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Abstract

Variational quantum algorithms (VQAs) have emerged as a promising near-term tech-
nique to explore practical quantum advantage on noisy intermediate-scale quantum
(NISQ) devices. However, the inefficient parameter training process due to the incom-
patibility with backpropagation and the cost of a large number of measurements, posing
a great challenge to the large-scale development of VQAs. Here, we propose a parameter-
parallel distributed variational quantum algorithm (PPD-VQA), to accelerate the training
process by parameter-parallel training with multiple quantum processors. To maintain
the high performance of PPD-VQA in the realistic noise scenarios, a alternate training
strategy is proposed to alleviate the acceleration attenuation caused by noise differ-
ences among multiple quantum processors, which is an unavoidable common problem
of distributed VQA. Besides, the gradient compression is also employed to overcome the
potential communication bottlenecks. The achieved results suggest that the PPD-VQA
could provide a practical solution for coordinating multiple quantum processors to han-
dle large-scale real-word applications.
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1 Introduction

Quantum computing holds the promise of solving certain problems that intractable for classical
computers, such as factoring large numbers [1–3], database search [4, 5], solving linear sys-
tems of equations [6–8]. However, a universal fault-tolerant quantum computer that can solve
efficiently the above problems would require millions of qubits with low error rates [9, 10],
which is still a long way from current techniques and may take decades. Thus, we will be in the
noisy intermediate-scale quantum (NISQ) era for a long time [11–16]. Variational quantum
algorithms (VQAs) leverage a quantum device to minimize a specific cost function [17, 18],
by employing a classical optimizer (e.g., Adam optimizer [19]) to train parameter quantum
circuits (PQCs). Such algorithms were shown to have natural noise resilience [20] and even
benefit from noise, making it particularly suitable for near-term quantum devices, and thus
be considered the most promising path to quantum advantage on practical problems in NISQ
era [18]. Previous studies have exhibited the application of VQAs on a variety of problems,
including classification task [21–24] and generative task [25–27], combinatorial optimiza-
tion [28–32], quantum many-body problem [33] and quantum chemistry [34–39].

The training process of VQAs is actually not very efficient compared to the classical neural
network, due to the following two main reasons: 1) The quantum state of the intermediate
process of the quantum circuit cannot be stored, making VQAs impossible to use the back-
propagation to update the parameters as efficiently as the classical neural network; 2) A large
number of measurements is required for the result readout of the quantum circuit, which
is time-consuming. Therefore, the training of VQAs will face significant challenges, as the
amount of data and trainable parameters increases.

To address the above issue, a distributed VQA based on data-parallel has been proposed by
Du et. al. to accelerate the training of VQA [40]. In this work, a parameter-parallel distributed
variational quantum algorithm (PPD-VQA) is proposed to further accelerate the training pro-
cess by parameter-parallel training with multiple quantum processors. Although the idea of
parallel training is not difficult to come up with, including data-parallel or parameter-parallel,
it is worth investigating whether the approach works in the realistic scenario that the local
quantum nodes will inevitably be affected by quantum noise, and the noise intensity of each
node is different. We first proof the convergence of the PPD-VQA, even if each local node
has different quantum noise. Further, we design an alternate training strategy to alleviate
the acceleration attenuation caused by excessive noise differences among multiple quantum
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Figure 1: Schematic diagram of PPD-VQA. The diagram illustrates two main steps
of the PPD-VQA workflow. Firstly, the central parameter server allocates the train-
able parameters to M local nodes, consisting of a QPU and a classic computer, for
parallel training. Each local node only trains a part of the trainable parameters, and
synchronizes the gradient information to the central parameter server. Secondly, a
local node, named QPU X, is selected to verify that the convergence condition is met.
If it does not converge, repeat Steps 1 and 2, otherwise, output the optimal parame-
ters and selected local node as the trained model.

processors, and adopt the gradient compression to cut a large amount of communication band-
width, to enhance the practicality and scalability of PPD-VQA.

2 PPD-VQA

The conventional VQAs employ PQCs and update their parameters θ via a classical optimiza-
tion training procedure, to find the global minimum of the given loss functions L. Usually, in
the training procedure, the gradients of each parameter is evaluated by the parameter-shift
rule [41, 42]. The PPD-VQA leverages the fact that the partial derivatives of the observable
with respect to each parameter are genuinely independent of one another at each iteration to
accelerate the training of conventional VQA, by parallelizing the gradient estimation across
multiple quantum processing unit (QPU) nodes. Conceptually, a classical central parameter
server and M local nodes constitute the framework of PPD-VQA, where each local node con-
sists of a QPU and a classical optimizer. As shown in Fig. 1 and Algorithm 1, at each iteration,
the central parameter server divides the trainable parameters θ into M parts, each of the M
local nodes is tasked with computing the gradient of the parameters for a given component.
Then, the complete gradient information is obtained through information sharing between
local nodes and central parameter sever, which is used to update the trainable parameters as
the initial parameters of next iteration. This process is repeated until the optimal parameters
are found. The specific process can be divided into the following two steps:

Step 1: Parameter distribution and parallel gradient estimation. At the beginning of
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t-th iteration, the classical central server distribute the complete parameter θ (t ) of PQC to
each local node as the initial parameters, as well as instructions on which parameters the i-th
local node is assigned for training. The default instruction is to divide the trainable parameters
θ (t ) into M equal parts

θ (t ) =
�

θ (t )1 , · · · ,θ (t )M

�

, θ (t )
i
=
�

θ
(t)
i,1 ,θ (t)i,2 , · · · ,θ (t)i,n

�

, n=
d
M

,

and the i-th local node is responsible for estimating the corresponding component of gradient
�

∇ L̄(θ )
�

i . After the training on each node, the local node synchronizes
��

∇ L̄(θ )
�

i

	M
i=1

to
the central parameter server, and the central parameter server combines the information from
each local node into a completed gradient ∇ L̄(θ (t )) used to update θ (t ) to θ (t+1).

Step 2: Convergence test. Choose a fixed local node from the M local nodes, and sub-
stitute the parameters θ (t+1) into this local node. After that, employ this model to the test
dataset to to determine whether the convergence condition has been met. The setting of the
convergence condition depends on the machine learning task. For example, for the classifica-
tion task, the convergence condition might be set as a certain classification accuracy threshold.
The convergence test refers to selecting a QPU and getting the accuracy score on the classifica-
tion task. If the convergence condition has not been met, return to Step 1 for the subsequent
training iteration; otherwise, output the final parameters and chosen local node as the trained
model and terminate the training procedure. By implementing the convergence test, we can
monitor the performance of the trained PQC on the chosen QPU to ensure that the final PQC
will perform well on the chosen QPU.

The core idea of PPD-VQA is simple and natural. However, distributed quantum machine
learning faces different challenges than its classical counterpart, the main one being that the
quantum processors on different local nodes are not identical, due to the inevitable quantum
noise. In general, the error rate ϵi of each qubit on a quantum processor is different, and we
let the average error rate of the processor be ϵ̄ = 1

N

∑

i
ϵi , where N is number of qubits. Thus,

the non-uniformity mentioned above manifests itself in two ways: 1) The average error rates
of each quantum processors are different. For example, some processors have lower noise
and some have higher noise; 2) Even if the average error rate of each quantum processor is
the same, the error rate of each qubit in these processors is unlikely to be consistent. In such
a realistic scenario, it remains to be verified whether the parameter-parallel training is still
effective, and whether the convergence conditions can be achieved. This important issue is
directly related to the practical utility of our scheme and will be discussed in the next section.

3 Performance Analysis and error mitigation strategy in the real-
istic Noise Scenario

Gradient represents the optimization direction during the training procedure of VQA, which
plays an decisive role in the process of finding the global minima of loss function. Thus, by
examining the gradient, we analyze how noise affects convergence of PPD-VQA in the realistic
scenario that noise varies for each quantum processor. Furthermore, we will propose a strategy
to mitigate the negative consequences that maybe caused by this realistic scenario.

3.1 Convergence and acceleration

We apply the “worst-case” noise channel–the depolarizing channels [43] for the following re-
search. According to the Lemma 6 in Ref. [44] all noisy channels ϵ(·), which are separately
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Algorithm 1 The pseudocode of PPD-VQA.

Require: θ ∈ [0, 2π)d : the parameters of ansatz; L: loss function; M : the number of local
nodes, and we donate Mi as the i-th local node;

Ensure: optimal parameters θ ∗

1: while convergence condition is not satisfied do
2: The central parameter server divides the parameter θ into M

parts and allocates θ to M local nodes
3: for Local nodes Mi , ∀i ∈ {1, · · · , M} in parallel do
4: Calculate the estimated gradient component

�

∇ L̄(θ )
�

i
5: end for
6: Synchronize ∇ L̄(θ ) by merging {

�

∇ L̄(θ )
�

i}
M
i=1

7: Update θ with a classical optimizer, such as ADAM
8: Choose a local node from {M}Mi=1 for convergence test
9: if convergence condition is satisfied then

10: break
11: end if
12: end while

applied to each layer of the ansatz, can be merged together and represented by a new depo-
larizing channel acting on the whole ansatz, i.e.,

ϵ̃(ρ) = (1− p̃)ρ + p̃
I

2n
, (1)

where p̃ = 1 − (1 − p)N , p is the depolarizing probability in ϵ(·), and N refers to depth of
ansatz. To facilitate understanding, we denote p̃i as the noise level of the i-th QPU. Obviously,
the depolarizing noise turns the quantum state into a maximally mixed state with a certain
probability, which could make the gradients obtained by parameter-shift-rule in the experiment
deviate from that of the ideal environment without noise.

We firstly simplify some notations and introduce basic concepts in optimization theory for
ease of subsequent discussion. Denote D = {xk, yk} as the training dataset, where xk ∈ R2n

and yk ∈ [0, 1] refer to example and the corresponding label respectively. We define L as the
loss function, ∇L(θ (t )) as the gradient of loss function L. Here we employ the mean square
error (MSE) loss function, i.e.,

L =
1

2ND

∑

k

( ŷk − yk)
2 +

λ

2
∥ θ (t) ∥2 , (2)

where the predicted label ŷk
(t) = Tr[U(θ (t ))ρkU†(θ (t ))O] is defined by the expected output

of noiseless PQC U(θ (t )) with the observable O and input state ρk, ND is the number of the
data, and λ≥ 0 is the regularizer coefficient.

According to parameter-shift-rule, the j-th component of the analytical gradient evaluated
on i-th QPU [∇L(θ (t ))]i, j at t-th iteration satisfies

[∇L(θ (t ))]i, j =
1

ND

�

∑

k

( ŷk
(t) − yk)

ŷk
(t,+ j) − ŷk

(t,− j)

2
+λθ (t)i, j

�

.

Here ŷk
(t,± j) = Tr[U(θ (t ) ± π2 e j )ρkU†(θ (t ) ± π2 e j )O] denote the output of PQC with shifted

parameter θ (t )± π2 e j where e j is the unit vector with its j-th component equals to one. Thus,
for each data, the local node should implement 1+ 2d/M quantum circuits for the gradient
estimation, where d/M is the number of parameter in each local node.
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Now we quantify the convergence of PPD-VQA with multiple local nodes that have different
performance, by using the following utility metric [44]:

R1(θ
(T)) = E[∥∇L(θ (T))∥2] , (3)

where T is the number of iterations and the expectation E [•] is taken over the random vari-
ables associated with depolarizing noise. This metric evaluates how far the result is away
from the stationary point. The upper bounds of R1(θ (T)) when implementing PPD-VQA with
multiple non-identical processors are summarized in the following theorem.

Theorem 1 Suppose that M noisy local nodes of PPD-VQA have different depolarizing noise with
depolarizing probability {p̃i}Mi=1, the metric R1(θ (T)) has following upper bound

R1 ≤
1+ 9π2λd

2T (1− p̃max)2
+

2G + d
(1− p̃max)2

(2− p̃max)p̃max(1+ 10λ)2 +
2dK + d
2NDK2

1
(1− p̃max)2

,

where loss function L is S-smooth with S = (3/2+λ)d2, G-Lipschitz with G = d(1+3πλ), and
p̃max =max{p̃i}Mi=1.

The proof of Theorem 1 is essentially similar with conventional VQA, for both of them
acquire the complete gradient information only once in an iteration. Therefore, one can ob-
tain the upper bound of R1(θ (T)) of PPD-VQA in noise scenario by following a similar proof
procedure of Theorem 1 in Ref. [44]. We briefly sketch our proof as follows.

The first step is to establish the relation between true gradient component
�

∇L(θ (t ))
�

i, j

(unbiased) and that in the estimated gradient
�

∇ L̄(θ (t ))
�

i, j (biased) that is evaluated from
QPU i (see Appendix A for the detailed derivation),

[∇ L̄(θ (t ))]i, j = (1− p̃i)
2 [∇L(θ (t ))]i, j + C (t)i, j + ς

(t)
i, j , (4)

where C (t)i, j originates from the depolarizing noise, and ς(t)i, j is a item related to random vari-
ables, which has zero mean.

Then one can further utilize the S-smooth and G-Lipschitz of the L to calculate the loss
difference, i.e.,

L(θ (t+1))− L(θ (t ))≤ 〈∇ L̄(θ (t )),θ (t+1) − θ (t )〉+
S
2
∥θ (t+1) − θ (t )∥22 . (5)

Substitute Eq.(4) and θ (t+1) = θ (t ) − η∇ L̄(θ (t )) (we set the learning rate η = 1/S) into
Eq.(5) and take the expectation over the random variable ς(t)i, j , one have

E
ς
(t)
i, j
[L(θ (t+1))− L(θ (t ))]≤

∑

i, j

�

−
1

2S
(1− p̃i)

2
�

�

∇L(θ (t ))
�

i, j

�2

+
2G/d + 1

2S
(2− p̃i)p̃i(1+ 10λ)2

�

+
2dK + d
4SNDK2

.

(6)

Note that −
∑

i, j(1 − p̃i)2
�

�

∇L(θ (t ))
�

i, j

�2
≤ −(1 − p̃max)2∥∇L(θ (t ))∥2, and

(2− p̃i)p̃i ≤ (2− p̃max)p̃max , we obtain

∥∇L(θ (t ))∥2 ≤2S
L(θ (t ))−E

ς
(t)
i, j

L(θ (t+1))

(1− p̃max)2

+
2G + d

(1− p̃max)2
(2− p̃max)p̃max(1+ 10λ)2 +

2dK + d
4SNDK2

1
(1− p̃max)2

.

(7)
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Figure 2: Classification task on Iris dataset and the ansatz in numerical simula-
tion. (a) A visualization of training examples sampled from Iris dataset. We choose
the data of iris versicolor (label 0) and iris virginica (label 1) for binary classification.
(b) Ansatz of PPD-VQA for the classification.

Finally, by summing over t = 0, 1, · · · , T , the upper bound of R1(θ (T)) is achieved.
From Theorem 1 above and Theorem 1 in Ref. [44], we can observe that the conver-

gence rate between conventional VQA and PPD-VQA is similar, i.e., both of them scale with
O(1/
p

T ) [44], since the second term and the third term are constant in above inequality
when {p̃}Mi=1 is fixed. The similar convergence rate guarantees that PPD-VQA promises a intu-
itive linear runtime speedup of the computation of the gradient with respect to the increased
number of local nodes M .

Next, we perform numerical experiment to study the performance of PPD-VQA in the re-
alistic noise scenario.

In our simulations, we apply PPD-VQA to the binary classification task, by employing the
Iris dataset and ansatz shown in Fig. 2. We choose 100 examples from Iris dataset with 50
versicolors (label 0) and 50 virgunicas (label 1), where 75% examples are randomly selected
as the training set and the remaining 25% as the test set. We encode the classical example xk
in Iris dataset into the a two-qubit quantum state ρk by amplitude encoding, i.e.,

|ψk〉=
αk1 | 00〉+αk2 | 01〉+αk3 | 10〉+αk4 | 11〉
p

| αk1 |2 + | αk2 |2 + | αk3 |2 + | αk4 |2
, (8)

where (αk1,αk2,αk3,αk4) is the feature of xk. Then a hardware-efficient PQC with 8 trainable
single-qubit gates, as shown in Fig. 2(b), is employed for the training. After the quantum
state ρk has evolved, we perform K global measurements on the final quantum state. We
then derive the expectation of observable and map it to [0,1] by linear mapping, where the
observable is set as (Z⊗2 + I)/2.

We implement the task using the PPD-VQA with M =1 (conventional VQA), 2, 4, 8 local
nodes, respectively. For each type of PPD-VQA, we also set different noise parameters sepa-
rately. Specifically, for each node the PPD-VQA, the depolarizing probability pi for single-qubit
gate is set by sampling from a Gaussian distribution i.e., pi ∼ N(µ,σ2), where the mean µ
varies from 0.01 to 0.05 with step 0.02 and σ = µ/9. The depolarizing probability of two-
qubit gate is set as 4pi refer to the performance of SOTA quantum processor Zuchongzhi [15].
Each local node’s noise will be somewhat different as a result of such random sampling. A to-
tal of 100 independent experiments were run for each setting, and in each experiment, the
measurement shots is set to 8192, batchsize is set to 5, and the convergence condition is that
the classification accuracy on the training set exceeds 96%.

7

https://scipost.org
https://scipost.org/SciPostPhys.14.5.132


SciPost Phys. 14, 132 (2023)

(a)

(b) (c)

1 local node 

(Conventional VQA) 2 local nodes 4 local nodes 8 local nodes

Figure 3: Simulation results of PPD-VQA with M local nodes under noise sce-
nario for Iris dataset classification. (a) Boxplots count the iterations of PPD-VQA
with M local nodes, where M = 1,2, 4,8 from left to right, when achieving a pre-
defined training accuracy. The depolarizing probability pi for single-qubit gate is
set by sampling from a Gaussian distribution i.e., pi ∼ N(µ,σ2), where the mean
µ = 0 (ideal case), 0.01,0.03, 0.05, and σ = µ/9. The depolarizing probability can
be converted to Pauli errors ep for single-qubit gate by using ep =

3
4 pi [13]. As a ref-

erence, the single-qubit gate Pauli error of the Zuchongzhi processor is 0.14% [15].
The middle line of the boxes, which is the median of the data, represents the average
of the number of iterations. The upper and lower limits of the box, which are the
upper and lower quartiles of that, respectively, which means that the box contains
50% examples. Above and below the box, there are other lines each representing
the maximum and minimum values and the circles represent outliers. (b) Scaling
behavior of the mean of the iterations in (a) for increasing noise (µ). The results of
PPD-VQA with M = 1, 2,4, 8 local nodes are shown. (c) Scaling behavior of speed-up
ratio in clock-time for increasing number of local nodes M . The results of different
depolarizing probabilities are shown.
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As shown in Fig. 3(a, b), for both conventional VQA and PPD-VQAs with 2, 4, and 8 local
nodes, the number of iterations required to achieve a preset training accuracy increases with
the mean of noise µ, and the PPD-VQA with multiple local nodes has a similar convergence
speed as conventional VQA (see Fig. 3(b)), which is consistent with Theorem 1. Meanwhile,
the number of iterations is not sensitive to changes of the number of local nodes, which may
be caused by the proximity of noise levels of M local nodes.

We further introduce a metric, i.e. RS = T1/Tm to evaluate the speed-up ratio of the PPD-
VQA with M = m > 1 local nodes compared to the conventional VQA with just M = 1 local
node, where T1 and Tm are the time consuming of conventional VQA and PPD-VQA from the
start of training to meeting the convergence conditions, respectively. It should be noted that
T1 and Tm are obtained in the same noise scenario. Assuming that the time consumption
of implementing each quantum circuit is the same (since the number of measurements is the
same, and only the rotation angle of the single-qubit gate will be changed each time the circuit
is executed), the formula of the speedup ratio RS can be further rewritten as

RS =
(1+ 2d)× ND × N1

I

(1+ 2d
M )× ND × N M

I

=
(1+ 2d)× N1

I

(1+ 2d
M )× N M

I

, (9)

where d is the number of parameters, N1
I and N M

I are the total number of iterations for the
conventional VQA and PPD-VQA, respectively. In the ideal scenario of noiseless, N1

I = N M
I ,

thus RS =
1+2d
1+ 2d

M
in ideal scenario.

Figure 3(c) shows that speed-up ratio for the PPD-VQA with 1 (conventional VQA), 2, 4, 8
local nodes under under a variety of noise scenarios. No matter how the mean of noise µ
changes, the speed-up ratio of PPD-VQA is almost only related to the number of local nodes and
is extremely close to the ideal case. The reason that the speed-up ratio is almost independent
of noise is that the training speed of 1 nodes and M nodes slows down at the same time as the
noise grows. This result strongly supports that PPD-VQA can achieve a very good acceleration
in realistic scenarios.

3.2 Alternate training strategy for mitigating the negative effects of large noise
differences between different local nodes

In the previous subsection, the difference in the noise of the quantum processors of each node
is not particularly large, because the noise is set by sampling from a Gaussian distribution
N(µ,σ2), where σ = µ/9. In this subsection, we will study the performance of PPD-VQA in
cases where the noise difference is more pronounced.

We first monitor the performance of PPD-VQA when the noise difference of different lo-
cal nodes changes from small to large. To quantify the noise differences of local nodes, we
introduce a metric, named Di f f er, which is defined as

Di f f er = DK L(P(p) ∥ PUniform) ,

where DK L is Kullback-Leibler (K-L) divergence [45], PUniform refers to the uniform distribution,
P(p) is the normalized distribution of depolarization probability of each local node, where
P(p)k = pk/
∑M

i=1 pi , and pk is the depolarization probability of the k-th local node. With this
metric, a noise setting with a resulting distribution that corresponds to a higher K-L divergence
with respect to uniform distribution would mean greater noise variance between local nodes.
Besides, we set another constraint that the mean of {pi}Mi=1 is 0.04. For each PPD-VQA with
M ∈ [1,2, 4,8] local nodes, Di f f er varies from 0 to 0.625, we generate 10 instances of noise
setting for each Di f f er, and for each instance 50 experiments with different initial parameters
are implemented. As shown in Fig. 4, the speed-up ratio tends to become smaller as the Di f f er
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（a） （b） （c）2 local nodes 4 local nodes 8 local nodes

Figure 4: Simulation results of PPD-VQA with M local nodes in cases where the
noise difference is more pronounced. (a) The average speed-up ratio as a function
of Di f f er (a metric for quantifying the noise differences of local nodes) for the
PPD-VQA with M = 2(a), 4(b), 8(c) local nodes. 100 independent experiments are
implemented for each setting. The green and red solid lines present the results for
original PPD-VQA and PPD-VQA with alternate training strategy, respectively. The
shaded area represents statistical error caused by 100 independent experiments. It is
obvious that the red curves have noticeable larger values and smaller variances than
the green curves in all three cases.

increases, indicating that the advantage of PPD-VQA in terms of speedup is diminished in
extreme cases where the noise difference between local nodes is significant.

To suppress acceleration decay of PPD-VQA caused by excessive noise difference between
local nodes, we propose a simple but effective approach named as alternate training strategy,
whose core idea is decoupling the trainable parameter groups and corresponding quantum
processors. The process of this alternate training strategy is as follows: Suppose that at the first
iteration, the i-th local node is scheduled to train the parameters θi . We denote this process as
{θi : QPUi}Mi=1. Then in the next iteration, The corresponding relationship between trainable
parameters and local nodes becomes {θM : QPU1} ∪ {θi : QPUi+1}M−1

i=1 , that is, we perform
a cyclic shift on the correspondence between the trainable parameters and local nodes. The
alternate training strategy is repeated with the training process, which makes each parameter
group θi be trained in turn by all quantum processors throughout the whole training process.

The numerical simulation results of PPD-VQA with alternate training strategy are shown
in Fig. 4. An immediate observation is that when the noise difference between local nodes in-
creases, PPD-VQA performance degrades relatively little thanks to the alternate training strat-
egy. Besides, the performance of PPD-VQA becomes more stable as the variance of the mean of
different experiments is significantly smaller. These two benefits suggest that this strategy can
be effectively employed for mitigating the negative effects of large noise differences between
different local nodes.

4 Gradient compression

Another challenge of distributed machine learning is the large amount of communication band-
width for gradient exchange [46]. With the development of quantum computing hardware,
this problem may also arise in large-scale distributed quantum machine learning. To overcome
this potential problem, we adopt the technique of gradient compression [47] widely used in
the classical community to PPD-VQA, to reduce the communication bandwidth for distributed
training. The pseudocode of PPD-VQA with gradient compression for local node i in PPD-VQA
is as follows.
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Figure 5: The speed-up ratio and compression ratio as a function of threshold
value for the PPD-VQA with M = 4 local nodes. The depolarizing noise pi in each
node is set by sampling from the gaussian distribution N(µ,σ2) with µ= 0.016 and
σ = µ/9.

Algorithm 2 The pseudocode of PPD-VQA with gradient compression.

Require: θ ∈ [0,2π)d : the parameters of ansatz; L: loss function; M : the number of
local nodes, and we donate Mi as the i-th local node; Mask = (0, · · · , 0) has the
same dimension with θi defined in section PPD-VQA, and ⊙ is Hardamard product, i.e.,
a⊙ b = (a1 b1, · · · , an bn).

Ensure: optimal parameters θ ∗

1: Calibrate threshold thr
2:
�

∇ L̄(θ )
�

i = 0 for i ∈ [1, 2, · · · , M]
3: while convergence condition is not satisfied do
4: The central parameter server divides the parameter θ into M

parts and allocates θ to M local nodes
5: for Local nodes Mi , ∀i ∈ [M] in parallel do
6: Calculate gradient component Gi(θ )
7:
�

∇ L̄(θ )
�

i =
�

∇ L̄(θ )
�

i + Gi(θ )
8: for j = 1+ (i − 1) d

M , · · · , 1+ i d
M do

9: if |
�

∇ L̄(θ )
�

i, j |> thr then
10: Mask[ j] = 1
11: end if
12: end for
13: gi(θ ) =

�

∇ L̄(θ )
�

i ⊙Mask
14:
�

∇ L̄(θ )
�

i =
�

∇ L̄(θ )
�

i ⊙¬Mask
15: end for
16: Synchronize the compressed gradient g(θ ) by merging {gi(θ )}Mi=1;
17: Update θ with a classical optimizer, such as ADAM;
18: Choose a local node from {M}Mi=1 for convergence test.
19: if convergence condition is satisfied then
20: break
21: end if
22: end while

The idea of gradient compression is gradient clipping, which makes the gradient sparse
by comparing its individual components with a threshold thr. Only the components of the
gradient with larger absolute values compared with thr can be synchronized to the central
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Table 1: The comparison of the performance between PPD-VQA without gradient
compression and with gradient compression. The results of PPD-VQA under differ-
ent number of local nodes (M = 2, M = 4 and M = 8) and noise settings (µ= 0.016
and µ = 0.064) are presented. In the table we count total number of iterations for
all 100 instances in each setting. Communication volume CV is defined as the total
number of gradient components after clipping transmitting between the central pa-
rameter server and multiple local nodes, and compression ratio is 1−CVwith/CVwithout,
where CVwith (CVwithout) is the communication volume for PPD-VQA with (without)
gradient compression. The symbol → indicates the change of speed-up ratio from
left (PPD-VQA without gradient compression) to right (PPD-VQA with gradient com-
pression). Two typical results help us explore the relationship between acceleration
of PPD-VQA and compression ratio: (top) The acceleration of PPD-VQA with gradi-
ent compression has only a slight decay when the gradient compression ratio is over
60%. (bottom) The acceleration of PPD-VQA with gradient compression decreases
significantly when the gradient compression ratio is too high (over 96%).

M noise setting
without gradient compression with gradient compression result

iterations communication volume iterations communication volume compression ratio speed-up ratio

2
µ= 0.016 2324 2324×8 2259 7016 62.3% 1.87→ 1.92
µ= 0.064 2680 2680×8 2780 8565 60.1% 2.04→ 1.97

4
µ= 0.016 2324 2324×8 2444 3630 80.0% 3.36→ 3.20
µ= 0.064 2712 2712×8 3295 2862 86.9% 3.64→ 2.99

8
µ= 0.016 2282 2282×8 2463 3634 80.0% 5.71→ 5.29
µ= 0.064 2702 2702×8 3200 2818 87% 6.09→ 5.14

2
µ= 0.016 2324 2324×8 5659 701 96.3% 1.87→ 0.77
µ= 0.064 2680 2680×8 6463 787 96.3% 2.04→ 0.84

4
µ= 0.016 2324 2324×8 6338 623 96.7% 3.36→ 1.23
µ= 0.064 2712 2712×8 6410 791 96.4% 3.64→ 1.54

8
µ= 0.016 2282 2282×8 6043 607 96.7% 5.71→ 2.15
µ= 0.064 2702 2702×8 6322 781 96.4% 6.09→ 2.60

parameter server, thus ensuring that the general direction of the parameter update remains
correct. The remaining components smaller than thr are still retained in corresponding local
node and counted as a part of new gradient in next iteration. Thus we obtain the uncropped
original [∇ L̄(θ )]i in local node i. This method greatly reduces the actual communication
bandwidth required in PPD-VQA. However, due to the existence of quantum noise, it is also
unknown whether gradient compression works on PPD-VQA, so next we will perform numer-
ical simulations to address this concern.

We test the gradient compression on a PPD-VQA with M = 4 local nodes, where the noise
pi in each node is set by sampling from the Gaussian distribution N(µ,σ2)with µ= 0.016 and
σ = µ/9. In our simulation, the threshold value thr varies from 0 to 0.7 with step 0.1, and we
still implement 100 independent experiments for each setting. As shown in Fig. 5, by setting
a reasonable compression threshold, we can greatly reduce the communication cost. It can
be also observed that the increase of the gradient compression ratio leads to the decay of the
acceleration of PPD-VQA. When thr > 0.1, the growth of gradient compression ratio becomes
very slow, while speed-up ratio is still decreasing rapidly. Thus, we need to find a balance
between the decay of acceleration advantage and reducing the communication volume. When
the threshold value is 0.1, we can achieve a relatively high gradient compression ratio (> 80%)
without losing too much acceleration advantage (RS > 2.7).

In Table 1, we further show two types of typical results for the PPD-VQA with M = 2,4, 8
local nodes, and noise level µ= 0.016, 0.064. For each setting, 100 independent experiments
are implemented. In the first typical result, we set a reasonable compression ratio, so that
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the speed-up ratio is almost not lost compared to the uncompressed case. However, in this
scenario, the compression ratio can still be higher than 60%, or even up to 87%, indicating that
we can solve the problem on communication bottleneck without losing too much acceleration
advantage of PPD-VQA. In the second typical result, to achieve a more aggressive compression
ratio (above 96%), the speedup of PPD-VQA is significantly reduced. Possible reason is that
fewer trainable parameters make the gradient not have the sparsity compared with deep neural
networks, which leads to a significant increase in the number of iteration when we apply
the gradient compression algorithm to PPD-VQA. Anyway, our experiments demonstrate that
gradient compression is very suitable for PPD-VQA, even in the realistic noise scenario.

In addition to reducing communication bandwidth, gradient compression may help to mit-
igate errors in the experimental implementation of the PPD-VQA, due to the following two
reasons:1) For most quantum computing systems, it is not easy to implement the tiny angular
rotations of single-qubit quantum operations with high precision. Gradient compression can
avoid updates of tiny angles and thus potentially improve experimental accuracy. 2) As the
frequency of updating parameters (especially those with small gradient changes) is reduced,
the number of gate operations that need to be changed by the quantum device is consequently
reduced and the accumulation of quantum operation errors is naturally suppressed.

5 Conclusion

Our results show that PPD-VQA is highly promising as it achieves approximately linear accel-
eration over the training process of conventional VQA, both in theory and simulation results.
The PPD-VQA exhibits good resilience to the excessive noise differences among local nodes,
by employing the alternate training strategy. Furthermore, by adopting the gradient compres-
sion strategy, potential communication bottlenecks can also be addressed to support the future
scalability of PPD-VQA.

The PPD-VQA is naturally compatible with the data-parallel distributed VQA proposed
in [40], so the combination of the two approaches could enable a stronger acceleration for the
training of VQA. When doing such a combination, some methods [48–50] can be employed to
enhance the generalization ability of data-parallel training [49,50]. Besides, error mitigation
techniques [51,52] have the potential to further improve the capability of PPD-VQA on near-
term quantum devices. Some more complex application scenarios, such as privacy-preserving
distributed VQA, requires more in-depth discussions in the future works.
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A The derivation of estimated gradient

As it is shown in III.A, the j-th component of the analytical gradient evaluate from QPU i at
t-th iteration
�

∇L(θ (t ))
�

i, j is

�

∇L(θ (t ))
�

i, j =
1

ND

�

∑

k

( ŷk
(t) − yk)

ŷk
(t,+ j) − ŷk

(t,− j)

2
+λθ (t)i, j

�

.

However, in the realistic scenario, the j-th component of estimated gradient calculated on
i-th QPU [∇ L̄(θ (t ))]i, j is obtained by the estimated values of ȳ(t)k,i and ȳ(t,± j)

k,i , i.e.,

�

∇ L̄(θ (t ))
�

i, j =
1

ND

∑

k



( ȳk,i
(t) − yk)

ȳ(t,+ j)
k,i − ȳ(t,− j)

k,i

2
+λθ (t)i, j



 .

According to the definition and notation of the depolarizing noise model in III.A, the esti-
mated label ȳ(t)k,i has the mean value v(t)k,i and variance (σ(t)k,i )

2 after K measurements:

v(t)k,i = (1− p̃i) ŷ
(t)
k + p̃i

Tr[O]
2n

,

(σ(t)k,i )
2 =

1
K
(1− p̃i)p̃i

�

ŷ(t)k −
Tr[O]

2n

�2

.

We further introduce the random variable ξ(t)k,i with zero mean and variance (σ(t)k,i )
2 to

describe the output of PQC on QPU i, i.e.,

ȳ(t)k,i = v(t)k,i + ξ
(t)
k,i .

Similarly, we can define v(t,± j)
k,i and the random variable ξ(t,± j)

k,i to describe the output of QPU
i with shifted-parameter in the same way.

Therefore, a formulaic description of the relation between the estimated partial derivative
[∇ L̄(θ (t ))]i, j and the analytic gradients

�

∇L(θ (t ))
�

i, j is as follows,

�

∇ L̄(θ (t ))
�

i, j =
1

ND

∑

k



(v(t)k,i + ξ
(t)
k,i − yk)(

v(t,+ j)
k,i − v(t,− j)

k,i + ξ(t,+ j)
k,i − ξ

(t,− j)
k,i

2
+λθ (t)i, j





=(1− p̃i)
2
�

∇L(θ (t ))
�

i, j

+
1

ND

∑

k



(1− p̃i)p̃i(
Tr[O]

2n
− yk)

ŷ(t,+ j)
k,i − ŷ(t,− j)

k,i

2
+ (2p̃i − p̃2

i )λθ
(t)
i, j





+
1

ND

∑

k



(v(t)k,i − yk)(ξ
(t,+ j)
k,i − ξ

(t,− j)
k,i ) +

ŷ(t,+ j)
k,i − ŷ(t,− j)

k,i

2
ξ
(t)
k,i + ξ

(t)
k,i (ξ

(t,+ j)
k,i − ξ

(t,− j)
k,i )





=(1− p̃i)
2
�

∇L(θ (t ))
�

i, j + C (t)i, j + ς
(t)
i, j ,
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where

C (t)i, j =
1

ND

∑

k



(1− p̃i)p̃i(
Tr[O]

2n
− yk)

ŷ(t,+ j)
k,i − ŷ(t,− j)

k,i

2
+ (2p̃i − p̃2

i )λθ
(t)
i, j



 ,

ς
(t)
i, j =

1
ND

∑

k



(v(t)k,i − yk)(ξ
(t,+ j)
k,i − ξ

(t,− j)
k,i ) +

ŷ(t,+ j)
k,i − ŷ(t,− j)

k,i

2
ξ
(t)
k,i + ξ

(t)
k,i (ξ

(t,+ j)
k,i − ξ

(t,− j)
k,i )



 .

Obviously, ς(t)i, j has the mean zero, where the random variables ξ(t)k,i , ξ
(t,± j)
k,i in above formula

are independent, because these random variables arise when we separately calculate the ex-
pectation of the observable with different shifted parameters.

B Bias term analysis

In this subsection, we give an error analysis on estimated gradient. By leveraging the explicit
form of estimated gradient in Appendix A, estimated gradient has following average bias term
compared to the ideal gradient,

bias term= |E
ξ
(t)
k,i ,ξ

(t,± j)
k,i
(
�

∇ L̄(θ (t ))
�

i, j −
�

∇L(θ (t ))
�

i, j)|

= |(p̃2
i − 2p̃i)
�

∇L(θ (t ))
�

i, j + C (t)i, j |

⩽ |(p̃2
i − 2p̃i)
�

∇L(θ (t ))
�

i, j |+ |C
(t)
i, j |

⩽ 2p̃i(
1
2
+ 3λπ) + (1+ 6λπ)p̃i

= (2+ 9λπ)p̃i ,

where the inequality uses the upper bound of
�

∇L(θ (t ))
�

i, j , i.e.,
�

∇L(θ (t ))
�

i, j ⩽ 1× 1
2 + 3λπ

when θ ∈ [π, 3π] and ŷ(t)k , ŷ(t,± j)
k ∈ [0, 1], and the upper bound of C (t)i, j , i.e.,

C (t)i, j ⩽ p̃i + 2p̃i ·λ · 3π.
Therefore, the larger the noise, the larger the upper bound of the bias term, which visually

demonstrates the effect of noise on the gradient calculation. However, in actual training pro-
cess, we pay more attention to the estimated gradient [∇ L̄(θ (t ))]i, j containing the bias term,
because VQAs are typical adaptive noise approaches.
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