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Abstract

We study higher dimensional models with symmetric correlated hoppings, which gen-
eralize a one-dimensional model introduced in the context of dipole-conserving dynam-
ics. We prove rigorously that whenever the local configuration space takes its smallest
non-trivial value, these models exhibit localized behavior due to fragmentation, in any
dimension. For the same class of models, we then construct a hierarchy of conserved
quantities that are power-law localized at the boundary of the system with increasing
powers. Combining these with Mazur’s bound, we prove that boundary correlations are
infinitely long lived, even when the bulk is not localized. We use our results to con-
struct quantum Hamiltonians that exhibit the analogues of strong zero modes in two
and higher dimensions.
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1 Introduction

In recent years, systems with unconventional symmetries have attracted a lot of attention due
to the wealth of exotic phenomena they display. In particular, the role of multipole-moment
and subsystem symmetries have been explored extensively. Both of these have been shown
to lead to exotic low-energy features including fracton phases of matter, fractal quantum spin
liquids and quantum criticality, Bose surfaces and UV/IR-mixing [1–12]; as well as to unusual
non-equilibrium behavior, such as unconventional transport [13–19] and Hilbert space frag-
mentation [20–22, 22–25, 25–29]. Dipole-conservation naturally appears as an approximate
symmetry of systems subject to a strong tilted potential, and some of the aforementioned phe-
nomena have been observed experimentally in this context [30–34].

Fragmentation in particular, appears naturally in systems that conserve multipole mo-
ments [20, 21]. It manifests as an exponentially large number of dynamically disconnected
sectors even after resolving the global conserved quantities. Such fragmentation (or, in the
parlance of classical stochastic dynamics, reducibility [35]) comes in multiple flavors. One can,
for example, distinguish weak and strong fragmentation, which give rise to distinct dynamical
signatures [20,25]. A particularly striking example of the latter was found in Refs. [20,21,36],
where fragmentation was shown to result in localized dynamics that retains local memory
of initial conditions. While such strong reducibility has long been known for kinetically con-
strained glassy models [35], the recently studied examples, originating from dipole-conserving
systems, were restricted to one spatial dimension [25,36].

In this paper we introduce a set of models, which we name “discrete Laplacian models”.
Their defining feature is a correlated hopping term that distributes particles symmetrically
among all neighboring sites, resembling a discrete second derivative and generalizing the 1D
model of Refs. [20, 21] to arbitrary lattices. We prove that the discrete Laplacian models all
exhibit the same kind of localized behavior due to the strong fragmentation of their config-
uration spaces. This fragmentation originates from a combination of the correlated hopping
of particles and a local constraint on the number of particles per site. Together these lead
to a finite density of sites whose configuration remains frozen at all times, implying strong
fragmentation.

Even away from the strongly fragmented limit, we find that these models exhibit localized
behavior close to the boundaries of the system. We explain this by the presence of spatially
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Figure 1: Discrete Laplacian models. Family of models where the elementary pro-
cess corresponds to a simultaneous hopping of particles from a site to all its neighbors.
Illustrated here for different two-dimensional and three dimensional lattices.

modulated symmetries, a concept introduced in Ref. [37]. We show the discrete Laplacian
models posses conserved quantities that, related to solutions of the discrete Laplace equation,
are localized near the boundaries. These include exponentially localized charges at the corners
of the lattice, but also other quantities that are algebraically localized close to the boundary. In
fact, we construct multiple families of such quantities, which decay with increasing powers of
the distance away from the boundary. Just as in Ref. [37], we utilize Mazur’s bound to show
that these symmetries prevent the decay of correlations at the boundary, even when the bulk
is not localized.

The idea of conserved quantities localized near the boundaries of a system bears resem-
blence to that of strong zero modes (SZM) in quantum spin chains [38]. We will show that a
modification of the discrete Laplacian models in the quantum setting can lead to phenomena
analogous to SZM in two dimensions, with a system that exhibits degeneracies throughout
its spectrum with open, but not with closed boundaries.1 Nevertheless, our boundary modes
differ in important ways from those of Ref. [38], as we discuss in detail below.

The remainder of the paper is organized as follows. In Sec. 2 we introduce a version of a
discrete Laplacian model on a 2D square lattice and provide numerical results for the behavior
of its bulk and boundary correlations, which will motivate our subsequent investigations. In
Sec. 3, we first generalize the model to arbitrary lattices and graphs and then provide a proof of
localization in the case when the number of local configurations is strongly restricted. In Sec. 4
we turn to the construction of conserved charges localized at the boundaries and discuss their
implications for boundary correlations. Finally, in Sec. 5 we consider quantum versions of the
discrete Laplacian models and we show how they can be modified to exhibit a phenomenology
similar to strong zero modes. We conclude in Sec. 6.

2 Motivating example: Correlations in a 2D discrete Laplacian
model

We begin by discussing numerical results for a particular 2D model. In subsequent sections, we
will analytically explain the observed behavior, while also generalizing the model to arbitrary
lattices. We consider models of classical stochastic dynamics, which allow for large-scale nu-
merical simulations [16,17,37]. The reason is that we mostly explore “classical” phenomena
that relies entirely on symmetries that are common to both the classical and quantum cases.
We discuss features specific to quantum Hamiltonians at the end of the paper, in Sec. 5.

1A different construction of SZM in two-dimensional systems appeared recently in Ref. [39]. SZM in the context
of stochastic classical dynamics have been recently discussed in Ref. [40].
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Figure 2: Spin-spin correlations of G+ (a) Spin-spin autocorrelation C(0, t) for lin-
ear system size L = 300 and different spins S. Data is averaged over N = 1000
random initial configurations and circuit realizations. When S = 2, the autocorrela-
tion saturates to a constant value independent of system size, hence compatible with
a strong fragmentation of the configuration space. For any spin S > 2 the autocorre-
lation decays as t−1/2 (shown by the gray dashed line. (b) Boundary autocorrelation
for S = 3. The black dashed line shows Mazur’s bound as computed in Eq. (14). Inset:
Spatial distribution along the x-axis defined as Cboundary(x , t)≡ C0(r= (x , y = 0), t)
for L = 250 and different times t. Unlike the weakly fragmented case, the correlation
remains localized even at long times.

We consider a square lattice, where each site r hosts a classical spin sr taking values in
sr ∈ {−S,−S + 1 . . . ,+S} with (half)-integer S. We will equivalently refer to sr as the amount
of “charge” on site r. The dynamics is generated by a set of local updates, or “gates”, G(r)+ , acting
on site r and its four neighbors. The effect of a gate is to change sr→ sr−4 and sr+δ→ sr+δ+1
where δ = ±ex ,±ey is any of the four elementary lattice vectors. In other words, it transfers
one unit of charge from the central site r to all of its neighbors simultaneously (see Fig. 1a).
This is well-defined for S ≥ 2, and it is applied only if it does not lead to a violation of the
local constraint |sr| ≤ S. For future reference we summarize the effect of the gate G+ by a set
of integers as:

G+ = {n−1,0, n0,1, n0,0, n0,−1, n1,0}= {1, 1,−4, 1,1} , (1)

such that si, j → si, j + ni, j under the effect of a gate applied at r = 0. We also consider the
inverse gate, which is obtained by replacing each ni, j with −ni, j .

To turn these local updates into a stochastic evolution, in each time step we randomly
tile the whole system with non-overlapping gates and apply the resulting layer (for additional
details, see Ref. [37]). At each location, we choose randomly between the following three pos-
sibilities with equal probabilities: (i) apply the gate G+, (ii) apply its inverse, or (iii) no update
is made. The defined model conserves several multipole moments of the charge, namely: the
total charge, both components of the dipole moment, and the traceless part of the quadrupole
moment. With open boundary condition, it also has a large number of additional conserved
quantities, as we shall discuss below in Sec. 4.

We study the dynamics of the system by investigating the behavior of “infinite temperature”
connected charge-charge correlations, which are defined as

Cr0
(r, t)≡

1
D

∑

s(0)

sr0
(0)〈sr(t)〉s(0) −
�

1
D

∑

s(0)

sr0
(0)

��

1
D

∑

s(0)

〈sr(t)〉s(0)

�

. (2)

Here, we are uniformly sampling over all possible global initial configurations s(0) of the
system, whose total number is given by D = (2S+1)N for a system of N sites. s(t) is the time-
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evolved configuration corresponding to a particular trajectory of the system, and the brackets
denote averaging over different circuit realizations. We use C(r, t) ≡ Cr(r, t) to denote auto-
correlations on the same site.

The expected generic late-time behavior for a system with the above multipole symmetries
is a subdiffusive decay of correlations of the form C(r, t)∼ t−1/2 [14,18,41]. This behavior is
indeed observed in our model when S > 2 as Fig. 2a shows. However, Fig. 2a also shows that
for S = 2, bulk correlations saturate to a finite value that remains finite even in the thermo-
dynamic limit (see App. A for a careful finite-size scaling analysis). We have also numerically
confirmed that spatial correlations remain localized to a finite region. This is reminiscent of
the behavior observed for S = 1 in the one-dimensional version of the same model [20], where
it appeared as a result of Hilbert (or configuration in the classical model) space fragmentation.
In Sec. 3 we argue that a similar explanation is valid here as well and it generalizes to a larger
class of models, defined on arbitrary lattices and graphs.

While bulk correlations decay to zero for any S > 2 at infinite times, we find that corre-
lations evaluated near the boundary of a system with open boundary conditions remain finite
for any S, as shown in Fig. 2b. In Sec. 4, we will explain this by the presence of a set of
additional conserved quantities localized at the edges of the system, similar to the behavior
observed for certain 1D systems in Ref. [37]. We construct a hierarchy of conserved quantities
that are power-law localized towards the bulk and utilize Mazur’s bound to show that these
lead to the finite boundary correlations observed above. This is consistent with the fact that
we do not only observe finite boundary auto-correlations, but that in fact, the spatial correla-
tion along the boundary defined as Cboundary(x , t)≡ C0(r= (x , y = 0), t) is also localized (see
inset in Fig. 2b).

3 Localization from fragmentation

In this section, we first define a class of models, which we name “discrete Laplacian” models,
that generalize both the 1D model studies in Ref. [20] and the 2D model discussed above in
Sec. 2. We then go on to prove that all such models exhibit localized dynamics when the
number of local configurations is sufficiently restricted.

3.1 General discrete Laplacian models

The model (1) introduced in the previous section can be thought of as a natural generalization
of the 1D model studied in Refs. [20,36]. In fact, as we now show, we can generalize this model
to an arbitrary lattice in any spatial dimension, or even for an arbitrary graph. Consider a
graph defined by vertices V and edges E. Let zv denote the degree (number of neighbors)
of vertex v and we assume that the degrees are bounded: zv ≤ z0, ∀v ∈ V . We assign a spin
variable sv = −Sv ,−Sv+1, . . . ,+Sv to each site, where we now allow the local spin to vary with
the vertex v. In the proofs of Sec. 3.2, we will find it easier to work with a shifted variable,
mv = sv + Sv , which therefore takes values 0,1, . . . , Mv ≡ 2Sv . We will refer to this latter
variable as the “particle number” on vertex v.

Let us generalize the model in Eq. (1) and define the following local gate acting on a
vertex v and its neighbors Nv , specified by the integers

nv′ =

(

−zv , if v′ = v ,

+1 , if v′ ∈Nv .
(3)

The effect of this gate is to remove zv particles from v and distribute them equally (one each)
between its neighbors, leaving v completely empty when Mv = zv . This is illustrated in Fig. 1
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for a number of different graphs corresponding to 2D and 3D lattices. We also define the
inverse gate, which takes one particle from each of the neighbors of v and collects them at v.
As before, we only allow these gates to act if it does not lead to a violation of the constraint
0 ≤ mv ≤ Mv for any vertex v. We refer to the set of models built from these elementary
updates as discrete Laplacian models.2

While there are various ways in which these local updates rules can be turned into a
stochastic evolution, the properties we discuss are largely independent of these details and
follow directly from the constraints imposed by the structure of the gates (although we do
assume detailed balance). We note that the discrete Laplacian updates are fairly natural to
consider if one wants to impose a conservation of higher (in particular, dipole) moments while
keeping interactions as local as possible.

3.2 Proof of localization

We now turn our attention to the case when the local constraints Mv take on their minimal
value, i.e., we set Mv = zv throughout this section. For the 2D model in Fig. 1a, we observed
that in this case autocorrelations exhibit a finite saturation value, a signature of localization.
We now prove that this is a generic feature of the discrete Laplacian models with Mv = zv .

As discussed above, there are two elementary processes that can occur: a site can ‘fire’,
distributing a particle to each of its neighbors (i.e., G(v) = −zv) or it can ‘anti-fire’, receiving
a particle from all neighbors simultaneously (G(v) = +zv). As we emphasized, these updates
are allowed only if they do not lead to a violation of the constraints mv ∈ [0, zv]. To specify the
dynamics, we consider stochastic evolutions where these two types of local updates are applied
according to some random rules, at integer times, defining a Markov process with transition
matrix T . We assume that this Markov process is reversible, Tm,m′ = Tm′,m. The space of
particle configurations splits into various connected components; due to the reversibility of
the dynamics, for an initial condition belonging to connected component C, there is a unique
stationary distribution, which is uniform over all m ∈ C [43].

Our strategy to prove localization is as follows. We fix a vertex v and we identify connected
components such that mv takes the same value for all m ∈ C; in particular the values mv = 0
or mv = zv (its minimum and maximum). Any initial configuration from such a C will lead to
a finite contribution to the connected autocorrelation Cv(t). What we then need to prove is
that a finite fraction of all initial configurations belong to one of these connected components.

In particular, let D(C) = |C| denote the number of configurations belonging to C and
Dmv
(C) denote the number of those where the vertex v is in the state mv (obviously,
∑

mv
Dmv
(C) = D(C)). We can define the average value of mv within the sector C as

mv(C)≡
∑

mv
mv

Dmv (C)
D(C) .

Let us write the average over random trajectories as 〈mv(t)〉m(0) =
∑

m pm(0)(m, t)mv ,
where pm(0)(m, t) =

�

T t
�

m,m0
is the probability distribution over possible spin configurations,

conditioned on a given initial configuration m(0). Let us now focus on 〈mv(t)〉m(0) for a
particular initial configuration belonging to a specific connected component C. Restricted to
this, the dynamics is by definition irreducible. Since we also assumed reversibility, this implies
a unique stationary distribution, which is uniform over all m ∈ C [43]. We therefore have

lim
τ→∞

1
τ

τ
∑

t=0

pm(0)(m, t) =
1

D(C)δC(m)≡ pC(m) , (4)

2We note that these are closely related to the problem of chip-firing studied in the mathematical literature [42].
However, our models are different in that they allow for the aforementioned inverse gates and in that there is a
local constraint sv ≤ Mv .
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with δC(m) = 1 if m ∈ C and zero otherwise. Using this, the infinite time-averaged expectation
value is 〈mv(t)〉m(0) = mv(C), which is independent of m(0) within the same C. Plugging this
back into Eq. (2) we get

Cv ≡ lim
τ→∞

1
τ

τ
∑

t=0

Cv(τ) =
∑

C

D(C)
D
(mv(C)−mv)

2 , (5)

where D =
∑

C D(C) =
∏

v(zv + 1) is the total number of configurations and mv = zv/2 is the
overall (“infinite temperature”) average particle number.3 The key point about this formula is
that every term in the sum on the right hand side is non-negative. Therefore calculating the
contribution from any subset of the terms in the sum of Eq. (5) provides a strict lower bound
for the time-averaged autocorrelations.

We will construct the appropriate set of connected components by identifying local spin
configurations where certain spins remain frozen in the original state at all times, indepen-
dently of the configuration in the rest of the system. The same approach can be used to
demonstrate strong fragmentation in kinetically constrained spin systems, such as certain vari-
ants of the Fredrickson-Andersen model [35]. However, in our case, proving the existence of
such frozen blocks is considerably more involved, and it will take up the rest of this section.
We begin by proving a useful lemma:

Lemma 1. Assume a vertex v fires twice at two different (discrete) times t ′−1 and t+1 (t > t ′)
such that it does not anti-fire (on net) between them. Then all neighbors of v must have fired at
least once sometime in the time window [t ′, t].

Proof. We want to keep track of how many times each site fires/anti-fires as the dynamics
progresses. Let us define the net number of firings at a vertex Fv(t, t ′) as the number of times
v fires in a time interval [t ′, t]minus the number of times it anti-fires in the same time interval.

In the situation above we have Fv(t+1, t ′−1) = +2 and Fv(τ,τ′) = 0 for any t ′≤τ′<τ≤ t.
In particular, Fv(t, t ′) = 0. Now we assume that v has some neighbor v′ that does not fire in
this time interval (more precisely, we only need the weaker condition that it does not fire on
net, i.e., Fv′(t, t ′)≤ 0.) and derive a contradiction.

Note that between the two firings, v has to ‘re-charge’, ∆mv(t, t ′) ≡ mv(t)−mv(t ′) = zv .
On the other hand, we can rewrite this as the total charge flowing into site v:

∆mv(t, t ′) =
∑

v′∈Nv

Fv′(t, t ′)− zv Fv(t, t ′) =
∑

v′∈Nv

Fv′(t, t ′) = zv . (6)

That is, the charge needed for the second firing has to come from the firing of neighboring
sites. If we assume that one of the neighbors does not fire, then another one has to fire at least
twice: Fv1

(t, t ′)≥ 2 for some v1 ∈Nv .
Now we can run this argument recursively. Let t1 be the time when v1 fires for the second

time and t ′1 the last time it fired before that. Between these two times, v1 needs to re-charge,
which it can only do if its neighbors fire. However, since t ′ < t ′1 < t1 < t we have from our
previous assumption that Fv(t1, t ′1) = 0. Therefore v1 needs to have some different neighbor,
v2 that fires at least twice at some times t ′2 and t2 between t ′1 and t1 and so forth. We thus
end up with an infinite regress: before our original site could fire for the second time, one of
its neighbors has to fire twice, but then one of its neighbors has to fire twice etc, making this
process impossible (for a sketch of this on the square lattice, see Fig. 3a). The only resolution
is to allow all neighbors of v to fire at least once between t ′ and t.

3Note that the bound itself is also insensitive to the shift of variables from sv to mv .
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Figure 3: Proof of localization. (a) Sketch of the argument leading to lemma 1. We
want site 0 (dark red) to fire twice, while not allowing its neighbor to the right (gray)
to fire in-between. This requires another neighbor (site 1) to fire twice, leading to
an infinite regress shown by the red arrows. (b) Construction of a cluster of frozen
sites. Blue sites are taken to have zero particles mv = 0. The light blue sites on the
outside layer can change but the inner ones remain frozen forever, independently of
the initial configuration on all other sites.

We can then use this property to construct frozen blocks of sites that lead to fragmentation
and localized dynamics. In particular, we have

Corollary 1. Take some set of sites R with the property that for any v ∈R there is some neighbor
v′ ∈ Nv that is also in R. Let R denote the set of vertices in R along with all their neighbors,
R ≡R∪ (
⋃

v∈RNv). Consider a configuration where all sites in R have mv = 0. Then the sites
in R will remain frozen forever, independently of what the initial configuration is outside of R.

Proof. An example of this situation for a square lattice is shown in Fig. 3b for the 2D square lat-
tice, with dark blue sites belonging to R and light blue ones to the “padding region” P ≡R\R.
We again use a proof by contradiction. Let us assume that at least one of the sites in R can
change. Let us denote by v the first one to do so (site labeled ‘1’ in Fig. 3b). The only way for
v to change is if one of its neighbors in P fires. Let us denote this site by v′ ∈ Nv ∩ P (site
labeled ‘0’ in the figure).

Since v′ starts in its lowest state, it must have been completely ‘charged up’ (i.e., mv′ = zv′)
beforehand. Site v′ could not have anti-fired up to this point, since it has a neighbor (site v)
which has no particles. Therefore the charge must have come from the firing of its other
neighbors. Since v is frozen, only the remaining zv′ − 1 neighbors (sites 2, 3,4 in the figure)
have contributed to charge v up. Hence, one of them needed to fire at least twice. However,
due to the previous theorem, this is in contradiction with the fact that v′ did not yet fired,
which finishes the proof.

We can now combine this corollary with Eq. (5) to arrive at

Theorem 1. The time-averaged “infinite temperature” auto-correlations are finite in the thermo-
dynamic limit. In particular Cv ≥ (zv/2)2(z0 + 1)−2z0 .

Proof. Let us take R to be a set of two sites, including v and one of its neighbors and con-
sider the set of configurations such that all sites v′ ∈ R have mv′ = 0. The number of such
configurations is D/

�∏

v′∈R(zv′ + 1)
�

≥ D/(z0+1)2z0 , where we used that R contains at most
2z0 sites. Let us now also include all other configurations that are connected to one of these
by the dynamics, forming a set of connected components C. For all such C, it follows from
the corollary that mv(C) = 0, since v is frozen. Therefore the total contribution from these to
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Figure 4: Fragmentation. (a): Construction of various sectors in configuration space
using corollary 1, with inert walls splitting the lattice into disconnected regions. (b)
Estimates for the number of completely frozen configurations, along with a Pauling
estimate (see main text). Numerical simulations use system sizes with L ≤ 12.

the RHS of Eq. (5) is (zv/2)2
�∑′

C D(C)
�

/D ≥ (zv/2)2/(z0+1)2z0 . We hence conclude that the
time-averaged autocorrelations must remain finite. In particular, for the square lattice model
in Eq. 1 which has zv = 4∀v, we find Cv ≥ 4/58.

Theorem 1 is the main result of this section. It shows that the dynamics is localized, in the
sense that a finite amount of local memory of initial conditions is preserved forever.

3.3 Strong fragmentation of the configuration space

Let us now discuss what our results imply about the fragmented structure of the space of par-
ticle number configurations, i.e. the structure of the connected components C. For simplicity,
we focus on a case where the system is defined on a d-dimensional lattice, so there is a notion
of a linear size L, with the number of sites growing as ∼ Ld . We also take periodic boundary
conditions, so that there are no additional global symmetries beyond the multipole moments
mentioned above.

Ref. [20] distinguished two types of fragmentation, labeled weak and strong. For the for-
mer, once the values of global conserved quantities (in our case, charge and its various multi-
pole moments) are fixed, there is a dominant C that contains almost all configurations in the
thermodynamic limit. In particular, this means that the size of the largest connected compo-
nent has a size D/poly(L). For strong fragmentation, on the other hand, the dimension of the
largest C is an exponentially small fraction of D. The one-dimensional version of the discrete
Laplacian model was found to exhibit strong fragmentation for S = 1 [20], and the localiza-
tion of autocorrelations was derived explicitly from a complete classification of the fragmented
components in Ref. [36].

Here, we proved localization more directly, without having to construct the full set of
connected components. Nevertheless, our results do imply strong fragmentation. What we
have proven above is that the system exhibits a finite frozen site density [44]: any given site
has a non-vanishing probability of having its local state preserved by the dynamics at all times.
It follows from this that the probability that a randomly chosen configuration contains a finite
fraction of such frozen sites, approaches 1 in the limit of large system sizes. The presence of a
finite fraction of frozen sites means that the number of configurations connected to this initial
state is exponentially small compared to D. This implies strong fragmentation. More previsely,
as we prove in the following
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Theorem 2. Consider a generalized discrete Laplacian model defined on a d-dimensional hy-
percubic lattice of linear size L, such that each site has M = z + 1 possible states, with z the
coordination number of the lattice. Then the space of particle number configurations is strongly
fragmented in the sense that the size of the largest connected component divided by D = M Ld

goes
to zero exponentially with Ld .

Proof. If a configuration has n frozen sites, i.e. sites whose state cannot evolve, then it is
connected at most to M Ld−n other configurations. This is exponentially small compared to D
if n/Ld is finite in the limit of large L. Therefore, any putative large component that is not
exponentially small must contain only a vanishing fraction of frozen sites. If we can show
that the total number of configurations where n does not grow proportionally to Ld is itself
exponentially small compared to D then we have ruled out the possibility of a large (not
exponentially small) connected component.

Let us partition the lattice into regions (“boxes”) of linear size ℓ. The number of such
boxes is Nℓ = (L/ℓ)d . This means that each box has Dℓ = Mℓd

configurations, while the whole
system has D = M Ld

= DNℓ
ℓ

. Corollary 1 shows that we can construct finite-sized patterns of
maximally polarized spins where some sites (those on the “inside”, i.e., the region R in Fig. 3)
are frozen independently of what the configuration is outside of the pattern. If we choose ℓ to
be large enough (i.e., ℓ≥ 4 for a hypercubic lattice), then each box can contain such a frozen
pattern. This will happen with a finite probability pℓ that depends on ℓ but not on the overall
system size L. In particular, let Fℓ be the number of configurations of a box that contain a
frozen pattern, then pℓ = Fℓ/Dℓ. Let us denote by Gℓ = Dℓ − Fℓ the number of remaining
configurations and qℓ = Gℓ/Dℓ < 1 their probability.

We now ask the question: what is the probability that a randomly chosen initial spin con-
figuration contains at most n frozen sites? Let us denote this quantity P≤n. We want to show
that P≤n will be exponentially small in the large L limit, unless n is a finite fraction of Ld (in
particular, it should be at least pℓL

d). To do so, we note that we can upper bound it in the
following way. Let us choose m boxes which contain a frozen pattern, while the remaining
Nℓ −m boxes have no frozen patterns. Clearly, any such state has at least m frozen sites, so
the only contributions to P≤n come from m≤ n. This gives the following upper bound:

P≤n ≤
n
∑

m=0

�

Nℓ
m

� F m
ℓ

GNℓ−m
ℓ

DNℓ
ℓ

=
n
∑

m=0

�

Nℓ
m

�

pm
ℓ qNℓ−m
ℓ

. (7)

The expression on the right hand side is the cumulative distribution function of the binomial
distribution. At large Nℓ, the binomial distribution is increasingly sharply peaked around its
mean value, n̄= pℓNℓ, and the cumulative probability at values of n much smaller than n̄ (i.e.,
outside a window of size∝ N1/2

ℓ
) will be exponentially suppressed in Nℓ. In particular, the

probability of configurations where the number of frozen sites is not a finite fraction of Ld goes
to zero exponentially in the thermodynamic limit.

In fact, there are many more connected components beyond those that we used in the
proof of theorem 1, some of which we can also construct by using Corollary 1. For example,
we can take the region R to be a closed surface, meaning that it separates the graph into
two regions – an “inside” and an “outside” – such that any path connecting them must go
through R. Then the two sides of R will remain disconnected by the dynamics (an example
of this behavior is shown in Fig. 4a). The region R in this case plays the same role as the
“inert regions” discussed for the 1D model in Refs. [20, 21]. One could also put any frozen
configuration in the inside of R to get some large frozen island, which would give additional
contributions to the autocorrelations as well.4

4Note also that we could re-run corollary 1 for a case where we fix the sites inR to have maximal values, mv = zv ,

10

https://scipost.org
https://scipost.org/SciPostPhys.14.6.140


SciPost Phys. 14, 140 (2023)

Another quantity related to fragmentation is the total number of frozen states, i.e., spin
configurations where every site is frozen. Numerically, we can estimate their number by
randomly sampling configurations and checking if they are frozen: the results for the 2D
model (1) with S = 2 are shown by the dots in Fig. 4b. We can also give an analytical es-
timate using Pauling’s method, which yields that the number of frozen states, NF, scales as
ln(NF) ≈ ln(D) + (L − 2)2 ln

�

1− 29

55

�

(see additional details in App. B). While this estimate is
non-rigorous, it fits the numerical results very well (see black dashed line in Fig. 4b). For the
particular choice S = 2, we can bound NF by noting that only states with highest or lowest
possible spins can evolve in time, finding the lower bound 3L2

(pale red line in Fig. 4b). Nev-
ertheless, we can also derive a less tight but rigorous lower bound which holds for all integer
and half-integer S. Let us consider a tiling of the 2D lattice with some unit cell and fix the
configuration of spins on some (proper) subset of sites in each unit cell in such a way that
these prevent all sites from firing (or anti-firing), no matter what configuration we put on the
remaining sites. If the fraction of fixed sites is φ, it directly follows that NF > (2S + 1)(1−φ)L

2
.

There are several possible tilings that yield lattices that remain frozen at all times. Fig. 11 in
App. B shows one particular example, using a 3× 3 unit cell with four fixed sites. The finite
fraction is therefore φ = 4/9 and the lower bound becomes NF > (2S + 1)

5
9 L2

. This is suffi-
cient to prove that the number of frozen states scales exponentially with L2 (see red line in
Fig. 4b for S = 2) for any S, even away from the limit of S = 2 where our proof of strong
fragmentation applies.

4 Spatially modulated charges and boundary correlations

As observed in Fig. 2a, autocorrelations in the 2D model defined in Eq. (1) decay to zero in
the bulk for any spin S > 2. However, as panel (b) of the same figure shows, this is not true for
correlations near the boundary, when the system is defined with open boundary conditions.
Here, we explain this fact in terms of additional conserved quantities that the model possesses
in this case.

4.1 Recursion relation: Discrete Laplace equation

In general, we can look for spatially modulated conserved quantities of the formQ{αr}=
∑

rαrsr.
For the model in Eq. (1), this ansatz leads to the following recurrence relation, whose solutions
correspond to conserved quantities:

4αi, j −αi+1, j −αi−1, j −αi, j+1 −αi, j−1 = 0 . (8)

With open boundaries, one can always solve the recurrence equation by specifying some set
of boundary values αB

i, j and then propagating them to the bulk. Such solutions give rise to a
large number of additional conservation laws. As we show below, these are localized near the
boundary and lead to the aforementioned long-lived correlations there, while their effect on
bulk dynamics is negligible in the thermodynamic limit.

To prove that this is the case, we need to solve Eq. (8) for specified boundary values
of α’s for (i, j) ∈ B, i.e., α0, j ,αL+1, j ,αi,0,αi,L+1, where we distinguish between interior sites
i, j ∈ {1, . . . , L}, that belong to the bulk of the system D, and those at the boundary B. To make
the solution of the recurrence relation more apparent, we rewrite the equation in a slightly

instead of mv = 0. This produces a different set of connected components and corresponding contributions to the
autocorrelation.
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different form:
(

αi, j =
1
4

�

αi+1, j +αi−1, j +αi, j+1 +αi, j−1

�

, for (i, j) ∈ D ,

αi, j = αB
i, j , for (i, j) ∈ B .

(9)

Hence we see that the value at site (i, j) in the bulk, is given by the average value
of the four neighboring sites. This equation is a discrete version of the Laplace equation
((∂ 2

x + ∂
2
y )α(x , y) = 0) with Dirichlet boundary conditions for a square tiling. Its solutions

are known as discrete harmonics (see e.g., Ref. [45]). There are two important properties of
(discrete) harmonic functions that we will use:

1. A (discrete) harmonic function defined on L takes its maximum M and minimum m
values at the boundary B. E.g., if αB

i, j ∈ {0,1} then 0≤ αi, j ≤ 1 for all points in the bulk.

2. Using this fact, it follows that the solution is unique: given two harmonic functions f , g
on L such that f = g on B implies fi, j = gi, j for all (i, j) ∈ L.

One general way of solving a higher-dimensional linear recurrence equation, and in par-
ticular the Dirichlet’s problem in Eq. (9), is using separation of variables αi, j = X iYj . With this,
Eq. (8) simplifies to solving the one-dimensional recurrences

(

X i+1 − 2X i + X i−1 = λX i ,

Yj+1 − 2Yj + Yj−1 = −λYj ,
≈

(

X ′′(x) = λX (x) ,

Y ′′(y) = −λY (y) ,
(10)

where we also indicated the corresponding continuum analogues. λ here is a constant whose
possible values are restricted by the choice of boundary conditions. In particular, due to the
linearity of the problem, we can decompose the Dirichlet’s problem into four independent ones,
with α vanishing along 3 out of the 4 boundaries in each case. This leads to a quantization
condition on λ and the general solution will be a linear combination of such fundamental
solutions. For now, we keep λ as an arbitrary parameter and consider what the form of the
solutions admitted by Eqs. (10) is. See additional details in Appendix D and in Ref. [46].

We can solve Eqs. (10) by finding the roots of the associated characteristic polynomials
r2−(2±λ)r+1= 0 where the two signs correspond to the equations for X and Y respectively.
For each equation, the two roots are inverses of each other and are either real (ξx ,y) or pure
complex phases (eikx ,y ), depending on the value of λ. Overall, we can identify three main types
of solutions: (i) When λ= 0, we have ξx = ξy = 0; this case contains the multipole conserved
quantities discussed earlier.5 (ii) When 0< |λ|< 4, one of the solutions is real while the other
one is complex, e.g., αi, j ∝ (ξx)ie

iky j . These correspond to conserved quantities that are
exponentially localized in one dimension while being fully delocalized in the other. (iii) When
|λ| > 4, both solutions are real αi, j = (ξx)i(ξy) j , and hence can be exponentially localized
near one of the corners of the system, depending on the modulus of ξx and ξy .

Apart from giving insight into the family of possible conserved quantities, these funda-
mental solutions can be combined to obtain the unique solution corresponding to a choice of
boundary values αB

i, j . Instead of writing that general expression, we notice that close-form so-
lution of equation (9) is already known in the context of two-dimensional (unbiased) random
walks [47]. This is given by

αi, j =
L
∑

a=1

αB
a,L+1Ta,L(i, j) +

L
∑

a=1

αB
a,0Ta,1(i, j) +

L
∑

b=1

αB
0,bT1,b(i, j) +

L
∑

b=1

αB
L+1,bTL,b(i, j) , (11)

5The one exception is the (i2 − j2) quadratic moment, which does not factorize in the horizontal and vertical
directions. We can recover it by superposing fundamental solutions or, alternatively, by writing the recurrence
relation in terms of the center of mass and relative coordinates, as αi, j = X i+ j Yi− j .
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where each sum corresponds to one of the four boundaries with the respective boundary values
αB

i, j and

Ta,b(i, j) =
2

(L + 1)2

L
∑

r=1

L
∑

s=1

sin( irπ
L+1) sin(

jsπ
L+1) sin(

arπ
L+1) sin(

bsπ
L+1)

2− cos( rπ
L+1)− cos( sπ

L+1)
. (12)

Hence, αi, j is given by the (discrete) convolution of Ta,b(i, j) with αB
i, j . Ta,b(i, j) is the discrete

analogue of the Poisson kernel, whose convolution with the boundary condition solves the
continuum Dirichlet problem [48]. We will use this fact to study the behavior of the solutions
of the discrete recurrence relation Eq. (8) in the following section.

While Eqs. (11) and (12) provide a way to construct the exact solutions for any boundary
condition, in practice we instead solve the recurrence relation numerically, applying an iter-
ative method outlined in App. C. This has the advantage that it can be easily generalized to
other cases where the exact kernel is not known, some of which are studied in Sec. 4.3.

4.2 Boundary localized charges and Mazur’s bound

A powerful tool to analytically prove finite boundary correlations is given by Mazur’s bound
[49] Mi, j , which lower bounds the infinite time-average auto-correlations by the overlap with
a set of conserved quantities Qa. More explicitly this is

lim
T→∞

1
T

∫ T

0

dt



si, j(t)si, j(0)
�

≥ Mi, j , (13)

at any site (i, j). To define the bound, we introduce an inner product between observables as
〈A, B〉 ≡ 〈AB〉 where 〈A〉 = 1

|C|
∑

{si, j}∈C A(si, j) is the “infinite-temperature” average. With this
definition, the bound can be written as

Mi, j ≡
∑

a,b




si, j ,Qa

�

(K−1)a,b




Qb, si, j

�

. (14)

Here, K is a positive-definite matrix with elements Ka,b = 〈Qa,Qb〉. If one includes only a
single conserved quantity Q{αr} =

∑

rαrsr, then the expression simplifies to

Mi, j ≡
|



si, j ,Q{αr}
�

|2



Q{αr},Q{αr}
� , (15)

where 〈Q{αr},Q{αr}〉 is simply given by




Q{αr},Q{αr}
�

=
S(S + 1)

3

∑

i, j

(αi, j)
2 =

S(S + 1)
3
∥α∥22 , (16)

i.e., proportional to the 2-norm of α. Hence, if one finds even a single conserved quantity that
is strongly localized around some particular site at the boundary of the system and whose norm
remains finite in the thermodynamic limit, this will give rise to finite boundary correlations.
Alternatively, even if individual charges are not sufficiently well-localized, they can still be
combined to give rise to a finite value on the RHS of Eq. (14).

4.2.1 Corner charges: Exponential localization

We first consider the situation near the corners of the square lattice. On a square lattice,
the corner sites are completely decoupled under the dynamics, and hence provide a trivially
conserved boundary charge. Let us ignore these, and consider instead the region close to the
corner with coordinates r0 = (0,0).
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Figure 5: Exponentially localized charges at the corners. (a) Solutions of Eq. (17).
The black dashed line shows the unit circle. (b) Largest value of Mazur’s bound in
Eq. (18) over the set of solutions plotted in panel (a), at different coordinates (x , y).

As we noted in Sec. 4.1, the recursion relation has fundamental solutions of the form
αi j ∝ (ξx)i(ξy) j . This suggests conserved quantities that are exponentially localized near
one of the four corners of the system, similar to the exponentially localized quantities found
for certain 1D systems in Ref. [37]. Indeed, we can plug the above ansatz directly into the
original recursion relation (8), which then turns into

ξx +
1
ξx
+ ξy +

1
ξy
= 4 . (17)

Solutions to this, restricted to the domain |ξx |, |ξy | < 1 exist (see Fig. 5a) and provide expo-
nentially localized modes at the corner (0,0).6

We can plug these conserved quantities into Mazur’s bound (15) at a site (x , y) close to
the corner (i.e,. |x |, |y| not scaling with L) and including only this conserved quantity to find

Mx ,y =
S(S + 1)

3

(αx ,y)2
∑

i, j(αi, j)2
−→

S(S + 1)
3

(ξx)
2x(ξy)

2y(1− (ξx)
2)(1− (ξy)

2) , (18)

in the limit L →∞. Therefore, as long as the site (x , y) is at finite distance from the corner,
Mazur’s bound will be finite, which in turn shows that the time-average boundary correlation
saturates to a finite value. The optimal lower bound can be found by maximizing the expression
on the right hand side of Eq. (18) over the set of solutions of the equation (17). The optimal
bounds thus obtained for different coordinates (x , y) are shown in Fig. 5b.

4.2.2 Mid-boundary charges: Power-law localization

In Sec. 4.1 we found that there exist fundamental solutions of the recursion equation of the
form αi, j∝ (ξx)ie

iky j , i.e. exponentially localized in one direction and plane-wave-like in the
other. These are symmetries localized at the boundary. However, they are not normalizable
and do not immediately yield a finite Mazur bound. Here we instead ask whether we can find
solutions that are localized in all directions. To answer this, we return to Eq. (9), and recall
that it is a lattice discretization of the continuum Laplace equation. Motivated by this, we first
consider the problem in the continuum, which will guide us in constructing new boundary
charges and explaining their localization properties.

6Notice that if (ξx ,ξy) is a solution of Eq. (17), so are ( 1
ξx

, 1
ξy
), ( 1

ξx
,ξy) and (ξx , 1

ξy
). These correspond to

charges localized at the other three other corners of a finite lattice.
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Figure 6: Boundary charges with n > 1. Solutions of Eq. (9) with n= 2 (panel (a))
and n = 4 (panel (b)), which decay towards the bulk as α(2)0, j ∼ j−3 and α(4)0, j ∼ j−5

respectively. Red and blue correspond to positive and negative values of α(2)i, j .

As we are interested in the long-distance behavior of boundary charges, we consider
Laplace’s equation on a semi-infinite plane, i.e., on the domain (x , y) ∈ (−∞,∞)× (0,∞).7

That is,
(

(∂ 2
x + ∂

2
y )α(x , y) = 0 ,

αB(x , 0) = f (x) , α(x →±∞, y) = 0 , α(x , y → +∞) = 0 .
(19)

Given a boundary condition f (x) ∈ L1(R), the solution is given by the convolution of f
with the Poisson kernel P(x , y) = 1

π
y

x2+y2 [48, 50], i.e., α(x , y) =
∫∞
−∞ dz P(x − z, y) f (z),

analogous to the discrete case. In particular, we want to study the decay of a solution local-
ized around (0,0). First, let us take f (x) = δ(x), the Dirac delta distribution. This leads
to a diverging solution at the boundary. Nevertheless, our goal is to understand the long
distance behavior where the solution is well-behaved. Alternatively, we could use a regu-
larized version of the delta distribution instead. In any case, this boundary condition gives
α(x , y) = P(x , y), which decays as α ∼ 1/r at large distances. Recall that r refers to the
orthogonal distance to the boundary. Hence, while it decays towards the bulk, the decay is too
slow for the norm

∫

dx dy |α(x , y)|2 to converge.
Can we construct more localized solutions? Note that the above solution is rem-

iniscent to the electrostatic potential generated by a point-like source at the bound-
ary. This suggests a natural way of constructing solutions with a faster decay: re-
place the point-like source with a dipole or some higher multipole source. This can be
achieved by using a boundary condition that is a higher derivative of the delta distribu-
tion: f (x) = δ(n)(x) ≡ ∂ n

x δ(x). Using this boundary condition one finds, after integrating
by parts, the solution α(n)(x , y) = (−1)n∂ n

z P(x − z, y)|z=0. These decay asymptotically as
α(n)(0, y) ∼ y−(n+1), making them increasingly localized as we make n larger. In particular,
for any n≥ 1 they decay sufficiently quickly to make their norm convergent.

We now want to find an analogous set of solutions on the lattice. To do so, we first need
to discretize the boundary condition f (x) = δ(n)(x). This can be simply done by replacing the
derivatives by (central) finite differences of the Kronecker delta δi,0. In particular, the n-th
derivative of a lattice function fi at site i is given by ∆n

i fi =
∑n

k=0

�n
k

�

(−1)k fi+ n
2−k, (here and

below we focus on n even). Hence, for fi = δi,0, this requires fixing n+ 1 non-zero boundary

7Note the change of notation: in this section (0,0) refers to a location in the middle of the boundary.
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Figure 7: Localization of n = 0 charges. (a) Decay of α
(0, L

2 )
i, j towards the bulk along

two different directions specified by the two planes in the 3D plot. In both cases, the

solution decays as a 1/r with the distance r. (b) Divergence of the 2-norm of α
(0, L

2 )
i, j

in the limit L→∞.

values given by

α
(n),B
i,0 = (−1)i
�

n
n
2 − i

�

�

�

n
n
2

�

, (20)

for i ∈ {− n
2 , . . . , 0, . . . , n

2}. We have normalized α(n),B such that α(n),B0,0 = 1 for all n. Given this
boundary condition, we can find the solution of Eq. (8) in the bulk. In Fig. (6) we plot the
solution for n = 2 and n = 4. The two different colors emphasize the change of sign of the
solution along the nodal lines where α(n) vanishes. E.g., α(2) is positive in the central lobe
(red) and negative on the sides (blue). A higher n, gives n nodal lines with the corresponding
changes of sign. The solutions α(n) give rise to a set of conserved quantities which we denote
by Q(n)r0

, where r0 refers to the location around which they are localized (r0 = (0,0) in the
discussion above).

The solutions α(n) inherit their properties from their continuum counterparts. For n = 0,
where the boundary condition is simply a Kronecker delta, we find a 1/r decay in α(0)i, j , as

shown in Fig. 7a. This means that the norm of Q(0) diverges logarithmically with the linear
size of the system, as shown in Fig. 7b. Hence, these charges are not sufficiently strongly
localized at the boundary for a single one of them to give a finite Mazur’s bound. Instead,
we can make use of the general expression for Mazur’s bound (14) and include all of them
simultaneously. We find that this is sufficient to obtain a lower bound that is tight to the result
obtained in our numerical simulations for any S (see dashed black line in Fig. 1b). Additional
details can be found in Appendix A and Ref. [46].

On the other hand, in agreement with the continuum case, the solutions for higher n
decay faster, as r−(n+1), as we confirm numerically in Fig. 8a. As a consequence, a single one
of these charges is sufficient to give a finite Mazur’s bound, using Eq. (15). However, while
the lattice and continuum problems match at long distances, there are differences in their
behavior close to the boundary that affect Mazur’s bound. In particular, while the charges
become more strongly localized towards the bulk for higher n, they also become more spread
out at the boundary, which leads to an increase in their 2-norm. As a consequence, the value
of the bound (15) in fact decreases with n (while remaining finite for any finite n). Let us
provide a rough estimate. For sufficiently large n, α(n) decays quickly away from the boundary.
Motivated by this, we estimate the scaling of ∥α(n)∥22 with n, by replacing it with the norm of
the contribution from the boundary alone, ∥α(n)∥22 ∼ ∥α

(n),B∥22. The latter can be evaluated
from Eq. (20) and gives ∥α(n),B∥22 ∼

p
n in the limit of large n. We evaluate Mazur’s bound
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Figure 8: Mazur’s bound and higher-moment distributions. (a) Power-law de-
cay of higher-moment charges with modulation α(n)0, j ∼ j−(n+1) as predicted from the
continuum Laplace equation. (b) Dependence of Mazur’s bound (15) with n, when
including a single higher-moment charge with modulation α(n). Mazur’s bound in-
cluding all n= 0 charges at the boundaries is shown as a black triangle. For this data
we used a linear system size of L = 300.

exactly for various n in Fig. 8b, and find that it agrees with this estimate. The same figure
also shows Eq. (14) evaluated using all n = 0 charges taken together, which gives a stronger
bound. In Appendix A we show the finite-size scaling of Mazur’s bound with system size for
several n.

All together, we managed to construct different families of conserved quantities {Q(n)r0
},

which become more and more localized towards the bulk when considering higher and higher
finite differences. Different Q(n)r0

are localized around a boundary site with coordinates r0. For

a given n, α(n),B vanishes everywhere except on n + 1 sites centered around r0. The set of
charges where r0 are at distance n

2 along the boundary are then trivially linearly independent.
Hence, this proves that there exist at least O(L) of those. Nevertheless, different families
parametrized by different n’s are not linearly independent of each other. In particular, we can
use the n= 0 charges to construct all other families.

4.3 Generalizations

So far we have focused on the particular square lattice model defined in Eq. (1). However,
our construction can be extended to higher dimensions as well as to different lattices as long
as the associated recurrence relation

n0αr +
∑

v∈Nr

nvαv = 0 , (21)

corresponds to a discrete Laplace equation, i.e., its solutions are discrete harmonic functions.
Some examples of models satisfying this requirement are shown in Fig. 1. For example, while
the models in Figs. 1(a,b) are defined on different lattices, they both correspond to different
discretizations of the same continuum Laplace equation. Hence the same long-distance decay
for conserved quantities localized at the boundary of the system applies to them.

To extend the construction to higher dimensions, we now consider the continuum Laplace
equation in d+1 dimensions in the hyperplaneHd+1 = {(x, y) ∈ Rd+1|y > 0}. The correspond-
ing Poisson kernel is a generalization of the 2D one and reads Pd(x, y) = cd y(y2 + ∥x∥2)−

d+1
2 ,

with some dimension-dependent constant cd [50]. Once again the squared 2-norm of the (reg-
ularized) solutions with αB(x, 0) = δ(x) diverges logarithmically in the thermodynamic limit
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and hence these are not sufficient to prove finite boundary correlations. Instead we can again
consider “multipole” boundary conditions. Fixing αB(x, 0) = δ(nd )(x) ≡ ∂ n1

x1
. . .∂ nd

xd
δ(x), the

decay of the solution at large distances is given by α(nd )(0, y)∝ y−
∑d

i=1 ni−d . Therefore, we
find that one can construct charges that are sufficiently localized at the d-dimensional bound-
aries of the system as to provide a finite Mazur’s bound.

The previous discussion appears to suggest that as long as the continuum limit of the linear
recurrence Eq. (21) is given by the Laplace equation, one should be able to show that the
boundary correlations are finite. However, some subtleties need to be addressed. First of all,
recall that we explicitly made use of the fact that solutions of Eq. (21) are discrete harmonic
functions. This ensured that for any boundary condition (and any system size) there exist a
unique solution. If this was not the case, even the existence of a solution is not ensured. One
such example is the 2D model defined in Eq. (5) of Ref. [37]. Our construction of boundary
charged does not apply in that case; however, we have observed numerically that boundary
correlations nevertheless fail to decay even in that model.

One set of models to which our previous discussion does directly apply are generated by
the following local gates:

G(n1,n2,n3,n4) = {n−1,0, n0,1, n0,0, n0,−1, n1,0}r = {n1, n2,−N , n3, n4}r , (22)

with N =
∑

i ni . These correspond to the following recurrence relation,

αi, j = p1αi+1, j + p2αi−1, j + p3αi, j+1 + p4αi, j−1 , (23)

with pi = ni/N . These equations were solved exactly in Ref. [47]. When n1 = n2 and n3 = n4,
the continuum limit of this recurrence reads

�

p∂ 2
x + (1− p)∂ 2

y

�

αin(x , y) = 0 , (24)

where we defined p = 2p1. Solutions of this equation can be found by performing the change
of variables x → x/

p
p, y → y/
p

1− p, and then are given by the evaluation of the solu-
tion of the isotropic problem (19) at αin(x , y) = α(x/pp, y/

p

1− p). Hence, our discussion
about the localization properties of boundary charges also applies to these family of anisotropic
models.

5 Quantum systems and strong zero modes

So far our discussion has focused on classical Markov chain dynamics. However, it is easy
to map the systems we studied onto quantum Hamiltonians that share the same symmetries.
Given a set of local gates Gr = {nv}v∈Rr

, acting on some region Rr = {r} ∪Nr centered on a
site r, one can construct a quantum spin-S Hamiltonian ĤG =

∑

r Jrĥr, on the same lattice as

ĥr =
�

Ŝ sgn(n0)
r

�|n0|
⊗

v∈Nr

�

Ŝ sgn(nv)
v

�|nv| + h. c. , (25)

where sgn(nv) is the sign of nv, and Jr is an arbitrary choice of real coefficients. By construction,
when written in the computational basis, ĤG has the same block-diagonal structure as the
original Markov generator built from the gates Gr. In particular, it shares both its fragmentation
properties and its spatially modulated symmetries (with

∑

rαrsr replaced by
∑

rαrŜ
z
r ). These

properties are also preserved by any additional diagonal terms V̂ ({Ŝz
r }) that are function of

the Ŝz
r only.

18

https://scipost.org
https://scipost.org/SciPostPhys.14.6.140


SciPost Phys. 14, 140 (2023)

However, ĤG might also have additional symmetries, not present in the classical model.

Of particular interest are Z2 symmetries like Rx =
∏

r eiπŜx
r and R y =
∏

j eiπŜ y
j . Indeed,

Rx Ŝ±r Rx = Ŝ∓r and Rx Ŝz
r Rx = −Ŝz

r so the Hamiltonians constructed above are invariant un-
der Rx as long as V̂ is built up from even products in the local Ŝz operators. The importance
of these additional discrete symmetries stems from the fact that they anticommute with the
spatially modulated symmetries and therefore lead to exact degeneracies in the many-body
spectrum [38].

To have these degeneracies, any spatially modulated symmetry of the form
∑

rαrS
z
r is

sufficient, along with one of the aforementioned Z2 symmetries. For the discrete Laplacian
models there are always such conserved quantities, independent of the choice of boundary
conditions. However, we can modify the models in a way such that only the charges localized
at the boundaries remain, which exist only for open boundaries. We do so by defining the local
gates

G(p) = {n−1,0, n0,1, n0,0, n0,−1, n1,0}r = {1,1,−N , 1, 1}r , (26)

with associated recurrence relation reads

Nαi, j = αi+1, j +αi−1, j +αi, j+1 +αi, j +αi, j−1 . (27)

Choosing N > 4 rules out the conservation of the global charge and hence of any of its higher-
moments. In general, solutions of this recurrence equation are not discrete harmonics, but
rather correspond to the eigenvalue problem △α = ϵα with ϵ ̸= 0 in the continuum. In this
case, one only finds solutions of the form αi, j = (ξx)i(ξy) j and αi, j = (ξx)ie

iky j , eikx i(ξy) j;
both localized near the boundary. Importantly, this family of models does not show spa-
tially modulated global conserved quantities for periodic boundary conditions. We thus expect
them to feature similar phenomenology to that of the strong zero modes (SZM) introduced
in Ref. [38], with degeneracies throughout the many-body spectrum for open, but not for
closed boundaries. This construction can be extended to higher dimensions by for example
considering a d-dimensional cubic lattice with n0,0 = −N , where N > 2d, and the remaining
contributions equals to +1 as in Eq. (26). These are higher-dimensional generalizations of the
1D models with exponentially localized symmetries introduced in Ref. [37].

Nevertheless, despite the similarities with SZM, some important differences remain. First,
while the boundary modes of Ref. [38] are only approximately conserved for finite systems,
ours are exact for any L. This somewhat changes the logic of the construction: Instead of
using the zero mode to toggle between the two different symmetry sectors of the exact Z2
symmetry, we can also classify energy eigenstates using the boundary symmetries. Arguably,
the most important difference to standard SZM is that our boundary modes correspond to
continuous, rather than discrete symmetries (i.e., there is no “normalization condition” of
the form (Q̂)m = 1 for any integer m). This condition appears to be “highly non-trivial and
fundamental” [51] to ensure a non-zero radius of convergence in the perturbative construction
of such modes (indeed, our boundary modes are presumably highly sensitive to any additional
perturbations). While this condition appears to hold for previous constructions of SZM found
in the literature, it is not clear whether it should be generally imposed [51]. We therefore
leave it to future work to determine whether the models introduced here can be meaningfully
fit into the framework of SZM.

6 Conclusions and outlook

In this work we studied a family of models, which we named discrete Laplacian models, and
which can be defined on an arbitrary lattice (or, more generally, bounded-degree graph). We
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proved two main results about these models. First, we proved that bulk auto-correlations
saturate to a finite value when the on-site configuration spaces are chosen to take their minimal
values. Our proof works by explicitly constructing spatial regions whose configurations are
left unchanged by the dynamics, which can then be used to divide the rest of the system into
disconnected regions.

Secondly, we constructed a hierarchy of linearly (in the linear system size) many con-
served quantities, which are localized at the boundary of the system. These are new instances
of spatially modulated symmetries whose modulations satisfy a discrete Laplace equation with
Dirichlet boundary conditions. We showed that while these are only power-law (rather than
exponentially) localized, the power of decay can be systemically increased by choosing appro-
priate boundary conditions. As a result, we are able to prove that boundary correlation are
finite, by making use of Mazur’s bound [49].

There are a number of questions left open by our work. One interesting aspect of our work
is the construction of strongly fragmented models in higher dimensions, whereas previous
examples in the recent literature were explicitly one-dimensional in nature, relying on the
conservation of certain one-dimensional patterns due to hard-core constraints [25,36]. While
we proved the presence of strong fragmentation in discrete Laplacian models, constructing
the conserved quantities to label all connected components, and understanding their algebraic
structure in the spirit of Refs. [25,36], is an interesting challenge.8 This would shed more light
on their behavior and would help in finding other strongly fragmented higher dimensional
models.

While we proved strong fragmentation only in the case when we restricted the local spin
(number of particles per site) to its smallest possible value, it is likely that even away from this
limit, one would find a transition from a weakly to a strongly fragmented regime by tuning the
density of particles per site, analogously to the one-dimensional case studied in Ref. [44] ( as
well as other kinetically constrained models [35,52]). Understanding the higher dimensional
versions of this transition is another interesting open problem.

The relative novelty of the new classes of modulated symmetries we uncovered also nat-
urally leads to many open questions. The most pressing one is to understand their level of
fine-tuning. In particular, what minimal mathematical structure is required to realize such
symmetries, and to which extent it is sufficient for them to just be approximately conserved.
Moreover, this work provides a stepping stone for a more ambitious goal: classifying all the
possible types of spatially modulated symmetries that a physical system with local interactions
can possess. While in 1D (with a finite number of modulated symmetries) it appears that only
α j = r j with r an algebraic number are allowed, the infinitely many number of conserved
quantities appearing in higher dimensions permit richer modulations.

On a different note, the constructions of quantum models in Sec. 5 with conserved quan-
tities that are either localized in one direction and plane-wave like in the other, or localized at
the corners is reminiscent of topological phases of matter where low-energy modes localized
at the boundaries appear. The conserved quantities associated to corners in particular resem-
ble the corner modes of higher order topological modes, which have been previously linked
to systems with multipole symmetries [53]. Whether these analogies can be pushed further is
an interesting open problem.

8We point out that conserved quantities with a strictly bounded spatial support can be easily ruled out—at least
for hypercubic lattices—by generalizing the argument from Appendix H of Ref. [26].
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Figure 9: Finite-size scaling of correlations. (a) Finite-size scaling of bulk auto-
correlations for S = 2 (a) and boundary auto-correlations (b) for model in Eq. (1).
The data has been averaged over N = 100 and N = 400 circuit realizations respec-
tively.
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A Finite-size Scaling Analysis

In this appendix we provide a more in-detail analysis of the finite-size scaling of the various
numerical results we discussed in the main text.

Fig. 9a shows that the finite saturation value of bulk auto-correlations for the model in
Eq. (1) when S = 2, does not scale down with system size, being the data converged in sys-
tem size for all shown times. This data has been obtained for periodic boundary conditions
and averaged over N = 100 circuit realizations. Fig. 9b provides the finite-size scaling of
boundary auto-correlations. Here, we required N = 400 simulations to decrease the late-time
fluctuations.

In the following we show the scaling of Mazur’s bound with system size. We start with its
scaling when only including a single higher-moment charge Q(n)r0

. This is shown in Fig. 10a
for several n = 2, 4,6, 8,10. In addition, we also study the finite-size scaling when including
O(L) different n = 0 charges Fig. 10b. We first note, that while linearly independent, these
conserved quantities are not orthogonal with respect to the infinite temperature inner product

2



Qr0
,Qr′0

�

=
S(S + 1)

3

∑

i, j

α
r0
i, jα

r′0
i, j , (A.1)

and thus, to compute Msx ,y
for spin correlations




sx ,y(t)sx ,y(0)
�

at the boundary, we need to
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Figure 10: Finite-size scaling of Mazur’s bound. Finite-size scaling of Mazur’s
bound (a) when including a single charge with modulation α(n), and (b) when in-
cluding O(L) charges with n= 0.

use the general expression (14). Without loss of generality and due to the Z4 symmetry of
the lattice and local gates, we can restrict ourselves to focus solely on one boundary, e. g. on
a site with coordinates (0, y) where 1 ≤ y ≤ L. As it turns out, we do not need to include
all conserved quantities but only the ones of the form αB,a

i, j = δi,0δ j,a for 1 ≤ a ≤ L, as all the
remaining boundaries have exponentially small overlap with sx ,y . Consequently, one finds




sx ,y ,Qa

�

=
S(S + 1)

3
αB,a

x ,y =
S(S + 1)

3
δ j,a , (A.2)

leading to

Ms0,y
=

S(S + 1)
3

∑

a,b

δy,a · (K−1)a,b ·δy,b =
S(S + 1)

3
(K−1)y,y . (A.3)

In the limit L → ∞, this can give a finite value depending on the scaling of the diagonal
matrix elements (K−1)y,y with L. Deriving the scaling of a particular matrix element (K−1)y,y
with system size, however, is an analytically difficult task. We provide a finite-size scaling in
Fig. 10b (orange dots). Alternatively, we can instead look for a lower bound of the averaged
boundary auto-correlations

lim
T→∞

1
T

∫ T

0

dt
1

4L

∑

r∈B

〈sr(t)sr(0)〉 ≥ MB , (A.4)

where Mazur’s bound can be expressed in terms of the trace of the inverse matrix K−1

MB =
S(S + 1)

3
tr(K−1)

L
. (A.5)

This allows us to limit our calculations to a more general property of the matrix K . The scaling
with system size is shown in Fig. 10b.

B Counting of frozen states

To estimate the total number of frozen states of G+ using Pauling’s method, we consider the
set of 5 sites on which a single gate acts and calculate the probability PF that the configura-
tion cannot be changed by the effect of the gate. To do so, we first compute the probability
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Figure 11: Frozen lattice tiling. Tiling defined by the unit cell (grey box) such
that the spin configuration on the entire lattice is frozen for all times. Blue sites are
highest, red sites lowest charge. All sites are frozen for any choice of sr ∈ {−S, . . . , S}
on the white sites.

that the gate can fire (or anti-fire) at the beginning and then take the complement. Given
our five degrees of freedom s ∈ {−2,−1,0, 1,2} placed on a +-shape, we immediately see
that in order for the gate to fire the central site has to be either ±2 and the outer sites are
restricted to ∓{−1,0, 1,2}. With the total 55 possible configurations, we have a “firing” proba-
bility 2 ·11 ·44/55 = 29/55. Taking the complement of the probability gives PF = 1− 29

55 ≈ 84%,
so more than 80% of all initial +-shaped configurations of five charges are frozen. Say we now
have a square lattice with L2 sites. There are in total (L − 2)2 +-shaped configurations in the
lattice all of which have the same probability PF to be frozen initially. Neglecting the effects
of overlapping configurations, the probability that the whole lattice is initially frozen and thus

frozen for all times is simply given by P(L−2)2

F . Therefore, the Pauling estimate for the total

number of frozen states takes the form NF = 5L2�

1− 29

55

�(L−2)2
.

C Numerical solution of linear recurrence relations

Finding a close-form solution of linear recurrence relations in terms of (arbitrary) boundary
conditions is in general difficult. Hence, given the wide variety of recurrence relations we study
in this work, we instead follow a numerical approach based on Iterative Stencil Loops [54,55].
We then compare the results to those analytically obtained in the continuum limit. As in the
case of G⊞, we can arrange the general recurrence relation

n0αr +
∑

v∈Nr

nvαv = 0 , (C.1)

to yield an “averaging”-type recurrence relation:

αr = −
1
n0

∑

v∈Nr

nvαv . (C.2)

A route for solving the latter is recursively constructing a solution by obtaining the value at
a site r as given by the RHS of Eq. (C.2). To achieve this, we (1) start with an empty lattice
initialized with the imposed boundary conditions αB

r for r ∈ B, (2) take the right sum as our
“stencil” [54] and (3) iterating over the lattice updating every αr in the bulk with the respective
weighted sum of its neighbors, in the sense that

α(t)r −→ α
(t+1)
r = −

1
n0

∑

v∈Nr

nvα
(t)
v , (C.3)
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where α(t)r and α(t+1)
r are the values at the site before and after update, respectively. In par-

ticular for a lattice of size |L|, this results to each iteration step taking O(|L|2) applications of
the stencil. To terminate the algorithm, we compute the difference between two consecutive
iteration steps Lt and Lt+1 and stop the algorithm whenever a certain threshold is reached
∑

r∈D|α
(t+1)
r − α(t)r | < ϵ. In particular, we choose ϵ < 10−10. In the case of discrete harmonic

functions, the algorithm is known to converge to the unique solution of the discrete Dirichlet’s
problem.

D Solution of Eq. (9) via separation of variables

Analogously to the continuum case, we can solve Eq. (9) via separation of variables, i.e.,
αi, j = X iYj . Let us explicitly follow the main procedure which will teach us something about
the structure of the solutions. Using this ansatz the recurrence relation becomes

4X iYj = (X i+1 + X i−1)Yj + X i

�

Yj+1 + Yj−1

�

. (D.1)

After dividing by X iYj (assuming αi, j does not vanish in the bulk) we find

4=
X i+1 + X i−1

X i
+

Yj+1 + Yj−1

Yj
. (D.2)

This implies that each term on the right hand side is a constant function of its argument and
hence, they satisfy the one-dimensional recurrence relations

(

X i+1 − 2X i + X i−1 = λX i ,

Yj+1 − 2Yj + Yj−1 = −λYj ,
(D.3)

along the horizontal and vertical lattice directions respectively, for certain values of λ ∈ R
which are fixed by the boundary conditions. To proceed we notice that being Eq. (8) linear,
the Dirichlet problem can be solved adding up the solutions of four different Dirichlet problems
with vanishing boundaries conditions except at a given boundary. This means that a general
solution can be written as

αi, j = α
(1)
i, j +α

(2)
i, j +α

(3)
i, j +α

(4)
i, j , (D.4)

with the different contributions solving the boundary problems


































Y0 = YN+1 = 0 and X0 = 0 , with α
(1)
N+1, j = χ2( j) , (I)

Y0 = YN+1 = 0 and XN+1 = 0 , with α
(2)
0, j = χ1( j) , (II)

X0 = XN+1 = 0 and Y0 = 0 , with α
(3)
i,N+1 = η1( j) , (III)

Y0 = YN+1 = 0 and YN+1 = 0 , with α
(4)
i,0 = η2( j) . (IV)

(D.5)

For example, solving problem (I) leads to Yn, j = sin(kn
y j) and Xn,i = sinh(κn

x i) with
kn

y = nπ/(N + 1) for n = 0, . . . , N + 1. This also restricts the values of 0 < λ < 4 to those
satisfying cos(kn

x) = 1 − λn/2, and in turn cosh(κn
x) = 1 + λn/2. Hence, we have found the

fundamental solutions An sinh(κn
x i) sin(kn

y j), which by linear superposition lead to the general
solution of problem (I)

α
(1)
i, j =

N+1
∑

n=0

An sinh(κn
x i) sin(kn

y j) , (D.6)
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where the coefficients An are fixed by

χ2( j) =
N+1
∑

n=0

An sinh(κn
x(N + 1)) sin(kn

y j) , (D.7)

i.e., proportional to the Fourier coefficients of χ2( j).
Solving the three remaining problems, which again involve products of sinusoidal

and hyperbolic functions, one can find a general solution of Eq.(9) for any choice
of boundary functions. This implies that the fundamental solutions sinh(κn

x i) sin(kn
y j),

sinh(κn
x[i − (N + 1)]) sin(kn

y j), sin(kn
x i) sin(κn

y j) , sin(kn
x i) sinh(κn

y[ j − (N + 1)]) with
n= 0 · · · , N +1 form a basis for solutions of Eq. (9), showing that the number of independent
symmetries scales with the linear system size. This approach not only gives us the fundamental
solutions from where to obtain any other one, but also allows us to explicitly find particular
spatial modulations that connect to the quasi-periodic and exponential modulations we en-
countered in the previous chapter. In general, we can solve Eqs. (D.3) finding the roots of the
associated characteristic polynomials r2 − (2±λ)r + 1= 0 which take the values







x1,2 =
2+λ

2 ±
p
λ(λ+4)

2 ,

y1,2 =
2−λ

2 ∓
p
λ(λ−4)

2 ,
(D.8)

for the first and second equations respectively. As the characteristic polynomial are palin-
dromic, the two roots are inverse of each other. Whether these are real (ηx ,y) or pure complex
phases (eikx ,y ) is determined by the sign of the discriminants ∆x = λ(λ+ 4) ,∆y = λ(λ− 4):
If ∆x ,y > 0, the corresponding solution can be written in terms of hyperbolic or exponential
functions; while ∆x ,y < 0 correspond to sinusoidal or complex exponential modulations.

We can split the solutions into three main types: (i) λ= 0 contains all multipole conserved
quantities we already identified except for the x2 − y2 quadratic moment. As this solution
does not factorize in horizontal and vertical directions, but rather as αx ,y = (x+ y)(x− y), we
can only recover it by superposing many fundamental solutions. Alternatively, these could be
explicitly found when writing the recurrence relation in terms of center of mass s = i + j and
relative r = i− j coordinates, i.e., αi, j = XsYr . The second case (ii) corresponds to exponential
(hyperbolic) solutions, which are localized near the corners of the 2D lattice when |λ| > 4.
These can be directly found solving Eq.(8) with the ansatz αi, j = (ξx)i(ξy) j . Finally, the third
case (iii) corresponds to the product of sinusoidal and hyperbolic solutions along orthogonal
directions, like e.g., αi, j = (ξx)ie

−iky j . Thus, while solutions with a finite momentum mode
along one of the lattice directions exist (for |λ|< 4), these are exponentially damped along the
orthogonal direction and do not contribute to spin correlations in the bulk. Moreover, we can
also rule out solutions of the form αi, j ∼ eikx ieiky j which would have led to conserved finite
modes in the bulk correlations.
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