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Abstract

By means of enhanced Monte Carlo numerical simulations parallelized on GPUs we study
the critical properties of the spin-glass-like model for the mode-locked glassy random
laser, a 4-spin model with complex spins with a global spherical constraint and quenched
random interactions. Implementing two different boundary conditions for the mode
frequencies we identify the critical points and the critical indices of the random lasing
phase transition with finite size scaling techniques. The outcome of the scaling analysis
is that the mode-locked random laser universality class is compatible with a mean-field
one, though different from the mean-field class of the Random Energy Model and of
the glassy random laser in the narrow band approximation, that is, the fully connected
version of the present model. The low temperature (high pumping) phase is finally
characterized by means of the overlap distribution and evidence for the onset of replica
symmetry breaking in the lasing regime is provided.
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1 Introduction

When light propagates through a random medium, scattering reduces information about what-
ever lies across the medium and the electromagnetic field, composed by many interfering wave
modes, provides a complicated emission pattern as light undergoes multiple scattering. If
enough power is pumped into the medium multiple scattering may support the population
inversion of atoms and molecules above some optical gap, yielding a random laser [1–14].
Random lasers are made of an optically active medium and randomly placed scatterers (some-
times both in one [2]). The first provides the gain, the latter provides the high refraction
index and the feedback mechanism needed to lead to amplification by stimulated emission.
As opposed to ordered standard multimode lasers, random lasers do not require complicated
construction and rigid optical alignment, have a low cost, undirectional emissions, high opera-
tional flexibility and give rise to a number of promising applications in the field of speckle-free
imaging [15,16], granular matter [9,10], remote sensing [13,17,18], medical diagnostics and
biomedical imaging [13,19–22], optical amplification and optoelectronic devices [13,23,24].

Random lasers may show multiple sub-nanometer spectral peaks above a pump thresh-
old [2], as well as smoother, though always disordered, emission spectra. Depending on the
material, and its optical and scattering properties, random spectral fluctuations between dif-
ferent pumping shots (i. e., different realizations of the same random laser) may or may not
vary significantly. A wide variety of spectral features is reported [10, 12, 25–27], depending
on material compounds and experimental setups. Random lasers can be built in very different
ways, can be both solid or liquid, can be 2D or 3D, the optically active material can be con-
fined or spread all over the volume. Moreover, random lasers are, usually, open systems where
light can propagate in any direction rather than oscillating between well specific boundaries
(mirrors) as in standard lasers in which the emission acquisition can only be directional rather
than on the whole solid angle. Finally, also the scattering strength and the pumping conditions
may affect the emission.

In the last years experiments on a certain class of random lasers provided evidence of par-
ticularly non-trivial correlations between the shot-to-shot fluctuations of the emission spectra.
We will refer to those as glassy random lasers [13, 28–32]. These special correlations are
predicted by a theory based on statistical mechanics of complex disordered systems [33–35].
Indeed, it has been shown that these fluctuations are compatible with an organization of mode
configurations in clusters of states, similar to the one occurring for complex disordered systems
displaying multiequilibria, as the spin glasses. Such a correspondence has been analytically ex-
plained proving the equivalence between the distribution of the Intensity Fluctuation Overlaps
(IFO) and the distribution of the overlap between states, the so-called Parisi overlap, the or-
der parameter of the glass transition [36]. Though the analytical proof assumes narrow-band
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spectra, such that all modes - within their line widths - can be considered at the same fre-
quency [33,37,38], numerical simulations have provided evidence that the onset of nontrivial
distributions of IFO and Parisi overlap distributions occur at the same (critical) temperature
also in realistic models for random multimode lasers [39]. In these models, the four-waves
non-linear mixing between electromagnetic field modes is controlled by a deterministic se-
lection rule depending on modes frequencies, termed mode-locking. In mode-locked lasers
interactions are possible only for the quadruplets of modes whose frequencies ωk satisfy the
condition

|ωk1
−ωk2

+ωk3
−ωk4

|< γ , (1)

with γ being the typical line-width of the modes. We will refer to Eq. (1) as Frequency Matching
Condition (FMC). In standard mode-locked lasers such selection rule is implemented by ad hoc
nonlinear devices (e.g., saturable absorbers for passive mode-locking [40]) that are not there
in random lasers. As hypothesized in [41] and recently experimentally demonstrated in [12],
though, in random lasers mode-locking occurs as a self-starting phenomenon. We call an
interaction network built on the mode-locking selection rule in Eq. (1) a Mode-Locked (ML)
graph.

From the point of view of statistical mechanics of complex disordered systems, random
lasers represent, so far, the only physical system where the relevant degrees of freedom, namely
the complex amplitudes of the light modes, naturally form a dense interaction network of the
kind for which replica symmetry breaking mean-field theory [42] is proved to work, as in high
dimension spin-glasses or structural glasses made of hard spheres [43]. It is not by chance that
random lasers are, so far, the only complex disordered system providing experimental evidence
of a continuous replica symmetry-breaking pattern [13,28–32]. Actually, mean-field theory for
an infinite number of replica symmetry breakings has rigorously been derived [44,45] only for
fully connected systems, including the random laser model in the narrow-band approximation
[33,38]. Using the cavity method it is, then, possible to compute a replica symmetry breaking
(RSB) phase also in systems with sparse interactions1 (the Viana-Bray model, for instance
[46–48]). Still, the correct mean-field theory which describes ML random lasers has yet to be
found, due to some peculiarities of the interaction between light modes that will be detailed
in the following.

In this work we resort to Monte Carlo numerical simulations of the dynamics of a leading
model for multimode random lasers, the Mode-Locked (ML) 4-phasor model [33,34,38,49].

Even if the phenomenology of the model is quite rich already in the narrow bandwidth
approximation, going beyond the fully-connected case is necessary to achieve a realistic de-
scription of random lasers in the spin-glass theoretical framework. If N is the number of
modes, the FMC leads to O(N) dilution in the interaction graph: the total number of interac-
tions, which is of order O(N4) in the complete graph, is, thus, reduced to O(N3) in the diluted
graph [50].

Therefore, as far as the the interaction graph is concerned, the ML 4-phasor model places
itself in an intermediate position between the complete and the sparse graph, the latter being
the case where the number of couplings per variable does not scale with N in the thermody-
namic limit. The analytical solution of a spin-glass model in such an intermediate regime of
dilution is a very hard problem to address, since standard mean-field techniques such as RSB
theory, [51, 52], do not straightforwardly apply and the cavity method for sparse [47] or di-
luted dense networks [53] does not allow to devise close equations for global order parameters
and provide a fully explicit solution. Eventually, to the best of our knowledge, no spin-glass
model has been solved exactly out of the fully connected or the sparse case. Hence, one needs
to perform numerical simulations in order to investigate the physics of the model.

1By sparse networks we mean that the average connectivity of each variable does not scale with the number N
of variables and, therefore, the total number of couplings in the systems grows like N .
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The ordered version of the ML 4-phasor model has been extensively studied through nu-
merical simulations in [54,55], where the essential consequences of the FMC on the topology
of the interaction graph have been investigated. In particular, the dilution induced by the FMC
Eq. (1) has been compared with a random dilution of the same order, revealing important dif-
ferences between the two cases. The random diluted graph has a homogeneous topology and
its phenomenology is compatible with the mean-field solution [37,56]. On the other hand the
inhomogeneities induced by the FMC lead to a graph characterized by a correlated topology
and its behaviour significantly differs from the homogeneous mean-field solution because of
the onset of phase waves, at least at all simulated N . Already in the ordered case, thus, the ML
model might display very strong finite size effects. The more so when quenched disordered
couplings are considered.

Large sizes are hard to simulate because the mode variables are continuous (complex)
numbers and because the total number of interactions grows like N3 with the number N of
modes. Because of these effects it has not been possible so far to identify the universality class
of the modes. By looking at the specific heat behaviour, it has been observed [39] that for
a O(N) dilution having a random homogeneneous or a deterministic topology for the same
model makes a great difference in terms of interpolation of the critical properties in the ther-
modynamic limit. A random homogeneous O(N) dilution of the fully connected network al-
lows to see, already at relatively small sizes, a glass transition of the mean-field kind in the
same universality class of the Random Energy Model (REM), which is the reference mean-field
model for disordered systems with non-linear interactions. On the other hand the determinis-
tic dilution yields apparently a different result.

To unravel such possible difference here we carefully investigate the universality class of
the ML 4-phasor model, providing simulations of systems of large enough sizes, large statistics
and, above all, introducing a trick to drastically reduce finite size effects.

After a description of the model in Section 2, in Section 3 we explain the strategy used to
reduce the finite size effects due to the heterogeneous FMC dilution. In Section 4 we present
a simple argument to get the exponent for the finite-size scaling (FSS) regime of the specific
heat in the REM and generalize it deriving boundaries for the critical exponents of a generic
mean-field universality class. We, then, compare this prediction to the specific heat behaviour
in the equilibrium numerical simulations and, through FSS analysis, we assess that the scal-
ing of the specific heat near the glass transition temperature is compatible with a mean-field
theory, which is the main outcome of the present work. Eventually, in Section 5 we present
the behaviour of the overlap probability distribution upon lowering the temperature across
the random lasing transition, that turns out to be a glass transition. The trick used to reduce
finite-size effects turns out to be useful in identifying more clearly signatures of glassiness.

2 The Mode-Locked 4-phasor model

The ML 4-phasor model has its roots in the quantum theory of the electromagnetic field and
matter interaction in an open system. A full account of the derivation of the classical stochastic
dynamics from the quantum many-body dynamics of light coupled with matter can be found
in [34].

The main point is that by considering laser media where the characteristic time of atomic
pump and loss are much shorter than the lifetimes of the resonator modes, the atomic variables,
i.e., matter fields, can be removed obtaining non-linear equations for the electromagnetic field
alone.
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The stochastic differential equation for the time evolution of the modes ak reads as

dak1

d t
=
∑

k|FMC(k)

g(2)k1k2
ak2
+
∑

k|FMC(k)

g(4)k1k2k3k4
ak2

ak3
ak4
+ηk1

(t) , (2)

where the expression of the sum over the indices k satisfying a FMC, like (1), will be soon
clarified in Eq. (4). The dynamic variables are ak(t) = Ak(t)eiφk(t), the complex amplitudes
of the light modes comprised by the discrete spectrum of the electromagnetic field

E(r , t) =
N
∑

k=1

ak(t)e
iωk t Ek(r ) + c.c. , (3)

where Ek(r ) is the space-dependent wavefunction of the mode with frequency ωk. The noise
is taken as a white noise 〈ηk(t)〉 = 0, 〈η j(t)ηk(t ′)〉 = 2Tδ jkδ(t − t ′), as we will later dis-
cuss. The amplitudes ak(t) are the remnant of the original creation and annihilation oper-
ators of the electromagnetic field quantization, which have been degraded to complex num-
bers in the semiclassical approximation. By slow amplitude mode it is meant that the time
scale of the amplitude dynamics is larger than the time scale defined by the frequency of the
mode, i.e., ω−1

k . Therefore, in the slow amplitude approximation the phases eiωk t can be
averaged out, which, in Fourier space, taking the Fourier transform of Eq. (3), implies that
ak(t)≃ ak(t,ω)δ(ω−ωk). Lasing modes are slow amplitude modes by definition, since they
are characterized by a very narrow linewidth γ around their frequency ωk. The time average
of the fast oscillations eiωk t leads to the sum termed FMC in the equation (2). The general
expression for 2n-body interactions reads as

FMC(k) : |ωk1
−ωk2

+ · · ·+ωk2n−1
−ωk2n

|≲ γ , (4)

of which Eq. (1) is the case n= 2. The FMC acts as a selection rule on the modes participating
in the interactions.

The linear terms in Eq. (2) yield different contributions possibly depending on cavity gain
and losses and atom-field interaction inside the disordered medium. The latter expression is
the most relevant one in the dynamics:

g(2)k1k2
∝
p

ωk1
ωk2

{x ,y,z}
∑

αβ

∫

V
dr εαβ(r ) Eαk1

(r ) Eβk2
(r ) , (5)

where ε(r ) is the dielectric permittivity tensor and the integral is extended over the entire
volume V of the medium. In particular, the diagonal elements of g(2)k1k2

represent the net gain
curve of the medium (i.e., the gain reduced by the losses), which plays an important role
mainly below the lasing threshold.

The non-linear couplings g(4)k1k2k3k4
are given by the spatial overlap of the electromagnetic

mode wavefunctions modulated by a non-linear optical susceptibility χ(3)

g(4)k1k2k3k4
∝

4
∏

j=1

Æ

ωk j

{x ,y,z}
∑

αβγδ

∫

V
dr χ(3)

αβγδ
({ωk}; r ) Eαk1

(r ) Eβk2
(r ) Eγk3

(r ) Eδk4
(r ) , (6)

where, again, the integral is over the whole volume of the medium. In general, both the linear
and the non-linear couplings are complex numbers and can be written as [49]

g(2)k1k2
= Gk1k2

+ iDk1k2
, (7)

g(4)k1k2k3k4
= Γk1k2k3k4

+ i∆k1k2k3k4
. (8)
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In the standard laser case the linear couplings are diagonal and the non-linear ones can be
safely considered as constant: in this case, Dk is the group velocity dispersion coefficient and
∆ is the self-phase modulation coefficient, responsible for the Kerr effect [40]. In the purely
dissipative limit [34,37], i.e. Dk1k2

≪ Gk1k2
and ∆k1k2k3k4

≪ Γk1k2k3k4
, which in standard laser

theory corresponds to neglect the group velocity dispersion and the Kerr effect, the dynamics
of Eq. (2) becomes a potential differential equation

dak1

d t
= −

∂H[a]
∂ ak1

(t)
+ηk1

(t) ,

with a Hamiltonian function given by

H = −
∑

k|FMC(k)

Gk1k2
ak1

ak2
−
∑

k|FMC(k)

Γk1k2k3k4
ak1

ak2
ak3

ak4
+ c.c. (9)

In principle, the noise is correlated, i.e. 〈ηk1
ηk2
〉 ̸= δk1k2

. However, it can be diagonalized
by changing basis of dynamic variables: the decomposition of resonator modes into a slow
amplitude basis is not unique [57] and one can use this freedom to build a basis in which the
noise has no correlations. The diagonalization of the noise can be done at the cost of having
non-diagonal linear interactions, which is not a real complication in the random laser case,
since linear couplings already have off-diagonal contributions accounting for the openness of
the cavity.

The laser dynamics is brought to stationarity by gain saturation, a phenomenon connected
to the fact that, as the power is kept constant, the emitting atoms periodically decade in lower
states saturating the gain of the laser. In the same way the dynamics induced by the Hamil-
tonian Eq. (9) eventually reaches a stationary regime, when a constraint on the total energy
contained in the system is added. This argument was first proposed for standard multimode
lasers in Refs [37, 56]. In fact, lasers are strongly out of equilibrium: energy is constantly
pumped into the system in order to keep population inversion and stimulated emission, and in
the case of cavityless systems also compensate the leakages. However, a stationary regime can
be described as if the system is at equilibrium with an effective thermal bath, whose effective
temperature (a “photonic” temperature) accounts both for the amount of energy E = εN stored
into the system because of the external pumping and for the spontaneous emission rate. The
latter is proportional to the kinetic energy of the atoms, e. g., to the heat bath temperature T .
Eventually, the external parameter driving the lasing transition turns out to be [33,34,49]

Tphotonic =
T
ε2

. (10)

One can also introduce the pumping rate P [41] as the inverse of the square root of this ratio:

P2 =
ε2

T
=

1
T photonic

.

In order to mathematically model the gain saturation, an overall spherical constraint can
be imposed on the amplitudes fixing the total optical intensity in the system

N
∑

k=1

|ak|2 = εN . (11)

The precise value of the couplings in the Hamiltonian Eq. (9) requires the knowledge of
the spatial wavefunctions of the modes, see Eqs. (5) and (6), which is not available in random
lasers, since they are characterized by a complicated spatial structure of the modes. If, as it
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apparently occurs in glassy random lasers, modes are spatially extended to wide regions of
the optically active compound, each mode is nonlinearly interacting with very many others.
We will implement such an “extended modes approximation” [58] in our model, where the
only relevant factor in the mode-coupling is the FMC, rather than spatial confinement of light
modes. In this case, because of thermodynamic convergence, each coupling coefficient will be
smaller and smaller as the number of modes increases.

In principle, all couplings involving the same mode will be correlated. However, because
of the spatially etherogeneous optical nonlinear susceptibility in (6) and the fact that each
coupling coefficient vanishes as N increases, the role of correlation will be qualitatively negli-
gible as far as the system displays enough modes. For this reason, the couplings will be taken
as independent Gaussian random variables in the present work:

P(Jk1···kp
) =

1
q

2πσ2
p

exp

(

−
J2

k1···kp

2σ2
p

)

, (12)

with p = 2,4 and σ2
p ∼ N2−p to ensure the extensivity of the Hamiltonian and where some

rescaling of the modes and coefficients (g → J) has been performed [34,41]. Eventually, the
stationary properties of the system can be described by a model whose Hamiltonian is

H[a] =H2[a] +H4[a] , (13)

where

H2[a] = −
∑

k|FMC(k)

Jk1k2
ak1

ak2
+ c.c. ,

H4[a] = −
∑

k|FMC(k)

Jk1k2k3k4
ak1

ak2
ak3

ak4
+ c.c. (14)

As mentioned in section II when introducing the dissipative limit we will consider the J ’s as real
parameters, without loss of generality. The effective distribution for the phasor configuration
a = {a1, . . . , aN} will, eventually, be

P[a] ∝ e−βH[a]δ

�

εN −
N
∑

k=1

|ak|2
�

, (15)

where β is the inverse temperature.

3 Frequency Matching Condition without edge-band modes

The FMC Eq. (4) is the most peculiar aspect of the ML 4-phasor model, since it defines the
topology of the interaction network. The full inclusion of the FMC in the study of the model
has not been achieved analytically yet, given the difficulty of the problem. The analytical so-
lution of the ML (2+4)-phasor model has been derived only in the narrow bandwidth approx-
imation, in which the interaction network is a fully connected graph. In this approximation,
the typical bandwidth γ of the modes is of the order of the spectrum bandwidth ∆ω and the
FMC is satisfied by all the modes. To include the FMC means to go beyond the fully connected
case, which requires the development of new techniques with respect to standard mean-field
methods. However, numerical simulations can yield important insights on the nature of the
model.

Besides being relevant from a purely theoretical point of view, dealing with the FMC is also
important in order to provide a realistic description of random lasers. The FMC is, indeed,
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responsible for mode-locking [40] at the lasing transition. Mode-locking is the regime under
which a standard multimode laser generates ultrashort pulses, due to the formation of phase
waves of nontrivial slope [54]. In random lasers the mode couplings are non-perturbatively
disordered disrupting the onset of a laser pulse. However, the underlying phenomenon of
phase locking might still be present, though as a self-starting phenomenon [41] rather than
induced by ad hoc devices as in standard mode-locking lasers [40].

Frequencies are, in principle, not equispaced in random lasers and their convolution would
prevent the onset of pulses in time even in presence of unfrustrated couplings. Since, however,
because of quenched disorder in the couplings no pulse is there notwithstanding the distribu-
tion of the mode frequencies, we consider here for simplicity a frequency-comb distribution:

ωk =ω1 + (k− 1)δω , k = 1, ..., N , (16)

with γ≪ δω and the central frequency given by ω0 ≃ω1 + Nδω/2.
We note that in this case the linear term of the complete Hamiltonian Eq. (13) is diagonal.

If we assume that the diagonal part of the pairwise couplings does not depend on the modes,
together with the spherical constraint Eq. (11), this term is an irrelevant additive constant.
The diagonal part of the linear contribution to the Hamiltonian physically represents the gain
profile of the optical random medium (possibly becoming a random laser at high pumping). As
a working hypothesis we are assuming a uniform gain profile over the whole spectrum. For the
numerical simulations of this work, then, we have sampled configurations of the light modes
according to the equilibrium probability distribution in Eq. (15) with H = H4 the four-body
term defined in Eq. (14). Due to FMC the only non zero contribution to H4[a] comes from
the frequencies which fulfill the constraint (1). More notably, with Eq. (16) the condition (1)
on the frequencies can be mapped into a condition on the indices of the interaction graph

|k1 − k2 + k3 − k4|= 0 . (17)

The FMC in Eq. (17) tends to cut order O(N) interacting quadruplets with respect to the
complete graph [50]. Therefore, the total amount of couplings in the network is O(N3) and
each phasor spin in the system will be interacting in O(N2) quadruplets. Though diluted with
respect to the complete graph, the network is still dense.

The FMC also introduces non-linear correlations in the interactions affecting the topology
of the interaction network. Modes with more similar frequencies are connected by a higher
number of quadruplets and, consequently, they are effectively more coupled. As a conse-
quence, modes whose frequencies are at the center of the spectrum (ω≃ω0) tend to interact
more than modes whose frequencies are at the boundaries (ω≃ω1 or ω≃ω1+Nδω). This
can be clearly seen in the emission spectrum Ik resulting from the numerical simulations for
a given fixed instance of the disorder, which is shown in Fig. 1. Data are obtained using the
Monte Carlo Exchange algorithm, also known as Parallel Tempering, allowing to reach equi-
librium on relatively short simulation times. All observables analyzed here are drawn from
configurations at equilibrium. All details about the numerical simulation algorithm and the
computation of the equilibrium thermal averages are discussed in App. A.

Let us briefly comment on the relationship between the physical intensities Ik and the
complex amplitude variables of the simulated model (14). In real experiments the heat bath
temperature T is typically kept fixed (there are exceptions like, e.g., in Ref. [59]) and the
overall system energy E = εN is varied by tuning the pumping power. In our simulations, ε is
fixed and kept equal to one in the spherical constraint,

∑

k |ak|2 =
∑

k A2
k = N , whereas T is

varied. Therefore, according to Eq. (10) a change in the pumping rate P because of a shift
in the energy ε pumped into the system corresponds to a shift of 1/

p
T . If we rescale the
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Figure 1: Intensity spectrum Ik, Eq. (18), for a single realization of quenched disorder
of the ML 4-phasor model with free boundary conditions on the frequencies and
N = 120 modes. Temperature T ∈ [0.7, 1.45] (color map on the vertical bar). Notice
the narrowing of the central part of the spectrum, because of FMC and the onset of
isolated spikes as T decreases, signaling breaking of intensity equipartition. The
pattern of the peaks is disordered and strongly depends on the random sample and
on the single dynamic history.

intensity of the mode k as

Ik =
A2

kp
T

, (18)

we have
∑

k Ik = N/
p

T = Nε, as in Eq. (11).
One of the most relevant features of the intensity spectrum shown in Fig. 1 is that it be-

comes more and more structured and heterogeneous upon decreasing the temperature. A first
analysis of this phenomenon in terms of intensity equipartition breaking among the different
modes has been performed in [39], and a deepening of the collective inhomogeneous behavior
of the modes is presented in [60]. Another interesting feature of the spectrum is the central
band narrowing, akin to the spectra of true experimental realizations of random lasers [2,3].
This is a consequence of the fact that band-edge modes are less interacting and, as far as
numerical simulations are concerned, is one of the reasons why this sort of simulations are
plagued by strong finite-size effects.

In order to reduce these finite-size effects we have imposed periodic boundary conditions
on the frequencies when filtering couplings with the FMC condition. This has the effect of
eliminating band-edge modes, or, equivalently, it is like considering only modes at the center
of the spectrum in a much larger system. The periodic boundary conditions of the frequencies
are obtained in practice by representing the frequency indices as variables on a ring, see Fig.
2, and taking their distance as the smallest one between any two of them:

|ka − kb|=







|ka − kb| if |ka − kb| ≤
�N

2

�

N − |ka − kb| if |ka − kb| ≥
�N

2

�

,

(19)
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Figure 2: Periodic boundary conditions on the mode frequency indexes for the fre-
quency matching condition.

where [n] is the integer part of n. From now on we refer to the version of the ML 4-phasor
model with periodic boundary condition on the frequencies as PBC, whereas the original one,
with free boundary conditions will be termed FBC.

In Fig. 3 we show the emission spectrum at equilibrium for a single instance of disorder for
the ML 4-phasor model with PBC for the frequencies. The most relevant difference with respect
to the case of FBC is the complete absence of narrowing in the spectrum, which corresponds
to the absence of band-edge modes: all modes interact with identical probability with the rest
of the system.

In Figs. 4 and 5 we also show the FBC and PBC spectra averaged over roughly a hundred
instances of disorder. In Fig. 4 one can observe the typical narrowing occurring in random
lasers [2, 3, 5, 28] as the pumping energy increases. Fig. 5 displays flat spectra in the low
pumping regime, and homogeneously distributed random resonances in the high pumping
regime. They look like the central part of the spectra of Fig. 4.

4 Universality Class

In a φ4 mean-field theory (a Landau theory) the critical exponents characterizing the univer-
sality class are β = 1/2 for the order parameter 〈φ〉, γ= 1 for the susceptibility χ and ν= 1/2
for the correlation length. They satisfy the hyperscaling relation 2β + γ = νd, holding for all
dimensions d ≤ duc, the upper critical dimension, that is duc = 4 in aφ4 model. As an instance,
this is the universality class of the Random Energy Model (REM), a reference simplified model
for the glass transition. This is also the universality class of the mean-field 4-phasor model
representing a random laser in the so-called narrow-band approximation, both in a fully con-
nected interaction network, where the solution can be analytically computed [33] and in a
uniformly randomly diluted version of the model, analyzed by means of equilibrium Monte
Carlo simulations in Ref. [39].
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Figure 3: Intensity spectrum Ik Eq. (18) for a single realization of quenched disorder
of the ML 4-phasor model with periodic boundary conditions on the frequencies and
N = 104. The spectrum is normalized and the modes k are divided by N . Temper-
ature T ∈ [0.35,1.1] (color map on the right hand vertical bar). Notice the loss of
the spectrum curvature, due to periodic boundary conditions on the FMC and the
persistence of the isolated peaks.

Moving to the more realistic random laser models, where the basic ingredient for mode-
locking, the frequency matching condition (1) is implemented, it is more difficult to understand
whether the universality class remains the same. In Ref. [39] an estimate of the value of the
critical exponent νeff ≡ 2β + γ ≃ 2/3 was provided for the mode-locked random laser model.
This result is quite different from the value 2β + γ = 2 which characterizes the REM model,
even if we consider its numerical finite-size scaling analysis.

As an instance, the REM specific heat behaviour for small sizes N = 16,20, 24,28 is re-
ported in Fig. 6. Details about the numerical technique used are given in App. B. Even though
the simulated N are not very large, from the interpolation of the cV (T ) peaks it turns out
that νeff = 2β + γ = 1.9 ± 0.2. Strong finite size effects are there, as one can observe from
the estimate of the α exponent, displaying a value α = 0.52± 0.07, rather different from the
mean-field exponent α = 0. Because of preasymptotic effects, indeed, the scaling relation
2β + γ+α= 2 (independent from the system dimension) appears to be violated.

4.1 Mean-field exponent

The exponent value νeff = 2β + γ= 2 can be derived through a simple argument, which does
not require any specific knowledge of the model and can be easily generalized. Let us consider
a mean-field theory described by the Ginzburg-Landau potential

V (φ) =
1
2
τφ2 +

g
4!
φ4 , (20)

where φ represents the global order parameter of the transition and τ is the reduced tempera-
ture τ= T/Tc−1. This is the standard paradigm of a second order phase transition, as a glass
transition is known to be, as far as the thermodynamic potential and its derivatives (including
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Figure 4: Intensity spectrum Ik Eq. (18) of the ML 4-phasor model with free bound-
ary conditions on the frequencies and N = 120 averaged over Ns = 75 instances of
quenched disorder. Temperature T ∈ [0.7,1.5] (color map on the vertical bar). Av-
eraging over disorder smoothens the spectra.

the specific heat) are concerned.2 The critical behaviour of a susceptibility in a second order
transition is related to the fluctuations of the order parameter,

δφ2 = 〈φ2〉 − 〈φ〉2∝ χ ∼
1

N |τ|γ
, (21)

where the average is assumed to be taken with respect to the probability distribution

P(φ)∝ e−NV (φ) (22)

and N represents the size of the system. When τ ≳ 0 the effective potential is well ap-
proximated by V (φ) ≃ 1

2τφ
2, at least for values of the field close enough to the minimum

φ = 0. The partition function that normalizes the probability distribution can be then com-
puted through a simple Gaussian integration

Z ≃
∫

dφ e−
Nτ
2 φ

2
∼

1
p

Nτ
, τ≳ 0 . (23)

Hence, in this regime the fluctuations of the order parameter centered around the minimum
φ = 0 are given by the variance of the Gaussian distribution.

On the other hand, when τ ≲ 0 the quartic term of the potential becomes relevant and
cannot be neglected. In this regime, the fluctuations of the order parameter are centered
around one of the two symmetric minima of the potential (20), namely φ± = ±φ∗, depending
on the initial conditions. Since we are interested in matching the fluctuations above and below
the critical temperature, we assume the temperature to be sufficiently close to Tc in order for
the amplitude of the fluctuations to be of the order of the distance from the origin

δφ2 ≃ (φ∗)2 . (24)

2As it is well known, and will be discussed in Section 5, the glass transition is, actually, discontinuous in the
order parameter and it is, therefore, commonly termed random first order transition [66].
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Figure 5: Intensity spectrum Ik Eq. (18) averaged over Ns = 80 samples of the model
with periodic boundary conditions on the frequencies and N = 104 modes. Temper-
ature T ∈ [0.35,1.1] (color map on the vertical bar).

The minima φ± can be easily determined according to the saddle-point approximation of the
partition function

Z =

∫

dφ e−NV (φ) ≃ e−NV (φ∗) , (25)

where φ∗, solution to the saddle point equation,

dV (φ)
dφ

�

�

�

�

φ∗
= 0 ,

turns out to be

φ∗ =

√

√6|τ|
g

. (26)

We have therefore an estimate of the fluctuations on the two sides of the critical point, respec-
tively

δφ2
T>Tc
∼

1
Nτ

, (27)

δφ2
T<Tc
∼ |τ|/g . (28)

The dependence on N of the scaling regime can be obtained by matching the order of magni-
tude of the fluctuations above and below the critical temperature:

δφ2
T>Tc
∼ δφ2

T<Tc
=⇒ |τ| ∼

1
N1/2

. (29)

Let us recognize that Eq. (27) is the susceptibility, cf. Eq. (21), whereas Eq. (28) is the scaling
of the square of the order paramater 〈φ〉= φ∗, which is scaling as φ∗ ∼ |τ|β . Therefore,

|τ| ∼
1

N1/(2β+γ)
.
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Figure 6: Specific heat of the Random Energy Model. Different colors represent dif-
ferent simulated sizes at finite sizes N = 16,20, 24,28. (Inset) Specific heat rescaled
by Nα/νeff , νeff ≡ 2β + γ, as a function of τN1/νeff . The best data collapse has been
obtained with α= 0.52(7) and 2β + γ= 1.9(2).

In the mean-field φ4 theory 2β + γ = 2. Since the upper critical dimension is duc = 4 this
corresponds to νduc ≡ νeff = 2, i.e., ν = 1/2 for the mean-field critical correlation length
exponent.

The previous argument can be straightforwardly extended to a more general mean-field
potential, in order to obtain a range of values for the critical exponents compatible with mean-
filed theories. Let us consider the potential

V (φ) =
1
2
τφ2 +

g
n!
φn , (30)

The fluctuations of the order parameter above the critical temperature are the same as in the
case n= 4. By imposing Eq. (24) and solving the saddle-point equation for φ∗, one finds that
in the generic case

φ∗ =
�

(n− 1)! |τ|
g

�
1

n−2

∼ |τ|β , (31)

yielding

β =
1

n− 2
.

Therefore, the matching of the amplitude of the fluctuations above, cf. Eq. (27), and below
Tc , i.e.,

δφ2
T<Tc
∼ (|τ|/g)

2
(n−2) , (32)

leads to

δφ2
T>Tc
∼ δφ2

T<Tc
=⇒ |τ| ∼

1

N
n−2

n

=
1

N
1

2β+γ

. (33)

This result implies that, in order to be compatible with mean-field theory, the values of
νeff = 2β + γ = n/(n − 2) must fall in an interval defined by taking n = 4 and n → ∞ in
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the previous expression. Eventually, the critical exponent for the scaling of the specific heat
width in a generic mean-field theory must take value in the interval

1≤ νeff ≤ 2 . (34)

Given the specific theory φn and its upper critical dimension duc(n), the critical mean-field
exponent ν is equal to ν= νeff/duc(n).

In the model under consideration, though, we have a dense (though not fully connected)
interaction network and we do not have a reference d-dimensional lattice underneath, such
that a scaling relation of the number of modes to a characteristic length can be set, as, for
instance N = Ld in a d-dimensional hypercubic lattice. Our analysis will, therefore, be limited
to the estimate of the exponents α, β and γ.

It is also worth noting that the previous argument is exact only in the large-N limit, where
the saddle-point approximation holds. It is therefore likely that numerical simulations at fi-
nite N display finite-size effects which deviate from the above estimate. In particular for dense
models as the one we are studying it is difficult to access higher values of N because the num-
ber of interacting quadruplets increases as N3 and the computational cost of the simulations
is the one of a Non-deterministic Polynomial Complete problem. For help decreasing the finite
size effects we have exploited the alternative strategy discussed in Sec. 3, whose results are
presented in the following subsection.

4.2 Finite-size scaling analysis: numerical results

We perform a finite-size scaling study of the specific heat obtained from our numerical simu-
lations, in order to determine the value of the critical exponents α and νeff. Let us define the
absolute value of the reduced temperature t = |T/Tc −1|. In general, the basic assumption of
the FSS Ansatz [61,62] is that the finite-size behaviour of an observable YN in a d-dimensional
system of size (volume) N is governed by the ratio between the correlation length ξ∞ of the
infinite system and the size N . In the thermodynamic limit near the critical point the observ-
able Y scales like

Y∞(T )≈ At−ψ .

The correlation length ξ∞ scales like

ξ∞(T )≈ ξ0 t−ν . (35)

The scaling hypothesis can, then, be written as

YN (T ) = N
ω
d fY

�

ξd
∞

N

�

, (36)

where ω is the critical exponent for the scaling of the peak of the observable and fY is a
dimensionless function that depends on the observable Y . The function fY is such that in
the limit N → ∞ one recovers the scaling law Y∞(T ) ≈ At−ψ, an hence, by using (35),
ω=ψ/ν [61]. Therefore combining Eqs. (35) and (36) the scaling relation becomes

YN (T ) = N
ψ
νd f̂Y

�

N
1
νd tN

�

= N
ψ
νeff f̂Y

�

N
1
νeff tN

�

, (37)

where tN = |T/Tc(N)−1|, Tc(N) is the finite-size critical temperature and f̂Y is another scaling
function. In the case of the specific heat, the previous finite-size scaling law takes the following
form

cVN
(T ) = N

α
νeff f̂CVN

�

N
1
νeff tN

�

, (38)
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where α denotes the critical exponent of the specific heat peak divergence. Since the dimen-
sionless function f̂ is scaling invariant, if one uses the correct values of the exponents α and
νeff, the curves cVN

(T )/Nα/νeff for different values of N should collapse on the same curve.
In order to get the two exponents α and νeff from our numerical data we follow the scaling

method of Refs. [63, 64], whose details are reported in App. C. For each size N the specific
heat is measured by calculating the equilibrium energy fluctuations at each temperature T and
then averaging over disorder instances

cVN
=

1
N
〈E2〉 − 〈E〉2

T2
, (39)

where 〈. . . 〉 represents the thermal average and [. . . ] represents the average over disorder,
see App. C.

For the systems with FBC, the specific heat behaviour as a function of temperature is shown
in the main panel of Fig. 7 for different sizes. By a quadratic fit of the peaks of the specific heat
(at Tc(N)), the critical temperature is estimated to be Tc = 0.86(3) in the thermodynamic limit,
as interpolated in Appendix C. In the inset of Fig. 7 data are collapsed using the exponents α
and νeff obtained from the FFS analysis reported in App. C:

FBC: α= 0.48± 0.05 , 1/νeff = 1.1± 0.1 . (40)

In order to perform the FSS analysis we have used the temperatures reported in Table 1.
With respect to the estimate 1/νeff ≃ 1.5 found in [39], a much larger statistics allows now

to find an estimate of 2β +γ closer to the mean-field threshold and suggesting that deviations
from mean-field theory might be due to pre-asymptotic effects in N . The confirmation that
this is, indeed, the origin of the anomalous value previously found for 2β + γ comes from the
analysis with frequency PBC, devised to partially circumvent finite size corrections.

The specific heat for systems whose frequencies obeys PBC are displayed in Fig. 8. In the
main panel we show the raw data. Analyzing the scaling of the peak the critical temperature
Tc = 0.61(3) has been determined. In the inset of Fig. 8 we show the collapsed data with the
values of exponents derived with the FSS method reported in App. C

PBC: α= 0.27± 0.05 , 1/νeff = 0.86± 0.14 . (41)

With PBC we find an estimate inside the interval (34) for a mean-field universality class. There-
fore, up to the limits of our analysis, despite being possibly still of a different universality class
with respect to the REM, for which 2β + γ= 2, we observe that the glass transition of the ML
4-phasor model is compatible with a mean-field transition.

Table 1: Values of the critical temperatures for the ML 4-phasor model with fixed and
periodic boundary conditions.

FBC PBC
N4 N Tc ∆Tc N Tc ∆Tc

28 18 0.55 0.04 - - -
29 - - - 18 0.42 0.02
211 32 0.63 0.025 28 0.49 0.02
213 48 0.69 0.02 42 0.52 0.02
214 62 0.75 0.03 54 0.55 0.03
215 - - - 66 0.56 0.04
216 96 0.8 0.07 82 0.56 0.05
217 120 0.83 0.09 - - -
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Figure 7: Specific heat cVN
, (39), for the ML 4-phasor model with free boundary

conditions on the frequencies as a function of T . Different curves represent different
simulated sizes of the system. The simulated sizes are N = 18,32, 48,62, 96,120.
(Inset) Specific heat scaled by Nα/νeff as a function of τN1/νeff , with α = 0.48(5),
νeff = 2β + γ= 0.91(8).

5 The glass transition

The mean-field paradigm used to describe the thermodynamics of the glass transition
is the random first order transition (RFOT), which is a mixed-order ergodicity breaking
transition [65–68]. The ML 4-phasor model displays the features of a RFOT. The second order
nature of the transition is exhibited by the specific heat anomaly studied in the previous sec-
tion. In this section we aim to complete the study of the glass transition of the ML 4-phasor
model, by focusing on its first order nature, which is represented by the discontinuity of the
order parameter.

The order parameter for the glass transition is the overlap probability distribution P(q) [42].
In models with continuous variables, the P(q) is expected to be a distribution with a single
peak in q = 0 in the high temperature phase and to develop side peaks, as well, in the low
temperature glass phase. At finite N , of course, exact Dirac delta peaks in the P(q) appear as
a smoothen function of q due to strong finite-size effects.

Overlaps are defined as scalar products among phasor configurations of independent repli-
cas of the system with the same quenched disorder. In the present case the relevant overlap
for the transition turns out to be [34,49,69]

qαβ =
1
N

Re
N
∑

i=1

aαk aβk =
1
N

N
∑

i=1

AαkAβk cos(φαk −φ
β

k ) , (42)

where α and β are replica indexes. Since replica overlaps measure the similarity between
glassy states of the system, their distribution gives information about the structure of the phase
space.

The protocol used in numerical simulations to measure the overlaps corresponds to the def-
inition of replicas as independent copies of the system with the same quenched disorder. For
each sample, i.e., each realization of disorder, we run dynamics independently for Nrep replicas
of the system, starting from randomly chosen initial phasor configurations. In this way, repli-
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Figure 8: Specific heat cVN
, (39), for the ML 4-phasor model with periodic boundary

conditions on the frequencies as a function of T . Different curves represent different
simulated sizes of the system. The simulated sizes are N = 18,28, 42,54, 66,104.
(Inset) Specific heat scaled by Nα/νeff as a function of τN1/νeff , with α = 0.27(5),
νeff = 2β + γ= 1.2(2).

cas explore different regions of the same phase space and may thermalize in configurations
belonging to apart states. To study the behavior of the PJ (q)we choose Nrep = 4, so that at any
measurement time six values of the overlap are available qαβ = {q01, q02, q03, q12, q13, q23}. In
order to accumulate statistics, we measure the value of qαβ using N equilibrium, time uncor-
related, configurations of replicas at the same iteration of the simulated dynamics. Hence, for
each disordered sample the PJ (q) histograms are built with N ×Nrep(Nrep−1)/2 values of the
overlap. The number of configurations N actually used from our data can be evinced from
tables 2-3 in appendix A, in which the last half of the simulated Monte Carlo steps are surely
thermalized and the correlation time was estimated to be 28 Monte Carlo steps. Eventually,
for each realization of the quenched random couplings we have N = 210−212, depending on
the size.

The overlap distribution functions PJ (q) are computed as the normalized histograms of
the overlaps for each one of the samples. This has been done for each simulated size of the
ML 4-phasor model with both FBC and PBC. In Fig. 9 we present the overlap distributions for
five samples at the temperature T = 0.25 ≃ 0.45Tc of the size N = 54 of the ML 4-phasor
model with PBC, together with the overlap distribution averaged over 100 samples. Given the
fluctuations of PJ (q) among the different samples, it is clear that the only physical quantity to
be considered in order to assess the glass transition is the averaged P(q)≡ PJ (q).

This is particularly important in the case of the overlap distribution function, since, con-
trarily to the other thermodynamic observables, it is not a self-averaging quantity [42], i.e.,
the average P(q) cannot be reached simply by increasing the size of the system over which a
single sample PJ (q) is built, but only by averaging over disorder. In Fig. 10 and Fig. 11 the
average overlap distribution function of the ML 4-phasor model with FBC and PBC are, re-
spectively, reported for the whole simulated temperature range in a system with N = 62 spins.
The reduction of the finite-size effects obtained by using periodic boundary conditions in the
choice of interacting modes leads to display P(q) with more distinct secondary peaks in the
case of the ML 4-phasor model with PBC.
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Figure 9: Overlap distributions for five instances of disorder and for the average
over all instances at T = 0.25 ≃ 0.45 Tc . Simulation size N = 54 of the ML 4-
phasor model with periodic boundary conditions on the frequencies. Notice how a
distribution belonging to a sample significantly differs from the others: the relevant
quantity for thermodynamics is the overlap distribution averaged over all samples.

6 Discussion and conclusions

In the present work we have simulated the equilibrium dynamics of a leading model for a glassy
random laser, that is, a random laser displaying Replica Symmetry Breaking: the mode-locked
(ML) 4-phasor model.

Carefully studying the critical behavior of the specific heat, performing a finite size scaling
analysis we have estimated the critical exponents. The critical exponents turn out to yield
2β +γ= νeff = 0.91(8), slightly below the threshold of 1 for mean-field theories, cf. Eq. (34).
The system interactions per mode of the ML 4-phasor model scale like O(N2) and, hence, one
would expect a mean-field-like behavior. The outcome is to be compared to the universal-
ity class of the REM [65] and of the random homogeneously diluted 4-phasor model [39],
displaying 2β + γ≃ 2.

The models we are dealing with suffer of very strong finite size effects. Indeed, the system,
as any spin-glass-like system, is known to be Non-deterministic Polynomial Complete (NPC)
[70], i.e., operatively, to look for equilibrium states, it occurs a simulation time that scales with
the number of modes N approximately as eAN . Such equilibration time has been sensitively
reduced using the Exchange Monte Carlo algorithm and parallelizing the computation of the
energy difference of each single proposed spin update on parallel kernels on GPUs, yet the
system stays NPC.

The computation of the energy difference between configurations of complex continuous
spins is an essential feature. This particular random laser model displays a connectivity per
node growing like N2. Each time a Monte Carlo update is proposed the ∆E to be computed
includes O(N2) terms, and likewise increases the time of a single spin update. To cope with
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Figure 10: Parisi overlap distribution for the size N = 62 of the ML 4-phasor model
with free boundary conditions on the frequencies. The distribution is averaged over
Ns = 100 instances of disorder. Temperature T ∈ [0.3, 0.9] (color map on the vertical
bar). The blue curve corresponding to the lowest temperature is at T ≃ 0.4Tc , with
Tc = 0.86(3).

this bottleneck in our code each energy contribution is computed apart in parallel on GPU,
decreasing the single update to O(ln N). Though much shortened the single mode update
time still increases with the size.

Furthermore, our spins are continuous (complex) variables and we have no cunning short-
cuts as, for instance, the multi-spin coding that one can exploit for Ising spins, accelerating
the computation with bitwise operations and allowing to simulated systems of larger sizes in
reasonable computing times.

As a last source of finite size effects, each mode, besides a dynamic phasor value, also has
a (quenched) frequency and these influence the connectivity of the mode according to the
frequency matching condition (17). Because of this condition modes near the boundaries of
the mode spectrum (k ≳ 1, k ≲ N) interact much less than modes whose frequency lays in the
middle of the spectrum (k ∼ N/2). Though their dynamic evolution and their contribution to
the dynamic update is computed in the lasing regime they are less and less important as the
external pumping increases. To circumvent this problem in this work we have introduced a
slightly different model network, imposing periodic boundary conditions on the frequencies,
cf. Eq. (19). This corresponds to work with modes in the central part of the spectrum, as
if pertaining to a larger system. Indeed, periodic boundaries turn out to improve the finite
size scaling, as if we were working at an effective larger size because of smaller amount of
coupling dilution. In this case, the same analysis performed with periodic boundary condi-
tions on the frequencies, with similar sizes and statistics of disordered samples leads to an
estimate of νeff = 2β + γ = 1.2(2), that is compatible with a mean-field theory according to
the condition (34).

Finally, we have analyzed the low temperature (high pumping) phase of the model with
mode networks built on both free and periodic conditions on the frequencies. We find clear ev-
idence for the occurrence of a Replica Symmetry Breaking phase at low temperature. Studying
the deviation of the overlap distributions from a Gaussian distribution by standard methods
(e.g., the Binder cumulant), as performed in Ref. [39], the onset of such a spin-glass phase
can be shown to occur at a temperature consistent with the laser threshold identified by FSS
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Figure 11: Parisi overlap distribution for the size N = 54 of the ML 4-phasor model
with with periodic boundary conditions on the frequencies. The distribution is aver-
aged over Ns = 100 instances of disorder. Temperature T ∈ [0.3, 0.85] (color map on
the right hand vertical bar). The blue curve corresponding to the lowest temperature
is at T ≃ 0.45Tc , with Tc = 0.61(3). Notice that here the overlap distribution has
more pronounced secondary peaks with respect to the overlap distribution in Fig. 10.

analysis of the specific heat peaks. Introducing PBC also helps in this case as, at the same
simulated sizes, the glassy nature of the low T phase is more evident in the model with PBC
network, rather than in the one with FBC. This is graphically exemplified in the P(q) shown
in Figs. 10, 11.
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A Numerical Algorithm

The numerical simulations have been performed by means of an Exchange Monte Carlo al-
gorithm [71] parallelized on GPUs to sample the probability distribution Eq. (15). The Ex-
change Monte Carlo, else called Parallel Tempering (PT) is a very powerful tool for simulating
“hardly-relaxing” systems, characterized by a rugged free energy. It is based on the idea that
the thermalization is facilitated by a reversible Markovian dynamics of configurations among
heat baths at nearby temperatures. In particular, configurations belonging to copies of the
system at higher temperature help the copies at lower temperature to jump out of minima of
the rugged free energy landscape. For each size N of the simulated systems, we have run PT
simulations with NPT thermal baths at temperature Ti ∈ [Tmin, Tmax]. The values are reported
in Tables 2, 3.
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Table 2: Details for the simulations of the ML 4-phasor with FBC. Notice that for the
size N = 62 we performed a second series of simulation with lower Tmin and Tmax,
in order to better explore the low temperature phase.

N N4 Tmin Tmax NPT NMCS Nrep Ns

18 28 0.35 1.6 50 219 4 400
32 211 0.45 1.6 46 219 4 350
48 213 0.5 1.6 44 220 4 300
62 214 0.55 1.6 42 220 4 250
62 214 0.3 1.6 52 220 4 100
96 216 0.65 1.6 38 220 2 100
120 217 0.7 1.6 36 220 2 75

Table 3: Details for the simulations of the ML 4-phasor model with PBC.

N N4 Tmin Tmax NPT NMCS Nrep Ns

18 29 0.05 1.2 46 219 2 200
28 211 0.1 1.2 44 219 2 200
42 213 0.2 1.2 40 220 2 150
54 214 0.25 1.25 40 220 4 100
66 215 0.25 1.25 40 220 2 100
82 216 0.3 1.3 40 220 2 100
104 217 0.35 1.3 38 221 2 80

Each copy at each temperature shares the same realization of quenched disordered cou-
plings {Jk}. Metropolis dynamics is carried out in parallel in each thermal bath and once each
64 steps an exchange (swap) of configurations between baths at neighbouring temperatures is
proposed. A swap is proposed sequentially for all pairs of neighbouring inverse temperatures
βi and βi+1, with the following acceptance probability implementing detailed balance with the
equilibrium Boltzmann distribution for each thermal bath:

pswap =min
�

1 , e(βi−βi+1)(H[ai]−H[ai+1])
�

. (A.1)

For all simulations the NPT temperatures have been taken with a linear spacing in T , that is
Ti+1 = Ti +∆T , with ∆T = 0.025. On GPUs each thermal bath is simulated in parallel in
between swaps.

A further parallelization in the code concerns the bottleneck of the dynamics in dense
networks, such as those constructed according to the procedure reported in Sec. 3. To compute
the energy variation ∆E = H[a′] −H[a], after a spin update ak → a′k has been proposed,
requires the sum of O(N2) terms. The computation of ∆E has, therefore, been split term by
term on parallel kernels on GPU and further resummed in parallalel using O(log N) operations.

The single update for spins that are complex and spherical is constructed by selecting two
spins at random and proposing a random update of both spins which locally preserves their
contribution to the global spherical constraint (11). This amounts to extract three pseudo-
random numbers for each update proposal.

The code, written in CUDA, has been running on three types of Graphic Processing Units
(GPU): Nvidia GTX680 (1536 cores), Nvidia Tesla K20 (2496 cores) and Nvidia Tesla V100
(5120 cores).

The dense ML interaction graph is generated as follows. First, a virtual complete graph
with
�N

4

�

interactions is generated with ordered quadruplets of indices k1 < k2 < k3 < k4.
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Then the FMC filter is applied to the complete graph either with free or with periodic boundary
conditions. We notice that for each ordered quadruplet Eq. (17) can be satisfied only in the
permutation |k1−k2+k4−k3|= 0, and any of the other 7 permutations equivalent to it. Each
time a quadruplet of indices matches Eq. (17), the corresponding interaction is added to the
real graph and a random value extracted from the Gaussian distribution (12) with p = 4 is
assigned to it. This procedure is repeated picking a quadruplet from the complete graph until
a preassigned number N4 of interactions for the ML graph is reached. In order to be able to
perform a neat Finite-Size Scaling (FSS) analysis, this number is chosen to be the largest power
of 2 below the total number of couplings satisfying the FMC. Each one of the Ns disordered
samples simulated is characterized by a realization of the couplings {Jk} that differs from the
others both for the the quadruplet networks and for the numerical value.

To test thermalization we look at energy relaxation on sequential time windows whose
length is double each time with respect to the previous one. As a further test we check the
symmetry of the overlap distribution PJ (q) - the order parameter of the glass transition, - for
single disordered samples. Once dynamical thermalization to equilibrium has been tested and
a thermalization time τeq identified, the time average coincides with the canonical ensemble
average.

In order to properly estimate statistical errors, time correlations have been taken into ac-
count. A correlation time τcorr has been identified as the maximum among all thermal bath
dynamics, approximately equal to 256= 28 Monte Carlo steps. Consequently we measure the
observables every τcorr Monte Carlo steps. If NMCS is the total amount of Monte Carlo steps of
the simulation, for each disordered sample we, thus, have

N ≡
NMCS−τeq

τcorr
,

thermalized, uncorrelated configurations at and the ensemble average unbiased estimate is

〈O[a]〉=
1
N

NMCS/τcorr
∑

t=τeq/τcorr

O[at] . (A.2)

On top of that, we perform simulations on Ns different disordered coupling network samples.
That is, for each {Jk} realization we have a thermal average 〈O[a]〉J . Averaging over the ran-
dom samples yields the least fluctuating finite N proxy for the average in the thermodynamic
limit:

O =
1
Ns

Ns
∑

j=1

〈O[a]〉( j)J . (A.3)

The statistical error on the average over disorder is much larger that the error on the thermal
average and leads to the error bars on the observables displayed in the main text. We observed
that taking data uncorrelated in time, in view of the fact that the time average contribution
to the error is negligible with respect to the quenched disorder contribution and using the
numbers Ns of simulated random samples indicated in table 4, the leading digit of the statistical
error practically does not change when it is computed using anti-distorsion techniques such
as jackknife and bootstrap with respect to a simple standard deviation computation on the
sample-to-sample fluctuations. The errorbars in the figures are, therefore, all computed as
standard deviations.
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B REM numerical study

In the REM, one considers M = 2N random energy levels as if pertaining to a generic model
with N Ising spin variables. The energies {Eν}ν∈{1,...,M} are extracted as independent Gaussian
variables from the distribution function

p(E) =
1

p
πNJ2

exp

�

−
E2

NJ2

�

, (B.1)

where the scaling of the variance with N ensures the extensivity of the thermodynamic poten-
tials and J is a parameter. An instance of the quenched disorder corresponds to an extraction
of the M energy levels. The partition function of the model reads

Z =
M
∑

ν=1

e−βEν . (B.2)

Data displayed in Fig. 6 were collected through a simple enumeration algorithm, which
is described in the following. For each disorder sample of a given system size N the energy
levels {Eν} are generated, by independently extracting a set of 2N random numbers from the
Gaussian distribution Eq. (B.1) with J = 1. A set of equispaced temperatures T is generated
in the interval [Tmin, Tmax], with Tmin = 0.15 and Tmax = 1.8 for all sizes. The internal energy
of the model is computed as a function of temperature by evaluating the thermal average

〈E〉=
∑

ν Eν e−βEν
∑

ν e−βEν
, (B.3)

for each of the β = 1/T values extracted before. The specific heat is computed from the
fluctuations of the internal energy as

cVN ,i
(T ) =

1
N
〈E2〉 − 〈E〉2

T2
, (B.4)

where the index i accounts for the sample. The procedure is repeated for several independent
extractions of the random energies {Eν}. Eventually, when a sufficiently large number of
samples Ns is collected for each simulated size, the disorder average of the specific heat is
computed by averaging over the samples:

cVN
(T ) =

1
Ns

Ns
∑

i=1

cVN ,i
(T ) , (B.5)

which is the same of Eq. (A.3). The error bars in Fig. 6 are given by the statistical error on this
average. The number of samples Ns is chosen in such a way that the estimated value of the
specific heat remains stable upon fluctuations of the samples included in the average. More
details are presented in Table 4.

The finite-size scaling analysis leading to the values of the exponents α and νeff is per-
formed by following the same technique described in App. C.

C Finite-size scaling details

In order to assess the critical temperatures Tc(N) in Table 1 we fit the points around the peak of
each curve in Figs. 7, 8 with a quadratic function of the temperature fN (T ) = aN + bN T+cN T2
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Table 4: Details for the simulations of the ML 4-phasor model with PBC.

N Tc ∆Tc Ns

16 0.85 0.02 300
20 0.83 0.02 200
24 0.81 0.02 200
28 0.80 0.02 100

and compute the maximum point of each fitting function as Tc(N) = −bN/(2cN ), estimat-
ing the statistical error accordingly. The critical temperature Tc(∞) of the model can be
extrapolated from the fit of the finite-size critical temperatures with the following function:
Tc(N) = Tc(∞) + aN−b, where the exponent b gives a first rough estimate of the critical
exponent 1/νeff. The results of the fit are:

FBC: Tc(∞) = 0.86± 0.03 , b = 1.6± 0.5 , (C.1)

PBC: Tc(∞) = 0.61± 0.03 , b = 0.98± 0.3 . (C.2)

We then take the following Ansatz on the form of scaling function f̂ in Eq. (38)

f̂ (x) = A+ C x2 , (C.3)

where x = N1/νeff tN , with tN computed by using the Tc(N) reported in Table 1. In the previous
Ansatz we have not included the linear term, since the points are translated in order for the
peak of each curve to be in the origin and we expect the linear term not to matter. With this
Ansatz the scaling hypothesis for the specific heat Eq. (38) reads as

cVN
(T ) = ÃN + C̃N t2

N , (C.4)

where X̃N = XN N
α+m
νeff , with XN = {AN , CN} and m = {0,2}. We fit the points of the curves

around the critical temperature with the previous function and determine the values of the
coefficients. We, then, notice that the behaviour of the logarithm of the coefficients,

ln ÃN = ln AN +
α

νeff
ln N ,

ln |C̃N |= ln |CN |+
α+ 2
νeff

ln N ,

is linear in ln N and the estimates of α and νeff can be obtained by linear interpolation.
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