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Abstract

Unambiguous identification of the Kitaev quantum spin liquid (QSL) in materials remains
a huge challenge despite many encouraging signs from various measurements. To facili-
tate the experimental detection of the Kiteav QSL, here we propose to use remnant charge
response in Mott insulators hosting QSL to identify the key signatures of QSL. We pre-
dict an emergent orbital magnetization in a Kitaev system in an external magnetic field.
The direction of the orbital magnetization can be flipped by rotating the external mag-
netic field in the honeycomb plane. The orbital magnetization is demonstrated explicitly
through a detailed microscopic analysis of the multiorbital Hubbard-Kanamori Hamil-
tonian and also supported by a phenomenological picture. We first derive the localized
electrical loop current operator in terms of the spin degrees of freedom. Thereafter, uti-
lizing the Majorana representation, we estimate the loop currents in the ground state
of the chiral Kitaev QSL state, and obtain the consequent current textures, which are
responsible for the emergent orbital magnetization. Finally, we discuss the possible ex-
perimental techniques to visualize the orbital magnetization which can be considered as
the signatures of the underlying excitations.
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1 Introduction

Understanding quantum spin liquid (QSL) states and identifying them [1–4] in materials, has
become a centerpiece of research in modern condensed matter physics. The QSL is a topologi-
cally ordered state with long-range entanglement that appears in spin systems with frustrated
magnetic interactions. Although the beginning of the exploration of various QSL states dates
back to the seminal work by Anderson on resonating valence bond states in antiferromag-
netic Mott insulators [5], the research in QSLs rapidly intensified with the discovery of high-Tc

cuprates [6] due to its possible connection to the origin of superconductivity [7]. Over the last
four decades, various theoretical proposals [8–11] have been made to understand this exotic
phase of matter. All these works hinge on a universal consensus about the fractional nature of
quasiparticles in a typical QSL state. However, an unambiguous material-based realization of
a QSL phase is hitherto absent.

Among the zoo of various predicted QSL states, the Kitaev spin liquid [12] plays a special
role. It is an exactly solvable S = 1/2 spin model on a two-dimensional honeycomb lattice, in
which the spins fractionalize into (i) Majorana fermions and (ii) Z2 vortices, also known as
visons. Recently, substantial interest has emerged in the study of the Kitaev model owing to
its potential realization in a few spin-orbit coupled Mott insulators such as complex iridates
A2IrO3 [13] (A = Na, Li) and α-RuCl3 [14]. For real materials, however, non-Kitaev inter-
actions and further spin-exchange interactions are inevitably present [15–18], which spoils
the integrability of the ideal Kitaev model and makes it difficult to assess its predictions. In
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this regard, various proposals have been put forward to tune the magnetic exchange inter-
actions towards the ideal Kitaev limit by applying strain [19], modifying spin-orbit coupling
(SOC) [20] or through Floquet engineering [21–24] in the honeycomb Mott insulators.

Recent experiments on α-RuCl3 [25–34] have provided a strong evidence for the existence
of the Kitaev QSL phase in an intermediate magnetic field regime of B ∼ 8 − 14 T. Namely,
nuclear magnetic resonance [25] and neutron diffraction [26] experiments observed field-
induced spin gap opening around 10 T consistent with the physics of an ideal Kitaev model in
an applied magnetic field. Particular features of such gap opening have also been speculated
by inelastic neutron scattering studies [29], although the similar evidence of gap opening can
be associated with a partially polarized magnetic phase at high magnetic field. Specifically,
the observation of half-quantized thermal Hall conductivity [34, 35] has been interpreted as
a signature of chiral Majorana edge modes in α-RuCl3. On the other hand, the observation
of thermal conductivity oscillations in α-RuCl3 as a function magnetic field, for an intermedi-
ate magnetic-field regime, suggests a metallic nature of the underlying quasiparticles, despite
that the material is a perfect Mott insulator with a large Mott gap [32]. Nonetheless, direct
experimental observation of the Kitaev phase has remained somewhat controversial [36]. The
reason is that these experimental probes provide, mostly, an indirect signature of the under-
lying excitations of the Kitaev model, and cannot unambiguously determine the nature of the
quasiparticles. Hence, the current state-of-the-art research demands an alternative, more di-
rect, way to detect the Majorana and vison excitations in the Kitaev QSL phase.

Motivated by these fascinating experimental findings, here, we consider a different route
to electrically detect the signatures of the fractionalized neutral excitations in the Kitaev model.
A priori, such an approach might seem counter-intuitive as the parent compounds, realizing
proximate Kitaev physics, are Mott insulators. However, in the paper by Bulaevskii et al., it
was shown that certain frustrated Mott insulators can exhibit non-zero spontaneous circular
electrical currents or nonuniform charge distribution in the ground state [37]. On the other
hand, spontaneous breakdown of injected electrons on a QSL material, into the fractionalized
excitations, can be used to detect Majorana fermions [38]. A previous theoretical work [39]
has recently proposed an experimental set-up utilizing the local charge distribution to detect
vison excitations in α-RuCl3; whereas another contemporary work [40] proposed a more ex-
otic electrical access to the Majorana fermions in Kitaev materials utilizing the transmutation
protocol [38,41,42].

In this continuing search for various innovative electrical access in Mott insulators, one very
exciting aspect still remains unexplored – the induced electrical loop currents, which is allowed
in QSL without time-reversal symmetry. The orbital coupling between the emergent gauge field
and physical gauge field for QSL with spinon Fermi surface was discussed before [43]. Here,
we develop a theoretical formalism to analyze such localized orbital loop current profile in a
multiorbital Mott insulator relevant for α-RuCl3 and propose experimental set-ups to detect
the signatures of Majorana and vison excitations in a Kitaev quantum magnet. For a half-filled
single orbital Hubbard model on a 2D lattice with ∣t i j ∣≪ U , with an on-site Coulomb repulsion
U and the inter-site hopping amplitude t i j , the corresponding expression for the loop current
operator reads as [37]

I i j,k =
24t i j t jk tki

U2
Sk ⋅ (Si × S j) , (1)

where Si = (S x
i , S y

i , Sz
i ) is the spin-1/2 operator, and (i jk) labels the site indices on the smallest

triangular plaquette within the lattice. Eq. (1) can be understood from symmetry considera-
tion. Both the spin chirality Sk ⋅ (Si × S j) and current are odd under time reversal operation
and spatial inversion (i.e. interchange of the indices i and j). The system also has SU(2) spin
rotation symmetry. Unless explicitly mentioned, we use natural units h̵ = e = c = 1 throughout
this paper.
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In this work, we investigate the induced localized loop current profile in a multiorbital
spin-orbit coupled Hubbard-Kanamori model relevant for Kiteav quantum magnets such as
α-RuCl3. The key findings of our work are listed as follows: (i) Utilizing the Schrieffer-Wolff
transformation (SWT), we derive the expression for the localized loop current operator in the
Mott insulator to the third order in perturbation expansion [see Eq. (6a)]. The breakdown of
the SU(2) spin rotation symmetry, due to spin-orbit coupling, leads to a different loop current
expression compared to its single-orbital counterpart.

(ii) In the presence of an external magnetic field, the Kitaev ground state hosts non-zero
expectation value of such localized loop currents. Adopting microscopic parameters relevant
for α-RuCl3 [44,45], we obtain the orbital current profile in a finite 2D honeycomb lattice with
localized edge and bulk loop current distributions, as shown in Fig. 2. The induced localized
currents in the bulk of a 2D honeycomb lattice constitute an emergent super-structure of two
inter-penetrating triangular lattices as illustrated in Fig. 2(b,b′). When an in-plane [ab-plane
in Fig. 1(a)] magnetic field is applied to the Kitaev system, these emergent orbital currents
produce an out-of-plane (c-axis) magnetic field, which we identify as the key feature of a Kitaev
system.

(iii) Finally, we notice that vison excitations drastically modify the current distribution
profile and the associated orbital magnetization locally, as shown in Fig. 3. We provide quan-
titative estimates for this change and about the possible measurement of such orbital mag-
netization using various possible experimental techniques. Our work provides an important
platform to directly detect the electrical signatures of the concomitant excitations (Majorana
and vison) in a Kitaev quantum magnet.

2 Phenomenological picture

Before moving to full microscopic model analysis, here we provide a more intuitive picture
of why we expect an orbital magnetization in Mott insulators hosting the Kitaev quantum
spin liquid in terms of the parton theory [46, 47]. The electron operator can be written as
cσ = b fσ, where b is a boson operator carrying electron charge quantum number and fσ is the
fermionic spinon operator carrying spin quantum number. The parton decomposition leads to
an emergent gauge field a, which inherently couple to the spinons as fσ → fσ exp(ia), while
the charged boson couple to both the physical gauge field A and emergent gauge field a, as
b → b exp[i(A − a)]. The effective low-energy Lagrangian for the b boson has the standard
Ginzburg-Landau form [48]

Lb = ∑
µ=x ,y,z

∣(i∂µ + aµ − Aµ)b∣2 − g ∣b∣2 − u
2
∣b∣4 +⋯ (2)

Here we only keep the spatial components of the gauge fields, because they are responsible for
the diamagnetic response discussed below. When b boson condenses for g < 0, the Anderson-
Higgs mechanism generates a term proportional to (aµ − Aµ)2, which locks a to A [10]. As a
consequence, the emergent gauge field behaves the same way as the physical gauge field, and
the system is metal if fσ forms the fermi surface or a superconductor if fσ forms Cooper pairs
and condenses.

In the Mott insulator, b boson is gapped with g > 0. However, there is still diamagnetic
response in A − a due to the gapped charged boson, similar to the Landau diamagnetism in
metal, albeit weaker. When an external magnetic is applied in Mott insulators, local current
loops are induced which generate magnetization opposite to the applied field as a diamagnetic
response. The diamagnetic response increases with decreasing charge gap, and hence the
effect discussed here is more prominent near the Mott transition. The effective Lagrangian of
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the system after integrating out b boson has the form [49]

L = L f ( fσ, a) − χb

2
[∇× (a − A)]2 − χB

2
(∇× A)2 , (3)

where χb accounts for the diamagnetic susceptibility due to the gapped boson b, χB is the
susceptibility of the background. L f ( fσ, a) is the Lagrangian describing the spinons coupled
to the emergent gauge field a. Due to the diamagnetic response, an emergent magnetic field
induces a physical magnetic field, which is obtained by minimizing Lwith respect to B ≡ ∇×A:
B = (∇ × a)χb/(χb + χB). We remark one subtle point that a is compact meaning that the
system is invariant under a→ a+2π. Because of the compactness of a, the flux of a is defined
upto modulo of 2π. In the context Kitaev Mott insulator, therefore a vison carrying π flux
without magnetic field is time-reversal symmetric and does not induce a nonzero B. Here we
have considered isotropic response. For the two-dimensional systems we consider below, the
diamagnetic susceptibility is only for the field component perpendicular to the plane, and the
induced B is also along the direction perpendicular to the plane.

In the spinon description, the chiral Kitaev quantum spin liquid stabilized by a magnetic
field corresponds to the state with fσ fermions being in the p+ ip superconducting state, where
the time-reversal symmetry is explicitly broken by the magnetic field [50]. In this phase, there
exists chiral edge current of fσ and the associated magnetization of ∇ × a. At the same time,
the vortex carries flux of a. Because of the diamagnetism due to the gapped b boson, the
emergent magnetic field induces a physical magnetic field. This picture will be corroborated
through the explicit calculation of a microscopic model below.

3 Microscopic model

We start from the microscopic multiorbital description for α-RuCl3, however, this formalism
can be suitably generalized to other Kitaev candidate materials. The electronic configura-
tion of the transition metal (TM) ion Ru in α-RuCl3 is 4d5. These five electrons reside in the
t2g manifold formed by the three orbitals: dx y , dyz and dzx . The presence of strong atomic
SOC [51–56] further splits this manifold into Jeff = 1/2 and Jeff = 3/2 states. This leads to a
completely filled Jeff = 3/2 manifold with the four electrons, and the remaining electron resides
in the Jeff = 1/2 sector. Consequently, it leads to an effective one-hole model, constructed with
the following parameters: an on-site Coulomb repulsion of strength U , the Hund’s coupling
JH, and (next-)nearest neighbor hopping (t ′2) t2, respectively [18,52] [see Fig. 1(a,b)].

In the strong-coupling limit (t2, t ′2 ≪ U , JH), the low-energy effective Hamiltonian is ob-
tained by the (SWT) [see Appendix C] and leads to the ferromagnetic Kitaev Hamiltonian
as

H0 = −K ∑
⟨i j⟩;α

Sαi Sαj , K = 8JH t2
2

3(U2 − 4UJH + 3J2
H)

, (4)

where ⟨i j⟩ denotes the nearest-neighbor sites, and α ∈ {x , y, z} labels the planar orientation
of the bond-type as illustrated in Fig. 1(a,b). The Kitaev coupling K in Eq. (4) is obtained to
the lowest order in perturbation, and does not include t ′2. Note that we treat t ′2 as a small
perturbation. We first obtain the ground state configuration without t ′2. Then the induced
orbital current is obtained by considering t ′2 as a small perturbation, which is accurate up to
the first order in t ′2.

This model can be solved exactly, as shown by Kitaev himself [12], by introducing Majo-
rana representation of the spin-1/2 operators as Sαi = i bαi ci/2 for α = x , y, z. Here bαi , ci are
four mutually anti-commuting Majorana operators. In terms of bαi and ci , the Hamiltonian
in Eq. (4) can be rewritten as H0 = iK/4∑⟨i j⟩ ui jcic j , where ui j(= i bαi bαj ) are the Z2 gauge
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Figure 1: (a) Schematic of a finite size (L × L) honeycomb lattice made out of mag-
netic ions with two Z2 vortices (vison excitations) [shaded region]. The vison excita-
tions are separated by a string operator (dashed blue line) which flips ui j eigenvalue
when it crosses a particular bond ⟨i j⟩. The colored bonds represent three anisotropic
bond-dependent Kitaev interactions. The π-rotation symmetry along the crystalline
axes b is illustrated by the dashed orange lines. There is an additional three-fold rota-
tion symmetry along the crystalline c-axis. Note that the π-rotation along the a-axis
is not a symmetry in the presence of ligands. As an example, the crystal symme-
try for the monolayer α-RuCl3 is P63/mcm which does not contain π-rotation along
the a-axis as a symmetry. (b) A single hexagonal plaquette with the (next)- nearest
neighbor hopping amplitudes (t ′2) t2 formed by the bond-dependent orbital over-
laps. (c) The relative orientation of the honeycomb plane (abc-coordinate system)
in panel (a) with respect to the spin quantization axes (x yz-coordinate system).

field operators with eigenvalues ±1. Since ui j commutes with the Hamiltonian, one can pick a
particular choice of ui j (a gauge sector ∣G⟩) and solve the remaining non-interacting Majorana
Hamiltonian. The pinned flux in each honeycomb plaquette is obtained by the gauge-invariant
loop operator Wp = ∏⟨ik⟩∈ p uik. Here Wp = +1 corresponds to zero-flux in a plaquette,
whereasWp = −1 signifies a π-flux and corresponds to a Z2 vortex or a vison excitation [see
the shaded hexagons in Fig. 1(a)]. Following Lieb’s theorem [57], the ground state of the
Majorana fermions is obtained with the gauge choice ofWp = 1,∀p, for all the hexagonal pla-
quettes. Starting from a uniform gauge configuration, one may create a single vison excitation
by changing the eigenvalue of a single plaquette loop operator to −1.

To induce orbital magnetization, it is necessary to break the related symmetries. In crys-
tals realizing the Kitaev model, the symmetry is low because of the spin-orbit coupling. As
shown in Fig. 1(a), the system has translation symmetry, two-fold rotation symmetry along
crystalline b-axis denoted by C2b in panel (a), 3-fold rotation symmetry along the c axis, C3c ,
time-reversal symmetry (TRS) and inversion symmetry. The seemingly two-fold rotation along
the a-axis Fig. 1(a) is absent when one embeds the honeycomb plane into the parent crystal.
To allow for orbital magnetization along the c axis, we need to break the TRS and also the C2b
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symmetry. This can be achieved by applying a magnetic field with non-zero component per-
pendicular to the b axis. One particularly interesting case is when the magnetic field is applied
in the a-b plane, which induces orbital magnetization along the c axis. Generally, the induced
magnetization is much weaker than the applied magnetic field. The case with an external
magnetic field in the plane may be more convenient for experimental detection of the induced
orbital magnetization.

4 Circulating loop currents

Since the parent compound of a Kitaev spin liquid is a multiorbital spin-orbit coupled Mott
insulator, there is remnant charge response and there can exist localized circulating electrical
currents. The charge response is governed by the charge excitation gap, which is of the order
of U . Similar to the derivation of the effective spin Hamiltonian in Eq. (4) from the Hubbard
model, we perform a strong-coupling expansion (SWT) for the current operator defined on
the bond ⟨i j⟩ [see Fig. 1(b)] as

I i j =
iet ′2r̂i j

h̵
∑
α,β ,σ

(d†
jασdiβσ − d†

iβσd jασ) , (5)

where d†
iασ creates an electron in the i-th site with spin σ and orbital α,β ∈ {x , y, z}, and

obtain a generalization of Eq. (1) for the triangular loop current as (see Appendix B for the
details of the derivation)

Ĩ i j,k = I0(3S x
i S y

j + S y
i S x

j )Sz
k + I0(3S y

i Sz
j − 5Sz

i S y
j )S

x
k + I0(3Sz

i S x
j − 5S x

i Sz
j )S

y
k , (6a)

I0 =
er̂i j

h̵
8t2

2 t ′2JH(U − 2JH)
9(U2 − 4UJH + 3J2

H)2
, (6b)

where Sαi is the α-th component of the spin at site i, and U , JH, and t2 are the microscopic
parameters as defined earlier. For the current operator defined on the other bonds, we need to
modify the loop current expression by permuting both the orbital and site indices on the three
spin operators. The expression (6a) is consistent with the C2b symmetry [orange dashed line
in Fig. 1(b)]. Under C2b, i ↔ j, k ↔ k, S x → −S y , S y → −S x , Sz → −Sz and Ĩ i j,k = −Ĩ ji,k.
However, the C2b symmetry cannot uniquely determine the form of Ĩ i j,k. Actually the absence
of any terms with repeated index in the spin space (i.e. S x

i S x
j Sz

k) in Eq. (6a) is an artifact of
considering an ideal situation, where we retain only t2, and t ′2 hoppings in the multiorbital
tight-binding (TB) description. Indeed, a more realistic TB modeling [18] for Kitaev quantum
magnets would lead to additional three-spin terms with possible repeated indices. However,
for the subsequent analysis in this work, we focus on the ideal Kitaev limit.

For an estimate of the amplitude of the induced electrical current, we adopt all the pa-
rameters entering Eq. (6b) from the recent ab initio [44] and photoemission reports [45] for
α-RuCl3 as U = 3.0 eV, JH = 0.45 eV, t2 = 0.191 eV, and t ′2 = −0.058 eV. The value of t ′2 has been
adopted from Ref. [58]. Plugging in the numbers in Eqs. (4) and (6b), we estimate ∣I0∣ ∼ 30
nA, with a Kitaev coupling K ∼ 0.023 eV.

The key quantity now is the expectation value of the induced loop current operator in
the ground state of the Kitaev model. The pure Kitaev model can be solved exactly from the
Hamiltonian H0 = iK/4∑i j cic j , with all ui j chosen to be +1. The ground state eigenfunction
can be written as ∣Ψ0⟩ = Z ∣G0⟩⊗ ∣M⟩ where ∣G0⟩ corresponds toWp = 1 for all hexagonal pla-
quettes and ∣M⟩ is the ground state of gapless Majorana fermions (see Appendix D). However
as the Hilbert space is enlarged due to the fractionalization of the spin degrees of freedom, we
need to project the eigenstates of H0 to the physical Hilbert space of the spin Hamiltonian in
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Eq. (4). The corresponding projection is achieved by the local constraint Di = ici bx
i b y

i bz
i = 1

and the global projection operator Z = Πi(1 +Di)/2 [12,59,60].
Due to the static nature of the vison excitations in a pure Kitaev model, only the first term,

S x
i S y

j Sz
k, in Eq. (6a) contributes to the computation of the loop current expectation value in

the Kitaev ground state. All the other five terms in Eq. (6a) do not contribute as they have zero
expectation value in ∣Ψ0⟩ (see Appendix E). It is straightforward to see that the loop current
expectation value vanishes in the pure Kitaev model ground state, i.e., ⟨Ψ0∣Ĩ i j,k∣Ψ0⟩ = 0. This
absence is not a surprise, since any finite loop current would lead to an orbital magnetization
that breaks TRS, whereas the ground state ∣Ψ0⟩ preserves the TRS.

4.1 External magnetic field

The TRS of the system is broken in the presence of an external magnetic field. In this case, we
may expect a finite loop current expectation value in the ground state. We consider the Kitaev
model in an external magnetic field and explore its consequences. The integrability of the
model is destroyed in the presence of an external magnetic field h = (hx , hy , hz), defined along
spin quantization axes (we call it the x yz-coordinate system). For a small ∣h∣, we can treat the
effect of h in a perturbative manner. The lowest order perturbation correction, that breaks the
TRS [12], reads asHeff = −κ∑i jk,△ S x

i S y
j Sz

k, where κ = hxhyhz/K2. Note thatHeff has the same

form as the first term in Ĩ i j,k, and therefore it is natural to have a nonzero current in the QSL.
Choosing the same gauge configuration ∣G0⟩ as before, the total Hamiltonian H = H0 +Heff

can be simplified as

H = iK
4
∑
⟨ik⟩

cick +
iκ
8
∑
⟪i j⟫

cic j , (7)

where all the ui j ’s are replaced by their eigenvalues. The ground state eigenfunction of the
above Hamiltonian can be written as ∣Ψmag⟩ = Z ∣G0⟩ ⊗ ∣Mmag⟩, where ∣Mmag⟩ is the ground
state of the gapped Majorana fermions (see Appendix D.1), and Z is the global projection
operator, as defined earlier. The loop current expectation value becomes non-vanishing in this
case and ⟨Ψmag∣Ĩ i j,k∣Ψmag⟩∝ κ for κ≪ K (see Appendix D).

One key feature of the Kitaev system is that even an in-plane magnetic field [ap-
plied in the ab-plane shown in Fig. 1(b)] can have non-zero components along all the
three spin quantization axes. Let us write the external magnetic field hext in the coor-
dinate system containing the honeycomb plane (we call it the abc-coordinate system) as
hext = h(sinθ cosφ, sinθ sinφ, cosθ), where φ and θ are azimuthal angle measured from
the crystalline a axis and polar angle from the crystalline c axis, respectively, and h is the
strength of the applied magnetic field. After a straightforward transformation between the
abc- and the x yz-coordinate system [see Fig. 1(c)], we obtain (see Appendix C)

(hx , hy , hz) = h(cosθ√
3
+ sinθ cosφ√

6
− sinθ sinφ√

2
,

cosθ√
3
+ sinθ cosφ√

6
+ sinθ sinφ√

2
,

cosθ√
3
−
√

2
3

sinθ cosφ
⎞
⎠

. (8)

It is evident from Eq. (8) that even for an in-plane magnetic field (with θ = 0), one can have
non-zero (hx , hy , hz), leading to a finite κ. By rotating the magnetic field in the ab-plane, κ
can change the sign and even become zero for certain angles (see Appendix C for the details
about the variation of κ as a function of this rotation angle). For the field applied along the
b axis, θ = π/2 and φ = π/2, we have κ = 0 and therefore the induced orbital magnetization
vanishes, which is consistent with the symmetry analysis above.
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Figure 2: (a) Distribution of the localized edge currents around the zigzag type edges
for a finite system with OBC of size L = 21 (the bulk of the system is illustrated by
the dashed bonds). Note that the localized currents on four different edges are dis-
played only for the bonds lying on the honeycomb plaquettes. The localized currents
on the next-nearest neighbor (NNN) bonds are not shown for simplicity. (b) The
macroscopic build-up of localized currents along the NNN bonds is distributed over
the entire sample size and forms filament-like current textures. A magnified view of
the details of the current textures in the middle of the system is shown in the top
right panel (b′). (c) The variation of the localized current as a function of κ for the
nearest-neighbor (NN) bonds on the middle of the edges E1 − E4 (open triangles)
and NNN bonds inside the lattice (open circles), respectively. (d) The current profile
around a different geometry with both the zigzag and arm-chair edges. The numer-
ical estimates are provided with κ = 0.2K .

When the magnetic field strength becomes large, the perturbative treatment is inadequate.
In addition to the κ term, the magnetic field generates dynamics for the visons, which spoil
the integrability of the model. To make analytical progress, we take κ as a free parameter with
the understanding that it relates to the magnetic field for a weak field. The main results of the
orbital magnetization obtained below are expected to hold even when visons are dynamical.
For a large magnetic field, the chiral Kiteav QSL is destroyed and the description in Eq. (7) is
no longer applicable [61,62].

So far we focused on a specific triangular plaquette, however, in a lattice geometry, the
situation becomes more interesting. A specific triangle is shared between three honeycomb
plaquettes, whereas each nearest-neighbor (NN) bond on the triangle is shared between four
triangles. Among these four triangles, two belong to the hexagonal plaquette containing the
next-nearest neighbor (NNN) bond ⟨i j⟩, where the current operator is defined, and the other
two belong to the neighboring hexagonal plaquettes (see Fig. 1). Consequently, the net cur-
rent along the NN bonds forming the honeycomb plaquettes vanishes because of counter-
propagating currents from the two honeycomb plaquettes for translationally invariant systems.
In a finite size system with open boundary conditions (OBC), however, such perfect cancel-
lations are not possible near the edge terminations, as shown in Fig. 2. On the other hand,
since the NNN bonds are not shared between any plaquettes, the localized currents are never
canceled and they create an interesting loop current profile distributed over the entire system,
as will be discussed in the next section.
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5 Finite system analysis

We now focus our analysis on a finite system to compute the localized current profile. We first
consider a finite system (with OBC) of linear size L without anyZ2 vortices or vison excitations.
We set the value of κmotivated by the recent experimental work on α-RuCl3 [33]. Comparing
the gap magnitude from Eq. (7) with the observed field-dependent Majorana gap at an applied
magnetic field of ∼ 10 T, we estimate κ ∼ 0.77K . However, this value of κ corresponds to a
large magnetic field, when our approximate Hamiltonian in Eq. (7) is no longer applicable.
Hence, we use a smaller magnitude of κ = 0.2K for subsequent quantitative estimates, unless
otherwise mentioned. As explained previously, the localized current on a particular bond ⟨i j⟩α
on the honeycomb plaquette is the sum of the contributions from the associated triangles.
Following the analytical form in Eq. (6a), it appears as if there are three different average
currents Iα in three different bonds, α = x , y, z, respectively [see Fig. 1(a)]. However, the C3

rotation symmetry of the underlying lattice implies that all these three currents are identical
i.e., Iα = I. In addition, neighboring honeycomb plaquettes of a particular bond host counter-
propagating current I, leading to vanishing average current distribution at the sides of each
honeycomb plaquette in the bulk. However, such perfect cancellations are absent near the
edge terminations of the finite system, which consequently leads to non-vanishing localized
currents around the edge as shown in Fig. 2(a) and 2(c). The lack of translational invariance
around the edges of the system leads to different localized currents along different bonds in
each of the triangular plaquettes along the edge. The total current is conserved at each vertex.

On the other hand, the localized currents in each of the NNN bonds ⟨i j⟩within the triangle
△i jk do not vanish as they are not shared between other triangles in the lattice geometry. It
leads to a macroscopic build-up of the localized currents which mimics a filament like structure
distributed over the entire system, as shown in Fig. 2(b). For an infinite system, these localized
currents on the NNN bonds, form an emergent superlattice of two interpenetrating triangular
lattices as illustrated in Fig. 2(b′). We emphasize that there is no free-flowing current over
long distances because of the Mott nature of the system. Currents only flow around a closed
loop of atomic size. The seemingly free flow of current (red line in Fig. 2(b)) is an illusion
due to the superposition of localized current loops. The dependence of the current amplitude
as a function of κ is shown in Fig. 2(c). In the subsequent sections Sec. 5.1, and 5.2, we
focus on two types of edge-termination geometry for finite systems with OBC in the absence
of vison excitations. In Sec. 5.3, we again consider a finite system with PBC in the presence of
two well-separated Z2 vortices, and illustrate the drastic modification of the bulk loop currents
around these vison excitations.

5.1 Quantitative estimates and analysis – case of zigzag geometry

We performed numerical diagonalization for a system of linear size L = 21 with zigzag edge
terminations to obtain the average localized current distribution without any vison excitations.
In this case, the thermodynamic limit is reached for a relative small system size L ≥ 20 because
the system is fully gapped. (see Appendix E for the details). The corresponding results are
shown in Fig. 2(a-c). In this geometry, the four different zigzag edges E1 − E4 are related to
each other by the three-fold rotation along the c-axis, and we focus on one edge viz. E1 for
the quantitative analysis.

As shown in Fig. 2(a), the edge E1 is formed by two types of bonds: x- and z-bond. In the
thermodynamic limit, we obtain a localized current that saturates at I(0)edge ∼ 3.0 nA for both
the bonds, that lie far away from the corner sites with E2 and E4, respectively. The variation
of the the thermodynamic edge current I(0)edge as a function of κ is shown in Fig. 2(c) (see the
variation with open triangles).
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The value of Iedge deviates toward the corners of the system and differs for each bond type
because of the lack of translation invariance along the edge. The amplitude for z(x)-bond
near the corner with E4 is ∼ 4.57 (3.83) nA, whereas near the other corner with E2 it is slightly
less ∼ 2.21 (1.58) nA as shown in Fig. 2(a). This variation along the edge is illustrated by the
color legend below panel (a) in Fig. 2. The saturation length (the distance beyond which the
bond currents become I(0)edge) near the edge with E4 is slightly larger than the saturation length
near the edge with E2. Furthermore, the currents on the NN bonds inside the system almost
vanish as mentioned earlier.

On the other hand, the current amplitude on the NNN bonds [x ′, y ′, z′-type corresponding
to t ′2 hopping, see Fig. 1(b)] inside the lattice far away from the edges and corners saturates

at I(0)bulk ∼ 7.70 nA as shown in Fig. 2(b). In comparison to the edge current I(0)edge, the variation

of this thermodynamic bulk localized current I(0)bulk as a function of κ is shown in Fig. 2(c) (see
the variation with open circles). This value also deviates from the bulk value as the bonds
come close to the edges/corners of the system. The C3c rotation symmetry, which enforces
identical localized currents I(0)bulk on all x ′, y ′, z′ bonds in the bulk, is lost as we go away from
the middle of the system to its edge. Consequently, the amplitudes of the localized currents
for the three bonds gradually differ as they come closer to the edge/corner as illustrated by
the color legend below panel (b) in Fig. 2.

5.2 Quantitative estimates and analysis – case of armchair geometry

In the previous section, we focused our quantitative analysis on a finite-size honeycomb lat-
tice with zigzag edges as shown in Fig. 2(a). However, such edge terminations are not the
only possible options. Motivated by the graphene literature [63–65], we consider a different
geometry with both the zigzag and the armchair edge terminations, as shown in Fig. 2(d).
Such geometry can be created by modifying the choice of the unit vectors [66] compared to
the previous case. We again perform numerical diagonalization on this geometry of linear size
L = 21 to obtain the current distribution, without any vison excitations. The localized current
on the NNN bonds in the middle of the system saturates at the same value I(0)bulk as before.
There are four edges and two pairs of edges are related by the inversion operation. Conse-
quently, we focus only on two different edges E′1 and E′2 with zigzag and armchair termination,
respectively. For E′1 (with z and y-bonds), the current far away from the corners saturates at

the same amplitude I(0)edge as quoted in the previous section. Of course, this number varies as
the bonds come close to the corners as before. This variation is similar to Fig. 2(a).

However, the localized current distribution along the armchair edge E′2 (with all the three
bonds – x , y and z) is very different from its zigzag counterpart. The amplitude of the current
on the outer lying z-bonds in the middle of the edge, away from the corners, saturates at
a larger value I(0)z−ach ∼ 10.35 nA, whereas the current on the accompanying x and y-bonds

saturates at a lower value I(0)xy−ach ∼ 4.31 nA. The variation of the localized currents on the
bonds as they come close to the corners for both the zigzag and the armchair edge terminations
is illustrated in Fig. 2(d). The current profile on the NNN bonds is similar to the previous case
and is not shown for simplicity. A more interesting edge current profile can be obtained by
modifying the edge termination patterns to others such as the bearded edge ribbons [66].

5.3 Quantitative estimates and analysis – case of two vison excitations

In this section, we analyze the current distributions in the presence of localized vison exci-
tations. For this purpose, we now consider a finite system with PBC and a bigger linear size
L = 32 compared to the previous case. We chose a bigger system size to reduce the mutual
interaction between the two vison excitations.
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Figure 3: Current profile around a vison excitation (colored hexagon). In contrast to
the previous case in Fig. 2, the localized currents on the NN bonds around honeycomb
plaquettes containing the vison are nonzero.

We introduce two visons and keep them at the largest possible distance ⌊ L−1
2 ⌋ to minimize

their mutual interaction effects. Such configuration can be achieved by flipping all the link
variables on the z-bonds which are connected by the string operator between them, as illus-
trated in Fig. 1(a). However, as the string operator is gauge-dependent, the specific choice of
the string operator connecting two vison excitations does not affect the electrical currents.

The ground state of the two-vison Kitaev model, in the presence of an external magnetic
field can be similarly obtained, utilizing the Majorana and gauge degrees of freedom, as
∣Ψ(2)mag⟩ = Z ∣G2⟩ ⊗ ∣Mmag⟩. Here ∣G2⟩ corresponds to the gauge configuration with two vi-
sons, and Z is the projection operator as defined in Sec. (4). We note that the action of the
projection operator Z translates into satisfying a parity constraint for the matter and bond
fermions as (−1)n f +nχ = 1 (see Appendix E for the technical details) [59, 60]. Next, we com-
pute the average localized current in the ground state ∣Ψ(2)mag⟩, by numerically diagonalizing
the tight-binding Majorana Hamiltonian with ∣G2⟩ (see Appendix E).

In the previous section with the gauge configuration ∣G0⟩, we observed that the localized
currents on the NNN bonds, within the bulk, saturated at a uniform value I(0)bulk. Such current
configuration led to vanishing localized currents on the NN bonds forming the hexagonal pla-
quettes. In the case with the gauge configuration ∣G2⟩, the localized current profile far away
from the static vison excitations is identical to I(0)bulk.

However, this distribution acquires drastic modification inside and around the vison excita-
tions. The localized currents on the three NNN bonds (x ′, y ′, and z′-bonds) within the hexagon
containing a vison excitation become isotropic but differ from the localized currents on the
NNN bonds surrounding the honeycomb plaquettes, and consequently, finite non-vanishing
currents emerge on the NN bonds forming the hexagon, as shown in Fig. 3. The localized cur-
rent on the NNN bonds inside the vison I(2)vison saturate at a smaller value of ∼ 4.03 nA, whereas

the corresponding currents on the surrounding hexagons saturates at almost I(0)bulk ∼ 7.70 nA.
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Consequently, NN bonds surrounding the hexagon containing the vison excitation host non-
zero localized loop currents I(2)vison−edge ∼ 7.29 nA, which is obtained by adding the contributions
of the four triangular plaquettes containing the NN bonds. The variation of the amplitudes of
these localized currents on the vison plaquettes as a function of the orientation and magni-
tude of the external magnetic field follows similar dependence as was illustrated in Fig. 2(c)
in Sec. (5).

6 Loop currents: Implications

So far, we discussed patterns of the TRS breaking localized loop currents in a Kitaev system in
the presence of an external magnetic field. For an infinite system, we noticed that the localized
loop currents constitute a superlattice formed by inter-penetrating triangular lattices as shown
in Fig. 2(b′). The direction of the loop currents is determined by the sign of κ and therefore
depends on the direction of the external magnetic field. Therefore, in the absence of any vison
excitations, one should expect them to contribute a uniform local magnetic moment µloop for
each of the hexagonal plaquettes. Since the current orientation for both the triangular plaque-
ttes is the same, the magnetic moment of each of the two triangles adds up and leads to a total
orbital magnetic moment in each hexagon as µhexagon = 2 × µloop. Adopting realistic atomic
lattice constant for α-RuCl3 from the recent ab intio study [44], we obtain µhexagon ∼ 0.0003µB,
where µB is the Bohr-magneton. Consequently, we find a weak emergent orbital ferromagnetic
magnetic order within the Kitaev QSL phase. Naturally, the vison excitations would create a
local change in this emergent long-range orbital ferromagnetic phase as the localized currents
are different around the vison excitations. Adopting the previous parameters, we estimate that
the magnitude of the local magnetization on an isolated vison to be ∼ ±20% of the µhexagon.
Such orbital ferromagnetic order can be resolved by polarized neutron diffraction [67, 68],
muon spin spectroscopy [69], second harmonic generation [70], optical birefringence mea-
surements [71], or superconducting quantum interference device magnetometers [72].

The key feature of the Kitaev system is that for an external magnetic field only applied in
ab-plane would lead to an induced out-of-plane (along c-axis) magnetization. The direction
and the magnitude of such c-axis magnetic field can be tuned by rotating the magnetic field
in the ab-plane. Note that the direction of the orbital magnetic field depends on the sign of κ
which is dictated by Eq. (8).

The magnitude of the localized moments is weak based on our quantitative estimate for α-
RuCl3. However, two polymorphs of α-RuCl3, by replacing the ligand Cl−-ion with Br− and I−,
have recently become possible candidate materials for realizing Kitaev QSL phase [73]. Among
these two polymorphs, RuI3 is still debated to be a metal, although RuBr3 is an insulator with
almost half the Mott gap compared to RuCl3 [73]. On the other hand, it has a much larger Ru-
Ru distance and considerable Ru 4d and Br 4p orbital overlap [74]. Adopting the parameters
from the ab initio [75] results for RuBr3, we predict an order of magnitude enhancement of
such localized magnetic moments for an analogous situation in RuBr3 with µhexagon ∼ 0.003µB

at κ ∼ 0.14K if the Kitaev quantum spin liquid phase can be realized there. On the other hand,
if we adopt an inflated magnitude of κ for RuBr3 motivated by the experimentally measured
Majorana gap for α-RuCl3 [33] as κ ∼ 0.77, the orbital magnetization can go up as much as
0.01µB.
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7 Discussion and conclusion

In this paper, we developed a theoretical framework for analyzing the remnant electrical cur-
rent responses in spin-orbit coupled multiorbital Mott insulators, such as iridates or ruthenates,
considered to be plausible candidate materials to realize the Kitaev QSL phase. Our analy-
sis and predictions reveal an exciting and alternative detection protocol for the signatures of
the fractionalized excitations in a Kitaev QSL through emergent orbital magnetization due to
the localized orbital currents. This formalism can be generalized to other QSL hosting Mott
insulators with broken time-reversal symmetry. Starting from the microscopic multiorbital
Hubbard-Kanamori model, we derived the functional form of the induced localized currents
in a triangular loop [see Eq. (6a)] using SWT. The current operator expressed in terms of the
spin operator in Mott insulators without SU(2) spin rotation symmetry is an important result,
on its own, and forms the basis for the rest of our paper. In the presence of an external magnetic
field, we solve the Kitaev model in the Majorana representation and notice that the ground
state hosts a non-zero expectation value for the localized loop currents. Because of the under-
lying honeycomb lattice structure, the average non-zero triangular loop current leads to a rich
current profile in the two-dimensional system, as shown in Fig. 2. The current on the NNN
bonds on the hexagonal plaquettes extends over the entire system and forms a super-lattice of
two inter-penetrating triangular lattices as illustrated in Fig. 2(b′), whereas the current on the
NN bonds vanishes identically within the bulk. However, depending on the edge termination
profiles (zigzag, armchair, or bearded) of the 2D Kitaev system, the localized currents on the
NN bonds along the edge can survive and lead to rich and interesting patterns.

We then revisited the analysis of our current profile in the presence of vison excitations.
While the localized current distribution in the absence of any visons (uniform gauge configura-
tion) remains identical on the NNN bonds within the bulk, leading to the vanishing currents on
NN bonds, a single vison excitation leads to a drastic modification of the currents on the bonds
containing the Z2 vortex (see Fig. 3). Depending on the orientation of the applied magnetic
field, the currents on NNN bonds in hexagons containing the Z2 vortex decrease compared
to the surrounding hexagons away from the vison excitation. This leads to a reappearance
of non-zero localized currents on the NN bonds around the hexagon with vison excitation,
and implies that the visons carry the physical magnetic flux, which makes visons resemble
the Abrikosov vortices in superconductors. Note that the inevitable presence of local inho-
mogeneities in real materials would also leads to modifications of the magnetization profile
because of the breakdown of translational invariance. The current pattern induced by impuri-
ties can be random and is different from the current pattern induced by a vison. Furthermore,
visons are dynamical excitations of the quantum spin liquid, while the orbital current induced
by impurities is static. These two distinct features for current induced by impurities and visons
can be easily distinguished.

The visons can couple to an external magnetic field directly and can interact through elec-
tromagnetic coupling. This direct electromagnetic coupling is generally weak because of the
small magnetic moment associated with visons. Under the circumstances when the vison gap
is small, one may induce vison lattice by an external magnetic field similar to the Abrikosov
vortex lattice.
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A Schrieffer-Wolff transformation

In this section, we lay out the details of the Schrieffer-Wolff transformation (SWT) to derive the
low-energy effective Hamiltonian from a generic strongly correlated electronic model [23,76].
The original correlated Hamiltonian is written as

H =H0 +H1 , (A.1)

where H0 denotes the correlated part of the model (with parameters such as onsite Coulomb
repulsion U , Hund’s coupling JH, etc.), and H1 denotes the tight-binding (TB) contribution
(with parameters including all the hopping parameters t1, t2 or spin-orbit coupling, etc.).
Here, various t i ’s correspond to the hopping amplitudes between multiple orbitals or sites. In
a strongly correlated system, interaction strengths are naturally much larger than the hopping
parameters. In this case, we can reduce the full Hamiltonian in Eq. (A.1) to a low-energy effec-
tive description to explain various properties of the parent system. SWT is a very powerful tool
in this regard, which is achieved via a unitary transformation U = eiS , where S is a hermitian
operator. After applying such a unitary transformation, we obtain the rotated Hamiltonian as

H′ = U†HU = eiSHe−iS

=H + [iS,H] + 1
2!
[iS, [iS,H]] + 1

3!
[iS, [iS, [iS,H]]] +⋯

=H0 +H1 + i[S,H0] + i[S,H1] −
1
2
[S, [S,H0]] −

1
2
[S, [S,H1]]

− i
3!
[S, [S, [S,H0]]] −

i
3!
[S, [S, [S,H1]]] +⋯ , (A.2)

where S is to be determined later. The idea is now to evaluate the generating function S in
a perturbative manner in terms of the small TB parameter, such that an effective Hamiltonian
in each order acts on a truncated Hilbert space avoiding any doubly occupied or empty sites
(which corresponds to high-energy configurations). Note that we consider half-filling. For this
purpose, we introduce two projection operators P , andQ, where P projects to singly occupied
sites andQ = 1−P , correspondingly, projects to either a doubly occupied or an empty site. We
now write the generating function S as a perturbative expansion in terms of the TB parameters
as

S = S(1) + S(2) + S(3) + S(4) +⋯ (A.3)

Next, collecting terms of the same order in perturbation, we obtain

H′ =H0 +H1 + i[S(1),H0] (A.4a)

+ i[S(1),H1] + i[S(2),H0] −
1
2
[S(1), [S(1)(t),H0]] (A.4b)

+ i[S(3),H0] + i[S(2),H1] −
1
2
[S(1), [S(1),H1] + [S(2),H0]]

− 1
2
[S(2), [S(1),H0]] −

i
3!
[S(1), [S(1), [S(1),H0]]] (A.4c)

+O(4) terms , (A.4d)
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where, in each line, we arranged terms of the same order in perturbation. The rotated Hamil-
tonian in Eq. (A.4a-A.4d) can be written in a compact form as follows

H′ =
n

∑
m=0
H(m)eff +O(n + 1) , (A.5)

where the effective Hamiltonian in m-th perturbative order H(m)eff is computed in such a way

that it does not have any mixing terms, i.e., PH(m)eff Q = QH
(m)
eff P = 0. In the subsequent

analysis, we provide the key steps to obtain the analytical structure of the effective Hamiltonian
up to third-order in the perturbation expansion.

A.1 Second-order effective Hamiltonian

We now move on to the analysis of the second-order effective Hamiltonian and obtain the
equation for the generating function S(1) from Eq. (A.4a). Utilizing this relation in Eq. (A.4b),
we obtain the effective Hamiltonian in the second-order perturbation as

[S(1),H0] = iH1 , (A.6a)

H(2)eff =
i
2
[S(1),H1] . (A.6b)

To solve for the generating function S(1), we first notice its 2 × 2 matrix structure in the basis
of the projection operators P , and Q as

S(1) = (PS
(1)P PS(1)Q

QS(1)P QS(1)Q) , (A.7)

where P , and Q are defined earlier. Since, we need to remove the off-diagonal elements, the
diagonal elements [PS(1)P , QS(1)Q] are naturally assumed to be zero, and the off-diagonal
elements are obtained from Eq. (A.6a) as

PS(1)H0Q −PH0S(1)Q = iPH1Q
⇒ PS(1)QQH0Q −((((((((

PH0QQS(1)Q = iPH1Q, (A.8a)

QS(1)H0P −QH0S(1)P = iQH1P
⇒(((((((((
QS(1)(t)QQH0P −QH0QQS(1)P = iQH1P . (A.8b)

A.2 Third-order effective Hamiltonian

The third-order effective Hamiltonian can be obtained similarly as outlined in Sec. (A.1). We
first obtain the equation for the generating function S(2) [see Eq. (A.4b)], and utilize it to
derive the effective Hamiltonian in the third-order perturbation. Consequently, we obtain
[Note: the last term in Eq. (A.4b) can be recasted in the form as in Eq. (A.6b) by utilizing the
equation of motion for S(1) in Eq. (A.6a)]

[S(2),H0] = −[S(1),H1] (A.9a)

H(3)eff =
i
2
[S(2),H1] +

1
6
[S(1), [S(1),H1] . (A.9b)

Finally, we evaluate the matrix elements for S(2) in the projection operator basis as

PS(2)QQH0Q −((((((((
PH0QQS(2)Q =((((((((

PH1QQS(1)Q −PS(1)QQH1Q
⇒ PS(2)QQH0Q = −PS(1)QQH1Q, (A.10a)

((((((((
QS(2)QQH0P −QH0QQS(2)P = QH1QQS(1)P −((((((((

QS(1)QQH1P
⇒ QH0QQS(2)P = −QH1QQS(1)P , (A.10b)
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whereQH1Q corresponds to hopping between either two doubly occupied states or two singly
occupied sites (always leaving one empty site after the hopping, in the latter case).

B Effective analytical structure of a generic operator

In previous Appendix (A), we provided all the details of the SWT to obtain the generic forms
of the effective low-energy Hamiltonian. Once the generating functions S(m) are obtained
upto m-th order in perturbation, any other operators can be rotated in the same manner as in
Eq. (A.2). Consequently, in the rotated frame, any local operator Oi becomes

Õi = eiSOie−iS = Oi + i[S,Oi] −
1
2!
[S, [S,Oi]] −

i
3!
[S, [S, [S,Oi]]] +⋯ , (B.1)

where Oi a generic physical operator viz., the local charge imbalance operator at half-filling
i.e. δρ i = e (d†

iασdiασ − 1), or the current operator i.e. I i j = iet′ r̂i j

h̵ ∑αβ (d†
jασdiβσ − d†

iβσd jασ),
where the sum over repeated indices are assumed and (α,β), and σ correspond to the orbital,
and spin degrees of freedom, respectively. Utilizing the projection operators P and Q, as
defined earlier, we analyze the low-energy effective structure for Oi as

PÕiP =����POiP + i������P[S,Oi]P −
1
2!
P[S, [S,Oi]]P −

i
3!
P[S, [S, [S,Oi]]]P +⋯

= − 1
2!
P[S, [S,Oi]]P −

i
3!
P[S, [S, [S,Oi]]]P +⋯ , (B.2)

where we utilized the relation POiP = 0 and P[S,Oi]P = 0. This property holds for the case
where Oi is a diagonal operator in the projection operator space. An example for this is the
charge imbalance operator δρ i [39]. However, for the current operator I i j (off-diagonal in
P-Q space), such a restriction does not hold i.e. P[S,I i j]P ≠ 0. We now focus our analysis
on the low-energy effective form for the current operator.

B.1 Circulating loop current

Since there are no mobile-charged carriers in a Mott insulator, a free-flowing current cannot
exist in the system. However, this constraint does not exclude the possibility of having an
induced circulating loop current in a closed loop. A minimal closed loop is made out of three
neighboring sites forming a triangular plaquette. Here, we derive the localized loop current
operator up to third-order in perturbation. Formally it reads as

Ĩ(2)i j,k = iP[S(2),I i j]P −
1
2
P[S(1), [S(1),I i j]]P

= iPS(2)QQ I i j P +PS(1)QQ I i j QQS(1)P + h.c. , (B.3)

where we utilized the equation for the generating functions S(1) and S(2) as in Eqs. (A.8a-
A.8b) and Eqs. (A.10a-A.10b). The form of the current operator in a single-orbital Hubbard
model [37] can be obtained utilizing the above scheme. Here, we apply this scheme to the
multiorbital Hubbard-Kanamori Hamiltonian, relevant for α-RuCl3 [77,78], to derive the low-
energy form of the current operator.
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B.2 Hubbard-Kanamori model

The microscopic multiorbital Hamiltonian for Kiteav magnets such as α-RuCl3 is written as
(see Refs. [ [16]],[ [18]])

H =H0 +H1 +H2 , (B.4a)

H0 = U∑
iα

niα,↑niα,↓ +
U ′

2
∑
α≠β ,
σ,σ′

niασniβσ′ −
JH

2
∑
α≠β ,
σ,σ′

d†
iασdiασ′d

†
iβσ′diβσ +

λ

2
∑

i
d†

i (L ⋅ S) di ,

(B.4b)

H1 = ∑
⟨i j⟩σ
(d†

i xzσ d†
i yzσ d†

i x yσ)
⎛
⎜
⎝

0 t2 0
t2 0 0
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

d j xzσ

d j yzσ

d j x yσ

⎞
⎟
⎠

,

H2 = ∑
⟪i j⟫σ

(d†
i xzσ d†

i yzσ d†
i x yσ)

⎛
⎜
⎝

0 t ′2 0
t ′2 0 0
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

d j xzσ

d j yzσ

d j x yσ

⎞
⎟
⎠

, (B.4c)

where (H2) H1 in Eq. (B.4c) is the (next)-nearest-neighbor hopping matrix between the dxz ,
dyz and dx y orbitals in the t2g manifold. The specific tight-binding structure of H2 is adopted
from Ref. [ [79]]. For the Kanamori part in Eq. (B.4b) U is the strength of the onsite Coulomb
repulsion, JH is the Hund’s coupling, λ is the atomic spin-orbit coupling. For rotational invari-
ant system, we consider U ′ = U − 2JH [23, 24]. Since each individual hopping between the
neighboring magnetic ions is oriented along the particular type of the bond [see Fig. 1(b) in
the main text], we need to modify the above Slater-Koster TB model depending on the partic-
ular planar orientation of the bonds. In Eq. (B.4c), we assumed a generic notation and wrote
both the nearest and next-nearest neighbor hopping assuming the corresponding bond to be
lying in the x y-plane (z-bond). However, in the actual crystalline environment, the three in-
dividual hopping matrix elements (along three different bonds-x, y, z) are modified as (for the
next-neighbor bonds we label the bond types as x′, y′, z′)

H1 = ∑
⟨i j⟩z
σ

(d†
i xzσ d†

i yzσ d†
i x yσ)

⎛
⎜
⎝

0 t2 0
t2 0 0
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

d j xzσ

d j yzσ

d j x yσ

⎞
⎟
⎠

, (B.5a)

H1 = ∑
⟨ jk⟩y
σ

(d†
j xzσ d†

j yzσ d†
j x yσ)

⎛
⎜
⎝

0 0 0
0 0 t2

0 t2 0

⎞
⎟
⎠

⎛
⎜
⎝

dkxzσ

dk yzσ

dkx yσ

⎞
⎟
⎠

, (B.5b)

H1 = ∑
⟨ki⟩x
σ

(d†
kxzσ d†

k yzσ d†
kx yσ)

⎛
⎜
⎝

0 0 t2

0 0 0
t2 0 0

⎞
⎟
⎠

⎛
⎜
⎝

di xzσ

di yzσ

di x yσ

⎞
⎟
⎠

, (B.5c)

H2 =H1 [⟨i j⟩→ ⟪i j⟫, t2 → t ′2, (x, y, z)→ (x′, y′, z′)] , (B.5d)

where the subscripts for bond-type are chosen according to Fig. 1(b) in the main text. For
subsequent analysis, we adopt all the parameters entering Eqs. (B.4a-B.5d) from the recent ab
initio [44] and photoemission studies [45] for α-RuCl3 as: U = 3.0 eV, JH = 0.45 eV, t2 = 0.191
eV, and t ′2 = −0.058 eV. For subsequent analysis, we first rewrite the Hamiltonian in Eq. (B.4a)
in the irreducible representation of the doubly occupied states of the octahedral point group
(Oh) as

H0 =∑
i
∑
Γ

∑
gΓ

UΓ ∣i; Γ ,gΓ ⟩ ⟨i; Γ ,gΓ ∣ , (B.6)
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where Γ corresponds to a particular irreducible representation and gΓ characterizes its degen-
eracy. The energy of the three non-degenerate states are given as follows [23,80,81]

UA1 = U + 2JH , (B.7a)

UE = U − JH , (B.7b)

UT1 = U − 3JH , (B.7c)

UT2 = U − JH . (B.7d)

There are three orbitals and two spin degrees of freedom, and we have to put two electrons
within this manifold. Hence, there are 6C2 = 15 possibility of doubly occupied states. From
the character table of Oh, we write these fifteen intermediate doubly occupied states at site i
as (spanned by the Hilbert space of the projection operator Q)

∣i; A1⟩ =
1√
3
(d†

i xz↑d
†
i xz↓ + d†

i yz↑d
†
i yz↓ + d†

i x y↑d
†
i x y↓) ∣0⟩ , (B.8a)

∣i; E, u⟩ = 1√
6
(d†

i yz↑d
†
i yz↓ + d†

i xz↑d
†
i xz↓ − 2d†

i x y↑d
†
i x y↓) ∣0⟩ , (B.8b)

∣i; E, v⟩ = 1√
2
(d†

i yz↑d
†
i yz↓ − d†

i xz↑d
†
i xz↓) ∣0⟩ , (B.8c)

∣i; T1,α+⟩ = d†
i yz↑d

†
izx↑ ∣0⟩ , (B.8d)

∣i; T1,α−⟩ = d†
i yz↓d

†
izx↓ ∣0⟩ , (B.8e)

∣i; T1,α⟩ = 1√
2
(d†

i yz↑d
†
izx↓ + d†

i yz↓d
†
izx↑) ∣0⟩ , (B.8f)

∣i; T1,β+⟩ = d†
izx↑d

†
i x y↑ ∣0⟩ , (B.8g)

∣i; T1,β−⟩ = d†
izx↓d

†
i x y↓ ∣0⟩ , (B.8h)

∣i; T1,β⟩ = 1√
2
(d†

izx↑d
†
i x y↓ + d†

izx↓d
†
i x y↑) ∣0⟩ , (B.8i)

∣i; T1,γ+⟩ = d†
i x y↑d

†
i yz↑ ∣0⟩ , (B.8j)

∣i; T1,γ−⟩ = d†
i x y↓d

†
i yz↓ ∣0⟩ , (B.8k)

∣i; T1,γ⟩ = 1√
2
(d†

i x y↑d
†
i yz↓ + d†

i x y↓d
†
i yz↑) ∣0⟩ , (B.8l)

∣i; T2,α⟩ = 1√
2
(d†

i yz↑d
†
izx↓ − d†

i yz↓d
†
izx↑) ∣0⟩ , (B.8m)

∣i; T2,β⟩ = 1√
2
(d†

izx↑d
†
i x y↓ − d†

izx↓d
†
i x y↑) ∣0⟩ , (B.8n)

∣i; T2,γ⟩ = 1√
2
(d†

i x y↑d
†
i yz↓ − d†

i x y↓d
†
i yz↑) ∣0⟩ . (B.8o)

The singly occupied states at site i are written as (spanned by the Hilbert space of the projection
operator P)

∣i,+⟩ = 1√
3
(id†

i xz↓ + d†
i yz↓ + d†

i x y↑) ∣0⟩ , (B.9a)

∣i,−⟩ = 1√
3
(id†

i xz↑ − d†
i yz↑ + d†

i x y↓) ∣0⟩ . (B.9b)
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Consequently, the low-energy Hilbert space for three site problem is written in terms of the
eight states (23) as (considering a three-site triangular subsystem within the crystal)

∣+,+,+⟩= 1

3
√

3
(id†

i xz↓ + d†
i yz↓ + d†

i x y↑) (id
†
j xz↓ + d†

j yz↓ + d†
j x y↑) (id

†
kxz↓ + d†

k yz↓ + d†
kx y↑) ∣0⟩ , (B.10a)

∣+,+,−⟩= 1

3
√

3
(id†

i xz↓ + d†
i yz↓ + d†

i x y↑) (id
†
j xz↑ + d†

j yz↑ + d†
j x y↓) (id

†
kxz↓ − d†

k yz↓ + d†
kx y↑) ∣0⟩ , (B.10b)

∣+,−,+⟩= 1

3
√

3
(id†

i xz↑ + d†
i yz↑ + d†

i x y↓) (id
†
j xz↓ − d†

j yz↓ + d†
j x y↑) (id

†
kxz↓ + d†

k yz↓ + d†
kx y↑) ∣0⟩ , (B.10c)

∣+,−,−⟩= 1

3
√

3
(id†

i xz↑ + d†
i yz↑ + d†

i x y↓) (id
†
j xz↑ − d†

j yz↑ + d†
j x y↓) (id

†
kxz↓ − d†

k yz↓ + d†
kx y↑) ∣0⟩ , (B.10d)

∣−,+,+⟩= 1

3
√

3
(id†

i xz↑ − d†
i yz↑ + d†

i x y↓) (id
†
j xz↑ + d†

j yz↑ + d†
j x y↓) (id

†
kxz↓ + d†

k yz↓ + d†
kx y↑) ∣0⟩ , (B.10e)

∣−,+,−⟩= 1

3
√

3
(id†

i xz↑ − d†
i yz↑ + d†

i x y↓) (id
†
j xz↑ + d†

j yz↑ + d†
j x y↓) (id

†
kxz↓ − d†

k yz↓ + d†
kx y↑) ∣0⟩ , (B.10f)

∣−,−,+⟩= 1

3
√

3
(id†

i xz↑ − d†
i yz↑ + d†

i x y↓) (id
†
j xz↑ − d†

j yz↑ + d†
j x y↓) (id

†
kxz↓ + d†

k yz↓ + d†
kx y↑) ∣0⟩ , (B.10g)

∣−,−,−⟩= 1

3
√

3
(id†

i xz↑ − d†
i yz↑ + d†

i x y↓) (id
†
j xz↑ − d†

j yz↑ + d†
j x y↓) (id

†
kxz↓ − d†

k yz↓ + d†
kx y↑) ∣0⟩ . (B.10h)

B.3 Third-order effective form: Induced loop current operator

In this section, we outline the derivation the induced localized loop current operator in the
third-order perturbation expansion in terms of the TB parameters t2, t ′2 using Eq. (B.3). Ex-
plicitly writing Eq. (B.3) with the individual hoppings, we obtain the operator expression for
the localized loop current as

Ĩ(2)i j,k =
I0 t2

2 t ′2
UΓUΓ ′

∑
{α,σ}

[P id†
iασ′′dkβσ′′QΓ ′QΓ ′d†

kγσ′d jδσ′QΓQΓ d†
jησdiκσP

+P id†
kασ′′d jβσ′′QΓ ′QΓ ′d†

iγσ′dkδσ′QΓQΓ d†
jησdiκσP

+P id†
jασ′′diβσ′′QΓ ′QΓ ′d†

iγσ′dkδσ′QΓQΓ d†
kκσd jησP

+P id†
jασ′′diβσ′′QΓ ′QΓ ′d†

kγσ′d jδσ′QΓQΓ d†
iκσdkησP

+P id†
kασ′′d jβσ′′QΓQΓ d†

jγσdiδσQΓ ′QΓ ′d†
iησ′dkκσ′P

+P id†
iασ′′dkβσ′′QΓQΓ d†

jδσdiγσQΓ ′QΓ ′d†
kησ′d jκσ′P + h.c.] , (B.11)

where we have the projection operatorQ toQΓ to denote all the fifteen eigenstates as defined
in Eq. (B.8a-B.8o) with UΓ being the corresponding eigen-energy [see Eq. (B.7a-B.7d)], and
I0 = et ′2r̂i j/h̵ is the amplitude of the current operator defined on the z′ bond [see Fig. 1(b) in
the main text]. Note that we defined the current operator on the longer ⟨i j⟩-bond [see Fig. 1(b)
in the main text]. After careful analysis of the six terms in Eq. (B.11), we notice that there
are two nonequivalent classes of hopping processes: (a) intermediate states are two distinct
doublets at two different sites, and (b) intermediate state is a single doublet at the same site.
Considering our geometry [see Fig. 1(b) in the main text], we can write these processes (a),
(b) as:

• (a) i → j ⇒ j → k⇒ k → i, and j → k⇒ k → i ⇒ i → j and k → i ⇒ i → j ⇒ j → k ,

• (b) i → j ⇒ k → i ⇒ j → k, and j → k⇒ i → j ⇒ k → i and k → i ⇒ j → k⇒ i → j .
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We further notice that in the process (b) we always have one hopping process that connects
two singly occupied sites. As the initial and final configuration are constrained by the eight
states with Jeff = 1/2 total angular momentum [see Eqs. (B.10a-B.10h)], the overlap amplitude
between such singly occupied states with t2/t ′2 [underlined processes in (b)] hopping always
vanishes. Hence, the only contribution to the induced current operator comes from the three
processes listed in item [(a)]. We use DiracQ package in Mathematica [82] to compute the
matrix elements in Eq. (B.11). Adding all the three terms illustrated in item [(a)], we obtain
the final expression for the induced localized current operator within a triangular plaquette
[see Fig. 1(b) in the main text] as

Ĩ(2)i j,k = I0(3S x
i S y

j + S y
i S x

j )Sz
k + I0(3S y

i Sz
j − 5Sz

i S y
j )S

x
k + I0(3Sz

i S x
j − 5S x

i Sz
j )S

y
k , (B.12a)

I0 =
er̂i j

h̵
8t2

2 t ′2JH(U − 2JH)
9(U2 − 4UJH + 3J2

H)2
. (B.12b)

First, we notice that SU(2) symmetry of the spins is absent with the additional three coef-
ficients 1, 3, 5 and differ from the well-known form for the current operator in the SU(2)
symmetric single-orbital Hubbard model [see Eq. (1) in the main text] [37]. Furthermore,
the most important property of this structure is that it does not contain any repeated terms
such as Sαi Sβj Sγk , where {α,β ,γ} = {x , y, z} can be equal to each other. It is an artifact of
retaining only t2 and t ′2 hopping terms in the Hamiltonian, which preserves the integrability
of the Kitaev Hamiltonian. Inclusion of other hopping parameters like t1, t3 for more realistic
modeling would modify this structure with additional three-spin terms with repeated spin in-
dices [18,24]. However, here we skip the analysis of the effect of the non-integrable terms in
the Kitaev model and leave it for another future work.

Plugging in the parameter values from Sec. (B.3), we estimate the overall magnitude of
the loop current as ∣I0∣ ∼ 30 nA. Since this current flows around the sides of a triangle in a
honeycomb plaquette, an induced magnetic field would appear in the center of the triangle, as
shown in Fig. 4. Considering the lattice constant a0 = 3.44 Å for α-RuCl3 [44] and assuming
a finite expectation value of the induced circulating current operator in the ground state, we
obtain an induced out-of-plane magnetic field at the center of the triangle as

B⊥ =
µ0

4π ∫C

∣Ĩ(2)i j,k∣dl × r̂

r2
, (B.13)

where C is the contour of the triangular plaquette. We consider µ0 = 4π × 10−7 NA−2 as the
free space magnetic permeability, and r is the distance from the sides of the triangle. After a
straight-forward trigonometric and algebraic analysis, we evaluate B⊥ as

B⊥ =
µ

2π
∣Ĩ(2)i j,k∣

⎛
⎝

sin φ1
2

d1
+

2 sin 2φ2 + 2 sin φ2
2

d2

⎞
⎠

ĉ , (B.14)

where d1 = a0
6 tan φ2

2 , d2 = a0

2
√

3
, φ1 = 150○, φ2 = 30○ in Fig. 4, and ĉ is the unit vector along

the crystalline c-axis. Note that an equilateral triangular loop (with sides 2L), carrying current
of amplitude I, would produce a similar magnetic field at its center as B⊥ = 9µ0I/(4πL)ĉ.

C Low-energy effective model

In this section, we briefly outline the derivation of the second-order effective Hamiltonian [see
Eq. (4) in the main text] and discuss its exact solution in Majorana representation [12]. From
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a

b
c

Figure 4: The triangular plaquette carrying the induced circulating current around
its three sides (solid line). The induced magnetic field is out-of-plane (along the
crystalline c-axis) as illustrated in the center of the triangle formed by the sites i, j, k.
The respective angles φ1, and φ2 and the shortest distances from the center of the
triangle to its sides d1, and d2 are illustrated, respectively.

(a) (b)

Figure 5: The gapless (a) and gapped (b) band structure of the real Majorana
fermions obtained by diagonalizing the Hamiltonian in Eq. (C.5). Note that we il-
lustrate the full Brillouin zone (BZ) although only half of the BZ contributes to the
physical Hilbert space. The Dirac crossing point is illustrated by the band touching
for the isotropic and homogeneous Kitaev model in panel (a). The parameter values
for K and κ = 0.5K are inflated here in order to show the gap opening near the Dirac
point in (b).

Eq. (A.6b) we obtain

H(2)eff =
i
2
PS(1)QΓQΓH1P + h.c. = −1

2
∑
Γ

1
UΓ
PH1QΓQΓH1P + h.c. , (C.1)

where we utilized Eq. (A.8a) to recast the generating function S(1) in terms of the hopping
elements. Again using DiracQ package [82], we evaluate the matrix elements between the
two sites ⟨i j⟩, and consequently obtain the effective Hamiltonian as

H0 = −K ∑
⟨i j⟩x

S x
i S x

j − K ∑
⟨i j⟩y

S y
i S y

j − K ∑
⟨i j⟩z

Sz
i Sz

j . (C.2)

In the presence of an external magnetic field h = (hx , hy , hz), a Zeeman term is introduced to
Eq. (C.2) as Hmag = ∑i h ⋅ Si . However, in this case the total system H0 +Hmag becomes non-
integrable. For a small magnetic field, we consider a low-energy effective form of Hmag [12],
in perturbative expansion, as

Heff = κ ∑
⟨i jk⟩
△

S x
i S y

j Sz
k , (C.3)
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where κ = hxhyhz/K2, and ∆ corresponds to sites within the enclosed triangle with ⟨i jk⟩.
Utilizing Majorana representation Sαi = i bαi ci/2, and link variables ui j as ui j = i bαi bαj , Eq. (C.2)
can be simplified as

H =H0 +Heff =
iK
4
∑
⟨i j⟩

ui jcic j +
iκ
8
∑
⟪i j⟫

uikuk jcic j =
iK
4
∑
⟨i j⟩

cic j +
iκ
8
∑
⟪i j⟫

cic j , (C.4)

where the link variables ui j have been set with their eigenvalues +1, as all ui j ’s commute with
the Hamiltonian and hence can be considered conserved quantities. This particular choice
of the link variables is equivalent to attaching zero-flux in each honeycomb plaquette [12].
Following Lieb’s flux theorem [57], we identify this to be the ground state configuration for
the underlying Majorana fermions [12]. Fourier transforming into the momentum-space, we
obtain

H =∑
q

MA,B
q cq,Ac−q,B + h.c. , Mq = (

∆q i fq
−i f ∗q −∆q

) , (C.5)

where A, and B are the sub-lattice degrees of freedom. Two functions defined in the matrix
Mq are

fq =
K
4
(eiq⋅a1 + eiq⋅a2 + 1) , (C.6a)

∆q =
κ

4
[ sin q ⋅ a1 − sin q ⋅ a2 + sin q ⋅ (a2 − a1)] , (C.6b)

where ai , i = 1, 2 are the two basis vectors in the honeycomb lattice, given by a1 = (1/2,
√

3/2)
and a2 = (−1/2,

√
3/2). Note that only half of the Brillouin zone (BZ) contributes to

the physical Hilbert space as Majorana fermions are real quasiparticles with the property
c†
q,α = c−q,α,α = (A, B). The gapless (gapped) Dirac spectrum of the Majorana fermions is

illustrated in Fig. 5, in the absence (presence) of an external magnetic field. In both the cases,
the ground state in the extended Hilbert space is written as ∣Ψ0⟩ = ∣M⟩ ⊗ ∣G0⟩, where ∣M⟩ is
the Majorana fermion ground state in a uniform gauge configuration ∣G0⟩.

So far, we ignored the effect of the external magnetic field on the Hamiltonian Eq. (B.4c).
However, in the presence of an external magnetic field, there will be the orbital coupling of
the magnetic field term in the TB Hamiltonian through Peierl’s substitution. Such a modifica-
tion was not considered in the derivation of the induced loop current or the effective Kitaev
Hamiltonian, as derived in Eq. (B.12a), and Eq. (C.2), respectively. If we consider such an
orbital coupling of the external magnetic field, after a straightforward analysis as outlined in
Sec. (B.3), we obtain a third-order contribution to the Hamiltonian in Eq. (C.2). The corre-
sponding term can be written as

H(3)eff = ∑
α,β ,γ

sin( φ
φ0
)Aα,β ,γS

α
i Sβj Sγk , (C.7)

where the coefficientsAα,β ,γ can be obtained in a similar fashion as in Sec. (B.3), φ is the total
flux within the triangular plaquette due to the external magnetic field, and φ0 = h̵c/e is the
flux quantum [83]. For a small magnetic field (∼ 10 T) [32–34], this term is extremely small
and we ignore it for the subsequent discussions.

Finally, we comment about the relation between the components of the external magnetic
field h = (hx , hy , hz) in the octahedral geometry and hcrys = h(sinθ cosφ, sinθ sinφ, cosθ)
in the crystalline geometry. Doing a straightforward coordinate transformation between the
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(b)(a)

Figure 6: (a) Contour plot of sign(κ) (κ = hxhyhz/K2) from Eq. (C.8) in the θ -φ
plane for the different orientations of the external magnetic field. (b) The variation
of the magnitude of the Majorana gap function κ as a function of the azimuthal angle
measured from crystalline axis a for an in-plane external magnetic field with θ = 90○.

crystalline and octahedral geometry, we can write h [84]

(hx , hy , hz) =h(
cosθ√

3
+ sinθ cosφ√

6
− sinθ sinφ√

2
,

cosθ√
3
+ sinθ cosφ√

6
+ sinθ sinφ√

2
,

cosθ√
3
−
√

2
3

sinθ cosφ
⎞
⎠

, (C.8)

where φ and θ are azimuthal angle measured from the crystalline a axis and polar angle from
the crystalline c axis, respectively, and h is the strength of the applied magnetic field. Plugging
it back in the Majorana gap κ and considering an in-plane magnetic field (θ = 90○), we obtain
the variation of the strength of κ upon a rotation of the in-plane magnetic field as illustrated
in Fig. 6(a,b).

D Computation: loop current expectation value

Now, we focus on the analysis for the evaluation of the expectation value of the loop cur-
rent operator in the Kitaev ground state with Majorana representation. We first consider the
uniform gauge configuration with all ui j = 1. In this case, the analysis is simple with the
Majorana fermion in the momentum-space representation. The target quantity is evaluating
three-spin correlation functions i.e. ⟨Sαi Sβj Sγk⟩, where {α,β ,γ} = {x , y, z} with α ≠ β ≠ γ
[see Eq. (B.12b)]. Along with the link variables, we further define the gauge invariant loop
operatorsWp =∏⟨i j⟩∈ p ui j in each hexagonal plaquette. In the uniform gauge, as mentioned
earlier, Wp = 1 for all the honeycomb cells. However, flipping one link variable in a single
hexagon leads to Wp = −1 in the two neighboring hexagons. The energy of the Majorana
fermions increases with such non-uniform gauge configurations, and leads to the emergence
of Z2 vortices, aka. visons [1, 2]. Each vison excitation creates a π-flux in the associated
hexagon, and is static due to the integrable structure of the Kitaev model.

Hence, the non-zero expectation value of an arbitrary operatorOi exists only if the operator
Oi conserves the vison occupation number. In this context, the action of three spin-operator
Sαi Sβj Sγk on a ground state with finite/zero number vison excitations, has to preserve the vison
occupation number. We note that a single spin operator Sαi leads to two vison excitations and
can be symbolically written as [85]

Sαi → iciπ̂1⟨i j⟩απ̂2⟨i j⟩α , (D.1)
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where π̂1⟨i j⟩α and π̂2⟨i j⟩α are operators that introduce π-fluxes to the plaquettes 1 and 2 shared
by the bond ⟨i j⟩α. Therefore, if the ground state of the Kitaev system does not have any vison
excitations, a necessary condition for a finite expectation value of Sαi Sβj Sγk in this ground state,
is that the two visons created by Sγk should be destroyed by the other two spin operators.

D.1 Pure Kitaev model in uniform gauge

In this case, the ground state ∣Ψ0⟩ was obtained from Eq. (C.5) where ∣Ψ0⟩ = ∣M⟩⊗ ∣G0⟩. Here,
∣G0⟩ corresponds to the uniform gauge configuration without any vison excitations. After a
straightforward algebra with Eq. (D.1), we see that only the first term in Eq. (A.10a) satisfy the
constraint as mentioned in Appendix D. Hence, we have [using the Majorana representation
of the spin operators]

⟨Ψ0∣Ĩ
(2)
i j,k∣Ψ0⟩ = i

I0

8
⟨Ψ0∣cic j ∣Ψ0⟩ = i

I0

8
⟨M∣cic j ∣M⟩ , (D.2)

where ∣M⟩ is the ground state of Majorana fermions. Choosing a convention that i, j lie in
sub-lattice B, we can rewrite cic j in momentum space as

ci,Bc j,B = ∑
k,k′

eik.ri eik′.r j ck,Bck′,B

= ∑
k,k′
∈

HBZ

eik.ri eik′.r j ck,Bck′,B + ∑
k,k′
∈

HBZ

e−ik.ri e−ik′.r j c†
k,Bc†

k′,B

+ ∑
k,k′
∈

HBZ

e−ik.ri eik′.r j c†
k,Bck′,B + ∑

k,k′
∈

HBZ

eik.ri e−ik′.r j ck,Bc†
k′,B , (D.3)

where we defined the momentum summation in the first line over the full Brillouin zone (BZ)
and reduced it to the half-Brillouin zone (HBZ) in the second line. Next, we represent the
sub-lattice operators on the diagonal basis within the HBZ as

⎛
⎝

c†
k,A

c†
k,B

⎞
⎠
= 1√

2
(−mk mk

1 1
)(α

†
k
β†

k
) , (D.4)

where mk = i fk/∣ fk∣ from Eq. (C.5) (in the absence of any external magnetic field). Finally, the
ground state is obtained by filling all the negative energy states and is written as

∣M⟩ =∏
k
∈

HBZ

β†
k ∣0⟩ . (D.5)

Consequently, a simple numerical integration (in Mathematica) using Eqs. (D.3-D.5) yields

⟨Ψ0∣Ĩ
(2)
i j,k∣Ψ0⟩ = 0 . (D.6)

Hence, in the absence of any external magnetic field, the ground state of the pure Kitaev model
does not allow any localized current expectation value. This result is consistent with the global
time-reversal symmetry of the underlying system. Therefore, to induce a non-zero expectation
value for the localized current operator, we break the time-reversal symmetry by applying an
external magnetic field.
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Figure 7: The variation of average localized current (in unit of ∣I0∣) as a function of
κ. For small κ we notice the linear dependence of the current operator. Note: We
utilized inflated values for κ to illustrate the dependence.

D.2 Kitaev model in external magnetic field

In the presence of a magnetic field, the Majorana fermions acquire a gap near the Dirac point
[see Fig. 5(b)]. In this case, the ground state is written as ∣Ψmag⟩ = ∣Mmag⟩ ⊗ ∣G0⟩, where
∣Mmag⟩ is ground state of the Hamiltonian in Eq. (C.5). Writing the sub-lattice operators in
terms of the diagonal operators we have

⎛
⎝

c†
k,A

c†
k,B

⎞
⎠
=
⎛
⎜
⎝

−i fk(ϵk+∆k)

∣ fk∣
√
∣ fk∣2+(ϵk+∆k)

2
i fk(ϵk−∆k)

∣ fk∣
√
∣ fk∣2+(ϵk−∆k)

2

∣ fk∣√
∣ fk∣2+(ϵk+∆k)

2

∣ fk∣√
∣ fk∣2+(ϵk−∆k)

2

⎞
⎟
⎠
(α

†
k
β†

k
) , (D.7)

where ϵk =
√
∣ fk∣2 +∆2

k. In a similar fashion to Eq. (D.6), the Majorana fermion ground state
is written in terms of the diagonal operators as

∣Mmag⟩ =∏
k
∈

HBZ

β†
k ∣0⟩ . (D.8)

Since the gauge configuration characterized by ∣G0⟩ constraints all the gauge invariant Wilson
loopsWp = 1, only one of the six spin combination, in Eq. (B.12a), gives non-zero expectation
value in the ground state ∣Ψmag⟩. Consequently, we have

⟨Ψmag∣Ĩ
(2)
i j,k∣Ψmag⟩ = i

I0

8
⟨Mmag∣cic j ∣Mmag⟩ . (D.9)

Expanding the Majorana bilinear operator cic j with Eq. (D.7) in the diagonal basis and after a
straight-forward algebra, we obtain

⟨Ψmag∣Ĩ
(2)
i j,k∣Ψmag⟩ = i

I0

8
Re

⎛
⎜⎜⎜⎜
⎝
∑
k
∈

HBZ

eik.(ri−r j)[a2
k + b2

k] − 2i b2
k sin[k.(ri − r j)]

⎞
⎟⎟⎟⎟
⎠

, (D.10)

where ak = ∣ fk∣√
∣ fk∣2+(ϵk+∆k)

2
, and bk = ∣ fk∣√

∣ fk∣2+(ϵk−∆k)
2
. We perform the momentum integration

in HBZ numerically in Mathematica. The corresponding variation of ⟨Ĩ(2)i j,k⟩mag
as a function

of the Majorana gap parameter κ is shown in Fig. 6 (in unit of ∣I0∣). For small κ the linear
dependence of the current operator becomes apparent.
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E Kitaev model in a finite system:
Vison excitations and external magnetic field

In the previous two sections, we analyzed the expectation value of the current operator in
the absence of any vison excitations in an infinite (periodic boundary condition) system. As
mentioned earlier, this corresponds to choosing all the link variables ui j = 1, with the con-
straint that i in each bond ⟨i j⟩ belongs to the sub-lattice A. Flipping a particular bond ui j to −1
would, therefore, create two π-fluxes in the adjacent honeycomb plaquettes as explained in
Appendix (D). We can separate these two adjacent Z2 vortices or visons by a string operator as
illustrated in Fig. 8(a), to minimize their mutual interactions. Note that all the link variables
defined on the bonds that cross the string operator are flipped. However, such vison configu-
rations destroy the translational invariance of the Majorana system, and we cannot simply go
to the momentum space to do our analysis.

Consequently, we first consider a spin-system on a 2D honeycomb lattice with L × L unit
cells as shown in Fig. 8(a). Since each unit cell contain two sub-lattices (A & B), there are
2L2 Majorana operators ci in the system. The lattice vectors are chosen as a1 = (1/2,

√
3/2),

and a2 = (−1/2,
√

3/2). The Majorana operators at a site i is written as ci = cη(m, n), where
η corresponds to the sub-lattice index, and R(m, n) = ma1 + na2, m, n = 1, 2, . . . L. Following
Ref. [ [12]], we impose periodic boundary condition (PBC) as cη(m + L, n) = cη(m, n), and
cη(m, n + L) = cη(m, n). The 2L2-dimensional Majorana vector is constructed as c̃ = (cA, cB)T
with

cη =(cη(1, 1), cη(2, 1), . . . cη(L, 1),
cη(1, 2), cη(2, 2), . . . cη(L, 2), . . . , cη(L, L))T , η ∈ {A, B} . (E.1)

In terms of the Majorana vector c̃, we can write the Kitaev model (in presence of an external
magnetic field) as c̃THc̃, where H is written as

H =i K
4
∑
m,n

cA(m, n)(uz(m, n)cB(m, n) + ux(m, n)cB(m + 1, n) + uy(m, n)cB(m, n + 1))

+ i
κ

8
∑
m,n
(cA(m, n)[ux(m, n)uy(m + 1, n − 1)cA(m + 1, n − 1)

+ uz(m, n)ux(m − 1, n)cA(m − 1, n)uy(m, n)uz(m, n + 1)cA(m, n + 1)]

+ cB(m, n)[ux(m − 1, n)uy(m − 1, n)cB(m − 1, n + 1)

+ uz(m, n)ux(m, n)cB(m + 1, n) + uy(m, n − 1)uz(m, n − 1)cB(m, n − 1)])

+H.c. , (E.2)

where uα(m, n) = u⟨i j⟩α , with i ( j) being in the sub-lattice A (B) as shown in Fig. 7(a). We
now analyze the Majorana physics in a finite system with both the PBC and the open boundary
condition (OBC), by diagonalizing the Hamiltonian in Eq. (E.2) in the real space. All numerical
estimates will be written in the unit of Kitaev coupling K in the subsequent sections.

E.1 Kitaev model: Numerical convergence

At first, we diagonalize the above Hamiltonian in the absence of κ and any vison excitations
and analyze the ground state as a function of the system size L. The eigenmodes of the Hamil-
tonian in Eq. (E.2) can be obtained by a canonical transformation to a new set of Majorana
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B sub-lattice
A sub-lattice
vison excitation

(b)(a)

Figure 8: (a) A schematic of the finite size (L × L, L = 20) honeycomb lattice. Two
static vison excitations are located at the farthest distance ⌊ L−1

2 ⌋ in the middle of
the system with periodic boundary condition (PBC). The link variables u⟨i j⟩ of the
bonds crossing the blue dashed line (string operator) are all flipped to −1. (b) No
vison excitations: Variation of the energy per unit cell ϵ0 [circles: absence of external
magnetic-field; triangles: non-vanishing external magnetic-field] as a function of the
linear system size L with PBC. Convergence is obtained for L ∼ 50 (L ∼ 20) in the
absence (presence) of the external magnetic field. The energy is measured in the
unit of 4K . An inflated value of κ = K is chosen for illustrative purposes.

operators [12] as
(b′1, b

′′

1 , . . . b
′

N , b
′′

N) = TR̃ , (E.3)

where R̃ is the canonical matrix. In terms of these operators the Hamiltonian in Eq. (E.1) can
be rewritten as H = i

2 ∑m ϵm b
′

m b
′′

m, where ϵm are the positive eigenvalues of H. Introducing
fermions operators as am = 1

2(b
′

m+ i b
′′

m), we have H = ∑m ϵm(a†
mam−1/2). Hence, the ground

state energy is given by E0 = −1
2 ∑m ϵm. We now analyze the variation of average ground

state energy ϵ0 [= 2E0/N2] per unit cell with the system size. The latter is shown in Fig. 8(b)
[empty circles]. We notice that the average energy converges to 1.5746 (as noted by Kitaev
himself [12]) for a linear system size of around L ∼ 50. Performing a similar analysis in the
presence of an external magnetic field, we notice that the convergence is achieved for a much
smaller system with linear size L ∼ 20. The variation of the energy per unit cell, in the external
magnetic field, is illustrated by the (empty triangles) in Fig. 8(b).

Corresponding results for the convergence with system size in a periodic system and energy
distribution in a finite system with PBC are shown in Fig. 7(b) and Fig. 7(c), respectively. Note
that an inflated value of the magnetic field term κ has been used in the numerical computation.
However, the convergence is obtained at a much smaller system size with linear size L ∼ 20,
because of the gapped Majorana spectrum in Fig. 5(b).

Next, we introduce two π-fluxes in the adjacent honeycomb plaquettes shared by a bond
⟨i j⟩. In a periodic system, vison excitations can be only created in pairs since the string operator
has to end inside the system as illustrated in Fig. 8(a). For this purpose, at first, we consider
two adjacent plaquettes with π-fluxes which is achieved by putting the string operator on only
one bond ⟨i j⟩. The energy of a single vison for two adjacent π-flux configuration comes out
to be around ∼ 0.1311. We compute the energy of a single vison by numerically computing
the eigen-energy of the Hamiltonian with two visons and measuring the difference with the
vison-free ground state as (E2 − E0)/2. Note that our quantitative estimate for the energy of
a single vison is slightly less than Kitaev’s original estimate (∼ 0.1536) [12], but is consistent
with Ref. [59]. The analysis has been performed for a system of linear size L = 50 with two
visons placed at the center of the system.
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E.2 Kitaev model in magnetic field: Current expectation value

Now we provide the main part of our analysis. We consider the Kitaev model in the presence of
an external magnetic field which is parametrized by κ in Eq. (E.2) for a finite system with both
PBC and OBC. We consider two scenarios as mentioned in the main text: (a) the distribution
of localized current in the system in absence of vison excitations (gauge sector ∣G0⟩) in a
finite system with OBC, and (b) the profile of localized current distribution around two vison
excitations placed far away from the each other (gauge sector ∣G2⟩) with PBC. For subsequent
analysis it will be easier to transform the Majorana operators in Eq. (E.1) in terms of the matter
fermions [85] as fi = cA,i − icB,i . On the latter basis, the 2L2-Majorana vector is transformed
as

c̃ = (cA cB)
T = R ( f f †)T , R = ( IL2 IL2

iIL2 −iIL2
) , (E.4)

where IL2 is an identity matrix of dimension L2, and f -vector is defined as before

f = ( f (1, 1), f (2, 1), . . . f (L, 1), f (1, 2), f (2, 2), . . . f (L, 2), . . . , f (L, L))T . (E.5)

In terms of the matter fermion operators, the Hamiltonian in Eq. (E.2) can be rewritten as

H = (cA cB)(
HAA HAB

HBA HBB
)(cA

cB
) = ( f † f )R† (HAA HAB

HBA HBB
)R( f

f †) . (E.6)

The block Hamiltonian Hαβ (α,β = A, B) is read off from Eq. (E.2). Instead of the canonical
diagonalization as earlier, we now diagonalize the Hamiltonian in Eq. (E.6) by introducing the
normal mode operators a, a† as

( f
f †) = U ( a

a†) , (E.7)

where U is a unitary matrix that diagonalizes the Hamiltonian H in Eq. (E.6). The resultant
Hamiltonian in the a-basis reads as

H = ( f † f )R† (HAA HAB

HBA HBB
)R( f

f †) = (a† a)U†R† (HAA HAB

HBA HBB
)RU

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
VD

( a
a†) , (E.8)

where VD is the diagonal matrix with diagonal entries as the eigenenergies of the Hamiltonian
H, and we obtain in terms of the a fermions as

H =
L2

∑
l=1
ϵl(2a†

l al − 1) , (E.9)

where ϵl(≥ 0) are non-negative real eigenvalues of H ordered as ϵ1 < ϵ2 < ⋯ < ϵL2 . Conse-
quently, the ground state is defined by ∣G0⟩⊗ ∣Mmag⟩ with the property al ∣Mmag⟩ = 0. Here,
gauge sector ∣G0⟩ corresponds to an absence of any vison excitation in the system, and ∣Mmag⟩
is the Majorana fermion ground state in the presence of an external magnetic field. The ground
state energy is given by E0 = −∑L2

l=1 ϵl . We also define the bond fermion operator χ⟨i j⟩α as

χ⟨i j⟩α =
1
2
(bαi − i bαj ) , χ†

⟨i j⟩α
= 1

2
(bαi + i bαj ) . (E.10)

In terms of the bond fermions, the link variables can be recasted as ui j = 1 − 2χ†
⟨i j⟩α
χ⟨i j⟩α .

Hence, for a uniform gauge configuration, with all ui j = 1, we do not have any bond-fermions
to start with. Flipping a specific link variable, hence, creates one bond fermion and associated
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(a) (b)

Figure 9: (a) The eigenvalue distribution as a function of the Hilbert space dimension
for the Kitaev model in an external magnetic field in the uniform gauge configuration
without any vison excitations. (b) The eigenvalue distribution in the same external
magnetic field in the presence of two well-separated vison excitations with two Ma-
jorana zero modes (MZM) exactly at the zero energy.

two Majorana zero modes. The energy distribution for a finite system with PBC of linear size
L = 32 is shown in Fig. 9(a) (9(b)) in the absence (presence) of vison excitations. For two
vison excitations placed at a maximal distance, we have two Majorana zero modes (MZM) as
illustrated in Fig. 9(b).

In terms of the new “a” fermions, we can now evaluate the expectation value of the loop

current operator. The current operator can be written in a compact form as Ĩ(2)i j,k= AαβγSαi Sβj Sγk ,
where the coefficients Aαβγ are read off from Eq. (B.12a). With a particular choice of the gauge
sector ∣G0⟩ or ∣G2⟩, we can recast the above current operator in terms of the Majorana fermions.
Since the visons in the gauge sector are static, it leads to a huge simplification in computing
the average of the current operator in the ground state. The non-zero expectation value of the
terms in the ground state is only the terms in the current operator that preserve the number of
the vison excitations. It turns out that only the first term in Eq. (B.12a) satisfies this condition.

On the other hand, since each bond in the honeycomb lattice is shared between four trian-
gles, four terms will contribute to the total average current flowing in the bond. Consequently,
we obtain the current expression for a particular bond α on the honeycomb plaquette as

Iα =∑
△

⟨Ψ ∣Ĩ(2)i j,k∣Ψ⟩ = 3I0∑
k,△

uikuk j⟪cic j⟫ − “neighboring plaquette” , (E.11)

where the indices i j, k in each triangle are arranged according to the orientation of the as-
sociated triangles, and ⟪cic j⟫ signifies that expectation value of the operator cic j when the
sites i, j are connected by the next nearest-neighbor bonds on the associated triangle. The
“neighboring plaquette” term corresponds to the triangles belonging to the other honeycomb
plaquette shared by the bond α.

Hence, the analysis of the expectation of the current operator eventually boils down to the
computation of the expectation value of the product of Majorana operators ⟨cA(Rmn)cA(R′m′n′)⟩
and ⟨cB(Rmn)cB(R′m′n′)⟩, where rmn denotes the position of the site at Rmn = mâ1 + nâ2. Con-
sidering a gauge configuration ∣G0⟩ or ∣G1⟩, such expectation can be computed as following

⟨cα(Rmn)cα(R′m′n′)⟩ = ⟨ (cA cB)W(α)RR′ (
cA

cB
)⟩ =

2L2

∑
l l′=1
(U†R†W(α)RR′RU)

l l′
⟨a†

l al′⟩

=
2L2

∑
l=L2+1

(U†R†W(α)RR′RU)
l l

, (E.12)
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Figure 10: The difference between the Majorana fermion ground energy for two vison
configuration [with well-separated visons as shown in Fig. 8(a)] in the presence and
absence of an external magnetic field plotted as a function of κ. The ground state
energy decreases with increasing magnetic field strength.

whereW(α)RR′ is 2L2 × 2L2 matrix defined as follows

W(α)RR′ =
⎛
⎝
δα,AB(α)RR′ OL2

OL2 δα,BB(α)RR′

⎞
⎠

. (E.13)

Here, B(α)RR′ are the matrices corresponding to the non-zero connections allowed by the ori-
entations of the triangles, and OL2 is a null matrix of order L2 × L2. We compute the above
expectation value for both the gauge configurations ∣G0⟩, and ∣G2⟩. Depending on the number
of the bond-fermions, we may have to consider the effects of non-trivial Majorana zero modes
and the issue with the bond fermions. Following Ref. [59, 60], then we have to satisfy the
parity constraint for the matter fermions as (−1)n f +nχ = 1, where n f (nχ) denotes the number
of matter (bond) fermions. Depending on the situation, we may have to modify the above
Eq. E.12 as follows

⟨cα(Rmn)cα(R′m′n′)⟩ =
2L2

∑
l=L2+2

(U†R†W(α)RR′RU)
l l
+ (U†R†W(α)RR′RU)

L2 L2
, (E.14)

to consider one matter fermion excitation. In the presence of MZM with two well-separated
visons, we perform singular value decomposition (SVD) to diagonalize the Hamiltonian matrix
in Eq. (E.6). Summing over the triangles as mentioned earlier, we obtain the localized current
profiles as illustrated in Fig. 1 and Fig. 2, in the main text. In the thermodynamic limit, when
the visons are far away from each other, the current profile becomes identical around each
hexagonal plaquette containing the vison excitations. Hence, we focus our analysis around a
single vison excitation.

Furthermore, we note that in two-vison configuration ∣G2⟩, the ground state energy of the
Majorana fermions decreases in the presence of an external magnetic field. In Fig. 10, we
show the variation of ground state energy Eκ≠02 − Eκ=02 for various strength and orientation of
the magnetic field. As the energy difference decreases in the presence of the magnetic field,
the vison configuration is favored in the presence of the external magnetic field. Hence, the
magnetic field lowers the energy for the vison configurations and may lead to formation of
exotic vison crystal phases [86]. We leave such an explicit analysis for future work.
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