the
domain E1

N (w ) of the w -ensemble functional Fw is already convex,

Σ(w , P = 0) = {n0 |0≤ 2w2 ≤ n0 ≤ 2w1 ≤ 2} . (9)

Then, minimizing the expectation value Tr2[Ŵ Γ̂ ] according to the constrained search formal-
ism, where Ŵ is the second term in the Hamiltonian (8), leads to (see Appendix A)

Fw (n0) = U
�

1−
Æ

n0(2− n0)− 4w1w2

�

= U
�

1−
Æ

(n0 − 2w2) (2w1 − n0)
�

. (10)

Since Fw (n0) is already convex, it is equal to the relaxed functional Fw (n0).
The two equivalent expressions of Fw (n0) in Eq. (10) illustrate two different properties

of the universal functional. From the first line together with (9) it follows immediately that
Fw (n0) is symmetric around n0 = 1. The second expression in (10) emphasizes the diverging
behaviour of the gradient of Fw (n0) at the boundary of its domain for each weight w1 = 1−w2.
Indeed, the derivative of Fw (n0)with respect to n0 diverges at the boundary ∂Σ of the domain
of Fw as

�

�

�

�

∂Fw (n0)
∂ n0

�

�

�

�

∼
1
p

dist(n0,∂Σ)
. (11)

The sign of the gradient reveals that the corresponding force is repulsive, i.e., it prevents n0
from ever reaching the boundary ∂Σ.

The universal functional Fw (n0) is illustrated for several values of w1 in Fig. 1. This also
demonstrates the inclusion relation [9,10]

w ′ ≺ w ⇔ E1
N (w

′) ⊂ E1
N (w ) . (12)

Indeed, for w ′ ≺ w (corresponding here to w′1 ≤ w1) we have Σ(w ′, P = 0) ⊂ Σ(w , P = 0).
To further illustrate w -ensemble RDMFT we calculate the energy Ew by minimizing the

total energy functional Tr1[ t̂γ̂] + Fw (n0), where t̂ is given by the first term in (8) and
Tr1[ t̂γ̂] = −2t(n0 − 1). Solving

∂

∂ n0
(−2t(n0 − 1) +Fw (n0))

�

�

�

�

n0=ñ0

= 0 , (13)

for the minimizer ñ0 and substituting the result into the energy functional yields for the
weighted sum Ew of the two eigenenergies E1, E2 according to Eqs. (3) and (4),

Ew = w1

�

U −
p

4t2 + U2
�

+w2

�

U +
p

4t2 + U2
�

. (14)

Note that this result is in agreement with the eigenenergies E1 and E2 obtained from an exact
diagonalization of the Hamiltonian Ĥ in Eq. (8) (see Appendix A for further details).
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Figure 1: Illustration of the n0 dependence of the w -ensemble functional Fw for
the symmetric Bose-Hubbard dimer with total momentum P = 0 for U = 1/2 and
different values of the weight w1 (recall that w1 +w2 = 1).

4 w -RDMFT for Bose-Einstein condensates

The application of w -ensemble RDMFT to Bose-Einstein condensates (BECs) is appealing due
to a number of reasons. First, as already stressed in the introduction, the Penrose and Onsager
criterion [1, 3] for BEC identifies RDMFT as a particularly suitable approach to BECs. Sec-
ond, recent analyses of their ground states have revealed an intriguing new concept, namely
the existence of a BEC-force [3,4,6]. The question arises whether this force based on the one-
particle picture is also present in excited BECs. Third, the comprehensive understanding of the
regime of small quantum depletion through Bogoliubov theory provides excellent prospects for
deriving a corresponding approximation of the universal functional. This actually allows us
to provide three conceptually different derivations of the w -ensemble universal functional in
the following. On an equal footing these three approaches illustrate how w -ensemble univer-
sal functionals could be developed for fermions. For instance, recent advances in numerical
techniques could be exploited to construct a universal functional via the Legendre-Fenchel
transform.

To commence, we consider a dilute homogeneous BEC in a three-dimensional box with
volume V . In second quantization, the general Hamiltonian Ĥ = ĥ+ Ŵ for interacting bosons
in momentum representation reads

Ĥ =
∑

p

tp â†
p âp +

1
2V

∑

p,q ,k

Wp â†
q+p â†

k−p âk âq , (15)

where â†
p and âp are the bosonic creation and annihilation operators, Wp the Fourier coeffi-

cients of the pair interaction between the bosons and tp denotes the Fourier coefficients of
the kinetic energy. By assuming a macroscopic occupation of the p = 0 momentum state in
the homogeneous BEC under consideration, the well-known Bogoliubov approximation [51]
simplifies the general Hamiltonian in (15) to [52]

ĤB =
∑

p

tp n̂p +
1

2V

∑

p ̸=0

Wp

�

2n̂0n̂p +
�

â†
p â†
−p â2

0 + h.c.
��

, (16)

where n̂p = â†
p âp is the occupation number operator and we omit the constant energy shift

N(N−1)W0
2V . Moreover, the Fourier coefficients satisfy Wp = W−p and we restrict to purely re-
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pulsive interactions such that Wp ≥ 0 ∀p. Furthermore, tp = t−p with t0 = 0. This implies
in particular that the Bogoliubov approximated Hamiltonian (16) is invariant under p →−p.
We therefore introduce a new index p ′ which labels all pairs (−p, p), p ̸= 0 and for each such
pair p ′ can be chosen to be either p ′ = −p or p ′ = p without loss of generality. Then, the
Hamiltonian ĤB in Eq. (16) is equivalent to

ĤB =
∑

p ′
tp ′η̂p ′ +

1
V

∑

p′
Wp′
�

n̂0η̂p′ +
�

â†
p′ â

†
−p′ â

2
0 + h.c.
��

, (17)

where we introduced the operator

η̂p ′ ≡ n̂p ′ + n̂−p ′ . (18)

This notation emphasises that the expectation value of the kinetic energy operator

Tr1[ t̂γ̂] =
∑

p

tp np

=
∑

p ′
tp ′(np ′ + n−p ′)≡

∑

p ′
tp ′ηp ′ (19)

is completely determined by the pairs (tp ′ ,ηp ′) for all p ′ since tp = t−p . In particular, this
implies that the vectors t ≡ (tp ′)p ′ and η ≡ (ηp ′)p ′ constitute the conjugate variables in our
functional theory, denoted by t ↔ η. Furthermore, it follows that the ground state func-
tional Fw0

(recall that w 0 = (1,0, . . .)) and the excited state functional Fw can be written as
functionals of η only, i.e. Fw0

≡ Fw0
(η) and Fw ≡ Fw (η).

4.1 Recap of ground state universal functional

In this section, we derive the ground state universal functional Fw0
. The calculation shown in

the following uses the same concepts as in Ref. [3] but derives Fw0
as a functional of η rather

than of the full occupation number vector n.
In the Bogoliubov theory, the interacting ground state of a BEC has the form |Ψ0〉= Û |N〉,

where |N〉= (N !)−1/2(â†
0)

N |0〉 and [52,53]

Û = exp

(

1
2

∑

p ̸=0

θp

�

(β̂†
0)

2âp â−p − β̂2
0 â†

p â†
−p

�

)

(20)

is a unitary operator with variational parameters θp ∈R. Here, the operator β̂0 ≡ (n̂0+1)−1/2â0

[53] annihilates a boson with momentum p = 0 without creating a prefactor in front of the new
state. In particular, Û commutes with the particle number operator, [Û , N̂] = 0. Moreover, the
operators β̂0, β̂†

0 ensure that the Hamiltonian ĤB in Eq. (16) still commutes with the particle
number operator N̂ after the Bogoliubov transformation and that the interacting ground state,
i.e. the Bogoliubov quasiparticle vacuum, is a state in the N -boson Hilbert space. Then, the
w -minimizer for r = 1 (referring to ground state RDMFT) is given by Γ̂w0

= |Ψ0〉〈Ψ0| according
to the GOK variational principle in Eq. (3). Usually it is assumed that θp = θ−p . If we allowed,
however, for θp ̸= θ−p one could show that

Û†âp Û ≈
1
q

1−φ2
p

�

âp −φp β̂
2
0 â†
−p

�

, (21)

with variational parameters

φp = tanh

�

θp + θ−p

2

�

, (22)
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satisfying alsoφp = φ−p . To proceed, the ground state functional Fw0
is obtained by minimiz-

ing the expectation value 〈Ψ0|ŴB|Ψ0〉 = 〈N |Û†ŴBÛ |N〉 over the variational parameters φp ′ .
Here, ŴB denotes the Bogoliubov approximated interaction ŴB = ĤB− t̂, where t̂ =

∑

p ′ tp ′η̂p ′

is the kinetic energy operator. It is a straightforward calculation to express the expectation
value 〈Ψ0|ŴB|Ψ0〉 in terms of {φp ′}p ′ by inserting identities 1̂ = Û†Û and using Eq. (21) as
demonstrated in Ref. [52]. From Eq. (22) and the definition of the ground state |Ψ0〉 it follows
that ηp ′ and φp ′ are related through

ηp ′ ≡ 〈Ψ0|η̂p ′ |Ψ0〉 ≈
2φ2

p ′

1−φ2
p ′

. (23)

The expression on the right hand side holds only approximately due to the approximation in
Eq. (21) and an estimate of its accuracy can be deduced from Ref. [54]. Inverting this expres-
sion for the variational parameters φp ′ shows that the occupation numbers ηp ′ determine the
variational parameters φp ′ up to phases σp ′ = ±1. This simplifies the minimization in Levy’s
constrained search (4) over all φp ′ to a minimization over the phases σp ′ according to

Fw0
(η) = min

{σp′=±1}



n
∑

p ′
Wp ′ηp ′ −σp ′Wp ′

q

ηp ′(ηp ′ + 2)





= n
∑

p ′
Wp ′
�

ηp ′ −
q

ηp ′(ηp ′ + 2)
�

, (24)

where we used Wp ′ ≥ 0 ∀p ′ in the last line and n = N/V denotes the particle density. As
a consistency check, we note that the universal functional (24) is indeed equivalent to the
one derived in Ref. [3] after replacing in the latter the momentum occupation numbers np by
ηp ′/2.

4.2 Excitations within Bogoliubov theory

In the following we recall the most important aspects of the excitation spectrum of a homo-
geneous Bose gas within the Bogoliubov approximation. This serves as a preliminary for the
derivation of the excited state functional Fw in Sec. 4.5.

The ground state energy of the Bogoliubov approximated Hamiltonian ĤB is given
by [52,54]

E0 = −
1
2

∑

p ̸=0

�

nWp + tp −
q

tp(tp + 2nWp)
�

, (25)

and the same result also holds approximately within the particle number conserving Bogoli-
ubov theory up to a controllable error [52, 54]. Moreover, the energy spectrum consists of
elementary excitations of the ground state and takes the form [51,52]

E = E0 +
∑

p ̸=0

ωpµp . (26)

Here, µp counts the number of quasiparticles with momentum p created by acting with the
quasiparticle operator [52]

ĉ†
p ≡ Û â†

p Û†β̂0

≈
1
q

1−φ2
p

�

â†
p β̂0 +φp β̂

†
0 â−p

�

, (27)
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on the interacting ground state |Ψ0〉, and ωp denotes the quasiparticle dispersion relation

ωp =
q

tp(tp + 2nWp) . (28)

For small enough quantum depletion and low-lying excited states, (26) holds in good approx-
imation also for the particle number conserving Bogoliubov Hamiltonian with (16) and, in
particular, µp ≈ np in Eq. (26) [54]. Furthermore, ωp = ω−p and we replace accordingly p
by p ′ in the derivation of the w -ensemble functional.

Before we can present three different instructive derivations of the w -ensemble functional
Fw for targeting the ground state and the first excited state, we discuss two critical concep-
tual aspects of w -ensemble RDMFT. Both Secs. 4.3 and 4.4 and their conclusions are not re-
stricted to BECs but are valid for w -RDMFT applied to arbitrary quantum systems of bosons
or fermions.

4.3 Crossing of energy levels

The energy levels of many-body quantum systems can cross as one varies system parameters
such as the coupling constants of two-body interactions or the strength of an external field. A
particularly prominent example is given by quantum phase transitions for which the ground
state and first excited state cross. This in turn manifests itself in the context of functional theo-
ries in the form of nonanalyticities of the universal functional: By referring to the constrained
search formalism, the N -fermion minimizer for 1RDMs belonging to different quantum phases
are not necessarily analytically connected anymore. As a consequence, the functional’s do-
main would split into different cells (subdomains) and one would need to derive an analytical
functional for each of them separately. At the borders of those cells those different functionals
would be “glued” together continuously. This adds to several further consequences of level
crossings discussed in functional theories [55–57].

In the context of excited state RDMFT this reasoning would apply to various energy levels
of interest, i.e., the lowest r ones in w -RDMFT. Accordingly, there will be many more relevant
crossings and the functional’s domain would divide into even more cells than in case of ground
state RDMFT. These consequences of crossing energy levels make the calculation of the uni-
versal functional in the following more involved. From a general perspective, this highlights
that the commonly pursued strategy to write down smooth ansatzes for the universal func-
tional is rather problematic. At the same time, it also questions the importance and meaning
of universality in functional theories.

4.4 w -ensemble v-representability problem

The original formulation of ground state RDMFT by Gilbert [58] was hampered by the so-
called v-representability problem which for most quantum systems is impossible to solve. A
1RDM γ̂ ∈ P1

N is called v-representable if there exists some one-particle Hamiltonian ĥ yielding
γ̂ĥ as the ground state 1RDM according to

ĥ 7→ Ĥ(ĥ) 7→ |Ψĥ〉 7→ γ̂ĥ , (29)

where |Ψĥ〉 denotes the N -particle ground state of Ĥ(ĥ) (1). The significance of this definition
rests upon the following relation between the ground state energy E and the universal ground
state functional F for v-representable 1RDMs,

F(γ̂ĥ) = E(γ̂ĥ)− Tr1[γ̂ĥĥ] . (30)

Because of its fruitful consequence (30), we now establish an extension of
v-representability to w -ensemble RDMFT. A 1RDM γ̂ ∈ E1

N (w ) shall be called w -ensemble v-
representable if γ̂ emerges as the 1RDM of the minimizer in the GOK variational principle (3)
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applied to the Hamiltonian Ĥ(ĥ) (1) for some ĥ. Note that in Sec. 2, this w -ensemble v-
representability problem was circumvented by the constrained search formalism (4) from the
very beginning. Yet, if there was given a compact solution of the w -ensemble v-representability
problem, the universal functional could be determined more directly. In analogy to (30), for
any w -ensemble v-representable γ̂ĥ ∈ E1

N (w ), the w -ensemble functional follows from the
energy Ew (3) as

Fw (γ̂ĥ) = Ew (ĥ)− Tr1[γ̂ĥĥ] . (31)

In Sec. 4.5.2, we illustrate the derivation of Fw for all w -ensemble v-representable 1RDMs for
a homogeneous BEC.

The two w -ensemble functionals Fw and Fw defined in Eqs. (4) and (6) are equal for
a given 1RDM γ̂ whenever γ̂ is w -ensemble v-representable. In case Fw is convex, every
γ̂ ∈ E1

N (w )
1 is w -ensemble v-representable, a statement that is well known in the context of

ground state functional theory (see, e.g., Ref. [20,59]). Since the Legendre-Fenchel transform
of Fw is the energy Ew up to minus signs, this implies that for a convex functional Fw the
biconjugate [60] F∗∗w ≡ conv(Fw ) ≡Fw is equal to the functional Fw itself. Moreover, as an
alternative to the constrained search formalism (4), we can then derive not only Fw but also
Fw through a Legendre-Fenchel transformation. Conversely, if Fw turns out to be non-convex,
the set E1

N (w ) has to contain 1RDMs γ̂ which are not w -ensemble v-representable. In that
case, calculating the biconjugate F∗∗w will just yield the lower convex envelope of Fw .

We will exploit the Legendre-Fenchel transformation in Sec. 4.5.1 to derive the w -ensemble
functional Fw for a homogeneous BEC.

4.5 Derivation of w -ensemble functional for r = 2

In order to apply the w -ensemble RDMFT for bosons to a homogeneous BEC, we restrict in
the following to finite but large enough systems such that the p = 0 momentum state is
macroscopically occupied and there exists a finite gap between the energy levels. Due to
Wp =W−p and tp = t−p , the excited energy states are degenerate. In the following, we restrict
to r = 2 non-vanishing weights w j such that the corresponding w -ensemble functional Fw in
(4) allows one to determine the ground state and the first excited state. Thus, we consider
weight vectors of the form

w = (w, 1−w, 0, . . .) , (32)

with w ≥ 1
2 . According to Eq. (26), for each p ′ the weighted sum of the ground state energy

E0 (25) and a single excitation with momentum p ′ reads

Ew ,p ′ = wE0 + (1−w)E1 = E0 + (1−w)ωp ′ . (33)

This implies that the sought-after energy Ew follows as

Ew =min
p ′

Ew ,p ′ . (34)

Furthermore, the domain of the relaxed w -ensemble functionalFw is given by the spectral
polytope [10]

Σ(w ) = conv
��

π(v) |π ∈ Sd
	�

, (35)

where d denotes the dimension of the one-particle Hilbert space H1, Sd the permutation group
of d elements and v is the natural occupation number vector

v = (N − 1+w, 1−w, 0, . . .) . (36)

1Strictly speaking this refers to the interior of the domain since the 1RDMs on the boundary are typically not
v-representable. The latter is a consequence of the repulsively diverging exchange force for fermions [61] and the
BEC force for bosons [3].
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In the following, we present three different approaches for deriving the universal w -
ensemble functional for r = 2 non-vanishing weights in the context of Bogoliubov theory,
i.e., in the regime of small quantum depletion. This also allows us to illustrate various aspects
of w -ensemble RDMFT discussed in the previous sections.

4.5.1 Legendre-Fenchel transformation

In the following, we derive the relaxed w -ensemble functional Fw for r = 2 non-vanishing
weights through a Legendre-Fenchel transformation of the energy in Eq. (33). As introduced
in Ref. [20] for the ground state functional and anticipated in Sec. 4.4, the energy Ew and the
w -ensemble functional Fw are related through the Legendre-Fenchel transform by

F∗w (ĥ)≡ max
γ̂∈E1

N(w )

�

Tr1[ĥγ̂]−Fw (γ̂)
�

= −Ew (−ĥ) . (37)

Consequently, the biconjugate F∗∗w ≡ (F
∗
w )
∗ =Fw [60] of the convex Fw can be expressed as

Fw (γ̂) =max
ĥ

�

Ew (ĥ)− Tr1[ĥγ̂]
�

. (38)

Since the energy Ew is related to the energies Ew ,p ′ (see Eq. (34)), auxiliary functionalsFw ,p ′

are introduced as the Legendre-Fenchel transforms (up to the common minus signs) of the
(concave) Ew ,p ′ for all p ′. They allow us to rewrite the energy Ew using Eq. (34) as

Ew (ĥ) = min
p ′

min
γ̂∈E1

N(w )

�

Tr1[ĥγ̂] +Fw ,p ′(γ̂)
�

= min
γ̂∈E1

N(w )

�

Tr1[ĥγ̂] +min
p ′

Fw ,p ′(γ̂)
�

. (39)

The expression minp ′Fw ,p ′ can be interpreted as a universal functional and it coincides with
Fw up to a lower convex envelop,

Fw = conv
�

min
p ′

Fw ,p ′
�

. (40)

It is worth noticing here that the minimum of a family of convex functions (e.g., {Fw ,p ′}) is
not necessarily convex.2 Moreover, the second line in Eq. (39) and Eq. 40 reflect very well the
curse of universality outlined in Sec. 4.3: no closed analytical form exists for minp ′Fw ,p ′ and
Fw , respectively.

To proceed, we first recall that we restrict to ĥ ≡ t̂ with tp = t−p which implies that the
inner product 〈γ̂, t̂〉 for a fixed t̂ is completely determined through the vector η defined in
Eq. (18). Then, the maximum in Eq. (38) is obtained by solving for all p̃ ′

ηp̃ ′ ≡ np̃ + n−p̃ =
∂ Ew ,p ′( t̂)

∂ t p̃ ′
. (41)

Its solution t p̃ ′(ηp̃ ′) corresponding to a maximum reads

t p̃ ′(ηp̃ ′) =











nWp̃ ′

�

1+ηp̃′
Æ

ηp̃′ (ηp̃′+2)
− 1
�

, if p̃ ′ ̸= p ′ ,

nWp̃ ′

�

1+ηp̃′
Æ

(ηp̃′+3−w)(ηp̃′+w−1)
− 1
�

, if p̃ ′ = p ′ .
(42)

2We thank the referees for having pointed this out.
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At this point, we would like to recall that the momenta p ′ label the pairs (−p, p), p ̸= 0 as
defined above Eq. (16). Combining (38) and (42) eventually leads to

Fw ,p ′(η) = Fw0
(η) + nWp ′
�q

ηp ′(ηp ′ + 2)−
q

(ηp ′ + 3−w)(ηp ′ +w− 1)
�

. (43)

For a given p ′ the functional Fw ,p ′(η) equals the universal functional Fw (η) only for those η
whose minimizers in (6) involve as first excited state the respective p ′-excitation. In general,
the functional Fw then follows from Eq. (40). In particular, based on the form (43), one can
verify that minp ′Fw ,p ′ is typically not convex and thus the lower convex envelop operation
conv(·) in Eq. (40) is essential.

We close this section by observing the following intriguing relation. Fw (through Fw ,p ′)
consists of the convex ground state functionalFw0

given by Eq. (24) plus an additional positive
term which always increases the energy due to a single elementary excitation p ′ ≡ p ′(η) of the
ground state. Moreover, one can easily check that Fw ,p ′ in Eq. (43) and thus Fw in Eq. (40)
reduces to Fw0

for w= 1, as required.

4.5.2 Derivation of Fw and Fw for all w -ensemble v-representable 1RDMs

Once the energy Ew is known, we can derive for all w -ensemble v-representable 1RDMs γ̂ the
value of the w -ensemble functionals Fw (γ̂) =Fw (γ̂) through Eq. (31)

In order to apply this approach to the Bogoliubov approximated interaction ŴB, we first
define the momentum q ′ corresponding to the first excitation, which is determined through the
lowest value of the quasiparticle dispersion ωp =ω−p . Moreover, the degenerate subspace of
the first excited state |Ψ1〉 is spanned by the two orthonormal states ĉ†

q |Ψ0〉 and ĉ†
−q |Ψ0〉. Thus,

any superposition state
|Ψ1〉= αĉ†

q |Ψ0〉+ β ĉ†
−q |Ψ0〉 , (44)

with α,β ∈ C and normalization |α|2 + |β |2 = 1 corresponds to a single excitation on top of
the interacting ground state |Ψ0〉. Therefore, within the Bogoliubov approximation, we restrict
the set EN of all N -boson density operators Γ̂ to the subset of all variational states of the form

Γ̂w = w|Ψ0〉〈Ψ0|+ (1−w)|Ψ1〉〈Ψ1| , (45)

with |Ψ1〉 given by Eq. (44). This variational ansatz reduces the minimization on the right
hand side of the GOK variational principle (3) applied to the Bogoliubov Hamiltonian ĤB to a
minimization of the energy

TrN [ĤBΓ̂w ] =
∑

p ′
2

�

(nWp ′ + tp ′)
φ2

p ′

1−φ2
p ′
− nWp ′

φp ′

1−φ2
p ′

�

+(1−w)

�

(nWq ′ + tq ′)
1+φ2

q ′

1−φ2
q ′
− nWq ′

2φq ′

1−φ2
q ′

�

(46)

over the variational parameters {φp ′}p ′ defined in Sec. 4.1. Eq. (46) was derived in an anal-
ogous manner as expressing 〈N |Û†ŴBÛ |N〉 in terms of {φp ′}p ′ in Sec. 4.1. In particular, it
can be shown by a straightforward calculation that TrN [ĤBΓ̂w ] reduces to 〈N |Û†ŴBÛ |N〉 for
w = 1, i.e. in the case of ground state RDMFT. Performing the minimization of (46) for all
momenta p ′ separately leads to the solution

φ̃p′ ≡
1

nWp′

�

tp′ + nWp′ −
q

tp′(tp′ + 2nWp′)
�

, (47)
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in agreement with Ref. [52,53]. As a consistency check one can show that Eqs. (46) and (47)
indeed lead to Ew in (33). Furthermore, the expectation value of the operator η̂p ′ (18) is
given by

ηp ′ = TrN [η̂p ′ Γ̂w ]

=











2φ2
p′

1−φ2
p′

, if p ′ ̸= q ′ ,

w
2φ2

p′

1−φ2
p′
+ (1−w)

1+3φ2
p′

1−φ2
p′

, if p ′ = q ′ .
(48)

Inserting the minimizers φ̃p′ (47) into (48) leads for all momenta p ′ to the same solution for
the dispersion tp ′ as in (42). This allows us to use (31),

Fw ,q ′(η) = Ew ,q ′(t )−
∑

p ′
tp ′ηp ′ , (49)

to calculate the w -ensemble functionalFw ,q ′ for all w -ensemble v-representableη. Evaluating
(49) eventually leads to the same expression for Fw ,q ′ as Eq. (43) derived in Sec. 4.5.1.

Since Fw is given on its domain of v-representable η by minp ′Fw ,p ′ and since the latter is

typically not convex on E1
N (w ) (recall (5)), it follows (see, e.g., [59] and Sec. 4.4) that some

w -ensemble N -representable η are not w -ensemble v-representable.

4.5.3 Constrained search formalism

The complexity of the domain of v-representable 1RDMs can be circumvented through the
constrained search formalism (4). As it has been outlined in Sec. 2, the latter namely estab-
lishes a universal functional Fw on the larger domain E1

N (w ), or equivalently Fw ≡ conv(Fw )
on E1

N (w ) ≡ conv(E1
N (w )). Therefore, the approach to derive Fw by exploiting the notion of

w -ensemble v-representability in Sec. 4.5.2 and the constrained search formalism discussed
below are quite different from a conceptual point of view.

To illustrate the constrained search (4) for a homogeneous BEC, we first need to calculate
the expectation value TrN [ŴBΓ̂w ] = TrN [ĤBΓ̂w ] − TrN [ t̂ Γ̂w ]. Since TrN [ĤBΓ̂w ] is given by
Eq. (46) we immediately arrive at

TrN [ŴBΓ̂w ] =
∑

p ′
2nWp ′

�

φ2
p ′

1−φ2
p ′
−
φp ′

1−φ2
p ′

�

+ (1−w)nWq ′

�

1+φ2
q ′

1−φ2
q ′
−

2φq ′

1−φ2
q ′

�

. (50)

Furthermore, the occupation numbers ηp ′ in Eq. (48) determine the variational parameters
φp ′ ,

φp ′ =







σp ′

r

ηp′

2+ηp′
, if p ′ ̸= q ′ ,

σp ′

È

ηp′+w−1
ηp′+3−w , if p ′ = q ′ ,

(51)

up to a phase σp ′ = ±1. As a result, the constrained search formalism (4) simplifies to a
minimization over the phases σp ′ of φp ′ ,

Fw ,q ′(η) = min
{σp′=±1}





∑

p ′ ̸=q ′
nWp ′
�

ηp ′ −σp ′
q

ηp ′(ηp ′ + 2)
�

+nWq ′
�

ηq ′ −σq ′
q

(ηq ′ + 3−w)(ηq ′ +w− 1)
�

�

, (52)
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which can be solved independently of the sign of the Fourier coefficients Wp ′ . Here, we have
Wp ′ ≥ 0 for all momenta p ′ such that the minimization in (52) leads indeed to the functional
presented in Eq. (43). It is worth noticing that the minimization over the phases {σp ′} in
Eq. (52) can be performed independent of the sign of the Fourier coefficients Wp′ leading to
σp ′ = sign(Wp ′). Thus, the same derivation of Fw ,q ′ in Eq. (52) can be applied for attractive
as well as repulsive interactions. Last but not least, the universal pure functional Fw on the
domain E1

N (w ) finally follows as Fw =minq ′ Fw ,q ′ .

4.6 Bose-Einstein condensation force

For ground state RDMFT a remarkable property has recently been discovered: the gradient
of the universal functional diverges repulsively on the boundary of the allowed regime. This
BEC force for bosons [3, 4, 6] and exchange force for fermions [61] is a consequence of the
geometry of quantum states and thus independent of the microscopic properties of the system.
In the following, based on the result (43) we confirm the existence of this BEC force also in
the context of excited state RDMFT. This demonstrates that the boundary of the functional’s
domain E1

N (w ) and effectively Σ↓(w ) = spec↓(E1
N (w )) contains crucial information about the

excitation structure of N -boson quantum systems.
In the following we therefore consider the boundary of Σ↓(w ), with a particular em-

phasis on the neighborhood of the generating vertex v (36). From Eq. (43) we obtain
for the derivative of Fw with respect to the occupation numbers ηp′ close to the vertex
v = (N − 1+w, 1−w, 0, . . .),

∂Fw

∂ ηp′
(η)∝







− 1p
ηp′

, if p ′ ̸= q ′ ,

− 1p
ηp′+w−1

, if p ′ = q ′ .
(53)

Here, the momentum q ′ denotes the momentum corresponding to the first excitation in ac-
cordance with Eq. (52). Eq. (53) already reveals that the gradient of Fw diverges repulsively
whenever one of the occupation numbers ηp ′ tends to zero. Consequently, whenever η ap-
proaches v or any other point on the boundary, the corresponding gradient force is collectively
diverging. This BEC force namely contains individual contributions from various polytope
facets that are reached. The gradient force is thus indeed collective in the sense that all in-
dividual components for each momentum p ′ diverge. In this context, the zero momentum
state requires a separate treatment since we assumed that this state would be macroscopically
occupied. To be more specific, our derivation of Fw assumed n0 ≈ N and we used the nor-
malization to substitute n0. Hence, the information about n0 close to the boundary of Σ↓(w )
is hidden in all the other occupation numbers. Let us now assume that the upper bound on
n0 is saturated, i.e., n0→ N −1+w. Then, for a large dimension d of the one-particle Hilbert
space, i.e. a large number of different p ′, all N − n0 bosons not occupying the p = 0 state
can distribute over the remaining orbitals. As a result, either some of the occupation numbers
ηp ′ are equal to zero or they are all very close to zero. According to Eq. (53) this leads again
to a collective repulsive force at the boundary of the domain of Fw . To elaborate a bit more
on these findings, we investigate in the following the divergence of the gradient of Fw as a
function of the distance

D =
1
N

∑

p ′
ηp′ − D0 , (54)

of a momentum occupation number vector η to the vertex v of Σ↓(w ). Here, D0 = (1−w)/N
denotes the fraction of non-condensed bosons at the vertex v . For this purpose, let us consider
a straight path from a starting point η towards v according to

η(t) = η+ t(v −η) , (55)
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with t ∈ [0,1]. In particular, we obtain for the distance D along this straight path
D(t) = (1 − t)D(0) ≡ (1 − t)D, where D denotes the fraction of non-condensed bosons at
the occupation number vector η. Taking the derivative ofFw (43) with respect to the distance
D defined in Eq. (54) eventually yields after an elementary calculation

dFw

dD
(η)∝−

1
p

D
. (56)

Thus, dFw/dD diverges as 1/
p

D in the limit D → 0 in analogy to the fermionic exchange
force [61] and the BEC force for ground states [3, 6]. Moreover, the corresponding prefactor
is always negative and contains all information about the system’s specific properties of the
interaction.

We thus succeeded in generalizing the concept of a BEC force also to excitations in homo-
geneous BECs. Motivated by the significance of the energy gap between the ground state and
the first excited state for most physical systems, we discussed above the case r = 2. Of course,
the derivation of the w -ensemble universal functional Fw and its gradient can be extended
in a similar fashion to larger values of r in order to provide access to a larger number of ex-
citation energies. Yet, this would require more mathematical effort which is also due to the
degeneracy of the excited states.

5 Summary and Conclusions

To initiate w -RDMFT, we derived analytically the universal functionals for the symmetric Hub-
bard dimer (Sec. 3) and the homogeneous Bose gas within the Bogoliubov approximation
(Sec. 4) for r = 2 non-zero weights w j . These two systems can be seen as ideal starting points
for the future development of more sophisticated functional approximations: The Hubbard
dimer constitutes the building block of the Hubbard model, one of the most important models
in condensed matter physics and the field of ultracold gases. In turn, the Bogoliubov func-
tional represents the bosonic analogue of the pivotal Hartree-Fock functional for fermionic
systems [11] since it refers to the regime of small quantum depletion.

Due to the particular suitability of w -RDMFT for describing Bose-Einstein condensates and
to offer a broad toolbox to the community, we actually derived the functional Fw of the Bose
gas in three conceptually different ways. First, we determined Fw as the Legendre-Fenchel
transform with respect to the kinetic energy operator of the well-known formula for low-lying
excitation energies. From a general point of view, this emphasizes again the scope of functional
theories, namely to solve effectively the ground state or excited state problem for an entire
class (1) of Hamiltonians of interest. Second, by introducing the concept of w -ensemble v-
representability, we could determine Fw by inverting the map which assigns to kinetic energy
operators t̂ the respective momentum occupation numbers of a w -ensemble state. This ap-
proach emphasizes also a severe curse of universality in functional theories that has not been
acknowledged yet: By varying the one-particle terms of the system (e.g., external potential
or kinetic energy operator) energy eigenvalues do cross. This in turn leads to a partitioning
of the functional’s domain into subdomains, each characterized by its own “local” functional.
Third, by resorting to the Bogoliubov transformation, we succeeded in executing the Levy-Lieb
constrained search and in particular managed to overcome the common phase dilemma. De-
spite the focus on bosons these three different routes to develop functional approximation as
well as the discussion on w -ensemble v-representability and the curse of universality can be
applied to fermions in an analogous manner.

Last but not least, the results for the two systems highlight that the boundary ∂ E1
N (w ) of

the functional’s domain E1
N (w ) has a particular relevance. To be more specific, the gradient of
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the universal functional was found to diverge repulsively as the 1RDM approaches ∂ E1
N (w ).

This remarkable result generalizes the recently discovered exchange force [61] for fermions
and BEC force for bosons [3,4,6] in their ground states to mixed states. The existence of those
forces does not depend on any microscopic details but has a solely geometrical origin. In
that sense, these novel concepts emphasize the prominent role that the geometry of reduced
quantum states can play in general in advancing functional theories.

Acknowledgements

We are grateful to F. Castillo and J.P. Labbé for valuable discussions. We acknowledge financial
support from the German Research Foundation (Grant SCHI 1476/1-1) (J.L., C.S.), the Munich
Center for Quantum Science and Technology (C.S.) and the International Max Planck Research
School for Quantum Science and Technology (IMPRS-QST) (J.L.). The project/research is also
part of the Munich Quantum Valley, which is supported by the Bavarian state government with
funds from the Hightech Agenda Bayern Plus.

A Derivation of the w -ensemble functional in the symmetric Bose-
Hubbard dimer

In this section, we derive the w -ensemble functional for the symmetric Bose-Hubbard dimer
in the total momentum sector with P = 0. The allowed values for the discrete momentum p
are given by pν = πν with ν= 0,1. We denote the operator creating a boson with momentum
pν by â†

ν (see also Sec. 3). The two-dimensional subspace HP=0
2 of the two boson Hilbert space

H2 is spanned by the basis states

|1〉 =
1
p

2
(â†

0)
2|0〉 , (A.1)

|2〉 =
1
p

2
(â†

1)
2|0〉 , (A.2)

where |0〉 denotes the vacuum state. In this basis, every two-boson density operator Γ̂ with
spectrum w = (w1, 1−w1) can be expressed as

Γ̂w =
2
∑

i, j=1

Γ
(w )
i j |i〉〈 j| . (A.3)

However, the minimizer states in the GOK variational principle (3) take the form
Γ̂w =
∑2

j=1 w j|Ψ j〉〈Ψ j|, where |Ψ j〉 are the eigenstates of the Hamiltonian Ĥ = ĥ+ Ŵ . Here,

Ŵ denotes the Hubbard on-site interaction term in Eq. (8). To determine Γ (w )i j in terms of the
weights w j , we expand the eigenstates |Ψ j〉 as follows,

|Ψ1〉= α1|1〉+α2|2〉 , |Ψ2〉= β1|1〉+ β2|2〉 , (A.4)

with αi ,βi ∈ R. These expansion coefficients αi ,βi must further satisfy the orthonormality
conditions

α2
1 +α

2
2 = 1 , (A.5)

β2
1 + β

2
2 = 1 , (A.6)

α1β1 +α2β2 = 0 . (A.7)
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Combining Eq. (A.3 ) with Eq. (A.4 ) leads to

Γ
(w )
11 = 1− Γ (w )22 = w1α

2
1 +w2β

2
1 ,

Γ
(w )
21 = Γ

(w )
12 = w1α1α2 +w2β1β2 . (A.8)

To express the 1RDM γ̂ in terms of the matrix elements Γ (w )i j in the next step, we first recall
that γ̂ is diagonal in momentum representation. Thus, in our case γ̂ depends only on a sin-
gle independent parameter due to the normalization n0 + n1 = 2, where nν = Tr2[â†

νâνΓ̂w ].
Together with Eq. (A.3 ) we arrive at

n0 = Tr2[â
†
0â0Γ̂w ] = 2Γ (w )11 = 2

�

w1α
2
1 +w2β

2
1

�

. (A.9)

Moreover, to determine the w -ensemble functional Fw (γ), we need to minimize

Tr2[Ŵ Γ̂w ] = U
�

1+ 2Γ (w )12

�

= U (1+ 2(w1α1α2 +w2β1β2)) (A.10)

according to the constrained search formalism with respect to the coefficientsαi ,βi . Since their
three orthonormality conditions together with Eq. (A.9 ) constitute four conditions for four
free variables, this minimization can be carried out analytically without much effort. Solving
the resulting system of equations (A.5 ), (A.6 ), (A.7 ) and (A.9 ) leads in a straightforward
manner to

Tr2[Ŵ Γ̂w ] = U
�

1±
Æ

(n0 − 2w2) (2w1 − n0)
�

. (A.11)

Choosing the minus sign which minimizes the expectation value in Eq. (A.10 ) eventually yields

Fw (n0) = U
�

1−
Æ

(n0 − 2w2) (2w1 − n0)
�

= U
�

1−
Æ

n0(2− n0)− 4w1w2

�

, (A.12)

which is a functional of the momentum occupation number n0 only. Since the functional Fw
and its domain are both convex for every w this functional coincides with its relaxed variant
Fw .

Next, we minimize the energy functional Tr1[γ̂ t̂]+Fw (n0), where t̂ = −t
∑

ν=0,1 cos(πν)n̂ν,
to verify that the result for Ew in (3) is in agreement with the eigenenergies of Ĥ = t̂ + Ŵ
obtained from an exact diagonalization. The kinetic energy in terms of n0 is given by (recall
that n1 = 2− n0)

Tr1[ t̂γ̂] = −2t(n0 − 1) . (A.13)

Thus, to calculate Ew we need to solve

∂

∂ n0
(−2t(n0 − 1) +Fw (n0))

�

�

�

�

n0=ñ0

= 0 , (A.14)

for the momentum occupation number ñ0. This leads to

ñ0 = 1+
2t(w1 −w2)p

4t2 + U2
. (A.15)

Then, the energy Ew follows as

Ew = −2t(ñ0 − 1) + U
�

1−
Æ

ñ0(2− ñ0)− 4w1w2

�

≡ w1E1 +w2E2 , (A.16)
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where

E1 = U −
p

4t2 + U2 , (A.17)

E2 = U +
p

4t2 + U2 . (A.18)

The Hamiltonian Ĥ in Eq. (8) in the basis spanned by the states |1〉 and |2〉 defined in Eqs. (A.1 )
and (A.2 ), can be represented by the matrix

H =

�

U − 2t U
U U + 2t

�

, (A.19)

which has the two eigenvalues E1 and E2 introduced in Eq. (A.17 ) and (A.18 ). Hence, the
result for the energy Ew in Eq. (A.16 ) is in agreement with the eigenenergies obtained from
diagonalizing the matrix H.
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