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Abstract

We explore how interactions can facilitate classical like dynamics in models with sequen-
tially activated hopping. Specifically, we add local and short range interaction terms to
the Hamiltonian and ask for conditions ensuring the evolution acts as a permutation on
initial local number Fock states. We show that at certain values of hopping and inter-
actions, determined by a set of Diophantine equations, such evolution can be realized.
When only a subset of the Diophantine equations is satisfied the Hilbert space can be
fragmented into frozen states, states obeying cellular automata like evolution, and sub-
spaces where evolution mixes Fock states and is associated with eigenstates exhibiting
high entanglement entropy and level repulsion.
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1 Introduction

As experimental tools have progressed (e.g. [1,2]), the microscopic control of quantum systems
has become increasingly accessible. These advancements, along with a correlated increase in
theoretical interest, have led to the discovery of many new and surprising phenomena that
emerge when periodic driving, interactions, and their interplay are considered.

For example, periodically driven systems can be used to stabilize otherwise unusual behav-
ior. A recent important example is topological Floquet insulators [3–5], where novel topologi-
cal features of the band structure may emerge due to inherent periodicity of the non-interacting
quasi- energy spectrum. Furthermore, it was shown in [6] that, by combining spatial dis-
order with a topological Floquet insulator model introduced by Rudner-Lindner-Berg-Levin
(RLBL) [7], a new topological phase may be realized called the anomalous Floquet-Anderson
insulator (AFAI). Discrete time crystals [8–11] are another important example of behavior
that may occur in periodically driven, but not static [12], systems. Namely, a time crystal
is a system where time-translation symmetry is spontaneously broken (in analogy to spatial
translation symmetry spontaneously breaking to form ordinary crystals).

Combining periodic driving with interactions, however, can often be problematic as
generic, clean, interacting Floquet system are expected to indefinitely absorb energy from
their drive and thus quickly converge to a featureless infinite temperature state [13–15]. This
problem may be side-stepped by considering Many-Body Localization (MBL) [16–22], in which
strong disorder is utilized to help stave off thermalization, by considering the effective evolu-
tion of pre-thermal states [23–28] that, in the best cases, take exponentially long to thermalize,
or by connecting the system to a bath to facilitate cooling and arrive at interesting, non- equi-
librium steady-states [29–32].

Yet another route for realizing non-trivial dynamics despite the expected runaway heating
from interacting, Floquet drives is to consider systems where the ergodicity is weakly broken,
i.e. where there are subspaces (whose size scales only polynomially in the system size) of the
Hilbert space that do not thermalize despite the fact that the rest of the Hilbert space does.
These non-thermal states are called quantum many-body scars [33–35] and have been shown
to support many interesting phenomena including, for example, discrete time crystals [36].
Furthermore, in constrained systems, the full Hilbert space may fragment into subspaces where
some of the subspaces thermalize while others do not [35,37,38]. When the fraction of non-
thermal states are a set of measure zero in the thermodynamic limit, the system is an example
of quantum many-body scarring. However, in other cases, the non-thermal subspaces form a
finite fraction of the full Hilbert space and therefore correspond to a distinct form of ergodicity
breaking.

In addition to leading to heating, interactions are also often responsible for our inability to
efficiently study or describe many body quantum states in both Floquet and static Hamiltonian
systems. However, there are situations when interactions play the opposite role in creating
specialized states of particular simplicity or utility. For example, systems with interactions can
exhibit counter-intuitive bound states due to coherent blocking of evolution. A nice class of
such systems are the edge-locked few particle systems studied in [39,40].
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In this work, we consider Floquet drives where hopping between neighboring pairs of sites
are sequentially activated. The theoretical and experimental tractability of such models have
made them a popular workhorse for fleshing out a broad range of the exciting properties of
periodically driven systems (e.g. [7, 41–45]). We find that, when interactions are added to
such systems, there exist special values of interaction strength and driving frequency where
the dynamics becomes exactly solvable. Furthermore, the complete set of these special param-
eter values may be determined via emergent Diophantine equations [46]. At other parameter
values, the Hilbert space is fragmented. Initial states contained within some, thermal, sub-
spaces will ergodically explore the subspace (though not the entire Hilbert space), while other
initial states contained within other, non-thermal, subspaces will evolve according to a classi-
cal cellular automation (CA) [47,48], i.e. the system evolves in discrete time steps where after
each step the occupancy of any given site is updated deterministically based on a small set of
rules determined by the occupancy of neighboring sites.

As examples, we consider RLBL(-like) models with added nearest neighbor (NN) or Hub-
bard interactions as well as an even-odd Floquet drive in one dimension with NN interactions
(more detailed descriptions of these models given below). We note that some work has been
done in the first two cases [49, 50] where it was argued that novel, MBL anomalous Floquet
insulating phases emmerged when a disorder potential was added. We will discuss how our
focus on special parameter values leads to new insights into these models and how it suggests a
possible route towards other exciting phenomena such as the support of discrete time crystals
within fragments of the Hilbert space.

2 Conditions for evolution by Fock state permutations

In this section, we examine conditions for deterministic evolution of Fock states into Fock states
in fermion models. Here we consider real space Fock states, which have a well defined fermion
occupation on each lattice site (We will also refer to such states as fermion product states). We
consider models where hopping between non-overlapping selected pairs of sites is sequentially
activated. Two models of this type, discussed in detail below, deal with Hubbard and nearest
neighbour interactions. The approach can be naturally extended to deal with more general
interactions in sequentially applied evolution models.

2.1 Example 1: Hubbard-RLBL

As a particularly illuminating example, consider the Rudner-Lindner-Berg-Levin model [7].
This model is an exact toy model for a topological Floquet insulator and has been very useful
in flushing out some of their salient properties. In addition, it provides the starting point
for other states, such as the anomalous Floquet-Anderson insulators [6]. The model is two
dimensional, however, it’s simplicity lies in its similarity to even-odd type models, [41,43–45],
in that the evolution activates disjoint pairs of sites at each stage. The model can be tuned to a
particular point where the stroboscopic evolution of product states is deterministic exhibiting
bulk periodic motion and edge propagation. Similarly, one can tune the driving frequency to
completely freeze the stroboscopic evolution. Here, we add interactions to the model and ask
when we can make the evolution a product state permutation, at least in some sectors. The
Hubbard-RLBL evolution is written as

U = Uwait U4U3U2U1 , (1)
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Figure 1: The RLBL model. Hopping is sequentially activated among neighbouring
sites connected in the set Ai , i = 1, ..., 4.

where Ui(V,τ) = e−iτHi . For i = 1, ..4,

Hi = −thop

∑

(i, j)∈Ai ;σ

(a†
i,σa j,σ + h.c.) + V

∑

i∈Ai

ni,↑ni,↓ , (2)

where ni,σ = a†
i,σai,σ and the sets Ai are described in Fig. 1. Throughout the rest of the paper

we will work in units where thop = 1 and ħh= 1.
Above, Uwait is any unitary diagonal in number state basis. For example, the model inves-

tigated in [50] has Uwait → Udis where Udis corresponds to evolution under the Hamiltonian
Hdis =
∑

i vi(ni,↑+ ni,↓) with vi a vector of uniformly distributed random real numbers within
the bounded interval [−W, W ], i.e. the waiting period corresponds to evolution with a disor-
dered on-site potential and no hopping.1 In that work, it was shown that this model supports a
new family of few-body topological phases characterized by a hierarchy of topological invari-
ants. These results may be viewed from the following perspective. First, finely-tuned points
where the dynamics is exactly solvable were studied (namely, τ = π

2 and V = 0 or V →∞).
Second, it is argued that regions near these special points are stabilized (i.e. localized, at
least for finite particle number cases) by disorder leading to robust phases. Finally, topological
invariants characterizing these phases (V small vs. V large) can be found and shown to be dis-
tinct implying two differing topological phases. An application of the methods we propose in
this work will allow us to generalize the first step above and find families of these exactly solv-
able points. We leave discussions of when regions in parameter space near these points may
or may not be stabilized by disorder to future work. Since, at these exactly solvable points, we
will be mapping product states to product states, Udis will only act as an unobservable global
phase and thus for the rest of our analysis we will set Uwait = I .

We now look for conditions to simplify the evolution (1) in such a way that the total evo-
lution reduces to a permutation on the set of product states, i.e. when an initial configuration
of fermions is placed at a selection of locations it will evolve into a different assignment of
locations without generating entanglement.

To do so, we note that the evolution of each pair of sites, may be considered separately
due to the disjoint nature of the set of pairs Ai . Thus, we consider the evolution on a pair of
sites i, j

U(i, j)(V,τ) = e−iτ(a†
i,σa j,σ+h.c.)+τV (ni,↑ni,↓+n j,↑n j,↓) . (3)

1Technically, in [50] a weak disorder potential is added during the Ui steps and then the disorder strength
during the wait step is effectively made stronger by increasing the length of time the wait step is applied. However,
this slight difference in how the disorder potential is applied does not seriously alter the dynamics and so we will
not make a hard distinction between the two.
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Since the evolution preserves particle number, we can treat the sub-spaces of 0, 1,2, 3, and 4
particles in each neighboring pair of sites separately. In the case of 0 or 4 particles, evolution
is trivially the identity (due to Pauli blocking in the 4 particle case). For 1 or 3 particles, one of
the two sites is always doubly occupied, and thus the interaction term in (2) is a constant and
does not affect evolution. In this case, solving the two site non-interacting evolution we see
that in the one-particle sector, a fermion starting initially at site i has a probability p = sin2τ

to hop to the other site in pair j and probability 1− p to stay. Similarly, in the 3-particle sector,
an initially placed hole in site i has the same probability, p to hop to the other site j. Thus,
when

τ=
π

2
ℓ , (4)

for some integer ℓ, evolution for initial product states in the 1,3 particle subspace is completely
deterministic with trivial evolution for even ℓ and the particle hopping to the other site in the
pair with probability 1 (henceforth referred to as perfect swapping) when ℓ is odd. Clearly,
for these values of τ (and independently of V ), no new entanglement is created in any pairs
with 1 or 3 particles. To render the evolution in the 2 particle pair subspace simple, it is
shown in appendix A.1 that deterministic evolution occurs when the two conditions below are
simultaneously satisfied:

τ
p

42 + V 2 = 2πm , (5)

and
1
2
τV +πm= πn , (6)

with n, m ∈ Z. Note that (5) guarantees the preservation of the number of doubly occupied
sites (doublons). When n is even, the sub-system will return to its initial state. On the other
hand, if n is odd, the system will exhibit perfect swapping i.e. each particle will hop to the
other site in the pair. By solving for τ and V in terms of n and m, we may now summarize
when evolution is deterministic in each of the particle number sub-spaces:

particles τ V
1 or 3 τ= π

2 ℓ V arbitrary
2, opposite spins τ= π

2

p
2mn− n2 V = 4(n−m)p

2mn−n2

otherwise any any

(7)

when n or ℓ are even (odd) evolution is frozen (perfect swapping). To keep the solutions real,
Eq. 7 also implies we must take 2mn− n2 > 0.

Can all the conditions (4), (5), and (6) be simultaneously satisfied? In such a case the
evolution of U is simply a permutation (being a product of identities and site swaps) and
generates no new entanglement in any of the sectors.

2.2 The Diophantine Equation

Combining the conditions (4), (5), and (6) together yields the following equation:

ℓ2 + n2 = 2mn , ℓ, n, m ∈ Z . (8)

Eq. (8) is a homogeneous Diophantine equation of degree 2 and can be solved.
We now give a brief review of Diophantine equations and the strategy for solving homo-

geneous quadratic equations. A reader familiar with Diophantine equations or interested only
in the concrete results may skip to the next subsection.
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Figure 2: Any line passing through the null surface has two points of intersection.
Given a particular solution X0 of the homogeneous Diophantine eq (10), other ratio-
nal solutions are found by looking at lines emanating from uX0 with rational slopes.

Diophantine equations are algebraic (often polynomial) equations of several unknowns
where only integer or rational solutions are of interest. They are named in honor of Dio-
phantus of Alexandria for his famous treatise on the subject written in the 3rd century though
the origins of Diophantine equations can be found across ancient Babylonian, Egyptian, Chi-
nese, and Greek texts [46]. Despite their often innocuous appearance, they are an active area
of research with solutions frequently requiring surprisingly sophisticated mathematical tech-
niques and have been the centerpiece of several famous, long-standing mathematical problems
that have only been (relatively) recently resolved, including Fermat’s Last Theorem [51] and
Hilbert’s Tenth Problem [52].

In this section, we are interested in the relatively simple case of a homogeneous quadratic
Diophantine equation, i.e. equation of the form

X TQX = 0 , (9)

with variables X T = (x0, x1, ..., xn) and coefficients given by the n×n symmetric matrix Q with
integral diagonal entries and half integral off-diagonal entries. As we shall see, however, for
interactions beyond Hubbard a broader class of Diophantine equations may need to be consid-
ered. For information on broader classes of Diophantine equations and for more information
on the derivation to follow, see, for example, [46].

The general strategy for finding rational (we will specialize to integer solutions for our
cases of interest at the end) solutions to (9) is to first find a particular solution and then
generate all other rational solutions from the particular solution. Particular solutions can be
found simply by inspection or through existing efficient algorithms [46]. The main task is then
to generate all other rational solutions from a given particular solution.

Take X T
0 =
�

x0,0, x1,0, ..., xn,0

�

to be a particular solution, i.e.,

X T
0 QX0 = 0 . (10)

Since (9) is quadratic, any line through X0 will intersect the hypersurface defined by (9) at
a single other point (see Fig. 2). Furthermore, if the line through X0 is rational (i.e. has
rational coefficients), as we see below, this implies that the second intersection point must
also be rational. Therefore, it is possible to generate every rational solution to (9) by finding
the second intersection point of every rational line through uX0, where u is rational.

6

https://scipost.org
https://scipost.org/SciPostPhys.14.6.145


SciPost Phys. 14, 145 (2023)

Here, since (9) is homogeneous, it is convenient to work in projective space Pn(Q) where
a general line passing through X0 is parameterized by

X = uX0 + vW , (11)

with (u, v) ∈ P2(Q) and any W = (w1, .., wn) ∈ Pn(Q) not equal to X0. Combining (11) and (9),

0= (uX0 + vW )TQ(uX0 + vW ) = v
�

2uW TQX0 + vW TQW
�

, (12)

where we have simplified using (10). We may thus take as the solution
(u, v) =
�

W TQW,−2W TQX0

�

. Combining with Eq (11) and multiplying by a general d ∈Q to
restore full solutions (since we considered X as an element of a projective space), we find

X = d
�

(W TQW )X0 − 2(W TQX0)W
�

. (13)

For integer solutions, we need simply to rescale W → W
ζ and d → dζ2 where ζ = gcd(wi).

After rescaling, the only non-integer information is coming from d, so all integer solutions may
be found simply by considering d ∈ 1

ξZ with ξ= gcd((W TQW )X0 − 2(W TQX0)W ).
For the relevant case of n= 3, let us, without loss of generality, diagonalize Q = diag(A, B, C)

and let W T = (w1, w2, 0) where (after rescaling with ζ) w1 and w2 are co-prime integers and
the final element of W may be set to 0 due to the required linear independence with X0.
Simplifying (13) then becomes

X = d(Aw2
1 + Bw2

2)





x0,0
x1,0
x2,0



− 2d(w1Ax0,0 +w2Bx1,0)





w1
w2
0





= d





−(Aw2
1 − Bw2

2)x0,0 − 2Bw1w2 x1,0
(Aw2

1 − Bw2
2)x1,0 − 2Aw1w2 x0,0

(Aw2
1 + Bw2

2)x2,0



 . (14)

2.3 Solution for product state permutation dynamics with Hubbard interaction

Following the previous section, we write our Diophantine eq. (8) in a diagonal form:

ℓ2 + n2 = 2mn =⇒
�

ℓ ñ m
�





1 0 0
0 1 0
0 0 -1









ℓ

ñ
m



= 0 , (15)

where we have defined ñ ≡ n − m. Note, this is the famous Diophantine equation for
Pythagorean triples.

By inspection, a non-trivial solution is ℓ= −1, ñ= 0, m= 1. Utilizing Eq. (14) we find




ℓ

ñ
m



= d





w2
1 −w2

2
2w1w2
w2

1 +w2
2



 (16)

=⇒





ℓ

n
m



= d





w2
1 −w2

2
[w1 +w2]2

w2
1 +w2

2



 . (17)

Note, Eq. (16) is the standard solution for Pythagorean triples.
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We thus found that the set of n, m, and ℓ simultaneously satisfying the conditions for simple
dynamics can be written as:

ℓ= d(w2
1 −w2

2) , (18a)

m= d(w2
1 +w2

2) , (18b)

n= d(w1 +w2)
2 , (18c)

where w1, w2 ∈ Z, w1, w2 are coprime, and d ∈ 1
ξZ with ξ = gcd((w2

1 −w2
2), (w

2
1 +w2

2), (w1 +w2)
2).

Note, in (18), if ℓ is even (odd) then so is n. This implies that the only way to completely
satisfy the conditions in Eq. (7) is if all motion is frozen or all motion (not constrained by
Pauli exclusion) becomes perfect swapping.

Inspecting the above solutions, we see that 2mn−n2 = (w2
1−w2

2)
2, automatically satisfying

the condition 2mn− n2 > 0 for V and τ to be real. Finally our solution is summarized by

τ=
π

2
d(w2

1 −w2
2) , V =

8w1w2

|w2
1 −w2

2|
. (19)

Note that V doesn’t depend on the choice of d, and that any choice involving w1 = 0 or w2 = 0
will yield a non-interacting model. As an illustration, consider the following example choices:
1. Taking w1 = 1, w2 = 0, d = 1 yields τ = π

2 , V = 0, which is the non-interacting dynamics
considered in the original RLBL model, with perfect swapping.
2. Taking w1 = 3, w2 = 1, d = 1 yields τ= 4π, V = 3. Since ℓ is even in this case, the dynamics
is completely frozen.
3. Taking w1 = 3, w2 = −1, d = 1 yields τ= 4π, V = −3, i.e. frozen dynamics in a model with
an attractive Hubbard interaction.

It is important to note that the special values of interaction strength and driving frequency
in Eq. (19) hold for any Hubbard-Floquet procedure where hopping between pairs of sites is
sequentially activated. This is the case for such systems on any lattice and in any dimension.
We also note, that the Diophantine solution is ill suited to describe the singular case of infinite V
and finite τ and therefore this situation must be handled separately. In the limit of large V ,
the interaction strength overpowers the hopping strength and all evolution is frozen in the
2-particle sector. On the other hand, evolution in the 1,3 particle sector is independent of V
and therefore may exhibit perfect swapping or freezing. Thus, in this case, it is possible to
have one sector (the 2-particle sector) frozen while the other (the 1,3 particle sector) exhibits
perfect swapping.

To visually represent the position of our special points we introduce the following function
as a qualitative estimate for how far a given evolution U is from being a permutation of basis
states:

Fp,q(U) = − log
||U ||p,q

dim(U)1/q
= −

1
q

log

∑

n,m |Un,m|p

dim(U)
, (20)

where dim(U) is the dimensionality, and ||U ||p,q = (
∑

n,m |Un,m|p)1/q is the p, q matrix entry-
wise norm. Note that for a complex permutation, each row has a single non zero entry of
absolute magnitude 1, therefore, for any p, q > 0,

Fp,q(complex permutation) = 0 .

Note that for any unitary matrix U , F2,q(U) = 0. However, for p > 2, q > 0 we have that
Fp,q(U) > 0 whenever U is a unitary that is not a complex permutation. The following exten-
sivity property is straightforward to verify:

Fp,q(U1 ⊗ U2) = Fp,q(U1) + Fp,q(U2) . (21)
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Figure 3: Special Diophantine points in the Hubbard-RLBL model and ‘distance’ of
the two-site evolution from being a permutation of number states. Here we plot
Æ

F4,4(U) as function of V,τ. The darker regions indicate regions where the two-site
evolution is close to pure number state permutation.

In figure Fig. 3, we plot F4,4 for the two site Hubbard evolution showing regions where the
two-site evolution is close to permutative and marking the Diophantine spots where it is exact.
Interestingly, while the special points admit exact evolution, the plot shows many regions
where the evolution is close to perfectly permutative. Exploration of what happens when the
evolution is not exact, but perturbatively close to it is out of the scope of the present paper
and deserves a separate study, as initiated in [53].

2.4 Example 2: Nearest neighbour interactions on a Lieb lattice.

In the next two examples, we consider interactions involving nearest neighbours. Unfortu-
nately, adding nearest neighbour interactions to the RLBL model directly destroys an essential
feature for the solvability of the problem: that the evolution operators of different pairs of
sites are not directly coupled (and therefore commute). Here, instead, we choose to work
with RLBL-like dynamics on a Lieb lattice as described in [54]. A Lieb lattice is a decorated
square lattice as shown in Fig. 4. The dynamics we consider here essentially activates pairs
that are separated by several lattice sites at each step. The sequence of activations is described
in Fig 4.

Here, we consider spinless fermions on the Lieb lattice. There are 8 steps. At step i we
activate hopping between sites that are nearest neighbours that belong to the set Ai . The
evolution is given by:

U = U8U7U6U5U4U3U2U1 , (22)

where Ui = e−iHiτ, and

Hi = −thop

∑

(i, j)∈Ai

(a†
i a j + h.c.) + V

∑

<i, j>

nin j . (23)

We proceed, as in Section 2.1, by considering the evolution of a single connected pair during
step i and exactly solving for values of V and τ where the pair exhibits freezing or perfect
swapping. The evolution of a 2-site pair of sites i, j for one step is given by

U(i, j) = e−iτ[−thop(a
†
i a j+h.c.)+V ni

∑

k:〈i,k〉 nk+V n j
∑

k:〈 j,k〉 nk] . (24)
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Figure 4: RLBL-like model on a Lieb lattice. Hopping between neighboring pairs of
sites within Ai is activated during step i of the Floquet drive. The same sequence
of activated site pairs is achieved with the chiral measurement scheme introduced
in [54]. During each step i, evolution is confined between neighboring sites in Ai
by rapidly measuring (in the Zeno limit) all sites in the complimentary set Ac

i . Both
models, with NN interactions, will share the same conditions (Eqs. (26) and (27))
for number state to number state evolution.

Figure 5: Evolution of a 2-site pair in the NN-RLBL model on a Lieb lattice. All
evolution is restricted to the red ellipse above. Evolution within the red ellipse (i.e.
between site 1 and site 2) is determined by τ, V , and the neighboring particle number
difference ∆ = |N1 − N2|. In this case, N1 = 2 and N2 = 1, so ∆ = 1. If the ∆ = 1
condition on V and τ in Eq. (26) is satisfied, then the particle at site 2 will exactly
return to site 2 after a time τ (at intermediate times, the particle may be in a generic
superposition of being located at site 1 and site 2).

Note that the number operators on neighbours of i, j commute with the evolution. Let the ini-
tial number of occupied neighbours of the sites i and j be Ni and N j respectively (not counting
i, j themselves). Evolution of the 2-site pair is now exactly solvable in terms of ∆ = Ni − N j ,
the difference in the number of particles neighboring sites i and j in the 2-site pair respectively
(see Figure 5).

Solving the two site evolution, we find that evolution is frozen when
p

4+∆2V 2τ= 2πm , (25)

for some m ∈ Z. We find that the evolution may only be perfect swapping when∆= Ni−N j = 0
or when V = 0 and occurs when τ= π

2 +πm for m ∈ Z (see appendix A.2 for details).
In the rest of the paper, whenever considering the evolution on a pair of sites, we will

denote ∆ as the difference in the number of (static) particles that are nearest neighbours of
the two sites during the relevant evolution step.
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2.5 A coupled set of Diophantine Equations

For a generic initial position of the particles, Ni − N j will not be uniform across the sample.
Thus, for proper particle permutation dynamics, we must simultaneously find a solution of
(25) for all possible values of |Ni − N j|. As we have seen for V = 0 there is no dependence
on neighbour occupation and evolution will be frozen or perfect swapping if τ= π

2 m with m,
correspondingly, even or odd. In the rest of the section we concentrate on V ̸= 0.

Note that Ni takes the values 0, .., Di−1, where Di is the degree (number of neighbours) of
lattice site i. It follows that |Ni − N j| ∈ {0, .., max(Di , Dj)− 1}. Thus, if Dmax is the maximum
degree of the lattice, we have the simultaneous conditions:

p

4+∆2V 2τ= 2πm∆ ∀ ∆= 1, ..., (Dmax − 1) , (26)

τ=
π

2
m0 corresponds to ∆= 0 (Ni = N j) , (27)

with all mi ∈ Z.
Equations (26) and (27) provide Dmax equations that must be solved simultaneously. The

first two equations set the values for τ and V in terms of m0, m1:

τ=
π

2
m0 , V 2 = 4

�

4m2
1

m2
0

− 1

�

. (28)

However, the rest of the equations for mi , with i > 1, must be simultaneously solved with
these values for τ and V yielding the coupled equations:

4m2
l = (1− l2)m2

0 + 4l2m2
1 , ml ∈ Z , l = 2, 3, ..., (Dmax − 1) . (29)

A first solution to this system may be obtained by taking m0 = 2m1 = 2m2 = ... = 2mDmax−1,
which, by (28), turns out to be the same as the non-interacting frozen case V = 0. We now
search for other solutions, with V ̸= 0.

Solution for Dmax = 3. For Dmax = 3, we describe a general solution in appendix A.2 that
yields non-trivial solutions. The result:





m0
m1
m2



= d





−32w1w2
−3w2

1 − 16w2
2

2
�

−3w2
1 + 16w2

2

�



 . (30)

We note that m0 resulting from (30) is always even (see the end of Appendix A.2) and thus can
only yield frozen evolution when V ̸= 0. Due to the hierarchy of the equations, total freezing
must then occur for any solutions with Dmax ≥ 3.

Solution for Dmax = 4. We combine equations (30) and the ∆ = 3 equation from (26) to
find a new Diophantine equation for the case Dmax = 4:

1
d2

m2
3 = 81w4

1 + 2304w4
2 − 1184w2

1w2
2 . (31)

The Diophantine equation (31) is harder to solve. However, a numerical search does find non-
trivial (V ̸= 0) solutions. For example, (w1; w2; m3) = (3;9471; 4305592257) and d = 1 is a
solution with V ≈ 6,394 and τ = 454, 608π. Whether there exist V,τ such that lattices with
a maximum degree larger than 4 may exhibit fully product state permutation evolution is an
open question.

The result for Dmax = 4 required simultaneous solution of the equations for two different
primes (l = 2 and l = 3) which suggests the conjecture that there are solutions to the system
of equations for any Dmax . Similar to the strategy above, by solving for Dmax = k, it is possible
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to construct a new Diophantine equation for Dmax = k + 1. Determining whether this tower
of equations is solvable is outside the scope of the present paper. On the other hand, as can
already be seen in the case of Dmax = 4, the values of V,τ for which the system exhibit such
freezing for any initial number state quickly become prohibitively large for typical physical
systems as the maximum lattice degree increases.

Remark. It is straightforward to generalize the Hamiltonian (23) to include more elaborate
interactions as long as at each step the number operators associated with the neighbourhood
of each evolving pair is constant. For example, we can write

Hi = −thop

∑

(i, j)∈Ai

(a†
i a j + h.c.) +
∑

i∈Ai

Vi jnin j . (32)

Given the number of particles in the neighborhood of each 2-site pair, we write (note here we
include the potentials V in the the definition of ∆):

∆i j =
∑

k:〈i,k〉

Viknk −
∑

k:〈 j,k〉

Vjknk , (33)

and the freezing condition becomes:

τ
Ç

4+∆2
i j = 2πmi j , mi j ∈ Z , (34)

for all ∆i j of the form (33).

2.6 Example 3: Deterministic evolution in the measurement induced chirality
model on a Lieb lattice.

As another example, we consider the measurement induced chirality protocol of [54] with
added nearest neighbour interactions and in the Zeno limit. In that work, a simple hopping
Lieb lattice model of fermions was subjected to repeated measurements changing according to
a prescribed chiral protocol. In contrast to the previous models, the Hamiltonian is not time
dependent and all hopping terms in the Hamiltonian remain activated throughout the process.

It was shown in [54] that in the limit of rapid measurements, the so called the Zeno limit,
the resulting dynamics is a classical stochastic process of permuting Fock states. We will see
that, in this case too, we can find special values of interaction strength and protocol duration
where the dynamics becomes deterministic. In fact, we will see the dynamics is governed by
the same Diophantine equation as in example 2.

Specifically, we consider fermions hopping on a Lieb lattice with nearest-neighbor interac-
tions given by

H = −thop

∑

<i, j>

a†
i a j + V
∑

<i, j>

nin j . (35)

We now apply the measurement protocol introduced in [54] to the system. Namely, we con-
sider an 8 step measurement protocol in which, during the i th step that runs for a time τ,
the local particle density in all sites in a set Ac

i of sites are measured. In the Zeno limit, all
evolution during a step is restricted to neighboring sites in the subspace Ai (See figure 4 for
details), while the rest of the sites are kept frozen. Thus, in the Zeno limit, the evolution is
effectively split into 8 steps evolved by the Hamiltonian (23), interspersed by an additional
measurement. The measurements keep projecting the system onto Fock states, however, the
particular states at hand are statistically distributed. However, if the step evolution (24) maps
Fock states into Fock states, the whole procedure yields a deterministic evolution of an initial
Fock state into another. In other words, the conditions for permutative evolution (and the
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corresponding set of Diophantine equations) for this model are equivalent to those found in
the interacting Floquet model investigated in example 2. This implies that the dynamics of
the measurement induced chirality model and unitary Floquet evolution are equivalent at the
special points in parameter space where Fock states are mapped to Fock states. However, if
parameters are perturbed away from these special points, the dynamics of the two examples
quickly begin to differ. This is due to the non-unitary nature of the measurements as opposed
to the completely unitary evolution in the unitary Floquet case.

3 Hilbert Space Fragmentation

In Section 2.5, we gave Dmax conditions that must be simultaneously satisfied for Fock state
permutative dynamics in models on a Lieb lattice with NN interactions. Similarly, in Section 2.1
we gave conditions for permutative evolution in the Floquet-Hubbard RLBL model. If in these
models not all of these conditions are satisfied, then the evolution of a general initial state will
require consideration of the full quantum many-body Floquet Hamiltonian.

However, evolution for certain initial states may still be deterministic even if only one or
a few of the conditions for Fock state to Fock state evolution are met. This fragments [35] the
Hilbert space, H, into disconnected Krylov supspaces, Ki , i.e.

H =
⊕

i

Ki , Ki = spann{Un|ψi〉} , (36)

where we have chosen a states |ψi〉 that are number local states in such a way that Ki are
unique. In the rest of this section, we will explore the nature of the Hilbert space fragmen-
tation in the example interacting Floquet and measurement induced models discussed in the
previous section. Namely, we will see how the Hilbert spaces in these systems simultaneously
support Krylov subspaces that are one-dimensional and correspond to frozen product states,
few dimensional and correspond to states that evolve according to a classical cellular automa-
tion [47,48], and exponentially large subspaces that may evolve with more generic quantum
many-body evolution.

3.1 Arrested development

Let us take as an example the NN-RLBL model on a Lieb lattice considered in Section 2.4.
There, it was shown that when the parameters V,τ satisfy the conditions (26) and (27) with
m0 even, then the evolution of each step in the Floquet drive is given by the identity. However,
certain initial states do not require all of the conditions (26) and (27) to be satisfied in order
for this freezing of the dynamics to occur. For example, initial Fock states where ∆ = 1 for
every activated 2-site pair only require

p
4+ V 2τ= 2πm1 with m1 ∈ Z to be satisfied in order

to exhibit frozen dynamics. Even if every other condition (26) and (27) with ∆ ̸= 1 fails to be
satisfied, such states will still be frozen under the NN-RLBL evolution. However, in this case,
initial states containing at least one 2-site pair with ∆ ̸= 1 may evolve into a superposition of
Fock states. Therefore, the Hilbert space has been split (fragmented) into subspaces of Fock
states that are frozen and a subspace of states which are not frozen.

In Fig. 6 we give examples of frozen particle configurations. At the top of the figure are
configurations that require the satisfaction of only the ∆ = 0 condition (27) to be frozen,
configurations in the middle of the figure require only the ∆= 1 condition, and at the bottom
of the figure is a particle configuration that will be frozen so long as both the∆= 1 and∆= 3
conditions (26) are satisfied. If the conditions for ∆ = 0, ∆ = 1, and ∆ = 3 are all satisfied
then the entire Fig. 6 represents a frozen particle configuration. We emphasize here that,
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Figure 6: A Zoo of frozen particle configurations when only some of the conditions
in (26) and (27) are satisfied on a nearest neighbour interacting Lieb-RLBL model.
At the top, a particle configuration that requires only that the ∆ = 0 condition (and
m0 even) be satisfied for frozen evolution. In the bulk of the system are particle
configurations that will be frozen so long as the ∆ = 1 condition is satisfied. The
lower edge of the system provides an example of a particle configuration that will be
frozen so long as both the ∆ = 1 and ∆ = 3 conditions are satisfied. Since all the
particle configurations above are disconnected, the simultaneous satisfaction of the
∆ = 0, ∆ = 1, and ∆ = 3 conditions implies that the entire system above will be
frozen.

even if only one of the conditions (27), (26) are satisfied, that the number of frozen particle
configurations grows exponentially in system size.

Additionally, we note here that the chiral nature of the Floquet procedure played no role
in the emergence of these frozen states. In fact, any procedure that sequentially activates
hopping between neighboring pairs of sites (suitably spaced to keep evolution disjoint after
adding NN interactions) will exhibit the exact same frozen states. For example, even if we
consider a new procedure where, at each step in the evolution, the system is evolved with
a Ui from equation (22) chosen at random (uniformly), i.e. an example realization of this
aperiodic, random evolution is given by

U = . . . U4U5U3U3U1U2U7U3 . (37)

The exact same states will be frozen in this model as in the NN-RLBL model on a Lieb lattice.
Therefore, for any model of the form (37) we have the following situation. The Hilbert

space is fragmented into a (exponentially large) non-frozen subspace and an exponential
number of subspaces corresponding to frozen states. In general cases, initial states in the
non-frozen subspace are free to ergodically explore their Krylov subspace leading to chaotic
dynamics. Such behavior is referred to as Krylov-restricted thermalization [55]. However, if
additional symmetries and structure are present, the non-frozen subspace may be further split
into additional subspaces (see Sec. 3.4).
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Figure 7: Example evolution within a cellular automation Krylov subspace set by the
simultaneous satisfaction of the ∆ = 0 and ∆ = 1 conditions in equations (26) and
(27). In this case, 2-site pairs with ∆ = 0 evolve with perfect swapping while 2-site
pairs with∆= 1 are frozen. The resulting cellular automation for this example initial
particle configuration results in the particles returning to their initial sites after 19T .
Example values of V,τ that achieve this evolution are V =

p
12 and τ = π

2 . Particle
trajectories are drawn with orange, green, and magenta arrows.

3.2 Krylov Subspaces of Cellular Automation

Since the dynamics of a particle configuration that obey the Diophantine conditions depends
crucially on particles on the neighbouring sites, it can be naturally encoded as a cellular au-
tomation step. We will now see how Krylov subspaces supporting classical CA [47,48] at each
evolution step may emerge in interacting Floquet and measurement-induced systems when a
few of the conditions for number state to number state evolution are satisfied.

To elucidate this effect, we consider again the NN-RLBL model on the Lieb lattice. In this
case, we take the ∆= 0 and the ∆= 1 conditions for number state to number state evolution
to both be satisfied, but this time the∆= 0 condition is satisfied for perfect swapping while the
∆= 1 condition is satisfied for freezing. This may happen at, for example, τ= π

2 and V =
p

12.
It is now possible to find number states such that the initial particle configuration, |Ψini t〉,

and the resulting states after evolution of each step in the Floquet drive, all satisfy either
∆ = 0 or ∆ = 1 for every activated two-site pair in the system with a single particle. We give
an example particle configuration where this may occur in Figure 7. Here, the space of states
spann{Un|Ψini t〉} defines a Krylov subspace where evolution is completely given by a CA since
at each step in the Floquet drive the local particle densities are updated deterministically based
on the neighboring particle densities (i.e. if ∆= 0 or 1).

Similarly to the case of frozen initial particle configurations, disjoint unions of particle
configurations that evolve as a CA will also evolve as a CA. For particle configurations whose
CA evolution leaves all particles contained in a volume that does not scale with system size
(for example, the evolution of the configuration in Figure 7 remains contained within the 5×5
site square), the number of CA Krylov subspaces will grow exponentially with the system size
(since there are exponentially many disjoint unions of such particle configurations). These
CA subspaces may coexist with frozen Krylov subspaces as well as with exponentially large
subspaces with more general quantum evolution.

It is important to note that these CA subspaces break the underlying T time translation
symmetry of the evolution operator. For example, the particle configuration in Fig. 7 returns
to its initial configuration after 19T . However, the exact realization of this Krylov subspace
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requires fine-tuning in parameter space. If an alteration of this model was possible such that
the realization of these Krylov subspaces did not require fine-tuning, then such a model would
be a realization of a time-crystal. In fact, since the systems we’ve considered may simultane-
ously support Krylov supspaces that break the T time translation symmetry in different ways,
such a stabilized system would simultaneously support several different time crystals depend-
ing on which Krylov subspace contains the initial state. Recent works [49, 50] have argued
that disorder may stabilize dynamics for regions in parameter space near similarly fine-tuned
points in an interacting, RLBL model to achieve anomalous Floquet insulating phases. The
basic idea is to consider a high frequency regime, where the expansion studied in e.g. [26,56]
shows that the effective evolution in the high frequency limit only acts non-trivially on small
resonant spots that take an exponentially long time to destroy localization. This in turn is
associated with the robustness of prethermal phases and localization when an MBL Floquet
system is perturbed. In the RLBL system our special points for the model require, for example,
τ ∼ π

2 which is not a high frequency drive. However, if the system is instead viewed in the
rotating frame of the chiral RLBL drive, the evolution can be effectively presented as a high
frequency drive, related to the inverse of the parameter offsets between τ, V and the perfect
point (see [49] for details). It is thus possible to show that disorder stabilizes the evolution.
In an upcoming work [53] we extend this treatment to address when disorder may stabilize
dynamics for the entire system or for specific Krylov subspaces in a more general set of models.

3.3 Frozen states of Floquet evolution on a chain with nearest neighbour inter-
actions

A major tool used in the analysis of the interacting Floquet and measurement models above was
that the interactions preserved the disjoint nature of the steps of the periodic drive. However,
using the same tools as in the disjoint case, it is possible to find frozen states even when the
activated neighboring pairs interact (i.e. do not commute).

Here, we investigate an example model where the interactions ruin the disjoint nature of
the Floquet drive and show how, at special values of interaction strength and driving frequency,
it is still possible to find states that are frozen. Namely, we take as an example a 1D, NN
interacting Hamiltonian of the form

H(t) = H0(t) + V
N−2
∑

i=0

nini+1 , (38)

where

H0(t) =

¨
∑

i even(a
†
i ai+1 + h.c.) , 0≤ t < T

2 ≡ τ ,
∑

i odd(a
†
i ai+1 + h.c.) , T

2 ≤ t < T .
(39)

Similarly to the previous cases, let us again consider a single 2-site pair where hopping is
activated. If the occupancy of the sites neighboring the pair happen to be static, then the condi-
tions for frozen or perfect swapping (26) and (27) will still hold (except here with Dmax = 2).
However, this is, of course, not generally the case. Even if a neighboring pair is stroboscop-
ically frozen, the number of particles at neighbouring sites may change during the evolution
and ruin the conditions (26) and (27).

However, if every 2-site pair with a single particle is located on the edge of a domain
wall in the system, then ∆ will again be well defined (since any neighboring particles will be
stationary due to Pauli exclusion) and the conditions (26) and (27) will hold for these particle
configurations. In Figure 8, we give examples of such states that will be stroboscopically frozen
when the ∆ = 1 condition is satisfied, i.e. all these states are eigenstates to the evolution

operator U(T ) = T e−i
∫ T

0 H(t).
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Figure 8: Particle configurations frozen in the Even-Odd NN model at values of V,τ
that satisfy the ∆ = 1 condition in (26). The only 2-site pairs with a single particle
are located on the domain walls. Since, within the uniform domain, particles are
frozen at all times due to Pauli exclusion, the neighboring particle number difference
for 2-site pairs on the domain wall is constant and given by ∆= 1.

We now turn to numerically investigating the emergence of these frozen states and the
Hilbert space fragmentation in this system. We exactly diagonalize U(T ) at the special points
V =
p

12, τ = π
2 and τ = π.2 Here, the condition for frozen ∆ = 1 is satisfied, while ∆ = 0

is perfect swapping or frozen respectively. If the activated neighboring pairs were disjoint,
evolution at these parameter values would be exactly solvable (with dynamics either being a
CA or stroboscopically frozen). As we will see, however, this is not the case here. The Hilbert
space instead fragments into exponentially many subspaces of frozen domain wall states and
a single, exponentially large, ergodic subspace.

To seperate the two classes of subspaces, we calculate the half-chain entanglement entropy
of the eigenstates (shown in Figure 9). The frozen eigenstates have zero entanglement entropy
while the other eigenstates have finite (and as can be seen from Fig. 9, large) entanglement
entropy. Upon plotting the average local particle densities of a sample of the zero entanglement
entropy eigenstates, we find that they do indeed correspond to the expected frozen domain
wall states.

While the number of domain wall states NFroz grows exponentially with system size, their
fraction of the total Hilbert space dimension goes to zero. To see this, consider e.g. states
that satisfy the ∆ = 1 condition (with similar consideration applying to ∆ = 0 situations).
Such states are characterized by occupied domains that are separated from each other by at
least 3 sites (see Fig (8)) so that particles on the edges of separate domains do not interact
with each other at any stage of the evolution. A rough lower bound on the number of such
states is 2⌊N/3⌋, if we only look at domains whose length is a multiple of 3 starting at sites
3, 6, ..., ⌊N/3⌋. An upper bound can easily be obtained by noticing that the total number of
domains cannot exceed ⌊N/3⌋, thus we have an upper bound by considering the entropy of
the positions of domain wall boundaries

∑⌊N/3⌋
k=0

�N
k

�

. In the large N limit, this is dominated
by the term
� N

N/3

�

which scales as 2NSbi(1/3) ≈ 20.92N , by Stirlings approximation, with the

entropy function Sbi(a) = a log2(
1
a ) + (1− a) log2(

1
1−a ). In summary, we see that NFroz grows

exponentially in system size but the fraction of frozen states compared to the full Hilbert space
dimension (which scales as 2N ) is zero in the thermodynamic limit.

The large half-chain entanglement entropy of non-domain wall states suggests that the
rest of the Hilbert space might be thermalized. To provide further evidence to this claim, we
analyze an indicator often used to differentiate between ergodic and integrable systems: the
statistics of level spacing ratios.

2As a technical note, the frozen domain wall states will be highly degenerate and numerical diagonalization
will give a random basis of eigenstates within the degenerate subspace. To find the frozen states within this basis,
we apply a small disorder potential during the wait step in the evolution to split the energy levels. This disorder
potential will add only a global phase to the frozen states and thus allows a direct numerical route to finding them.
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Figure 9: Half-chain entanglement entropy of all eigenstates of the evolution in the
even-odd NN Floquet model. Eigenstates were found by exactly diagonalizing a 16
site chain. The parameter values were chosen such that both the ∆ = 0 and ∆ = 1
conditions in (26) and (27) are satisfied: V =

p
12, τ = π

2 (left) and τ = π (right).
Despite the non-disjoint nature of the activated hopping site pairs, the conditions (26)
and (27) will still be valid for domain wall states that will, therefore, be frozen under
the dynamics. These number states have no entanglement entropy and are indicated
with red arrows in the figure above. The other eigenstates exhibit near-maximal
entanglement entropy. This is a signature of the fragmentation of the Hilbert space
into frozen Krylov subspaces and a ergodic Krylov subspace.

For thermalizing systems, it is expected [14] that the evolution operator U resembles ran-
dom matrices drawn from a circular ensemble (the analog of gaussian ensembles for unitary
matrices). Unlike the evolution operators for integrable systems, eigenstates of circular en-
sembles are random vectors and the spectrum exhibits level repulsion. Thus, it is possible to
argue whether a system is ergodic by analyzing the statistics of the spacing of energy levels to
see if the distribution is Poissonian (corresponding to no level repulsion) or if it corresponds to
the expected level spacing distribution of circular ensembles (see [14] for explicit formulas).

Namely, consider the level spacings between two neighboring eigen-quasienergies ϵ (i.e.
ϵ’s are the phases of the eigenvalues of U),

δn = ϵn+1 − ϵn . (40)

The ratio of level spacings is given by

rn =
min{δn,δn+1}
max{δn,δn+1}

. (41)

We then expect the statistics of r to match that of the circular ensembles instead of yielding a
Poissonian distribution if the system is ergodic.

In our case, however, the system is not completely ergodic since the domain wall number
states are eigenstates of the evolution. We instead wish to study the nature of the subspace
which is the compliment of the set of all frozen Krylov subspaces within the Hilbert space.
We thus will only consider δn in (40) if the corresponding eigenstates of ϵn+1 and ϵn have
non-zero half-chain entanglement entropy. The results of this analysis are shown in Fig. 10.
As can be seen in the figure, the probability distribution is in good agreement with that of the
circular orthogonal ensemble (COE) suggesting that the Krylov subspace is thermal.

In summary, we have shown that the Hilbert space of the even-odd NN Floquet model is
fragmented at special values of interaction strength and driving frequency. The fragmented
Hilbert space simultaneously supports exponentially many (in system size) frozen Krylov sub-
spaces and a single, exponentially large ergodic Krylov subspace. In this model, we did not
find evidence of CA subspaces. Whether these subspaces are realizable in other non-disjoint
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Figure 10: Level spacing statistics in the non-frozen Krylov subspace for evolution
in the even-odd NN Floquet model. As in Fig. 9, parameter values are chosen as
V =
p

12, τ = π
2 (left) and τ = π (right). The probability distribution, P(r), of the

level spacing ratios, r, for quasi-energy levels not corresponding to frozen eigenstates
provides good agreement with the level spacing probability distribution of random
matrices in the circular orthogonal ensemble (COE). This suggests that the Krylov
subspace is ergodic.

models is an open question. Furthermore, for neighboring two-site pairs each with a single
particle, the interactions between the pairs could conspire to produce special values of V,τ not
given by equations (26) and (27) where evolution is stroboscopically frozen. We leave both
these open questions for future work.

3.4 Remarks on Fragmentation and Ergodicity in NN-RLBL

In this section, we study numerically the entanglement entropy of eigenstates and level statis-
tics in the NN-RLBL model with the Diophantine conditions only partly satisfied. We show
that the fragmentation seems to allow for a yet richer structure than shown in the 1D example
above. In particular, we consider the NN-RLBL model with parameters τ = 2πp

7
and V =

p
3.

Here, activated hopping pairs with ∆ = 1 are frozen, but none of the other conditions (26)
or (27) are satisfied. We plot the entanglement entropy of the eigenstates of the evolution in
Fig. 11.

Examining Fig. 11 we find that there are frozen particle configurations leading to eigen-
states with no entanglement entropy. There are no cellular automation subspaces since only
a Diophantine condition for freezing has been satisfied. Additionally, there is a subspace con-
taining eigenstates with near-maximal entanglement entropy suggesting ergodicity. However,
there is also a subspace of eigenstates with entanglement entropy that is neither zero nor
maximal. This suggests that the subspace compliment to the frozen and cellular automation
subspaces has been further fragmented into ergodic and non-ergodic subspaces.

We further investigate this phenomena by examining the level spacing statistics for the non-
frozen subspace in Fig. 12. The statistics show some level repulsion as they do not match that
of the Poisson distribution, but the sampled ratios also do not align with the distribution asso-
ciated with the relevant ensemble of random matrices, the circular unitary ensamble (CUE).

We now further separate the non-frozen subspace into the subspace spanned by the eigen-
states with near-maximal entanglement entropy and the subspace spanned by the eigenstates
without near-maximal entanglement entropy. Fig. 12 shows that the level spacing statistics
corresponding to the near-maximal states agrees with the distribution for the associated ran-
dom matrix ensemble, while the level spacing statistics associated with the eigenstates with-
out near-maximal entanglement entropy seems to exhibit Poisson statistics. This, therefore,
provides evidence to suggest that the non-frozen subspace has fragmented into a subspace
exhibiting chaotic dynamics and a subspace exhibiting integrable dynamics.
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Figure 11: Entanglement entropy for eigenstates of the evolution in the NN-RLBL
model. Parameters are given by τ= 2πp

7
and V =

p
3 which corresponds to activated

hopping pairs with ∆ = 1 frozen and none of the other ∆ conditions satisfied. On
the left we consider evolution of 3 particles in an 8× 6 lattice and on the right the
evolution of 4 particles in an 8× 4 lattice. In both cases, ∆ = 1 frozen yields frozen
particle configurations leading to a set of zero entanglement entropy eigenstates.
Additionally, there is a subspace of near-maximal entanglement entropy eigenstates.
However, circled in red, there are eigenstates with entanglement entropy in-between
the two extreme values. The span of these eigenstates forms another non-ergodic
subspace of the Hilbert space that is distinct from frozen or cellular automation sub-
spaces.

We suspect that the splitting of the non-frozen subspace may be further understood via a
close consideration of the symmetries of the Floquet model, the satisfied Diophantine condi-
tions, and their interplay. Similarly, it may be possible to describe in more detail the dynamics
of the putative integrable subspace. However, we leave such investigations for future work.

4 Summary and discussion

In recent years the study of quantum many body states that break ergodicity has been an
active field of research. Here, we considered conditions for dynamics in interacting systems
that takes initial local number states to local number states. We have found such conditions
for systems with sequentially activated hopping involving interactions such as Hubbard and
nearest neighbour density interactions. Studying the resultant Diophantine relations between
interaction strength, hopping energy, and hopping activation time, we discovered solutions to a
variety of such systems. The resultant dynamics can be cast into two types: (1) Evolution that is
deterministic for any initial Fock state (2) Fragmentation of the Hilbert space into deterministic
sub-spaces and non-deterministic ones.

Our results introduce new sets of dynamically tractable interacting systems, with an em-
phasis on 2d where such results are scarce. Furthermore, the approach is applicable to similar
systems in other dimensions. At the special solvable points, we get a variaty of behaviors from
frozen dynamics of Fock states to cellular automata like evolution of selected subspaces. In
cases where only some of the Diophantine conditions are met, we have shown that the special
subspaces can exist simultaneously with states that possess volume law entanglement entropy
and level statistics suggesting thermalizing behavior.

As discussed in section 3.2, although the ratios of Hamiltonian parameters (interaction
strength, evolution time etc) considered here are finely tuned, previous work suggests that
similarly finely tuned points may be stabilized by disorder to realize novel dynamical phases.
In particular, periodic celullar automata evolution in our models may lead to new classes of
time crystals.
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Figure 12: Level spacing statistics in the NN-RLBL model. Similar to Fig. 11, we con-
sider evolution at τ= 2πp

7
and V =

p
3 with two different lattice sizes and fillings: a)

3 particles in an 8×6 lattice, b) 4 particles in an 8×4 lattice. In both cases, we have,
from left to right: level spacing statistics of the full Hilbert space minus the frozen
subspace, statistics for non-frozen eigenstates with entanglement entropy, Sent, less
than a cutoff value [3 for a) and 2.6 for b)], and statistics for eigenstates with en-
tanglement entropy greater than a cutoff [3 for a) and 3.2 for b)]. The level spacing
statistics for all non-frozen eigenstates is a mixture of Poisson statistics (correspond-
ing to the subspace spanned by the eigenstates with Sent less than a given cutoff) and
circular unitary ensemble (CUE) statistics (corresponding to the subspace spanned
by the eigenstates with Sent more than a given cutoff). In the 4 particle case, the
entanglement entropy range between 2.6 and 3.2 contains a mixture of Poisson and
CUE statistics, so we focus on the eigenstates with Sent less than 2.6 or more than 3.2
where the Poisson and CUE subspaces may be easily distinguished.

The problem of finding complete freezing of Fock states also led us to an interesting number
theoretic problem involving the solution of a tower of Diophantine equations described in (26)
and (27). We have shown explicitly solutions for dynamics on lattices with maximal degree
of up to 4 nearest neighbours and conjecture a solution can be found for arbitrary maximal
degree.

Another interesting question is that of the effect of long range interactions. We expect
that two main consequences may arise: (1) The removal of all exactly solvable points, possi-
bly destroying classical cellular automata like behavior in the system and (2) The long-range
interactions may act as an effective disorder (due to the many possible configurations of par-
ticles away from particular activated sites where the dynamics occurs) stabilizing the classical
like dynamics. A further possibility is that interactions with finely tuned decay properties may
facilitate additional Diophantine conditions. However, except in rare cases, we do not expect
that the new equations will combine into a solvable system.

Finally, we remark that the Diophantine methods utilized in this work may be applicable
to bosonic systems, and systems with pairing terms where resultant cellular automata may not
be of the number preserving type.
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A Solutions for subspaces of two sites

A.1 Hubbard Floquet Evolution of 2-site Pair in the 2-particle Sector

We index the 4-particle configurations of the subspace as follows:

0→ ↑↓ __ , (A.1a)

1→ __ ↑↓ , (A.1b)

2→ ↑ _ _ ↓ , (A.1c)

3→ _ ↓ ↑ _ . (A.1d)

We therefore have that the representation of the Hubbard Hamiltonian (2) in this subspace is
given by

H =







V 0 −1 −1
0 V −1 −1
−1 −1 0 0
−1 −1 0 0






. (A.2)

Hence, the evolution, U = e−iHτ, is given by

U = e−
1
2 iVτ











e−
1
2 iVτ
�1

2 + A
�

e−
1
2 iVτ
�

−1
2 + A
�

B B
e−

1
2 iVτ
�

−1
2 + A
�

e−
1
2 iVτ
�1

2 + A
�

B B
B B e

1
2 iVτ
�1

2 + Ā
�

e
1
2 iVτ
�

−1
2 + Ā
�

B B e
1
2 iVτ
�

−1
2 + Ā
�

e
1
2 iVτ
�1

2 + Ā
�











,

(A.3)

where

A(V,τ) =
e

1
2 iVτ

2

�

cos(
1
2
τ
p

16+ V 2)− i
V

p
16+ V 2

sin(
1
2
τ
p

16+ V 2)
�

, (A.4)

B(V,τ) = 2i
sin(1

2τ
p

16+ V 2)
p

16+ V 2
, (A.5)

and Ā is the complex conjugate.
We are now interested in finding when (A.3) is a permutation matrix. Note, for non-

zero V , |B| < 1. Thus, our only hope for a permutation matrix is if B = 0. This occurs when
1
2τ
p

16+ V 2 = πm for some m ∈ Z, i.e. the condition given in (5).
Solving for A(V,τ) at condition (5) yields

A(V,τ)|Condit ion:(5) =
1
2

ei[πm+ 1
2 Vτ] . (A.6)
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In (A.3), U is a permutation matrix when, in addition to the requirement B = 0, |A| = 1
2 and

Vτ
π ∈ Z. These 2 conditions are uniquely met when, using (A.6), πm+ 1

2 Vτ = πn for some
n ∈ Z. Thus, we have arrived at the condition given in (6). When (5) and (6) are satisfied, U
then becomes

U |Conditions: (5) and (6) =







n− 1 n 0 0
n n− 1 0 0
0 0 n− 1 n
0 0 n n− 1






mod 2 , (A.7)

i.e. yielding the result that when n is even (odd) evolution is the identity (perfect swapping).

A.2 Nearest Neighbor Floquet Evolution of 2-site Pair in 1-particle Sector

The Hamiltonian of the j th 2-site pair is

H j = −(a
†
j1a j2 + h.c.) + V n j1n j2 + V N1n j1 + V N2n j2 , (A.8)

where N1, N2 correspond to the number of particles (outside the j th pair) neighboring site 1
and site 2 in pair j respectively. Note, [N1,H j] = [N2,H j] = 0.

The representation of the Nearest Neighbor Hamiltonian in the 1-particle sector is given by

H =
�

N1V −1
−1 N2V

�

. (A.9)

Hence, the evolution, U = e−iHτ, is given by

U = e−
1
2 i(N1+N2)Vτ

C

�

C cos
� C

2τ
�

− i∆V sin
� C

2τ
�

2i sin
� C

2τ
�

2i sin
� C

2τ
�

C cos
� C

2τ
�

+ i∆V sin
� C

2τ
�

�

, (A.10)

where

C(∆, V )≡
p

4+∆2V 2 , (A.11)

∆≡ N1 − N2 . (A.12)

For perfect swapping to occur, we must have that the diagonal elements of (A.10) go to
zero. This may only occur when

C
2
τ= π
�

m+
1
2

�

, for m ∈ Z , ∆= 0 . (A.13)

For freezing to occur, we must have that the off-diagonal elements of (A.10) are zero. Note,
depending on the particle configuration, ∆ may take any value such that

∆ ∈ Z , and |∆|<max[deg(site 1), deg(site 2)] ,

where deg is the degree of the vertex. We must therefore have that C
2τ = πm for all possible

values of ∆ and with m ∈ Z, i.e. letting ∆i ∈ {0, 1, ..., max [deg(site 1), deg(site 2)]− 1} such
that ∆i =∆ j iff i = j, we require

C(∆i , V )
2

τ= πmi , ∀ i , (A.14)

where mi ∈ Z.
Combining Equations (A.13) and (A.14) yields (26) and (27) in the main text.
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We may now proceed by solving one value of ∆i at a time. We start with ∆0 and, without
loss of generality, let ∆0 ̸= 0 (if ∆0 = 0, we may simply replace m0 →

m0
2 in the final result),

we have from (A.14) that

τ=
2πm0
q

4+∆2
0V 2

. (A.15)

Now, looking next at ∆1 ̸= 0 (again, we may set m1→
m1
2 if ∆1 = 0), we use Eqs. (A.14) and

(A.15) to find
q

4+∆2
1V 2

q

4+∆2
0V 2

πm0 = πm1 =⇒ V = 2

√

√

√
m2

1 −m2
0

∆2
1m2

0 −∆
2
0m2

1

. (A.16)

Now, taking any ∆ j such that j ≥ 2 and combining Eqs. (A.14), (A.15), and (A.16) and
simplifying we find

m2
0(∆

2
1 −∆

2
j ) +m2

1(∆
2
j −∆

2
0) +m2

j (∆
2
0 −∆

2
1) = 0 , mi →

mi

2
, if∆i = 0 . (A.17)

Equation (A.17) therefore corresponds to a set of max [deg(site 1), deg(site 2)] − 3 Dio-
phantine equations that must be solved simultaneously to find the values of mi (and thus V,τ)
that correspond to CA dynamics. Note, also, that in (A.17) we must replace mi →

mi
2 for

whichever ∆i = 0.
Note, a particular solution for the first equation in (A.17) when∆0,∆1,∆2 ̸= 0 is m0 =∆0,

m1 =∆1, m2 =∆2. Hence, using (14), the solution to (A.17) for j = 2 is given by




m0
m1
m2



= d





−
�

(∆2
1 −∆

2
2)w

2
1 − (∆

2
2 −∆

2
0)w

2
2

�

∆0 − 2(∆2
2 −∆

2
0)w1w2∆1

�

(∆2
1 −∆

2
2)w

2
1 − (∆

2
2 −∆

2
0)w

2
2

�

∆1 − 2(∆2
1 −∆

2
2)w1w2∆0

�

(∆2
1 −∆

2
2)w

2
1 + (∆

2
2 −∆

2
0)w

2
2

�

∆2



 . (A.18)

To obtain the equivalent of (A.18) when, for example,∆0 = 0, we must take m0 = 2∆0 instead

of m0 = ∆0 in the particular solution of (A.17) and relatedly must use A =
∆2

1−∆
2
2

4 instead of
A=∆2

1−∆
2
2 in (14). Similar adjustments must be made to B, m1 or C , m2 if∆1 = 0 or∆2 = 0

respectively.
Equation (A.18) provides all possible solutions for m0, m1, m2 (and thus V,τ) that yield

classical dynamics for any two site pair with ∆ = ∆0,∆1, or ∆2. As a corollary, this implies
that there exist values of V,τ (beyond the trivial V = 0 orτ= 0 solutions) for any measurement
protocol that sequentially isolates pairs of sites on a lattice such that all dynamics is a CA so
long as the maximum degree of the lattice is at most 3. In other words, in this case, we may
choose ∆0 = 0, ∆1 = 1, and ∆2 = 2 and (remembering to make the appropriate substitutions
since ∆0 = 0) we find (A.18) becomes (30). As discussed in the main text, combining (30)
with the ∆ = 3 condition yields a new Diophantine equation that may be solved numerically
to find non-trivial solutions. For arbitrary maximal degree, a tower of Diophantine equations
emerges. Whether solutions exist to these Diophantine equations for arbitrary maximal degree
(and, if they exist, what they are) we leave as an open problem.

Below Eq. (30) we also made the comment that, in this case, m0 is always even implying
frozen dynamics. We here show that this is the case by way of contradiction. If m0 is odd,
then (30) implies

−32w1w2

gcd[−32w1w2,−3w2
1 − 16w2

2,−6w2
1 + 32w2

2]
∈ 2Z+ 1 , (A.19)
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i.e., an odd number. Hence, the gcd in the denominator must cancel all the powers of 2 in
−32w1w2. This implies w1 must be even, since otherwise −3w2

1−16w2
2 would be odd leaving

the gcd in the denominator odd. Since w1 and w2 are coprime, w2 must be odd. We factor out
the powers of 2 from w1 leaving w1 = 2a1 w′1 where w′1 is odd. In the following, we will use
two properties of the gcd:

gcd(A, B) = gcd(A, B +mA) , (A.20)

gcd(A1A2, B) = gcd(A1, B)gcd(A2, B) , (A.21)

for m ∈ Z and A1, A2 coprime. We now get

gcd[−32w1w2,−3w2
1 − 16w2

2,−6w2
1 + 32w2

2] (A.22)

= gcd[−(25+a1)w′1w2,−3(22a1)w′21 − 24w2
2,−3(22a1+1)w′21 + 25w2

2] (A.23)

= gcd[−(25+a1)w′1w2,−3(22a1)w′21 − 24w2
2,−3(22a1+2)w′21] (A.24)

= gcd[(25+a1),−3(22a1)w′21 − 24w2
2, (22a1+2)]A , (A.25)

where in the third line we have added twice the second term in (A.23) to the third term using
(A.20) and in the fourth line we focus only on terms in the gcd that may contribute a factor
of 2, compiling the rest of the terms (through the use of (A.21)) in A given by

A= gcd
�

−w′1w2,−3(22a1)w′21 − 24w2
2,−3(22a1+2)w′21

�

gcd
�

(25+a1),−3(22a1)w′21 − 24w2
2,−3w′21
�

.

For the gcd (A.25) to cancel all the powers of 2 in −32w1w2 (thus making (A.19) odd),
we therefore must have that

25+a1 = gcd
�

(25+a1),−3(22a1)w′21 − 24w2
2, (22a1+2)
�

. (A.26)

This, however, is a contradiction since for gcd[(25+a1), (22a1+2)] = 25+a1 we must have
a1 ≥ 3, but then we have

gcd[(25+a1),−3(22a1)w′21 − 24w2
2, (22a1+2)] = 24 ̸= 25+a1 . (A.27)
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