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Abstract

We introduce a disorder-free model of S = 1/2 spins on the square lattice in a con-
strained Hilbert space where two up-spins are not allowed simultaneously on any two
neighboring sites of the lattice. The interactions are given by ring-exchange terms on
elementary plaquettes that conserve both the total magnetization as well as dipole mo-
ment. We show that this model provides a tractable example of strong Hilbert space
fragmentation in two dimensions with typical initial states evading thermalization with
respect to the full Hilbert space. Given any product state, the system can be decom-
posed into disjoint spatial regions made of edge and/or vertex sharing plaquettes that
we dub as “quantum drums”. These quantum drums come in many shapes and sizes
and specifying the plaquettes that belong to a drum fixes its spectrum. The spectra of
some small drums is calculated analytically. We study two bigger quasi-one-dimensional
drums numerically, dubbed “wire” and a “junction of two wires” respectively. We find
that these possess a chaotic spectrum but also support distinct families of quantum many-
body scars that cause periodic revivals from different initial states. The wire is shown to
be equivalent to the one-dimensional PXP chain with open boundaries, a paradigmatic
model for quantum many-body scarring; while the junction of two wires represents a
distinct constrained model.
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1 Introduction

A generic isolated quantum system with many degrees of freedom is expected to “self-
thermalize” as it evolves unitarily under the dynamics of its own Hamiltonian [1]. This implies
that pure states obtained from the time evolution of different initial states that share the same
energy density cannot be distinguished from each other at late times using only local probes.
A microscopic justification for this self-thermalization is provided by the eigenstate thermal-
ization hypothesis (ETH) [2–5] that posits that high-energy eigenstates of such systems appear
locally thermal with the temperature being set by the energy density of the eigenstate.

Rapid progress in producing and manipulating well-isolated quantum simulators such
as ultracold gases [6, 7], trapped ions [8], Rydberg atom arrays [9] and superconducting
qubits [10] has made it possible to study thermalization and its violations in such platforms. In
particular, the experimental observation of late-time coherent oscillations from certain simple
high-energy initial states in a kinetically-constrained chain of 51 Rydberg atoms [11] generated
great interest in understanding thermalization in interacting theories with constrained Hilbert
spaces. The revivals reported in Ref. [11]were shown to arise due to the large overlap of some
simple initial states with a small set of nonthermal high-energy eigenstates, dubbed quantum

2

https://scipost.org
https://scipost.org/SciPostPhys.14.6.146


SciPost Phys. 14, 146 (2023)

many-body scars (QMBS) in Refs. [12,13], in an otherwise non-integrable PXP model [14,15]
that served as the minimal model for the experiment.

Subsequent theoretical studies have shown a plethora of interesting non-ergodic behavior
in various models with constrained Hilbert spaces, including Hamiltonian formulations of lat-
tice gauge theories [16–20] that may be realizable on quantum simulators [21–23]. These
include different varieties of QMBS [24–47], disorder-free localization [48–51] as well as
a richer ergodicity-breaking paradigm dubbed Hilbert space fragmentation [52, 53]. Such
forms of ETH-violation are distinct from the breakdown of ETH due to many-body localiza-
tion [54–56] where strong disorder plays a crucial role.

Systems with Hilbert space fragmentation [57–70] often feature multiple conservation
laws [52, 53] which severely restrict the mobility of excitations. In such cases, the Hilbert
space can split into exponentially many dynamically disconnected fragments. These fragments
cannot be distinguished by any obvious global symmetries of the Hamiltonian [52, 53]. Such
fragments can either be finite or infinite-dimensional in size in the thermodynamic limit and
can show vastly different dynamical properties, such as integrability [59,67], disorder-free lo-
calization [48–51,58,62] or QMBS [66,68] though large fragments are expected to typically
satisfy a Krylov-restricted version of ETH [57]. Both weak and strong fragmentation is known
to exist in one-dimensional (1D) models [52,53], with the two cases distinguished by whether
the fraction of eigenstates violating the ETH are a set of measure zero or not in the ther-
modynamic limit. Weakly fragmented systems are similar to systems with QMBS since both
situations lead to weak ergodicity breaking where typical initial states still thermalize [71].
However, strongly fragmented systems present a distinct form of ergodicity breaking that is
different from systems with QMBS.

In Ref. [52], 1D spin models with both global charge and dipole conservation laws were
considered and it was argued that such dipole-conserving models should exhibit Hilbert space
fragmentation in any dimension [52,53] (for examples of fragmentation without global dipole
conservation, see Refs. [31,59,60,62,64,66,68,69]). One of the tell-tale signs of fragmentation
in such models is an exponential number of completely inert states that form one- dimensional
fragments on their own. While examples of both weak and strong fragmentation are known in
one dimension, it is not clear whether global dipole conservation alone is sufficient to lead to
strong fragmentation in higher dimensions. This extra conservation ensures that Hilbert space
fragments of different sizes can be constructed by embedding suitable “active” regions into
“inert” backgrounds and surrounding the “active” regions by “shielding” regions; the shielding
region, however, turns out to be of the same size or bigger than the active region it isolates [53].
This makes it difficult to construct explicit examples of strong fragmentation in two or higher
dimensions.

In this paper, we will construct a model that shows strong Hilbert space fragmentation in
two dimensions by considering S = 1/2 spins (equivalently, hard-core bosons) on the square
lattice with ring-exchange terms on elementary plaquettes that are consistent with total mag-
netization (equivalently, boson number) conservation as well as global dipole moment conser-
vation. The important additional ingredient in the model is the presence of a kinematic con-
straint that no two nearest neighbor sites can have two up-spins (bosons) simultaneously. Sim-
ilar models with ring-exchange and other competing terms, but without the additional hard-
core constraints, are known to have interesting low-energy phases and transitions [72–74].
High-energy properties of the unconstrained model with only the ring-exchange terms were
studied recently in Ref. [70]where it was realized that such terms imply subsystem symmetries
associated with the conservation of magnetization along each column and row of the square
lattice. This leads to global dipole conservation and consequently Hilbert space fragmentation.
However, the precise nature of the fragmentation (weak or strong) could not be established
for this unconstrained model in Ref. [70].
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Figure 1: An initial state on the square lattice where the up-spins (bosons) are indi-
cated in red while the other sites have down-spins (no bosons). The five quantum
drums that correspond to this initial state are shown with their elementary plaque-
ttes shaded. Plaquettes that are colored as green can have two up-spins (bosons)
along both its diagonals during quantum evolution as explained in the text. The pink
plaquettes, also labeled by “u”, can have two up-spins (bosons) only along one of
its two diagonals. Sites that do not belong to any of these five drums have inert
up/down spins fixed by the initial condition. Each drum generates a separate frag-
ment in Hilbert space with the corresponding fragment size being 3 for the top-left
drum, 7 for the bottom-left drum, 24 for the middle drum and 2 for both the top-right
and bottom-right drums. The boundary of the shielding region for 4 of the drums
are shown using thick blue lines.

As we will show here, the enforcement of the kinematic constraints leads to several addi-
tional features, including strong ergodicity breaking and the emergence of “quantum drums”,
that were absent in the model considered in Ref. [70]. The quantum drums here can be viewed
as the “active” regions which can then be surrounded by “shielding” regions of O(1) thickness
(in lattice units). Crucially, the thickness of the shielding regions does not grow with the size
of the quantum drums. Each quantum drum is made of edge and/or vertex sharing elemen-
tary plaquettes and specifying the plaquettes that make a drum uniquely fixes its spectrum,
thus justifying this particular nomenclature. We refer the reader to Fig. 1 for an example of
quantum drums and their corresponding shielding regions that emerge from a particular initial
state.

All the Hilbert space fragments of this model that are not one-dimensional, i.e., that do
not correspond to inert Fock states, can be generated from a combination of appropriate quan-
tum drums embedded in an otherwise inert background (which may itself shrink to zero for
certain drums) (see Fig. 1). Thus, the Hilbert space can be decomposed as a direct sum over
dynamically disconnected sectors that are completely labeled by quantum drums and any re-
maining inert spins that do not belong to a quantum drum. These quantum drums come in a
variety of shapes and sizes and can be made of a finite number or an arbitrarily large number
of plaquettes in the thermodynamic limit. Crucially, the nature of the Hilbert space fragments
generated from large drums that form the largest Krylov subspaces and are, therefore, relevant
for typical initial states allows for a proof of lack of thermalization by identifying either (a) an
extensive number of single spin correlators or (b) an extensive number of next-nearest neigh-
bor two-spin correlators whose expectation values stay pinned to their initial (non-thermal)
values. To the best of our knowledge, this interacting theory provides the first example of
strong Hilbert space fragmentation in two dimensions.
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The rest of the paper is arranged as follows. In Sec. 2, we introduce the model and sum-
marize some of its important properties. In Sec. 2.1, we discuss the quantum drums that
emerge in this model in more detail. The classical construction of the drums, given an ini-
tial state, is explained in Sec. 2.1.1. The construction of the shielding regions of drums and
closest approach of two drums such that these can still be considered independent of each
other is explained in Sec. 2.1.2. In Sec. 2.1.3, a recursive procedure to generate bigger quan-
tum drums starting from the most elementary one-plaquette drum is discussed. We introduce
some particular drums, dubbed wires and junctions of wires and some other quasi-one dimen-
sional (1D) and two-dimensional (2D) drums in Sec. 2.1.4. In Sec. 2.2, we give numerical
evidence that the energy eigenvalues and their associated degeneracies from exact diagonal-
ization (ED) on small systems can be completely understood in terms of the spectra of the
quantum drums. We construct a large class of eigenstates with integer eigenvalues (including
zero modes) from the packing of the simplest one-plaquette quantum drums in a macroscopic
system size in Sec. 2.3. A wire decomposition of drums is introduced in Sec. 2.4, with Sec. 2.4.1
showing how to calculate fragment dimension and Sec. 2.4.2 showing how to construct en-
tire drums from wire-decomposed reference states for some small drums. Evidence for strong
Hilbert space fragmentation in this model is presented in Sec. 3. The numerical evidence from
ED is presented in Sec. 3.1. In Sec. 3.2, we derive the scaling of the dimension of the Hilbert
space fragments for the quantum drums composed of two long parallel wires to show the util-
ity of the wire decomposition in obtaining the fragment size scaling for macroscopic drums.
The wire decomposition allows us to derive the scaling of the dimension of the Hilbert space
fragments associated with large 2D drums and determine which kinds of drums dominate sta-
tistically given a certain density of up-spins (bosons) and identify the Hilbert space fragment
with the largest dimension in Sec. 3.3. We prove that typical initial states that belong to these
large fragments (Krylov subspaces) do not thermalize with respect to the full Hilbert space
in Sec. 3.3 by identifying either an extensive number of single-spin correlators or two-spin
correlators that stay pinned to their initial non-thermal values. The analytical study for the
spectra of certain small quantum drums is given in Sec. 4. A tree structure to represent the
action of H in the Fock space of a drum is explained in Sec. 4.1. The spectra of small wires
is calculated in Sec. 4.2 while the spectra of other small quantum drums that can be viewed
as building blocks of more complicated wire junctions is calculated in Sec. 4.3. The spectra of
two different classes of bigger quasi-1D quantum drums, a wire and a particular junction of
two wires, are addressed numerically using ED in Sec. 5. Both these large quantum drums can
be interpreted as effective quasi-1D models with a spectrum that is symmetric around zero
energy. A tree generating algorithm is described and the equivalence of the wire to the 1D
PXP model on an open chain is shown in Sec. 5.1. The Hilbert space dimensions for both the
drums are calculated analytically and level statistics are computed numerically in Sec. 5.2.
The Hilbert space structure of the junction of two wires turns out to be completely different
from that of the wire as discussed in both Sec. 5.1 and Sec. 5.2. One of these fragments is
shown to have a macroscopically large number of exact zero modes while the other fragment
has no zero modes in Sec. 5.3. Both fragments satisfy Krylov-restricted ETH but also support
distinct families of QMBS that result in periodic revivals from different simple initial states as
discussed in Sec. 5.4. Our numerical results for the wire show that open PXP chains of length
3n+1, where n is an integer, lead to enhanced fidelity revivals for the period-3 ordered initial
|Z3〉 state without adding any optimal perturbations to the bare Hamiltonian; a feature which
may have experimental consequence for Rydberg chains. The junction of two wires also shows
QMBS and simple initial states from which clear revivals in fidelity are observed. Finally, we
summarize our main results and conclude in Sec. 6.
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2 Model and its properties

The Hamiltonian of the model is given by

H = J
∑

jx , jy

�

σ+jx , jy
σ+jx+1, jy+1σ

−
jx+1, jy

σ−jx , jy+1 + h.c.
�

, (1)

where σαjx , jy
for α = x , y, z represent spin-half Pauli matrices at sites ( jx , jy) of a 2D square

lattice, σ±jx , jy
= (σx

jx , jy
± iσ y

jx , jy
)/2, and the lattice spacing has been set to unity (a = 1). The

Hamiltonian is supplemented by the constraint that two up-spins can not occupy neighboring
sites of the lattice; this is implemented by the operator relation

�

1+σz
jx , jy

��

1+σz
jx±1, jy

�

=
�

1+σz
jx , jy

��

1+σz
jx , jy±1

�

= 0 . (2)

For finite Lx × L y rectangular lattices, we will consider open boundary conditions and the con-
straint (Eq. 2) is then applied to the three/two nearest neighbors of ( jx , jy) for the edge/corner
sites.

This system maps exactly to hard-core bosons with the following transformations:

2b†
jx , jy

b jx , jy
− 1= σz

jx , jy
,

b†
jx , jy
= σ+jx , jy

,
(3)

where b†
jx , jy

is the boson creation operator and n jx , jy
= b†

jx , jy
b jx , jy

is the boson number operator

at site ( jx , jy). For the rest of this work, we shall set J = 1. The terms in Eq. 1 can be viewed as
ring-exchange terms on elementary plaquettes which convert a clockwise arrangement of σz

from being (+1,−1,+1,−1) to (−1,+1,−1,+1) (equivalently, an arrangement of bosons from
(1,0, 1,0) to (0, 1,0, 1)) and vice-versa and annihilate other arrangements on a plaquatte. It
is convenient to define a vacuum state where all sites of the lattice have down-spins, i.e., no
bosons for future reference. This model has the following properties:

• The many-body spectrum of H is symmetric around the energy E = 0 for any finite
Lx × L y lattice with open boundary conditions (OBC). This is because the operator de-
fined by

C =
∏

( jx , jy )∈(even,even)

σz
jx , jy

, (4)

satisfies {H,C}= 0 where
∏

( jx , jy )∈(even,even) denotes a product over all the sites ( jx , jy) of
the lattice such that both jx and jy are even. This implies that any many-body eigenstate
of H with an energy E and denoted by |E〉 has a partner C|E〉 that has the energy −E.

• Apart from discrete symmetries like rotations by π/2 (for Lx = L y lattices) and π (for
Lx ̸= L y lattices), the model has a discrete reflection symmetry R where the axis of
reflection can be taken to be the diagonal through (0, 0) for Lx = L y or the perpendicular
bisector of the longer side when Lx ̸= L y . R commutes with both the Hamiltonian H
and the “chirality” operator C. This has the important consequence that the spectrum
has exact zero modes whose number scales exponentially with the system size due to an
index theorem shown in Ref. [75]. These zero modes are the only eigenstates of H that
also possess a definite “chiral charge” of ±1 under the action of C.

• The model conserves the total magnetization (boson number) defined by Sz
tot =
∑

jx , jy

σz
jx , jy

.

More interestingly, it conserves the following dipole moments in the x and y directions:

Dx =
∑

jx , jy

jxσ
z
jx , jy

, Dy =
∑

jx , jy

jyσ
z
jx , jy

. (5)
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This property follows from the fact that the total magnetization on each column and
each row of the square lattice is separately conserved under the dynamics induced by
H (Eq. 1) as pointed out earlier in Ref. [70] in a similar model, but without the Hilbert
space constraints. Models with the simultaneous conservation of total charge and dipole
moment have been shown to have the property of Hilbert space fragmentation [52,53].
This model is also fragmented due to the same reasons.

• The simultaneous conservation of magnetization on each column and each row of the
Lx × L y lattice also implies disorder-free localization for a large class of initial states.
To see this, let us consider the vacuum state on a Lx × L y lattice with OBC and then
create an excitation by flipping a subset of spins to σz

j = +1 such that the sites labelled
by j are contained inside or on the boundaries of a rectangle of finite extent smaller
than the entire lattice. The aforementioned conservation property then ensures that
these σz = +1 spins cannot be transported outside this bounding rectangle since all
the rows/columns outside this region have their magnetizations pinned to their lowest
possible value.

• This model has an exponentially large number (in system size) of zero modes that are
simply inert states, i.e., Fock states in the computational basis that are annihilated by all
the local terms in H, a property shared by other models that simultaneously conserve
total charge and dipole moment. However, the constrained nature of the Hilbert space
also leads to an an exponentially large number of non-trivial zero modes that emerge
from Hilbert space fragments of various sizes larger than 1, ranging from 3 to cLx L y , with
c > 1, for Lx , L y ≫ 1.

• This model possesses eigenstates with exact non-zero integer eigenvalues when the
Hamiltonian has the normalization of J = 1 in Eq. 1. Their number scales exponen-
tially in Lx L y for integer eigenvalues ranging from ±1 to ±O(

Æ

Lx L y) for Lx , L y ≫ 1.

While we focus on the model Hamiltonian in Eq. 1 with J = 1 for the rest of the paper,
it is useful to point out that that the fragmentation property stays unchanged even if J is re-
placed by an arbitrary J( jx , jy) and/or additional diagonal interactions (in the computational
basis) are included. These only change the associated eigenvalues and eigenvectors but not
the contributing Fock states in any of the Hilbert space fragments. The modified H with an
arbitrary J( jx , jy) but no additional diagonal interactions still anticommutes with C (Eq. 4)
which means that the many-body spectrum continues to have E to −E symmetry. While the
trivial zero modes of H in Eq. 1 (i.e., the inert states) persist for an arbitrary J( jx , jy), the
number of non-trivial zero modes decreases drastically due to the loss of the reflection sym-
metry R, with fragments of sizes that are odd (even) integers contributing one (no) zero mode
each. The presence of additional diagonal interactions destroy the E to −E symmetry of the
many-body spectrum since C no longer anticommutes with the modified H.

2.1 Quantum drums

Due to the structure of H (Eq. 1) and the nature of the constrained Hilbert space (Eq. 2),
elementary plaquettes can have a maximum of two up-spins (bosons), along any one of the
two diagonals, and these are the only local configurations that can have any dynamics. Fur-
thermore, a plaquette with two up-spins (bosons) can influence the number of possible local
configurations in neighboring two-spin plaquettes even if it can have the two up-spins (bosons)
only along one of the diagonals but not the other due to kinematic constraints (Eq. 2). These
two facts lead to the emergence of dynamically disconnected spatial structures called quantum
drums on a Lx × L y lattice with OBC.
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To understand the origin of these drums, let us imagine a classical Markov process in which
the transition from one Fock state to another is caused by a ring-exchange on some elementary
plaquette with two up-spins (bosons). In the presence of the hard-core constraints specified
in Eq. 2, the configuration space splits into mutually inaccessible fragments, with all configu-
rations within a fragment being mutually accessible via some finite sequence of the allowed
transitions. Crucially, each such fragment can be associated with a unique real-space structure
composed of a collection of connected elementary plaquettes that share edges and/or vertices.
The Hamiltonian H (Eq. 1) acts in the space of mutually accessible configurations of each such
fragment to generate the spectra of these quantum drums. From a dynamical point of view,
the precise nature of the quantum drums is imprinted in the particular initial state that the
system starts from.

We will specify two complementary construction procedures for quantum drums below,
one which starts from a given product state in the computational basis (Sec. 2.1.1) and the
other where the drums are constructed recursively starting from the most elementary one-
plaquette drum (Sec. 2.1.3). Some of the important properties of quantum drums, which will
be detailed out in the rest of the paper, are summarized below:

• Quantum drums are constructed of connected elementary plaquettes that share
edges/vertices. A drum has no site that contains an inert up-spin (boson).

• All many-body eigenstates of H (Eq. 1) can be expressed in terms of the tensor product of
eigenstates of appropriate quantum drums and of the remaining inert (up/down) spins,
if any, on sites that do not belong to any quantum drum. This point is illustrated in detail
using ED results in Sec. 2.2.

• The spectrum of a drum is uniquely fixed once the plaquettes that belong to it are speci-
fied. The spectrum of any quantum drum is symmetric around E = 0. This follows from
the above mentioned point and implies the existence of a corresponding chiral operator
Cdrum for each drum.

• A class of quasi-1D and 2D quantum drums have an internal reflection symmetry Rdrum
that commutes with both Cdrum and H resulting in an exponential number of exact zero
modes as the size of the drum is increased.

• Any quantum drum conserves the total magnetization when only the spins (bosons) on
the sites that belong to the drum are considered.

• Any quantum drum satisfies an internal subsystem symmetry of simultaneous conserva-
tion of magnetizations along each column and each row (where the column and row is
defined with respect to the background Lx × L y lattice) of the drum.

2.1.1 Constructing quantum drums associated with an initial product state

We first give a construction procedure that fixes all the quantum drums given a classical Fock
state on a Lx × L y lattice with OBC. An initial Fock state and its associated drums are shown
in Fig. 1. The construction procedure is schematically shown in Fig. 2 for two drums start-
ing from different Fock states. Given the Fock state, firstly all plaquettes with two up-spins
(bosons) are shaded. Ring-exchange moves are attempted on such plaquettes to see whether
any additional plaquettes with two up-spins (bosons) are generated which are again shaded.
This process is repeated with the newly shaded plaquettes until no additional shaded plaque-
ttes are generated. The shaded plaquettes are then subdivided into connected regions that
comprise of elementary plaquettes that share edges and/or vertices. A final check has to be
performed on each of these connected regions separately to construct the quantum drums.
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A

B

Figure 2: Illustration of the recursive construction of a quantum drum given two
different initial states (marked by A and B in the figure) on a 7× 7 lattice with OBC
where the filled red dots indicate up-spins. The shaded plaquettes form part of a
drum with the top-right and bottom-right panels indicating the drums for the initial
states marked A and B respectively. A cross at the center of a plaquette indicates that
a ring-exchange move is carried out for that plaquette. The green plaquettes in the
top-right panel and the green and pink plaquettes in the bottom-right panel follow
the same convention as used in Fig. 1.

If the mutually accessible Fock states from a connected region have certain sites where any
up-spin (boson) remains the same in each of the configurations, these up-spins (bosons) are
then labelled as inert and the shaded plaquettes containing any inert up-spins (bosons) are
unshaded. The remaining shaded plaquettes that are still connected to each other via an edge
or a vertex forms a quantum drum. This last check is necessary to rule out inert structures
made entirely of plaquettes with two up-spins (bosons) [see Fig. 1 for an example composed
of three up-spins (bosons) on two edge-sharing plaquettes] and to find spatial structures that
can be decomposed into an inert region of up-spins (bosons) and a smaller quantum drum
[see Fig. 1, bottom right for an example of such a decomposition].

Two simple examples of this construction are given for initial classical Fock states on a
7 × 7 lattice in Fig. 2 (top-left and middle-left panels), where the filled circles indicate up-
spins (bosons) while the other sites have down-spins (no bosons). Let us first consider the
top three panels. The initial state is given in the top-left panel marked as A and three pla-
quettes are shaded at this stage. Implementing ring-exchange moves on two of the shaded
plaquettes indicated by crosses in the top-left panel generates two more shaded plaquettes
as shown in top-middle panel. Implementing ring-exchange moves on the shaded plaquettes
indicated by crosses in that panel generates another shaded plaquette in the top-right panel
and further ring-exchanges do not generate any additional shaded plaquettes. The quantum
drum generated by this initial state only contains elementary plaquettes that share vertices.

The initial state in the middle-left panel marked by B gives four shaded plaquettes. Imple-
menting ring-exchange to this state for the plaquette indicated by a cross generates two more
shaded plaquettes as shown in the following panel to the right. Carrying out ring-exchange
moves on two more plaquettes as indicated by crosses generates two additional shaded pla-
quettes. To generate the other two shaded plaquettes that form the entire quantum drum, we
go back to the initial Fock state shown in the bottom-left panel and perform two ring exchange
moves on the plaquettes indicated by a cross one after the other as indicated in the bottom
panels. The resulting quantum drum consists of only edge-sharing plaquettes in this case.
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Both the quantum drums shown in Fig. 2 generate Hilbert space fragments of size 11
respectively, diagonalizing which results in the following eigenvalues:

�

±

√

√1
2

�

9±
p

57
�

,±
p

3,±
p

2,0, 0,0

�

,

�

±2
p

2,±
p

3,−1,−1,+1,+1,0, 0,0
�

,

(6)

where the top (bottom) line in Eq. 6 refers to the eigenvalues for the quantum drum shown in
the top-right (bottom-right) panel of Fig. 2. These two examples already illustrate that drums
can have non-trivial zero modes, nonzero integer-valued eigenstates as well as eigenstates
with irrational eigenvalues. We refer the reader to Sec. 4 for the explicit construction of the
Hilbert space fragments associated with some small quantum drums.

2.1.2 Shielding region and closest approach of drums

Each quantum drum is associated with a shielding region of its own such that two quantum
drums can fluctuate independently as long as the boundaries of their shielding regions do not
cross. Given any Fock state consistent with a single quantum drum composed of a finite number
of elementary plaquettes with the rest of the sites that do not belong to the drum beingσz = −1
(no bosons), the corresponding shielding region can again be fixed by a classical construction.
For this purpose, let us define

n□ j
=max
�

2+ (σz
jx , jy
+σz

jx+1, jy
+σz

jx , jy+1 +σ
z
jx+1, jy+1)/2
�

, (7)

where n□ j
is computed using all the Fock states that are accessible from the starting Fock state

by ring-exchanges on elementary plaquettes. By definition (see Sec. 2.1.1), all plaquettes that
belong to a quantum drum have n□ j

= 2. For a quantum drum embedded in the vacuum
state, all other elementary plaquettes must have either n□ j

= 0 or 1. Importantly, only those
plaquettes that lie to the exterior of the drum and directly share an edge or a vertex with the
plaquettes on the perimeter of the drum can have n□ j

= 1 while all other exterior plaquettes
necessarily have n□ j

= 0. To identify the subset of exterior plaquettes with n□ j
= 1 requires

constructing all the Fock states accessible to the given quantum drum since certain plaquettes
with n□ j

= 2 may allow two up-spins (bosons) only along one diagonal and not the other (e.g.,
see Fig. 1 for such plaquettes that are labeled by “u” and also indicated in pink.)

The shielding region of a quantum drum composed of a finite number of elementary pla-
quettes only consists of these exterior plaquettes with n□ j

= 1 that directly share edges/vertices
with the plaquettes on the perimeter of a quantum drum irrespective of the size of the drum.
Thus, the thickness of the shielding region does not scale with the size of the quantum drum
and remains O(1) in lattice units (see Fig. 1 and Fig. 3 for examples). The boundary of the
shielding region is defined as the closed curve formed by the edges that are common to the
the exterior plaquettes with n□ j

= 1 and n□ j
= 0. The sites belonging to this boundary do not

carry any σz = +1 spins (bosons).
Let us illustrate the construction of the shielding regions using two examples. First con-

sider an elementary one-plaquette quantum drum starting from the vacuum state and then
placing two σz = +1 spins (bosons) along any one of the diagonals of an elementary plaque-
tte. Given this Fock state, ring-exchange is possible only on this elementary plaquette which
then generates another Fock state where the σz = +1 spins (bosons) get transported to the
other diagonal of this plaquette. Considering both these Fock states to compute n□ j

(Eq. 7)
on each plaquette of the lattice, we see that n□ j

= 2 for the flippable plaquette which is sur-
rounded by n□ j

= 1 and n□ j
= 0 plaquettes, respectively (Fig. 3, left panel). The n□ j

= 2
plaquette defines the quantum drum while the n□ j

= 1 plaquettes along the perimeter of the
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Figure 3: Two quantum drums are shown in the left and the right panels. The integers
shown inside each plaquette refers to n□ j

given by Eq. 7 on each plaquette of the
lattice using all the Fock states generated when the quantum drum is embedded in
the vacuum state. The green (pink) plaquettes in the two quantum drums follow
the same convention as used in Fig. 1. The boundary of the shielding region of both
drums is shown using thick blue lines in both panels.

quantum drum define the shielding region associated with this drum. The shielding region
terminates at the boundary of these n□ j

= 1 and the n□ j
= 0 plaquettes (Fig. 3, left panel).

By construction, the sites at the boundary of the shielding region cannot have σz = +1 spins
(bosons). A more complicated quantum drum is shown in Fig. 3, right panel which can be gen-
erated from the vacuum state by, e.g., placing two σz = +1 spins (bosons) each along parallel
diagonals of the left-most and the right-most plaquette contained in the quantum drum such
that the hard-core constraints are not violated. Performing all possible ring-exchanges for this
quantum drum generates two more Fock states. Considering these three Fock states to com-
pute n□ j

on each plaquette of the lattice, the four n□ j
= 2 plaquettes, which are all connected

to each other by edges for this particular drum, now define this bigger quantum drum (Fig. 3,
right panel) while the n□ j

= 1 plaquettes along the perimeter of the quantum drum define
the shielding region as before (Fig. 3, right panel). The shielding region is more complicated
compared to the one-plaquette drum and its boundary is again defined by the boundary of the
n□ j
= 1 and the n□ j

= 0 plaquettes (Fig. 3, right panel). This classical construction procedure
for the shielding region can be carried out for any arbitrary quantum drum composed of a
finite number of elementary plaquettes.

We can now ask for the closest approach of any two quantum drums embedded in the vac-
uum state such that both the drums can be viewed to be independent of each other. Up-spins
(bosons) cannot be transported outside the closed boundary of the shielding region of a quan-
tum drum. Since the boundary sites do not carry any up-spin (boson), two quantum drums
stay independent of each other as long as the boundaries of their corresponding shielding re-
gions do not intersect; they may at most touch each other. For example, this is the case in Fig. 1
which explains why the different quantum drums can be considered to be independent of each
other. When the boundaries of the shielding regions first cross each other, the corresponding
quantum drums in their interior have to necessary change according to one of the following
three possibilities: (i) the two quantum drums fuse to produce a bigger quantum drum, (ii) a
spatial structure is produced such that it can be decomposed into an inert region of up-spins
(bosons) and a smaller quantum drum, and (iii) a fully inert region of up-spins (bosons) is
formed.

2.1.3 Recursive construction of bigger drums from smaller drums

We now present a complementary drum construction procedure to the one explained in
Sec. 2.1.1 which does not need the specification of a product state on the entire Lx × L y
lattice. Instead, this recursive construction creates larger drums starting from smaller ones.
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Figure 4: The left panel shows how adding up-spins (bosons) to the sites at the
boundary of the shielding region (indicated by thick blue lines and also labelled from
p1 to p12) of an elementary one-plaquette drum (marked as A) leads to a variety
of larger quantum drums which are grouped according to the addition of n⃝ up-
spins (bosons) where n = 1,2, 3,4. The right panel illustrates the same concept for
a more complicated quantum drum (marked as B) where three up-spins (bosons)
(indicated by black dots) are added to three sites of the boundary of the shielding
region (indicated by thick blue lines). Filled red dots indicate up-spins (bosons). The
green (pink) plaquettes in all the quantum drums follow the same convention as used
in Fig. 1.

We start with a Fock state consistent with a particular quantum drum composed of certain
connected plaquettes, where the sites that do not belong to the drum are assigned σz = −1
spins (no bosons). This is equivalent to embedding the quantum drum in the vacuum state.
By definition, the boundary of the shielding region of such a drum has σz = −1 (no bosons).
A natural way to construct bigger drums is to choose a subset of the sites that belong to this
boundary of the shielding region and then replace σz = −1 by σz = +1 at these selected sites.
This generates a new Fock state from which, using the procedure of identifying a drum from a
Fock state explained in Sec. 2.1.1, one gets one of the following three possibilities: (i) a bigger
quantum drum with no inert up-spins (bosons), (ii) a partially active structure that can be
decomposed into a smaller quantum drum and a non-zero number of inert up-spins (bosons),
and (iii) a completely frozen structure with all up-spins (bosons) being inert.

Two examples of this recursive construction to generate bigger drums starting from a
smaller drum are shown in Fig. 4. We first start with a Fock state consistent with an elementary
one-plaquette drum in the left panel of Fig. 4, marked as A. In this case, the boundary of the
shielding region is a square that consists of twelve sites, labelled as p1, · · · , p12 in Fig. 4. New
Fock states, consistent with larger drums, can be created by adding one/two/three or four
up-spins (bosons) in this boundary region as indicated by the groups labelled by 1⃝, 2⃝, 3⃝
and 4⃝ in Fig. 4, left panel. Adding a single up-spin (boson) at p1 or p4 generates Fock states
consistent with a drum composed of two elementary plaquettes that share a vertex as shown
in Fig. 4, left panel, group labelled by 1⃝. Adding two up-spins (bosons) on the boundary of
the shielding region in different ways leads leads to Fock states consistent with three different
drums as shown in Fig. 4, left panel, group labelled by 2⃝. E.g., adding up-spins (bosons) at
p1 and p7 leads to a Fock state consistent with a drum with three plaquettes that share vertices
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along a single diagonal (leftmost drum shown in the group labelled by 2⃝ in left panel of
Fig. 4), at p1 and p5 leads to a Fock state consistent with a drum with four plaquettes that are
connected by edges (middle drum shown in the group labelled by 2⃝ in left panel of Fig. 4),
and at p4 and p7 leads to a Fock state consistent with a drum with three plaquettes that again
share vertices, but not along a single diagonal (rightmost drum shown in the group labelled
by 2⃝ in left panel of Fig. 4)). Adding three up-spins (bosons) at, e.g., p1, p4 and p7, leads
to a Fock state consistent with a quantum drum with four plaquettes that are connected by
vertices as shown in the group labelled by 3⃝ in left panel of Fig. 4. Finally, adding four up-
spins (bosons) at p1, p4, p7, and p10 leads to a Fock state consistent with a quantum drum with
five plaquettes connected by vertices (Fig. 4, left panel, group labelled by 4⃝). To illustrate
possibility (ii), we can add four up-spins (bosons) at p1, p3, p7 and p11 (Fig. 4, left panel)
which leads to a Fock state consistent with a single-plaquette quantum drum containing sites
p6, p7 and p8 while the other up-spins (bosons) become inert. To illustrate possibility (iii), we
can add a single up-spin (boson) at p5 (Fig. 4, left panel) to generate a Fock state that has only
inert up-spins (bosons).

This recursive procedure can be carried forth for the bigger quantum drums to produce
more complicated quantum drums. An example is shown in panel marked as B (Fig. 4, right
panel) where three up-spins (bosons), indicated by filled black dots, are placed on the bound-
ary of the shielding region of a quantum drum, previously produced by adding two up-spins
(bosons) at the boundary of the shielding region of the elementary single-plaquette drum,
which leads to a bigger quantum drum with ten elementary plaquettes that are connected by
edges. In principle, this recursive procedure can be used to generate and enumerate all pos-
sible quantum drums until a given stage of the recursion starting from the most elementary
one-plaquette drum, but we leave this for a possible future investigation.

2.1.4 Wires, junctions of wires, other quasi-1D and 2D drums

As is already evident from the examples we have constructed so far, quantum drums come
in several shapes and sizes, from being composed of a single elementary plaquette (Fig. 1)
to a finite number of plaquettes (Fig. 1 and Fig. 2). One can even construct quantum drums
with an arbitrarily large number of plaquettes in the thermodynamic limit. These varieties
of drums can be quasi-1D or 2D in nature. We dub the simplest quasi-1D drum as a wire. A
wire is composed of Np plaquettes that share vertices along a single diagonal and resemble
straight wires (see Fig. 4, left panel for three such drums with Np = 1,2, 3). Such a wire can
be constructed with any Np ≥ 1 that leads to a quasi-1D structure for Np≫ 1.

Interestingly, one can create other quantum drums that resemble different kinds of junc-
tions of such wires. Examples of such quantum drums are shown in Fig. 5. In the top panel,
the quantum drums marked by A and B can be viewed as two different junctions of two wires,
while in the bottom panel, the quantum drum marked by C (D) can be viewed as a junction
of three (four) quantum wires. Wires can be used to build still more intricate quasi-1D as
well as 2D drums (see Sec. 2.4 for details). The fragment sizes for large quasi-1D (2D) drums
scale as αl (β l2

) where α > 1 (β > 1) as l ≫ 1 where l represents the linear dimension of
the drum and α (β) depend on the nature of the quantum drum under consideration. Each
such quantum drum can be viewed as an interesting example of an interacting quasi-1D/2D
model with a constrained Hilbert space that also satisfies an internal subsystem symmetry of
simultaneous conservation of magnetizations along each column and each row of the drum,
where the columns/rows are defined with respect to the Lx × L y lattice in which the drum is
embedded, when only the sites that belong to the drum are considered.
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Figure 5: The quantum drums marked from A-D can be viewed as examples of dif-
ferent kinds of junctions of wires. A and B show examples of junctions of two wires
while C (D) shows an example of a junction of three (four) wires. The green (pink)
plaquettes in all the quantum drums follow the same convention as used in Fig. 1.
The filled red dots indicate up-spins in all the panels and represent just one of the
many possible Fock states of the corresponding drum.

2.2 Exact diagonalization of small lattices and deciphering spectrum using
drums

The constrained nature of the Hilbert space reduces the number of allowed Fock states from
2L2

to κL2
where κ ≈ 1.503 · · · is the hard square entropy constant [76] for a square lattice

with L≫ 1. This growth of the Hilbert space dimension with L is, nonetheless, still too large
to perform ED for the full spectrum for even moderately large values of L. However, analysing
the numerical results for small L × L lattices is already instructive.

Let us first consider a 5× 5 lattice and focus on the total magnetization sector with 5 up-
spins (bosons). This gives a Hilbert space dimension of 10741 from direct enumeration taking
the hard-core constraints in account. Plotting the histogram of the energy eigenvalues ob-
tained from full ED reveals that the eigenvalues are clustered around only a few special values
(up to machine precision) (Fig. 6, left panel) unlike what is expected of a generic interacting
system with a similar Hilbert space dimension. Furthermore, while an explicit construction
shows that there are 4559 inert Fock states that are trivially annihilated by H (Eq. 1) in this
magnetization sector, ED reveals that there are a total of 5525 zero modes (with zero eigen-
value within machine precision) implying the presence of 966 non-trivial zero modes. ED
also shows the presence of 1580 eigenmodes with eigenvalue +1 (−1) and 196 eigenmodes
with eigenvalue +2 (−2). Such non-zero integer eigenvalues are unexpected in generic in-
teracting models which have highly irrational eigenvalues that cannot be expressed in any
simple closed form. These and other features of the full ED data can be completely under-
stood in terms of quantum drums (Fig. 6, right panel). The 10741-dimensional Hilbert space
in the computational basis gets fragmented into 4559 (1-dimensional), 1552 (2-dimensional),
434 (3-dimensional), 324 (4-dimensional), 32 (5-dimensional), 32 (6-dimensional), 16 (7-
dimensional) and 2 (8-dimensional) Hilbert space fragments. The 1-dimensional fragments
simply correspond to the inert Fock states that are annihilated by all local terms of H (Eq. 1)
(and are denoted collectively by panel marked E in Fig. 6, right panel). All the other fragments
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Figure 6: (Left panel) Histogram of the energy eigenvalues for a 5 × 5 lattice with
5 up-spins and OBC. The vertical dotted blue lines indicate the allowed eigenvalues
from Eq. 8. (Right panel) The allowed quantum drums in this system where the
up-spins (bosons) are indicated by filled red dots and the plaquettes that belong to
quantum drums are shaded. The green (pink) plaquettes in all the quantum drums
follow the same convention as used in Fig. 1. The inert up-spins (bosons) are indi-
cated by a blue circle around the filled red dot. Each quantum drum is consistent
with more than one Fock state with only one representative Fock state shown here.
The different eigenstates can be viewed as modes of these quantum drums.

can be viewed as being generated from a collection of appropriate quantum drums and any
remaining inert up-spins (bosons) that are not part of any drum.

Given the lattice dimensions and the number of up-spins (bosons), only certain drums are
allowed with specific degeneracies set by the lattice. The different drum configurations along
with one representative Fock state for each is shown in Fig. 6 (right panel) and are marked as
A1, · · · , A9, B1, · · · , B4, C and D. The configurations labeled from A1 to A8 consist of different
types of single drums that contains all the 5 up-spins (bosons) while A9 consist of two indepen-
dent drums, one with 2 up-spins (bosons) and another with 3 up-spins (bosons), respectively.
The configurations B1, B2 and B3 have a single quantum drum each with 4 up-spins (bosons)
while 1 up-spin (boson) is inert as it does not belong to the drum. The configuration B4 has
two independent one-plaquette drums and 1 inert up-spin (boson) that does not belong to any
of the 2 drums. Configuration C (D) has a drum with 3 (2) up-spins (bosons) and 2 (3) inert
up-spins (bosons).

The degeneracies associated with the different configurations A1 to E are indicated inside []
for each case in Eq. 8 and arise from the number of distinct ways in which the given drums and
any inert up-spins (bosons) can be placed on the 5×5 lattice with OBC. For example, A1 has a
degeneracy of two because there are two diagonals along which the associated drum may be
placed. Similarly, A2 has a degeneracy of sixteen since there are sixteen distinct ways to place
a “L” composed of four connected plaquettes that form the associated drum on this lattice. The
other degeneracies given in Eq. 8 can be computed similarly. The spectrum shown for A1 to E
in Eq. 8 can be straightforwardly calculated by solving for the spectra of the constituent drums.
The eigenspectra of all the fragments that arise from these quantum drums, barring the drum
shown in A2, can be expressed in closed form and show a variety of eigenvalues including
zero modes, non-zero integer modes and irrational modes (Eq. 8). The extra non-trivial zero
modes and their degeneracies can also be understood as zero modes of quantum drums shown

15

https://scipost.org
https://scipost.org/SciPostPhys.14.6.146


SciPost Phys. 14, 146 (2023)

in A1, A2, A3, A4, A6, A8, B2, B3, B4 and C (Eq. 8). It is useful to stress here that while certain
drums, e.g., the one contained in B3 and the one contained in C, are evidently different from
each other, they have identical spectra (Eq. 8).
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D[1552]→±1 , E[4559]→ 0 . (8)

2.3 Eigenstates with integer energies from packing of one-plaquette drums

Eigenstates composed of only elementary one-plaquette quantum drums and inert spins al-
ready generate non-trivial zero modes and non-zero integer eigenvalues. These can be viewed
as the 2D generalization of bubble eigenstates discussed in a 1D model of Hilbert space frag-
mentation [66]. Hilbert space fragments with n0 such independent one-plaquette drums have
a dimensionality of 2n0 since each such elementary quantum drum is consistent with two con-
figurations on the plaquette. An extensive number of such elementary quantum drums are
needed to form finite energy-density eigenstates of H with a macroscopic number of up-spins
(bosons) (Fig. 7). The closest packing of these elementary quantum drums such that the
boundaries of their shielding regions do not overlap is shown in Fig. 7 which yields the max-
imum possible value of n0 = L2/9 for a L × L square lattice when L ≫ 1 thus fixing the
corresponding fragment’s dimension to be equal to

(21/9)L
2
≈ (1.08006 · · · )L

2
, (9)

and the density of up-spins (bosons) to be n = 2/9. The corresponding matrix can be imme-
diately diagonalized by noting that the form of H projected to any n0 ̸= 0 fragment produced
solely by elementary one-plaquette quantum drums equals

Heff =
n0
∑

i=1

τx
i , (10)

where i denotes the center of an elementary drum plaquette, and τx
i locally flips an arrange-

ment of (+1,−1,+1,−1) to (−1,+1,−1,+1) and vice-versa on that drum in the computational
basis. This “non-interacting” Heff only leads to integer eigenvalues for any n0. If n (n0 − n) of
the elementary quantum drums are associated with an eigenvalue τx

i = +1(−1), the result-
ing eigenstate has energy E = 2n − n0. Clearly, there are

�n0
n

�

distinct eigenstates that have
the same energy E = 2n − n0. Assuming that both n0, n ≫ 1, the degeneracy Ω(n) of such
eigenstates is bounded below by

Ω(n)> 2n0

√

√ 2
πn0

exp

�

2n0

�

x −
1
2

�2
�

, (11)
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Figure 7: Close packing of elementary one-plaquette quantum drums shown, where
the drum plaquettes are shaded, alongwith the boundaries of the shielding regions for
two such drums (shown as thick blue lines). An initial Fock state which is consistent
with this arrangement of quantum drums and where up-spins (bosons) are indicated
by filled red dots is also shown. Two bipartition cuts are also shown as thick orange
and purple lines.

where n0 = L2/9 for the largest such fragment (Fig. 7) and x = n/n0. This bound immediately
shows that the number of such integer eigenstates is exponentially large in the system size for
integer energies that range from E = 0 to |E| ∼ O(L) (while the maximum value of the integer
energy |E| = L2/9 when L ≫ 1 for a L × L square lattice with OBC). These high-energy
eigenstates satisfy a strict area law scaling of entanglement entropy with the entanglement
entropy of an arbitrary bipartition, Sbp = bL, where b can range from 0 to ln(2)/3 (examples
of two such bipartition cuts which give the extreme values of b are shown as thick lines in
Fig. 7), depending on the nature of the bipartition.

Any Fock state consistent with n0 independent one-plaquette drums (e.g., one such Fock
state is shown in Fig. 7 where the red filled dots represent up-spins (bosons)) shows persistent
oscillations with a time-period T = π under unitary evolution under H for a class of local
operators. This can be directly related to the non-interacting nature of Heff in Eq. 10 which
leads to the following emergent dynamical symmetry [77]:

�

PeffHPeff,
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i

2
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i

2

�

, (12)

where Peff is a projection operator to the Fock space with n0 one-plaquette drums and ω = 2
given the form of Heff in Eq. 10. Thus, for any such initial Fock state, any local operator with a

finite overlap with any of the
�

τ
y
i +iτz

i
2

�

operators will show persistent oscillations with a time

period T = 2π/ω= π.

2.4 Wire decomposition of quantum drums

As introduced earlier, wires represent the basic quantum drums that can be generated for any
given number of plaquettes, Np, by arranging them in a vertex-sharing pattern along any one
of the two diagonal directions of the parent Lx×L y lattice. A reference Fock state of the wire can
be taken to be all the Np + 1 up-spins (bosons) to be arranged along the length of the drum.
The shielding region around a wire consists of all plaquettes that share either an edge or a
vertex with any of the Np plaquettes that belong to the drum. We refer the reader to Sec. 4.2
(Sec. 5) where the spectrum for wires with small (large) Np shall be discussed. For now, it is
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sufficient to note that the number of Fock states generated by a wire with Np plaquettes equals
FNp+2 (a Fibonacci number) where F0 = 0, F1 = 1, and Fn = Fn−1+Fn−2 for n> 1 (see Sec. 5.2
for the derivation).

A reference Fock state for more complicated (non-wire) drums can be constructed from two
or more parallel wires with differing lengths in general, with each wire being in its reference
state, and any remaining unpaired up-spins (bosons) [that do not belong to any of the wires]
that lie at a minimum distance of (3/2)

p
2 (in lattice units) from the nearest wire. Some of

the Fock states displayed in Fig. 2 and Fig. 4 already serve to illustrate this concept of wire-
decomposed reference states. The state in the top-middle panel (Fig. 2) can be viewed as a
reference Fock state composed of two parallel wires with Np = 2 each for the drum in the
top-right panel (Fig. 2). Similarly, the state in the center-middle panel (Fig. 2) can be viewed
as a reference Fock state composed of two parallel wires, one with Np = 2 and another with
Np = 3, for the drum in the bottom-right panel (Fig. 2). The Fock states marked by 3⃝ and
4⃝ in Fig. 4 consist of unpaired up-spin(s) (boson(s)) at a distance of (3/2)

p
2 from a wire

with Np = 3. The parallel wires that make up a wire-decomposed reference state cannot exist
as independent drums since either the shielding region of a wire overlaps with that of other
parallel wires or unpaired up-spins (bosons) exist at the boundary of a shielding region of
some wire(s).

In this section, we will see that

1. Drums composed of only vertex-sharing plaquettes can be built from a reference Fock
state where the parallel wires can fluctuate simultaneously to access all their internal
states without violating any of the hard-core constraints of the model. Such wires are
separated by a distance of 2

p
2 or greater from each other. All the Fock states of such

drums can be generated from the fluctuations of these parallel wires and possibly, other
sets of parallel wires in the same direction or perpendicular to the direction of the orig-
inal set of wires (with all simultaneous fluctuations again allowed).

2. Drums composed of only edge-sharing plaquettes can be built from a reference Fock
state where the parallel wires cannot fluctuate simultaneously to access all their internal
states being at a distance of (3/2)

p
2 from each other, but only do so if alternate wires

are kept in their reference state. The Fock states of such drums can be generated from
the fluctuations of the alternate parallel wires and possibly, other sets of alternate par-
allel wires in the same direction or perpendicular to the original set of wires. However,
not all simultaneous fluctuations of such consecutive wires are disallowed by the hard-
core constraints of the model and these can be represented as additional excitations of
elementary plaquettes that are separated by 3 lattice units along either x or y , or both,
such that these plaquettes can fluctuate independently.

3. Drums with both edge-sharing as well as vertex-sharing plaquettes can be built from a
reference Fock state that consists of parallel wires such that while all the wires cannot
fluctuate simultaneously to access all their individual states, some consecutive wires can
do so if the other wires are kept in their reference state.

2.4.1 Calculating fragment dimension from wire decomposition

We first demonstrate the aforementioned concepts for small quantum drums before consid-
ering macroscopic quantum drums and their corresponding fragment sizes in later Sections
(Sec. 3.2 and Sec. 3.3). We start with the simplest case of two Np = 1 wires in their reference
state that are placed parallel to each other. If such wires fluctuated independently, these would
have produced a total of F3 × F3 = 4 Fock states. There are two distinct ways of placing these
wires with respect to each other such that they do not fluctuate independently and no inert
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Figure 8: Examples of wire decomposition of quantum drums shown here. The drums
labeled A1 and A2 can be constructed from two parallel wires both with Np = 1, the
drums labeled B1 and B2 can be constructed from two parallel wires with Np = 3 and
Np = 2 while the drums labeled C1, C2, and C3 can be constructed from three parallel
wires, where two of them have Np = 1 and one has Np = 4. The wires in all the panels
are indicated by double dashed lines and also labeled by w1, w2, w3. The red filled
dots in all panels represent up-spins (bosons). The perpendicular wires that can be
generated from the Fock state shown for each drum are indicated by bold lines in blue
and orange. Additionally, the plaquettes marked by open blue (orange) circles at their
centers in B1 and C1 represent the locations of one-plaquette excitations that generate
additional Fock states that cannot be represented by excitations of alternate parallel
wires in these two cases. In the drum C2, a smaller drum made of 10 edge-sharing
plaquettes (indicated by thick blue region enclosing it) fluctuates simultaneously,
with the wire w3. The green (pink) plaquettes in the drums shown in all panels
follow the same convention as used in Fig. 1.

up-spins (bosons) are created. These are shown as the quantum drums marked by A1 and A2
in Fig. 8. While the drum A1 generates a Hilbert space fragment with 3 Fock states, the drum
A2 generates one with 5 Fock states. In the drum indicated by A1 (Fig. 8), the wire w1 (w2)
(indicated by double dotted lines in Fig. 8) can fluctuate to generate both its Fock states only if
w2 (w1) is held fixed in its reference state. Thus, the two wires w1 and w2 cannot fluctuate si-
multaneously in A1 and produce 2F3−1= 3 states. On the other hand, in the drum A2 (Fig. 8),
both the wires w1 and w2 (indicated by double dotted lines in Fig. 8) can fluctuate simulta-
neously without producing a Fock state that violates the hard-core constraints. Additionally,
performing a ring-exchange from the reference state on both the plaquettes that represent w1
and w2 generates the reference state for another wire with Np = 3 that is perpendicular to w1
and w2 (shown as a blue line in the drum marked A2 in Fig. 8). The Fock state obtained from
a ring-exchange on the middle plaquette from the reference state of this Np = 3 wire cannot
be represented by combining any of the Fock states generated from the w1 and w2 wires and
accounts for the total F2

3 + 1 = 5 Fock states for the drum A2. In the case of A1 [A2], the
minimum distance between the parallel wires w1 and w2 equals (3/2)

p
2 [2
p

2] (Fig. 8).
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The drums labeled B1 and B2 in Fig. 8 represent more complicated cases that arise when
two parallel wires (of unequal lengths) in their reference states, one with Np = 3 and another
with Np = 2, are brought close to each other such that the minimum distance between the
wires equal (3/2)

p
2 and 2

p
2 respectively. If these two wires fluctuated independently, these

would have generated F5 × F4 = 15 Fock states. However, the drum B1 generates a fragment
with 11 Fock states while the drum B2 generates a fragment with 18 Fock states. In the drum
B1 (Fig. 8), the wire w1 (w2), shown by double dotted lines in Fig. 8, can fluctuate to generate
all its Fock states only if the other wire w2 (w1) is held fixed in its reference state. Such wire
fluctuations lead to F5+F4−1= 7 states. Two cases where fluctuations of a perpendicular wire
(indicated by the top blue line and the bottom orange line respectively in the drum marked B1
in Fig. 8) when the other wire parallel to it at a distance (3/2)

p
2 (indicated by the bottom blue

line and the top orange line respectively in Fig. 8) is kept fixed in its reference state generates
an additional 2 Fock states. The remaining 2 Fock states in the fragment are generated by two
separate cases of ring-exchanges on two plaquettes together [indicated by the plaquettes with
an open circle of the same color (blue and orange) at their centers] that are separated by 3
lattice units along x/y as shown in Fig. 8 (panel marked B1). On the other hand, in the drum
B2 (Fig. 8), both the wires w1 and w2 (indicated by double dotted lines in Fig. 8) can fluctuate
simultaneously to generate all their Fock states without violating the hard-core constraints.
Fluctuations of w1 and w2 in the drum B2 cannot, however, generate any Fock state with two
up-spins (bosons) along the diagonal parallel to w1, w2 on any of the two plaquettes that are
not part of w1 and w2. The extra 18 − (F5 × F4) = 3 Fock states are generated from ring-
exchange moves in any one of these two plaquettes starting with Fock states obtained from
the fluctuations of w1 and w2 that can be represented as the reference state of a Np = 3 wire
perpendicular to both w1 and w2 (shown by a blue and an orange line perpendicular to w1,
w2 in Fig. 8) and containing one of these two plaquettes.

Finally, we consider a case where three parallel wires in their reference states, w1 with
Np = 1, w2 with Np = 4, and w3 with Np = 1, are brought close to each other to generate three
different drums labeled C1, C2, and C3 in Fig. 8. While independent fluctuations of these three
wires generate F3× F6× F3 = 32 Fock states, the fragment generated by the drum C1 contains
24 Fock states, by the drum C2 contains 28 Fock states, and by the drum C3 contains 42 Fock
states, respectively. In the drum C1 (Fig. 8), the wire w1 (w3) can only access all its Fock states
if w2 is held fixed in its reference state (with these wires indicated by double dotted lines in
the drum C1 in Fig. 8). Similarly, the wire w2 can only access all its Fock states if both w1 and
w3 are fixed to their reference states in C1. This generates a total F2

3 + F6−1= 11 Fock states.
An additional 5 Fock states of drum C1 are generated by similar wire fluctuations of parallel
wires separated by (3/2)

p
2 but perpendicular to w1, w2, w3 (indicated by blue lines in drum

C1 in Fig. 8). Finally, the remaining 8 Fock states in C1 are generated by simultaneous ring-
exchanges on two/three of the four corner plaquettes (marked by blue circles at the centres
of the corresponding plaquettes in C1 in Fig. 8) that are separated from each other/from a
corner plaquette by 3 lattice units in the x or y direction. On the other hand, in the drum C3
(Fig. 8), all the wires, w1, w2 and w3 (indicated by double dotted lines in Fig. 8), can fluctuate
simultaneously without violating the hard-core constraints. Furthermore, fluctuations in w1,
w2 and w3 generates a new open channel of fluctuations in the form of a wire with Np = 5
plaquettes in the direction perpendicular to these wires (indicated by a blue line in C3 in Fig. 8)
which generates an additional 10 Fock states besides the F3×F6×F3 = 32 Fock states generated
from w1, w2, w3. The drum marked as C2 in Fig. 8 represents an interesting intermediate
case between C1 and C3 where the parallel wires w1 and w2 (w2 and w3) are at a distance
(3/2)
p

2 (2
p

2) from each other. The smaller drum containing wires w1, w2 and composed of
10 edge-sharing plaquettes (marked by the blue region in the drum C2 in Fig. 8) can fluctuate
simultaneously with the wire w3. This leads to a total of 13× 2 = 26 Fock states (see Fig. 18
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A1 A2 B1

B2 C1 C1

C2 C2 C3

Figure 9: The drums A1 to C3 shown in Fig. 8 can be constructed using the overlap
of the shielding regions of parallel wires as shown. The wires are indicated by dou-
ble dashed lines in each panel. The red filled dots in all panels represent up-spins
(bosons). The boundaries of the shielding region of each wire is shown using thick
lines of different colors and the plaquettes formed by the overlap of the shielding
regions are indicated by “o”. The green (pink) plaquettes in the drums shown in all
panels follow the same convention as used in Fig. 1.

for the 13 Fock states of the smaller drum made by the wires w1 and w2). The additional states
are generated from an extra open channel for fluctuations along a Np = 3 wire perpendicular
to w1, w2, w3 containing the w3 plaquette as its right-most plaquette as indicated by the blue
line perpendicular to w1, w2, w3 in the drum C2 in Fig. 8. This results in 2 Fock states where a
ring-move is performed on the reference state of this Np = 3 wire using the plaquette excluded
from both the smaller drum composed of 10 edge-sharing plaquettes and w3.

These examples demonstrate the general principle that given n parallel wires (with unequal
lengths in general) in their reference state, it is optimal to place these such that all the wires
can fluctuate simultaneously and that these fluctuations additionally generate the maximum
number of longest-possible wires perpendicular to the original wires as extra open channels
of fluctuations to maximize the fragment size generated by the resulting drum. Both these
conditions are satisfied by appropriate drums composed of only vertex-sharing plaquettes as
shown in Fig. 8 (panels marked A2, B2 and C3).

2.4.2 Constructing entire drums from wire-decomposed reference states

The wire-decomposed reference states introduced here provide an efficient route to construct
the entire quantum drums associated with them. For this, we note that the shielding region of a
single wire consists of all external plaquettes that share an edge or a vertex with the plaquettes
that belong to the wire. The different wires in a wire-decomposed reference state are coupled
to each other because (i) shielding regions of different parallel wires with spacing (3/2)

p
2

or 2
p

2 have overlapping plaquettes and/or (ii) shielding regions of different parallel wires
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Figure 10: Two parallel wires w1 and w2 (see left panel) and two other parallel wires
w
′

1 and w
′

2 (see right panel) indicated by double dotted lines, both in their reference
state and both with Np = 4, seperated by a distance of 3

p
2. The wires w1, w2 are

perpendicular to the wires w
′

1, w
′

2. In both panels, two up-spins (bosons) are located
on two common sites between the boundaries of the shielding regions, shown using
thick lines, of the wires. The red filled circles in both panels indicate up-spins. The
green plaquettes in the drums shown in both panels follow the same convention as
used in Fig. 1, with the right panel showing all the plaquettes that belong to this
drum. In the left panel, plaquettes of the shielding regions of w1 and w2 that contain
unpaired up-spins (bosons) are indicated by “I”.

seperated by 3
p

2 are coupled by unpaired up-spins (bosons). The overlapping plaquettes
between different shielding regions (for (i)) and the plaquettes of the shielding region(s) that
also contain any unpaired up-spin (boson) (for (ii)) provide the remaining plaquettes of the
quantum drums starting from wire-decomposed Fock states.

Fig. 9 illustrates the procedure for all the quantum drums shown in Fig. 8. For the drums
A1, A2, B1, B2 and C3, it is sufficient to consider the overlap of the shielding regions of the
parallel wires shown as double dashed lines in Fig. 8 as can be seen from Fig. 9, where the
overlapping plaquettes of the shielding regions have been denoted by “o” in all panels of Fig. 9.
The drums C1 and C2 present more interesting cases where this construction only identifies
a subset of plaquettes that belong to the corresponding drum (Fig. 9). However, starting
from the reference wire-decomposed state of the original parallel wires, it is easy to perform
ring-exchange moves on a subset of the plaquettes that belong to these wires to create another
wire-decomposed Fock state that can be viewed as parallel wires in their reference state, but in
the perpendicular direction to the original wires (Fig. 9). The overlap of the shielding regions
of these new wires gives the remaining plaquettes that are part of the quantum drum for both
C1 and C2 (Fig. 9).

In Fig. 10, we show an example of a wire-decomposed Fock state where two parallel wires
are separated by a distance of 3

p
2. While the shielding regions of such wires do not have

any overlapping plaquettes due to the increased distance between the parallel wires, these
wires can still be coupled to each other to make a larger drum by placing unpaired up-spins
(bosons) at a distance of (3/2)

p
2 from both wires in a subset of the common sites between

the boundaries of the shielding regions of both the wires. In Fig. 10, two parallel wires w1
and w2, both with Np = 4 and in their reference state, are placed at a distance of 3

p
2 from

each other (Fig. 10, left panel). Two unpaired up-spins (bosons) are placed on two of the
common sites of the boundaries of the shielding regions of both the wires (the boundaries
of the shielding regions are shown using thick green (blue) lines for w1 (w2) in Fig. 10, left
panel). The plaquettes of the shielding regions that contain the unpaired up-spins (denoted
by “I”) then provide the remaining plaquettes of the entire quantum drum associated with this
wire-decomposed reference state. Note that the wires w1 and w2 can fluctuate simultaneously
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to generate all their Fock states in spite of the up-spins (bosons) on the boundaries of the
shielding regions. Performing appropriate ring-exchanges on this reference state (Fig. 10, left
panel), it is easy to get a Fock state that can be viewed as two parallel wires, w

′

1 and w
′

2, that
are both perpendicular to w1, w2 and again separated by 3

p
2 with two up-spins (bosons) on

two of the common sites shared by the boundaries of the shielding regions of w
′

1 and w
′

2. This
shows that four other plaquettes (apart from the ones shaded in Fig. 10, left panel) are part of
the bigger drum (see Fig. 10, right panel) and that all the Fock states can be generated from
simultaneous fluctuations of either w1, w2 or w

′

1, w
′

2, again generating a quantum drum with
only vertex-sharing plaquettes.

3 Strong Hilbert space fragmentation

In this section, we show strong Hilbert space fragmentation for this kinematically constrained
2D model (Eq. 2) defined on a Lx × L y rectangular lattice with OBC as Lx , L y ≫ 1. We first
discuss numerical evidence from ED in Sec. 3.1. The wire decomposition of quantum drums
introduced earlier is used in Sec. 3.2 to calculate the scaling of the Hilbert space fragment
for drums composed of two long parallel wires. The wire decomposition is further used to
identify the nature of the quantum drums that define the largest Krylov subspaces as a func-
tion of the density of up-spins (bosons) in Sec. 3.3. We then invoke the standard typicality
argument [78] and show that typical initial states that belong to these large Krylov subspaces
violate thermalization with respect to the full Hilbert space.

3.1 Numerical evidence of strong fragmentation from exact diagonalization

One procedure to distinguish between weak and strong fragmentation [52,53] involves moni-
tering the ratio of the largest Hilbert space fragment (denoted by max[D f ,n]) to the total
Hilbert space dimension (denoted by Dn) in a sector with a fixed density (denoted by n) of
up-spins (bosons) for different system sizes. We stress here that only the global symmetry of
total magnetization conservation and its associated density is relevant for this analysis since
internal symmetries like reflections etc can always be removed by adding suitable diagonal
terms to H in the computational basis that do not connect the different Hilbert space frag-
ments. If the ratio max[D f ,n]/Dn behaves as exp(−γN) with γ > 0 as the number of sites
in the system, N , diverges, it implies strong fragmentation; in contrast, if it approaches 1 as
N ≫ 1, it implies weak fragmentation.

Using exact enumeration techniques, we calculate the Hilbert space dimension, D, for
a fixed number of up-spins (bosons), Nb, for a variety of rectangular lattices of dimen-
sion Lx × L y with OBC (see Fig. 11, left panel) which shows that D is maximized when
n = Nb/(Lx L y) = 1/4. We then focus on this particular density of up-spins (bosons) n = 1/4
as well as two other densities n = 3/10 and n = 1/3 to show the scaling of max[D f ,n]/Dn
for fixed n as a function of N = Lx L y in Fig. 11, right panel using data from exact enumer-
ation. The data for these limited system sizes already clearly indicate that max[D f ,n]/Dn ∼
exp(−γN) with γ depending on the density of up-spins (bosons), n, and thus points towards
strong Hilbert space fragmentation in this 2D model. In Sec. 3.3, we will show that the di-
mension of the largest Hilbert space fragment generated in this model scales as (ϕ1/4)Lx L y for
Lx , L y ≫ 1 when n = 1/4, where ϕ = (1+

p
5)/2 (golden ratio). Given that the total Hilbert

space dimension scales as κLx L y for Lx , L y ≫ 1 [76], it is reassuring to see that (ϕ1/4/κ)Lx L y

(dotted curve in Fig. 11, right panel) closely follows the data for max[D f ,n]/Dn at n = 1/4
(Fig. 11, right panel) since the density n = 1/4 gives the dominant contribution to the total
Hilbert space (Fig. 11, left panel) at these system sizes.
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Figure 11: (Left panel) The total Hilbert space dimension D as a function of the
number of up-spins, Nb, for rectangular lattices Lx × L y of various dimensions. The
thin dotted vertical line is at n = Nb/(Lx L y) = 1/4. (Right panel) The behavior of
the ratio of the dimension of the largest Hilbert space fragment and the total Hilbert
space dimension for the magnetization sector for up-spin densities n = 1/4 (blue),
n = 3/10 (green) and n = 1/3 (red) shown for rectangular lattices with dimension
Lx × L y and OBC as a function of the system size N = Lx L y . The dotted curve shows
the function (ϕ1/4/κ)N whereϕ = (1+

p
5)/2 (golden ratio) and κ≈ 1.503 · · · (hard

square entropy constant).

3.2 Quantum drums generated from two long parallel wires

While Sec. 2.4 illustrated the wire decomposition using small drums, this concept becomes
most efficient to calculate the scaling of the resulting fragment size when macroscopic drums
are considered. Since the wire-decomposed reference Fock states of such drums typically con-
tain long parallel wires, we will consider the warm-up exercise of wire-decomposed Fock states
with two such wires in this section. More precisely, we consider two parallel wires, each with
Np plaquettes such that Np≫ 1, where both the wires are in their reference Fock states. Bring-
ing these wires (denoted by w1 and w2 in top-left and bottom-left panels of Fig. 12) at a
distance of (3/2)

p
2 [2
p

2] from each other generates a drum with only edge-sharing [vertex-
sharing] plaquettes as shown in panel A [panel B] of Fig. 12. Putting two such parallel wires
closer than (3/2)

p
2 (further than 2

p
2) leads to both the wires being inert (independent of

each other). As we will show below, the number of Fock states in the corresponding drum
scales as ϕNp [ϕ2Np], where ϕ = (1+

p
5)/2 denotes the golden ratio, for Np ≫ 1 when the

two parallel wires, w1 and w2, are at a distance of (3/2)
p

2 (Fig. 12, panel A) [2
p

2] (Fig. 12,
panel B) from each other.

Focusing on the case where w1 and w2 are in their reference Fock states and separated
from each other by a distance (3/2)

p
2 ( Fig. 12, top left panel), the wire w1 [w2] can access

all its allowed Fock states if and only if w2 [w1] is kept fixed in its reference state. This imme-
diately shows that 2ϕNp < NA for Np ≫ 1, where NA denotes the total number of Fock states
for the quantum drum shown in panel A of Fig. 12. Crucially, not all simultaneous fluctuations
of w1 and w2 are disallowed. E.g., starting from the Fock state shown in Fig. 12 (top left),
independent fluctuations of elementary plaquettes that are arranged in a regular pattern gen-
erated by the primitive vectors 3 x̂ and 3 ŷ , as indicated by open blue dots at the centers of such
plaquettes in Fig. 12 (top left), are allowed. The number of Fock states generated from such
independent one-plaquette excitations scale as 3(2Np/3)(2Np/3) where the factor of 3 is due
to the inequivalent arrangements of this regular pattern. Moreover, the Fock state shown in
Fig. 12 (top right) can be generated using a sequence of ring-exchange moves from the refer-
ence Fock state shown in Fig. 12 (top left), which again allows for independent one-plaquette
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Figure 12: A section of two quantum drums that are generated by placing two long
parallel wires, denoted by w1 and w2, in their reference states at a mutual separa-
tion of (3/2)

p
2 (panel A) and 2

p
2 (panel B) respectively, shown here . The green

plaquettes in the quantum drums follow the same convention as used in Fig. 1. The
filled red dots indicate up-spins (bosons) in all the panels and represent just one of
the many possible Fock states of the corresponding drum. The elementary plaque-
ttes indicated by open blue circles (open orange circles) in the top-left figure (top-
right figure) in panel A allow for independent ring-exchange moves starting from the
Fock state shown in the same figure. Note that only these plaquettes allow for ring-
exchange moves for the wire w3 in the top-right figure of panel A. In panel B, the
Fock states can be generated either from the simultaneous fluctuations of the wires,
w1 and w2, as shown in bottom-left figure (panel B) or from the simultaneous fluctu-
ations of parallel short wires (four of them, w

′

1, w
′

2, w
′

3, w
′

4 shown in the bottom-right
figure (panel B)) that are perpendicular to w1 and w2.

excitations along the wire w3, where such plaquettes are again arranged in a regular pattern
generated by the primitive vectors 3 x̂ and 3 ŷ , as indicated by open orange dots at the centers
of such plaquettes in Fig. 12 (top right). The number of such Fock states scale as 6(2Np/3)
where the factor of 3+ 3 is due to the 3 inequivalent arrangements of such a regular pattern
along w3 and 2 inequivalent ways of placing w3.

A combination of all these independent one-plaquette excitations and excitations of w1
(w2) keeping w2 (w1) fixed in its reference Fock state generates all the Fock states of the
quantum drum shown in panel A of Fig. 12 with certain Fock states being produced multiple
times. Thus, in the limit Np≫ 1, we get that

2(ϕ)Np <NA < 2(ϕ)Np + 3(22/3)Np + 6(21/3)Np ⇒NA ∼ (ϕ)Np , (13)

where the final result in Eq. 13 follows since ϕ > 22/3 > 21/3.
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We now consider the case of the quantum drum shown in Fig. 12 (bottom left) which is
generated from two parallel wires, w1 and w2, both in their reference Fock states such that
these wires are seperated by a distance of 2

p
2. Since simultaneous fluctuations of both w1

and w2 are allowed in this case without violating any hard-core constraints, the total number
of Fock states, NB, in the quantum drum shown in panel B of Fig. 12 is bounded below by
(ϕ2)Np <NB. The remaining Fock states are generated from a subset of the Fock states gener-
ated from the simultaneous fluctuations of parallel wires that are perpendicular to the original
w1 and w2 and separated by 2

p
2 lattice units from each other (e.g., a subset of such wires

are marked as w
′

1, w
′

2, w
′

3 and w
′

4 in the bottom right panel of Fig. 12). Since each of these
short wires are composed of 3 plaquettes (Fig. 12, bottom right), it follows that each such wire
contributes F5 states with there being Np/2 of them which fluctuate independently. The re-
sulting number of Fock states equal 2(F5)

Np/2 where the factor of 2 is due to the 2 inequivalent
arrangements of such short parallel wires. Thus, in the limit Np≫ 1, we get that

(ϕ2)Np <NB < (ϕ
2)Np + 2(
p

F5)
Np ⇒NB ∼ (ϕ2)Np , (14)

where the final result in Eq. 14 follows since ϕ2 >
p

F5.
Eq. 13 and Eq. 14 show that an important simplification emerges when macroscopically

long parallel wires are involved in the construction of the reference Fock state of a drum. The
correct scaling of the Hilbert space fragment dimension in both drums is obtained simply from
the fluctuations of those long wires that can access all their states simultaneously while the
rest of the fluctuations can be considered as subdominant. When the wires w1 and w2 are
at a distance of (3/2)

p
2, w1 (w2) can access all its states only when w2 (w1) is fixed to its

reference Fock state implying that NA ∼ (ϕ)Np + (ϕ)Np ∼ (ϕ)Np . When w1 and w2 are at a
distance of 2

p
2 from each other, both wires can access all their states simultaneously to give

NB ∼ (ϕ)Np · (ϕ)Np ∼ (ϕ2)Np .

3.3 Large Krylov subspaces and absence of ETH-predicted thermalization

In constrast to systems that display weak Hilbert space fragmentation, typical initial states in
strongly fragmented systems do not thermalize with respect to the full Hilbert space due to the
absence of a single dominant Krylov subspace in the thermodynamic limit. We now consider
the fate of typical unentangled initial states for a large system, say a L × L lattice with OBC
where L≫ 1, under unitary time evolution with H. Given the E to −E symmetry of the many-
body spectrum, typical initial states at any fixed density of up-spins (bosons), n, will have an
average energy per site equal to 〈E〉/L2 = 0 for L≫ 1. Thermalization in the full Hilbert space
(ETH) with fixed n will imply that such an initial state with a macroscopic number of up-spins
(bosons) should thermalize to the infinite temperature ensemble (ITE) with n fixed by the
initial condition as far as local operators are concerned. Thus, ETH-predicted thermalization
implies that local operators lose all memory of the initial state, except its conserved n > 0,
under unitary evolution with H.

Given a typical initial state with an extensive number of up-spins (bosons), it can be cate-
gorized in one of the following five classes:

1. The initial state is an inert Fock state which forms a 1-dimensional fragment on its own.

2. The initial state is consistent with a finite number of finite-sized drums when L≫ 1.

3. The initial state is consistent with an extensive number of finite-sized drums when L≫ 1.

4. The initial state is consistent with the presence of one or more (subextensive) quasi-1D
drums with a typical linear dimension of O(L) as L≫ 1.
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5. The initial state is consistent with the presence of one or more 2D drums with a typical
linear dimension of O(L) as L≫ 1.

Initial states in class 1 and 2 clearly belong to Krylov subspaces that remain of size O(l), where
l stays finite even in the thermodynamic limit and cannot thermalize with respect to the full
Hilbert space. Initial states in class 3, 4, 5 belong to large Krylov spaces whose size scale
exponentially with L2 when L ≫ 1. Thus, it is not immediately obvious whether such states
evade ETH-predicted thermalization with respect to the full Hilbert space or not.

Initial states in class 3 contain an extensive number of inert down-spins when all the bound-
ary sites of the shielding regions of the drums are considered together. For initial states in
class 4, one simply needs to consider local operators that have support from sites on opposite
sides of a quasi-1D drum of linear dimension O(L). Such local operators evade ETH-predicted
thermalization with respect to the full Hilbert space since all the sites that compose such a
local operator cannot be part of the same quantum drum and are, therefore, dynamically dis-
connected and retain memory of the initial state.

Initial states in class 5 are more subtle since almost all local operators contain sites in
the interior of a single 2D quantum drum and it is not immediately clear which local opera-
tors evade ETH-predicted thermalization unlike initial states in class 3 and 4. We take such a
2D quantum drum to cover the entire L × L lattice without any loss of generality. Following
Sec. 2.4, a reference wire-decomposed Fock state for such a 2D drum can be composed by
bringing O(L) parallel wires together, typically of length O(L), in their reference states. Exam-
ples of some 2D drums are shown in Fig. 13 (three panels) and in Fig. 14 (right panel). When
macroscopic 2D drums can be formed, their fragment dimensions dominate over those gener-
ated by a collection of an extensive number of finite-sized drums or a subextensive number of
quasi-1D drums at the same density of up-spins (bosons) since new channels of fluctuations
open up in these 2D drums. However, at low densities of up-spins (bosons), n≪ 1, it is clear
that macroscopic 2D drums cannot be formed purely from geometric considerations and there
must exist some critical nc , only above which these 2D drums start dominating statistically.

In a wire-decomposed Fock state, the macroscopic parallel wires cannot be farther than a
distance of 3

p
2 from each other so that such wires can be at least coupled to each other using

unpaired up-spins (bosons). One such example of a 2D drum is shown in Fig. 13 (panel A) at
n= 2/9. While the parallel wires contain 3/4 of the up-spins (bosons), the unpaired up-spins
(bosons) account for the rest of the 1/4 up-spins (bosons) contained in the 2D drum. Note that
the density of the unpaired up-spins (bosons) can be reduced to an arbitrarily low number to
still give a 2D, though highly anistropic, drum. This immediately gives nc = 1/6. Thus, typical
initial states for n ∈ (0,1/6) evade ETH-predicted thermalization simply from the presence of
local operators that retain the memory of their initial condition by being a class 3 or class 4
state.

For n > 1/6, it becomes important to be able to calculate the scaling of the fragment size
of a macroscopic 2D drum given its wire-decomposed reference state. Given that the number
of Fock states accessible to a single wire of length l equals Fl+2 (Eq. 29) where Fn are the
Fibonacci numbers, the fragment size scales exponentially with increasing l as ϕl for l ≫ 1,
where ϕ = (1 +

p
5)/2 ≈ 1.618 · · · is the golden ratio. Thus, if wire-decomposed reference

states of 2D drum consist of parallel wires that can fluctuate simultaneously to access all their
internal states, then the corresponding number of Fock states generated equals

ϕ(L1+L2+L3+L4+··· ) , (15)

where L1, L2, L3, L4 etc denote the lengths of these wires, which are typically O(L) for macro-
scopic drums. Eq. 15 already shows that the corresponding Hilbert space fragment grows
exponentially with the system size. Just like the case of quantum drums formed out of two
long parallel wires as discussed in Sec. 3.2, the scaling of the total number of Fock states in
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Figure 13: Three examples of 2D drums shown here. The green (pink) plaquettes
in all the quantum drums follow the same convention as used in Fig. 1. The filled
red dots indicate up-spins in all the panels and represent just one of the many pos-
sible Fock states of the corresponding drum. The wire decomposition of each drum
is indicated by thin dotted lines in each of the three panels. Panels A and B are
composed of parallel wires that can fluctuate simultaneously and hence contain only
vertex-sharing plaquettes. The checkerboard drum in panel B represents the max-
imum packing of such wires that gives the density of up-spins (bosons) to be 1/4.
The close packed drum in panel C represents the maximum packing of wires such
that none of them are inert that gives the density of up-spins (bosons) to be 1/3. The
plaquettes where ring-exchanges can be simultaneously carried out are indicated by
open blue circles at their centres in panel C.

2D drums composed of a macroscopic number of long parallel wires can be simply estimated
by considering the number of ways in which such wires can fluctuate simultaneously as given
in Eq. 15. The missing Fock states that cannot be accounted for by the wire fluctuations rep-
resented in Eq. 15 only give a subdominant correction for macroscopic drums. We will show
this explictly by considering two important cases of such 2D quantum drums below.

We first consider a “checkerboard” drum (see panel B in Fig. 13) which represents the clos-
est packing of parallel wires (indicated by dotted lines in panel B of Fig. 13) in their reference
state such that all the wires can fluctuate simultaneously to access all their states. Comparing
the representative Fock state of this drum shown in Fig. 13 (panel B) to the inert state with the
maximum density of up-spins (bosons) that equals n = 1/2 (Fig. 14), we see that the former
may be obtained from the latter by removing the up-spins (bosons) on alternate parallel wires
from the inert state. This fixes the density of up-spins (bosons) to be n= (1/2)× (1/2) = 1/4
for the checkerboard drum. All the Fock states of this drum can be generated (in fact, over-
counted) by considering simultaneous fluctuations of wires along either of the diagonal direc-
tions of the square lattice with mutual separation of 2

p
2 and also their shifted counterparts

with a shift of
p

2 perpendicular to the direction of the wires. This immediately establishes
that

(ϕ1/4)L
2
<NHSD,ch < 4(ϕ1/4)L

2
, (16)

where NHSD,ch equals the number of Fock states for this drum when L≫ 1. Thus, we get that

NHSD,ch ∼ (ϕ1/4)L
2
≈ (1.12784 · · · )L

2
, (17)

for the 2D checkerboard drum that accomodates the maximum density of simultaneously fluc-
tuating parallel wires, resulting in a density of up-spins (bosons) that we denote as nch = 1/4
henceforth.

As shown in Sec. 2.4, the closest distance of approach between two parallel wires in their
reference state equals (3/2)

p
2 such that these do not become inert. Extending this to 2D,
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one gets a “close packed drum” as shown in Fig. 13 (panel C) where the parallel wires are
indicated by dotted lines. Unlike the checkerboard drum, this 2D drum is composed of only
edge-sharing plaquettes and its interior has no unshaded plaquettes that do not belong to the
drum. The density of up-spins (bosons) for this close packed drum equals n = 1/3 which can
be seen by comparing the reference Fock state shown in panel C of Fig. 13 to the inert state with
the maximum density of up-spins (bosons), n = 1/2, (Fig. 14). We see that the former may
be obtained from the latter by deleting the up-spins (bosons) on every two parallel wires and
keeping every third wire intact from the inert state in a 1−0−0 pattern. This gives one set of
simultaneously flippable wires of the close packed drum, implying that n= (1/6+1/6) = 1/3
since two sets of such wires are needed to make up the close packed drum. As discussed in
Sec. 2.4, all Fock states of such structures where the consecutive parallel wires are at a distance
of (3/2)

p
2 can be generated from two types of excitations: (a) simultaneous fluctuations of

every alternate parallel wire and (b) excitations of elementary plaquettes that are separated
by 3 lattice units along x or y and thus simultaneously flippable. One set of such parallel wires
(indicated by parallel dotted lines) and elementary plaquettes (indicated by open blue circles
in the centers of the corresponding plaquettes) are shown in Fig. 13 (panel C). The scaling of
the number of Fock states associated with the wire fluctuations can be simply calculated using
Eq. 15 and gives (ϕ1/6)L

2
. The number of states generated from the simultaneously flippable

elementary plaquettes can be calculated by simply noting that the result is identical to the one
discussed in Sec. 2.3 since the elementary plaquettes have the same spatial arrangement in
Fig. 7 as the marked plaquettes in Fig. 13 (panel C) thus giving the number of such excitations
as (21/9)L

2
(Eq. 9). Furthermore, all the Fock states can be generated (in fact, overcounted) by

considering all combinations of such parallel wires as well as their perpendicular counterparts
and the simultaneously flippable elementary plaquettes and their lattice translations. This
gives that

(ϕ1/6)L
2
<NHSD,cp < 4
�

(ϕ1/6)L
2
+ (21/9)L

2
�

, (18)

where NHSD,cp equals the fragment dimension for this drum when L ≫ 1. Importantly, since
21/9/ϕ1/6 ≈ 0.996819 · · · , the above equation can be simplified to give

NHSD,cp ∼ (ϕ1/6)L
2
≈ (1.08351 · · · )L

2
, (19)

for the close packed drum that accomodates the maximum density of non-inert parallel wires,
resulting in a density of up-spins (bosons) that we denote as ncp = 1/3 henceforth.

Now that we have established that Eq. 15 gives the correct scaling of Hilbert space fragment
dimension for 2D quantum drums using these two examples, a straightforward approach to
maximize the number of states produced in a fragment, given a certain density of up-spins
(bosons), n > 1/6, is to consider 2D drums where all the parallel wires that compose the
drums can fluctuate simultaneously. This automatically lead to drums made of only vertex-
sharing plaquettes. Since such parallel wires can only have a minimum separation of 2

p
2,

this sets an upper bound on the density of up-spins (bosons) to be nch = 1/4 (the density for
the checkerboard drum). Since the checkerboard drum maximizes Eq. 15, it generates the
largest Hilbert space fragment for this model. For n ∈ (1/6, 1/4], typical initial states belong
to fragments generated by 2D drums composed of only vertex-sharing plaquettes since these
dominate statistically.

An example of such a 2D drum at a lower density compared to n = 1/4 using unpaired
up-spins (bosons) at a distance of (3/2)

p
2 to couple consecutive parallel wires that are 3

p
2

distance apart is shown in panel A of Fig. 13. Comparing the reference Fock state shown in
panel A of Fig. 13 to the inert state with the maximum density of up-spins (bosons), nb = 1/2,
(Fig. 14), we see that n = (1/6) × (1 + 1/3) = 2/9 for this quantum drum. The parallel
wires in panel A of Fig. 13 can be obtained by deleting every two wires in the inert state and
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Figure 14: (Left panel) A section of the inert state with the maximum density of up-
spins (bosons) equal to 1/2 shown with the filled red dots indicating up-spins. This
state can be viewed in terms of parallel wires (indicated by dotted lines and shaded
plaquettes of different colors) that are placed so close that they cannot fluctuate
out of their reference states. (Right panel) Example of a 2D quantum drum with
a density of up-spins (bosons) between 1/4 and 1/3. In this particular example,
the density equals 5/18. The green (pink) plaquettes in this quantum drum follows
the same convention as used in Fig. 1. The filled red dots indicate up-spins and
represents just one of the many possible Fock states of the corresponding drum. The
wire decomposition of the drum is indicated by thin dotted lines. The blue circles
indicate inert down-spins that are not part of this quantum drum.

keeping every third wire intact in a 1 − 0 − 0 pattern while the up-spins that do not belong
to any wire in panel A of Fig. 13 can again be obtained by taking the same 1− 0− 0 pattern
of wires and deleting every two up-spins (bosons) and keeping every third up-spin (boson) in
the surviving wires. The wire decomposition of the drum (shown in panel A, Fig. 13) shows
that the fragment size scales as (ϕ1/6)L

2
≈ (1.0835 · · · )L

2
which dominates over the fragment

produced by closed-packed one-plaquette drums (21/9)L
2
≈ (1.08006 · · · )L

2
(see Sec. 2.3) at

the same density n= 2/9.
Crucially, any 2D drum composed of vertex-sharing plaquettes alone contain an extensive

number of unshaded plaquettes in its interior (Fig. 13, panels A and B) that do not belong
to the drum. By definition, the two-spin local correlators 〈(σz

jx , jy
+ 1)(σz

jx+1, jy+1 + 1)〉 and

〈(σz
jx , jy+1 + 1)(σz

jx+1, jy
+ 1)〉 stay pinned to zero for any such unshaded plaquette during the

time evolution induced by H as two up-spins (bosons) cannot occupy the diagonals for these
unshaded plaquettes. Thus, the intial states that belong to such 2D drums retain an exten-
sive amount of local memory during time evolution with H and do not satisfy ETH-pedicted
thermalization for this model.

Furthermore, while the checkerboard drum (Fig. 13, panel B) does not contain any inert
spin in its interior, drums made of vertex-sharing plaquettes with a lower density of up-spins
(bosons) (e.g., Fig. 13, panel A) also contain an extensive number of sites in their interior
that do not belong to the drum and thus harbor inert spins. It is useful to note here that
if all unentangled initial states that satisfy the hard-core constraints in Eq. 2 are considered
uniformly, then the average density of up-spins (bosons) equals 〈n〉 = 0.226570 · · · in the
thermodynamic limit [76]. Thus, drums composed of only vertex-sharing plaquettes dominate
statistically if typical initial states are considered without putting any further restriction on n.

2D drums with the largest fragment dimension for n ∈ (1/4,1/2] cannot be determined by
just considering drums composed of vertex-sharing plaquettes. We will first show that typical
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Figure 15: The fate of a typical initial state with a macroscopic number of up-spins
(bosons), n, under unitary time evolution with H is shown. Below nc = 1/6, a
typical initial state is either consistent with an extensive number of finite-sized drums
(class 3) or a subextensive number of quasi-1D drums (class 4). For n ∈ (1/6,1/4),
typical initial states belong to fragments produced by macroscopic 2D drums with
vertex-sharing plaquettes. For n ∈ (1/4, 1/3), a typical initial state contains either
an extensive number of inert up-spins (bosons) or an extensive number of athermal
next-nearest neighbor two-spin correlators. For n> 1/3, a typical initial state always
contains an extensive number of inert up-spins. The largest Hilbert space fragment
is produced by the 2D checkerboard drum (panel B of Fig. 13) at n= 1/4.

initial states that belong to large Krylov subspaces always contain an extensive number of inert
up-spins (bosons) for n ∈ (1/3,1/2]. As already discussed in this section, the close packing of
long parallel wires such that neighboring wires can still fluctuate generates the close packed
drum (Fig. 13, panel C) and a corresponding density of ncp = 1/3. Adding an excess amount
of up-spins (bosons) in the system such that n = (1/3) + δ, where δ ∈ (0, 1/6), necessarily
leads to an extensive number of inert wires locked in their reference state, with the density of
such wires scaling as δ/6. Thus, the number of inert up-spins (bosons) in typical initial states
should scale as δL2/6 for n = (1/3) + δ with δ ∈ (0, 1/6) when n ∈ (1/4, 1/2]. Thus, these
states also evade ETH-predicted thermalization.

We now come to the nature of large Krylov subspaces where the density of up-spins
(bosons) equals n ∈ (1/4, 1/3) such that we can write n = (1/4) + γ with γ ∈ (0,1/12).
Three different possibilities exist here.

(i) One can start with the reference state of the checkerboard drum in Fig. 13 (panel B)
and insert extra parallel wires in their reference state such that the distance between parallel
wires equals

p
2 for a linear extent of 4γL of the system while the rest of the system still has

parallel wires that can fluctuate simultaneously. However, this immediately produces O(4γL2)
inert up-spins (bosons) in the system and thus such initial states evade thermalization. Since
the size of the spatial region that harbors wires that can simultaneously fluctuate reduces from

L2 to (1− 4γ)L2, the fragment size scales as
�

ϕ
1
4−γ
�L2

using Eq. 17 in this case.
(ii) One can have “phase-separated” drums, with the phase separation in one direction, such
that different macroscopic regions are composed of close packed parallel wires in their refer-
ence state. One of these sets have parallel wires at a distance (3/2)

p
2 (with a local density

n = 1/3) for a total linear extent of (12γ)L. The other regions comprise of parallel wires in
their reference state at a distance 2

p
2 (with a lower local density of n = 1/4) for the rest of

the system to get the correct up-spin (boson) density. We refer the reader to the drum marked
as C2 in Fig. 8 for an illustration of this principle for a small drum where the parallel wires w1
and w2 (w2 and w3) are at a distance (3/2)

p
2 (2
p

2) with respect to each other. The leading
scaling for the Hilbert space size of such drums can simply be obtained by considering inde-
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pendent fluctuations of these “checkerboard drum” and “close packed drum” regions. Using
Eq. 17 and Eq. 19, this immediately gives

NHSD,phase−sep ∼ [ϕ1/6]12γL2
[ϕ1/4](1−12γ)L2

∼
�

ϕ
1
4−γ
�L2

. (20)

(iii) One can start with the close packed drum reference state and delete up-spins (bosons) in
such a manner that another 2D drum with a lower density of up-spins (bosons) is created. We
refer the reader to the 2D drum shown in the right panel of Fig. 14 where the reference Fock
state of this particular drum can be produced from the reference Fock state of the close packed
drum by deleting every third up-spin (boson) from alternate wires in their reference state.
This gives a reduced density of up-spins (bosons) to be (1/6)(1+ 2/3) = 5/18 ≈ 0.2777 · · ·
as well as an extensive density of inert down-spins from sites that are not part of the drum.

However, the scaling of the fragment size for such drums is upper-bounded by
�

ϕ
1
6

�L2

.

Fragments in (i) and (iii) dominate statistically for n ∈ (1/4, 1/3) and typical initial states
thus either contain an extensive number of inert spins or an extensive number [O((1−12γ)L2)]
of unshaded plaquettes in the interior of “phase-separated” drums where two-spin local corre-
lators 〈(σz

jx , jy
+ 1)(σz

jx+1, jy+1 + 1)〉 and 〈(σz
jx , jy+1 + 1)(σz

jx+1, jy
+ 1)〉 stay pinned to zero, thus

evading ETH-predicted thermalization.
This completes our analysis for the lack of ETH-predicted thermalization in typical initial

states for all n ̸= 1/3. We see that typical initial states have either an extensive number of inert
spins or an extensive number of two-spin next-nearest neighbor correlators that are pinned to
athermal values or both. The situation is summarized in Fig. 15 as a function of the density of
up-spins (bosons), n.

The case of the close packed drum (Fig. 13, panel C) with density of up-spins (bosons)

n = 1/3 with a Hilbert space fragment whose dimension scales as
�

ϕ
1
6

�L2

seems more sub-
tle since it contains neither inert spins nor unshaded plaquettes (that harbor athermal next-
nearest neighbor spin correlations) in its bulk. However, initial states that arise from a wire
pattern composed of (2/3)L2 of the system in a checkerboard drum pattern, with a local den-
sity n = 1/4, and the rest of the system being fully inert with a local n = 1/2 also yields the

same leading scaling of its fragment size as
�

ϕ
1
6

�L2

. Thus, it is clear that there is no single
dominant Krylov subspace even at n= 1/3. We leave the issue of thermalization, or lack of it,
or of an even more exotic feature like a behavior intermediate to both weak and strong Hilbert
space fragmentation for the particular density of up-spins (bosons), n= 1/3, as an interesting
open problem. For completeness, we note that ED results on small systems points towards a
strong Hilbert space fragmentation scenario even at n= 1/3 (Fig. 11, right panel).

4 Analytical study of small quantum drums

In this section, we shall study the spectrum of some of the simplest quantum drums of the
model analytically. We first discuss how the connection diagrams between different Fock states
of a drum, where the connections are generated by H, can be represented by unidirectional
trees in Sec. 4.1. Such tree structures turn out to be particularly useful in finding the non-zero
matrix elements of H for large drums (e.g., see Sec. 5). We will subsequently study the case
of a wire with Np plaquettes for small Np (Sec. 4.2), and then consider some other examples
of small quantum drums that can be viewed as building blocks of the different kinds of wire
junctions shown in Fig. 5 (Sec. 4.3).
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Figure 16: Top Left Panel:(a) Schematic representation of the basis states of the
simplest fragment with Np = 1 and (b) the corresponding tree between states in
the Hilbert space. Top Right Panel: Same as the top left panel but corresponding to
Np = 2. Bottom Left Panel: Same as the top left panel but corresponding to Np = 3.
In all plots, the red filled dots indicates sites with up-spins (bosons). The green
plaquettes in the drums follow the same convention as used in Fig. 1.

4.1 Tree structure

It is convenient to represent the connection diagram between different Fock states in the
Hilbert space of a drum as nodes of a tree with the non-zero matrix elements of H (which
equals 1 due to the form of H in Eq. 1) between two such states denoted as a link between
the corresponding nodes. Such a tree can be build in the forward direction with the different
levels being denoted by integers starting from level-0 for the top level and being incremented
by 1 for each of the levels below. The top level consists of a single node that can be repre-
sented by any “reference state”. It is optimal to choose a reference state such that the Fock
state maximizes the number of flippable plaquettes for the corresponding drum, but this is not
a necessary condition. A single application of H on this reference state at level-0 generates
all the nodes at level-1, where the corresponding Fock states have exactly 1 flipped plaquette
with respect to the reference state with the location of the flipped plaquette uniquely identify-
ing the corresponding Fock state. Links are then formed between nodes at level-0 and level-1.
Applying H on each of the level-1 nodes generates level-2 nodes where the corresponding Fock
state has another flipped plaquette with respect to the level-1 state with the locations of the
two flipped plaquettes characterizing the generated Fock state uniquely. The possibility that
different level-i nodes may generate the same level-(i + 1) node first arises at i = 1. New
links are then drawn between the appropriate nodes at level-1 and level-2. This process is
continued recursively at each subsequent level-i to go forward to level-(i + 1) during which
the links between appropriate level-i and level-(i + 1) nodes are also generated. Carrying out
this forward construction of the tree, one also encounters “dead nodes” which are Fock states
at level-i from which no other Fock states with an extra flipped plaquette can be generated to
go to the next level (i+1). The forward construction of the tree terminates when the last level
is reached which is characterized by all its nodes being dead nodes. A plaquette, once flipped,
cannot be unflipped in the tree construction which makes the construction unidirectional.

4.2 Wire

The simplest quantum drum of the Hamiltonian given by Eq. 1 constitutes a single plaquette
(Np = 1) with two up-spins (bosons) as shown in the top left panel of Fig. 16. The Hilbert
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space of this drum constitutes two states; the Hamiltonian in the space of these two states,
|ψa〉 ≡ |a〉 for a = 1, 2, can be written as (Fig. 16)

H1ℓ = τ
x , H1ℓ|ψ1(2)〉= |ψ2(1)〉 , (21)

where τx denotes Pauli matrix in the space of the states in the Hilbert space. This yields integer
eigenvalues E = ±1.

The next set of quantum drums that we discuss constitutes two elementary square plaque-
ttes (Np = 2) with three up-spins (bosons) in total as shown in the top right panel of Fig. 16.
The Hilbert space consists of three states, |φa〉 ≡ |a〉 for a = 1, 2,3, as shown in the panel. The
action of the Hamiltonian is summarized by the tree given in the top right panel of Fig. 16. In
the space of these states, the Hamiltonian can be represented as

H2ℓ =





0 1 1
1 0 0
1 0 0



 . (22)

This yields eigenvalues E = 0,±
p

2. Thus these fragments leads to eigenenergies which can
be represented by simple irrational numbers as well as a zero mode.

Finally, we consider a wire with Np = 3 where the states have 4 up-spins (bosons). The
basis states spanning the 5-dimensional Hilbert space of such a fragment is charted in the
bottom left panel of Fig. 16 and the corresponding tree is shown in the bottom panel of the
figure. As can be read off from the tree, in the space of these states, the 5 × 5 Hamiltonian
matrix can be written as

H3ℓ =











0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 0
0 1 1 0 0











. (23)

The corresponding eigenvalues are given by E = 0,±
p

5±
p

17 leading to eigenvalues rep-
resented by non-trivial irrational numbers and a zero mode. The spectrum of these wires for
larger Np gets complicated and these shall be studied in details numerically in Sec. 5.

4.3 Junction units

In this section, we shall study small quantum drums corresponding to the simplest junction
units that are building blocks of the different junctions of wires shown in Fig. 5 (A, B, C, D)
and calculate their spectra analytically. Larger quantum drums that resemble a junction of two
wires as shown in Fig. 5 (A) shall be studied numerically in Sec. 5.

We begin with the quantum drum corresponding to a junction of two wires as shown in
Fig. 5 (A) with Np = 3 elementary plaquettes. The basis states corresponding to such a junction
is shown in the left panel of Fig. 17. The Hilbert space, as can be seen from this figure, is
four dimensional. The tree for the states in the Hilbert space is shown in the bottom of the
left panel Fig. 17. A straightforward analysis shows that H admits a four-dimensional matrix
representation in the space of these states which can be written in terms of outer product of
two sets of Pauli and identity matrices (τ⃗a and Ia for a = 1, 2) as

H1 j = τ
x
1 ⊗ (I2 +τ

z
2)/2+ I1 ⊗τx

1 . (24)

The corresponding eigenvalues satisfy the characteristic equation E4−3E2+1= 0 and yields a
solution E = ±(1±

p
5)/2. These eigenvalues therefore yield the golden ratio for this particular

drum.
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Figure 17: Left Panel:(a) Schematic representation of the basis states of the quantum
drum corresponding to a junction of two wires as shown in Fig. 5 (A) with Np = 3
and (b) the corresponding tree between the four states in the Hilbert space. Right
Panel: Same as the left panel but corresponding to the simplest quantum drum (with
Np = 4) that can be treated as the junction unit to generate another junction of two
wires as shown in Fig. 5 (B). In all plots, the red filled dots indicates sites with up-
spins (bosons). The green (pink) plaquettes in the drums follow the same convention
as used in Fig. 1.

Next, we consider the simplest quantum drum that can be treated as the junction unit
to generate another junction of two wires as shown in Fig. 5 (B). This unit corresponds to
a drum with Np = 4 as shown in the right panel of Fig. 17. The basis states spanning the
six-dimensional Hilbert space is shown in the top of the right panel of Fig. 17 while the tree
for these states is shown in the bottom of this figure. We find that the Hamiltonian has a 6×6
matrix representation given by

H3ℓ =















0 1 1 0 0 0
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0















. (25)

The characteristics equation for the eigenvalues simplifies to E2(E2−1)(E2−5) = 0 and yields
eigenvalues E = 0 (doubly degenerate) and E = ±1,±

p
5.

Next, we consider the simplest quantum drum that can be viewed as the junction unit of the
junction of three wires shown in Fig. 5 (C). This drum has Np = 10 plaquettes in it. The basis
states spanning the Hilbert space is shown in the left panel of Fig. 18. The Hilbert space is 13
dimensional; the tree for these states is shown in the right panel of Fig. 18. This allows a 13×13
dimensional matrix representation of H. We do not write this matrix explicitly here since it
can be easily constructed from the tree shown in Fig. 18. This matrix needs to be numerically
diagonalized and yields eigenvalues E = ±3.18259 · · · , ±1.91182 · · · , ±(1±

p
5)/2, ±1, 0, and

±0.464856 · · · .
Finally, we study a quantum drum that is the junction unit of a junction of four wires as

shown in Fig. 5 (D). This junction unit is shown in Fig. 19 and corresponds to Np = 16 with nine
up-spins (bosons) and 24 basis states. A few representative such states are shown in the left
panel of Fig. 19. Each of these states belong to a different level in the tree starting from the state
|1〉 as shown in the right panel of Fig. 19; they can be obtained from the state in the preceding
level shown by application of H. The other states can be analogously obtained following
the tree; we do not show them explicitly to avoid clutter. The tree shows that H admits a
24 × 24 matrix representation. Remarkably, this matrix can be analytically diagonalized; its

35

https://scipost.org
https://scipost.org/SciPostPhys.14.6.146


SciPost Phys. 14, 146 (2023)

  

Figure 18: Left Panel: Schematic representation of the basis states of the simplest
quantum drum that can be viewed as the junction unit of the junction of three wires
shown in Fig. 5 (C) with Np = 10 plaquettes. The red filled circles indicates sites with
up-spins (bosons). Right Panel: The corresponding tree between the 13 states in the
Hilbert space. The green (pink) plaquettes in the drum follows the same convention
as used in Fig. 1.

eigenvalues satisfies the characteristics equation

E6(E2 − 2E − 2)(E2 − 2)(E4 − 22E2 + 80)(E4 − 6E2 + 6)2(E2 + 2E − 2) = 0 . (26)

These leads to the 24 eigenvalues given by 0 (six fold degenerate), ±
p

3±
p

3 (each two fold
degenerate), ±
p

11±
p

41, ±
p

2, and ±1±
p

3.

5 Numerical study of two quasi-1D quantum drums

In this section, we will numerically calculate the spectrum of large quantum drums with Np
elementary plaquettes using the examples of a wire (Fig. 20, left and middle panels have
Np = 4 and 5, respectively) and a particular junction of two equal length wires (Fig. 20, right
panel with Np = 7). We refer to this latter case as “junction of two wires” henceforth. Using
exact diagonalization (ED), we could calculate the spectrum up to Np = 22 for the wire and
Np = 23 for the junction of two wires. We will show that the spectrum of a wire with Np
plaquettes is identical to the paradigmatic 1D PXP chain [12,13] with Np sites on a chain with
OBC. This equivalence allows us to extract several features of the high-energy spectrum of
the wire from known results in the literature [12, 13]. However, our numerical studies also
reveal enhanced fidelity revivals from a period-3 initial state for Np = 3n+ 1, where n is an
integer, without the need of adding any optimal perturbations to the Hamiltonian which was
not pointed out earlier in the literature. While the junction of two wires differs from the wire
by only a “surface term” when Np is large, the structure of the Hilbert space is completely
different and gives a different constrained model compared to the 1D PXP chain. Thus, the
presence or absence of a single junction leads to interesting differences in the high-energy
spectrum that persist for large drums.
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Figure 19: Left Panel: Schematic representation of a few basis states of the drum
that can be viewed as the junction unit of a junction of four wires as shown in Fig. 5
(D). The drum contains Np = 16 plaquettes. The red filled circles indicates sites with
up-spins (bosons). Right Panel: The corresponding tree between the 24 states in the
Hilbert space. Each of the states can be obtained from a state connected to it by
application of H on it. The green (pink) plaquettes in the drum follows the same
convention as used in Fig. 1. See text for details.

5.1 Tree generating algorithm and equivalence of wire to 1D PXP chain

The concept of a unidirectional tree starting from a reference state has already been introduced
in Sec. 4.1. The reference state for a wire with Np plaquettes can be taken to be the Fock state
with all Np + 1 up-spins to be along the wire length as previously done in Sec. 2.4. For the
junction of two wires with Np = 2x + 1 plaquettes, we take the reference state to be the one
where x+2 [x] up-spins (bosons) are arranged along the length of the wire of length x+1 [x]
to the right [left] of the central junction plaquette, including [excluding] the junction plaquette
(e.g., see an example of the reference state marked as 1⃝ in the left panel of Fig. 22.). For both
the wire and the junction of two wires, computationally it is convenient to adopt a one-to-one
map from a spin configuration on the wire or a junction of two wires to another defined on
an open chain with Np sites in 1D where each site of the chain can have a pseudospin variable
τz

i = ±1 or 0, where i = 1 to Np. The pseudospins on the chain represent the plaquettes of the
drum sequentially from left to right in both the cases. For the wire, these variables take the
value +1 (−1) for elementary plaquettes that have two up-spins along (perpendicular to) the
wire direction and 0 otherwise (Fig. 21, top panel). For the junction of two wires, we follow
the same convention and remove the ambiguity at the central plaquette by associating it to
the wire to the right of the junction plaquette (Fig. 22, left panel). While a pseudospin with
0 has multiple possibilities associated with an elementary plaquette involving states with zero
or one up-spin, specifying the locations of the ±1 pseudospins also fixes the spin state of the
other plaquettes on the drum.

The tree generating algorithm then proceeds as follows. One starts with the reference state
which has τz

i equal to 111 · · ·1 for the wire and 11 · · ·1011 · · ·1 for the junction of two wires
where the 0 in the latter case represents the plaquette to the immediate left of the 1-junction
plaquette. For the wire, the states at subsequent levels are generated by flipping a 1 to −1 and
replacing the pseudospins at neighboring site(s) of the flipped pseudospin by 0 (Fig. 21). For
the junction of two wires, the rules are practically the same except at the 1-junction plaquette
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Figure 20: Two wires with Np = 4 (left panel) and Np = 5 (middle panel) respectively
and a junction of two wires with Np = 7 (right panel) are illustrated here. These
quantum drums have a discrete reflection symmetry with the thick blue line in all
the three panels indicating the corresponding axis of reflection. A chiral operator
can be constructed from the product of σz on all sites indicated by × (in red) for
these drums.

Figure 21: Tree structure (bottom panel) for a wire with Np = 4 shown here. The ith
level contains Fock states with i flipped plaquettes (indicated by shaded plaquettes
in the top panel) with respect to the reference state defined in level-0. The nodes
between two Fock states imply that these are connected with a single application of
H. The Fock states enclosed by double circles represent dead ends of the tree. The
corresponding value of the pseudospin variable (±1, 0) is also shown at the center of
each plaquette for each of the Fock states in the top panel.

denoted by the site i0 on the open chain. When 1 is flipped to −1 at i0, while the pseudospin
at i0 + 1 is replaced by 0 as usual, the pseudospin at i0 − 1 is replaced by 0 if the pseudospin
at i0 − 2 equals −1, else it is replaced by +1 (Fig. 22). Following this algorithm, we generate
the tree and the corresponding H matrix for both the quantum drums being discussed here.

We now show that the wire with Np plaquettes has the same spectrum as that of the 1D
PXP chain with Np sites and OBC, whose Hamiltonian is defined as follows:

HPXP =
Np−1
∑

i=2

Pi−1µ
x
i Pi+1 +µ

x
1 P2 + PNp−1µ

x
Np

, (27)

where µαi for α = x , y, z represents spin-1/2 Pauli matrices at site i of the open chain with
Np sites, and Pi = (1− µz

i )/2 is a local projection operator. The constrained Hilbert space of
the PXP chain is defined by the condition that no two nearest neighbor sites i, i + 1 can have
µz

i = +1 and µz
i+1 = +1 together. We now make the following correspondence between the
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Figure 22: Tree structure for a junction of two wires with Np = 5 shown here. The ith
level contains Fock states with i flipped plaquettes (indicated by shaded plaquettes)
with respect to the reference state defined in level-0. The nodes between two Fock
states (where the links imply the forward construction of the tree) imply that these
are connected with a single application of H. The Fock states enclosed by double
blue circles represent dead ends of the tree. The pseudospins on an open chain with
Np = 5 sites is also shown for each of the Fock states in the left panel where red filled
circles denote up-spins (bosons).

pseudospins τz
i for the wire and the spins µz

i for the PXP chain:

τz
i = −1⇒ µz

i = +1 ,

τz
i = +1⇒ µz

i = −1f ,

τz
i = 0⇒ µz

i = −1uf ,

(28)

where µz
i = −1f (−1uf) implies that flipping µz

i from −1 to +1 is allowed (disallowed) due
to the hard-core constraints of the 1D PXP chain. In this language, the reference state of
the wire with τz

i = +1 for all i corresponds to the “Rydberg vacuum” state of the PXP chain
with no Rydberg excitations, i.e., µz

i = −1f for all i. The tree generating algorithm then con-
structs a unidirectional tree starting from the reference state at level-0 by flipping a τz

i = 1
to τz

i = −1 and replacing the pseudospins at neighboring site(s) of the flipped pseudospin by
τz

i+1 = τ
z
i−1 = 0 for i ̸= 1, Np and τz

i+1 = 0 (τz
i−1 = 0) for i = 1 (i = Np) at each subsequent

level of the tree. The action of HPXP in Fock space can also be represented by the same tree
structure as the wire using Eq. 28 since flipping any µi from −1 to +1 starting from the Ryd-
berg vacuum state automatically makes the previously flippable nearest neighbor site(s) with
µ= −1 unflippable due to the hard-core constraints of the PXP chain.

We note that this equivalence immediately breaks down for the junction of two wires since
flipping a pseudospin τz

i0
= +1 to τz

i0
= −1 on the central junction plaquette, denoted by i0,

starting from the reference state produces a flippable τz
i0−1 = +1 to its immediate left (see

Fock states marked by 1 and 4 in the left panel of Fig. 22 for an example) which implies that
the junction of two wires cannot be represented by the same constrained Hilbert space as the
PXP chain by this mapping.
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5.2 Hilbert space dimension and level statistics

Let us calculate the Hilbert space dimension for both these drums for an arbitrary Np which
will justify their interpretation as effective quasi-1D models since the dimensionality scales
exponentially with Np as Np ≫ 1 in both cases. Let us denote the number of possible Fock
states for a wire with Np plaquettes to be Nw(Np). All the Fock states for such a wire can
be built in either one of the following two ways. Consider starting from the reference state
(Fig. 21, level-0 state) and building all possible Fock states using the first Np − 1 plaquettes
starting from the top. The number of generated states then equals Nw(Np−1) and it is easy to
see that the last plaquette will then either have the pseudospin to be +1 or 0. The remaining
states of the wire with Np plaquettes can be generated by starting from the reference state and
fixing the pseudospin of the last plaquette to be −1 (i.e., flipping this last plaquette). The first
Np − 2 plaquettes from the top can then be used to generate the missing Fock states whose
number equals Nw(Np − 2). Thus, we get that

Nw(Np) =Nw(Np − 1) +Nw(Np − 2) = FNp+2 . (29)

By construction, Nw(1) = 2 and Nw(2) = 3 which implies that Nw(Np) = FNp+2 as written
above, where Fn are the Fibonacci numbers defined by the recurrence relation F0 = 0, F1 = 1
and Fn = Fn−1 + Fn−2 for n> 1.

Similarly, for the junction of two wires with Np = 2x + 1 plaquettes, all the Fock states
can again be built in one of the following two ways. Consider starting from the reference state
(Fig. 22, level-0 state) and building all possible Fock states of the left wire with x−1 plaquettes
starting from the left-bottom plaquette and the right wire with x+1 plaquettes starting from the
right-bottom plaquette. The number of such states equal Nw(x−1)Nw(x+1) and the plaquette
to the immediate left of the central junction plaquette can have a pseudospin of either be +1
or 0. To generate the remaining configurations, we start from the reference state again and
make the pseudospin of this particular plaquette to be −1 by first flipping the central junction
plaquette and then flipping the plaquette to the immediate left of the junction. The number
of Fock states generated from the rest of the plaquettes then equals Nw(x −1)Nw(x −2), thus
giving the relation

N j(Np = 2x + 1) =Nw(x − 1) [Nw(x − 2) +Nw(x + 1)] = Fx+1 (Fx + Fx+3) , (30)

where N j(Np = 2x+1) refers to the number of Fock states in a junction of two wires composed
of Np = 2x+1 elementary plaquettes. Eq. 29 and Eq. 30 show that the number of allowed Fock
states scale exponentially for large Np for both the drums. Note that while Eq. 29 is identical
to the Hilbert space dimension of a 1D PXP chain with Np sites and OBC, as should be the
case from the equivalence of both models shown in Sec. 5.1, the Hilbert space dimension of
the junction of two wires (Eq. 30) cannot be expressed as Fm with an integer m in general
showing that the structure of the constrained Hilbert space of this drum is different from that
of the 1D PXP chain.

We can then ask whether these large quantum drums satisfy a Krylov-restricted version
of the ETH, i.e., whether these quasi-1D models are non-integrable. We check this using the
method of level statistics that can be obtained directly using the eigenspectrum from ED (e.g.,
see Ref. [79]). To calculate the level statistics for large quantum drums, it is important to first
project to a sector where all the commuting global symmetries have been resolved. Since both
the wire and the junction of two wires (Fig. 20) are quasi-1D structures with open boundaries,
momentum is not a good quantum number. The total magnetization in the computational
basis, Sz

tot, represents a conserved quantity for these drums. However, all nodes of a tree
(Fig. 21 and Fig. 22) already have the same Sz

tot by construction. The only remaining non-
trivial global symmetry turns out to be a reflection symmetry, denoted by Rw (R j) for the
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Figure 23: Level spacing ratio distribution P(r̃) versus r̃ for a wire with Np = 22
(left panel) and a junction of two wires with Np = 23 (right panel), with both the
data taken in the symmetry sector with Rw/ j = +1. The histograms indicate the
non-integrability of both the quasi-1D models.

wire (junction of two wires), which takes a Fock state |α〉 to another Fock state |β〉=Rw/ j|α〉
with the axis of reflection shown in Fig. 20 for both the drums. For a wire with even (odd)
number of plaquettes, the axis passes through a site (the diagonal of a square) (Fig. 20, left
and middle panels) whereas for a junction of two wires, it passes through the central junction
plaquette as shown in Fig. 20, right panel. Since R2

w/ j|α〉 = |α〉 for any Fock state, the basis

states (|α〉±Rw/ j|α〉)/
p

2 define states with Rw/ j = ±1 respectively. If Rw/ j|α〉= |α〉 for some
Fock state(s), then such Fock state(s) only contribute to the Rw/ j = +1 sector. This happens
in the case of the wire, where, the reference state provides one example of such a Fock state.
Thus, the number of basis states in Rw = +1 always exceeds the corresponding number for
Rw = −1 for a wire whereas these two numbers are equal to each other for a junction of two
wires.

Restricting to the larger sector withRw/ j = +1, we construct the distribution of consecutive
level spacing ratios r̃ (with support in [0, 1]) where r̃ is defined as follows:

r̃ =min
§

rn,
1
rn

ª

≤ 1 , rn =
sn

sn−1
, sn = En+1 − En , (31)

where En represent the energies of the eigenvectors obtained from ED. For a non-integrable
model, one expects a Gaussian orthogonal ensemble (GOE) distribution, while an integrable
system leads to a Poisson distribution for P(r̃) [80], where the two distributions have the
following forms:

PGOE(r̃) =
27
4

r̃ + r̃2

(1+ r̃ + r̃2)5/2
, PP(r̃) =

2
(1+ r̃)2

. (32)

The numerically generated data for P(r̃) versus r̃ is shown for a wire with Np = 22 plaquettes
and a junction of two wires with Np = 23 plaquettes in Fig. 23. The data clearly indicates
that P(r̃) follows PGOE(r̃) much more closely than PP(r̃) for these system sizes giving strong
evidence for the non-integrable nature of both these quasi-1D models.

5.3 Zero modes and index theorem

While both the wire and the junction of two wires have a symmetric eigenspectrum of H around
E = 0 as is expected for any quantum drum, the ED data further reveals the presence of an
ever-increasing number of exact zero modes (up to machine precision) with increasing Np for
the former case and the absence of any zero mode for the latter case.

This striking difference between the two drums can be understood in terms of the index
theorem of Ref. [75]. Firstly, a chiral operator Cw/ j =

∏

□ j
σz

jx , jy
(where the subscript w( j)
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Figure 24: Scaling of the total number of zero modes versus Np for a wire. For even
(odd) values of Np, the number of zero modes grow as µe(

p
ϕ)Np (µo(

p
ϕ)Np ) where

µe ≈ 0.75 (µo ≈ 0.35) [indicated by dotted lines].

refers to the wire (junction of two wires)) can be defined in both cases, which involves one site
( jx , jy) per elementary plaquette contained in the drum (these sites are indicated by crosses
in red in all panels of Fig. 20). This operator satisfies {H,Cw/ j} = 0 for the Hilbert space
fragments generated by these drums, thus ensuring the E → −E symmetry of the spectrum.
Furthermore, as already discussed, these two drums have a global reflection symmetry, Rw/ j ,
that commutes with H (Fig. 20). Importantly, while [Rw,Cw] = 0, it turns out that [R j ,C j] ̸= 0
which means that the index theorem of Ref. [75] applies to the wire but not to junction of two
wires. This leads to a macroscopically large number of protected zero modes in the former
case and also explains our numerical data (Fig. 24). The number of zero modes in the wire
show an interesting even-odd effect as a function of Np (Fig. 24) with the even values of
Np showing a higher number of zero modes. This even-odd effect stems from the fact that
the axis that defines the reflection symmetry, Rw, passes through a single site shared by two
elementary plaquettes for even values of Np; in contrast, it passes through two sites along a
diagonal of an elementary plaquette for odd values of Np (Fig. 20, left and middle panels).
The number of zero modes scale as µe/o(

p
ϕ)Np (with ϕ = (1+

p
5)/2 being the golden ratio

as defined before) where µe ≈ 0.75 (µo ≈ 0.35) for even (odd) values of Np (see Fig. 24).
Identical scaling behavior was also observed for the number of zero modes in the 1D PXP
model [12,13,81].

It is useful to point out here that a different type of junction of two equal-length wires
(Fig. 5, panel B) instead of this junction being studied here will again have an exponentially
large number of exact zero modes. Similarly, a junction of three equal-length wires (Fig. 5,
panel C) as well as a junction of four equal-length wires (Fig. 5, panel D) will also have a
macroscopic number of zero modes due to the index theorem of Ref. [75].

5.4 QMBS and related diagonastics

While the level statistics distribution of both the wire and the junction of two wires (Fig. 23)
is consistent with these quasi-1D models being non-integrable for large Np and thus satisfying
Krylov-restricted ETH, both quantum drums also harbor QMBS that give rise to observable
dynamical signatures like periodic revivals from certain simple initial states.

Let us consider three such Fock states for the wire as shown in Fig. 25. Fig. 25 (left panel)
shows the reference state which we denote as |r〉w, Fig. 25 (middle panel) shows a Fock state
obtained by flipping every alternate elementary plaquette in the reference state which we de-
note as | f u〉w, and Fig. 25 (right panel) shows a Fock state obtained by flipping every third
elementary plaquette in the reference state which we denote as | f uu〉w. Similarly, two repre-
sentative Fock states are shown in Fig. 26 for the junction of two wires. Fig. 26 (left panel)
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Figure 25: Three Fock states shown for the wire with Np = 10. (Left panel) Reference
state denoted by |r〉w (Middle panel) A | f u〉w state created by flipping every alternate
elementary plaquette in the reference state (Right panel) A | f uu〉w state created by
flipping every third elementary plaquette of the reference state. Flipped plaquettes
with respect to the reference state are shown shaded in blue. The entanglement cut
used to calculate the bipartite entanglement entropy of the system after mapping it
to an open chain of pseudospins is shown below; such a cut divides the system into
two equal halves with Np/2 pseudospins each.

shows the reference state which we denote as |r〉 j (note that there are two such reference states
possible for the junction of two wires) and Fig. 26 (right panel) shows a Fock state obtained by
flipping every alternate elementary plaquette in the reference state which we denote as | f u〉 j .
From the equivalence of the wire to the 1D PXP chain shown in Sec. 5.1, it is clear that while
local operators starting from the state |r〉w will thermalize quickly, since the initial state maps
to the Rydberg vacuum state of the PXP chain, this will not be the case from the initial states
| f u〉w and | f uu〉w which map to the period-2 |Z2〉 and the period-3 |Z3〉 Fock states of the PXP
chain, respectively.

This can indeed be checked by monitoring the fidelity F(t) = |〈s|exp(−iH t)|s〉|2 using ED
for these representative Fock states (denoted by |s〉) in Fig. 27. Most initial states show a rapid
drop in F(t) within t ∼ O(1) which is expected for a high-energy initial state in an interacting
system. However, for the wire, the behaviour of F(t) for | f u〉w and | f uu〉w are markedly
different, with both showing periodic revivals with an emergent time-scale T ∗ ∼ 5 for | f u〉w
(Fig. 27, top-left panel) and T ∗ ∼ 4 for | f uu〉w (Fig. 27, top-right panel). The periodic revivals
of F(t) starting from | f u〉w show a decaying envelope in time that can be reasonably described
by the envelope function exp(−t/τw) with τw ≈ 10 (Fig. 27, top-left panel). This decaying
envelope to the periodic revivals distinguish this phenomenon from the persistent oscillations
starting from initial Fock states discussed in Sec. 2.3. In fact, the fidelity revivals for the
| f uu〉w state shows a very interesting finite-size effect with such revivals being strongest when
Np = 3n+ 1 where n is an integer. For example, the peak value of the first fidelity revival in
time equals 0.52 for Np = 19 while it is much smaller for Np = 18 and Np = 20 (0.22 and 0.18
respectively). Furthermore, the Np = 19 data for F(t) starting from the initial state | f uu〉w
shows no sign of a decaying exponential envelope till t = 50 (see Fig. 27, top-right panel).
For the junction of two wires with Np = 23, we again see rapid decay of F(t) starting from
|r〉 j (Fig. 27, bottom-left panel) while F(t) shows non-trivial periodic revivals from | f u〉 j with
the same T ∗ ∼ 5 as in the wire case. The periodic revivals are weaker for the junction of two
wires compared to the single wire and again have a decaying exponential envelope described
by exp(−t/τ j) with a smaller τ j ≈ 7, but these fidelity revivals are nontheless clearly visible
up to t ∼ 20.
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Figure 26: Two Fock states shown for the junction of two wires with Np = 9. (Left
panel) Reference state denoted by |r〉 j (Right panel) A | f u〉 j state created by flipping
every alternate elementary plaquette in the reference state. Flipped plaquettes with
respect to the reference state are shown shaded in blue. The entanglement cut used
to calculate the bipartite entanglement entropy of the system after mapping it to
an open chain of pseudospins divides the system into two halves with (Np/2) ± 1
pseudospins as shown below.

It is useful to point out that the enhanced revivals observed for | f uu〉w for Np = 3n + 1
for the wire, which is equivalent to a |Z3〉 initial state in a 1D PXP chain with Np sites and
OBC, was not pointed out in the literature previously and additional terms were added to the
PXP Hamiltonian to cause enhancement of fidelity revivals from the |Z3〉 state [82]. As is
well-known from the 1D PXP chain [12,13], these fidelity revivals from certain special initial
states is due to a large overlap with approximate towers of QMBS that are equally spaced in
energy. These towers are most clearly seen by plotting the overlaps of the initial Fock state
| f uu〉w with the many-body eigenstates |E〉 as a function of energy (see Fig. 28). We see that
at Np = 3n+1 (Fig. 28, middle panel), these towers are much more clearly formed compared
to Np = 3n (Fig. 28, left panel) and to Np = 3n+ 2 (Fig. 28, right panel). We also note that
at the system sizes, Np = 3n+ 1, the | f uu〉w Fock state becomes orthogonal to the zero mode
subspace of the system (up to machine precision) even though the initial state has zero average
energy. A deeper understanding of all these striking finite-size effects at Np = 3n+ 1 for the
wire/open PXP chain would be highly desirable.

Even though the junction of two wires cannot be reduced to the 1D PXP chain, this model
also admit approximate towers of QMBS that are equidistant in energy. In Fig. 29 (two panels),
the overlap behavior of the | f u〉 j Fock state (Fig. 26, right panel) with the eigenstates of the
junction of two wires with Np = 23 is shown for the R j = +1 and the R j = −1 sectors respec-
tively. In this case, the towers of states with higher overlap to the Fock state are somewhat less
clearly separated from the bulk of the spectrum as compared to the 1D PXP model, explaining
the weaker fidelity revivals in the junction of two wires as compared to the single wire case
(Fig. 27, top left and bottom right panels). Since [R j ,C j] ̸= 0, the overlaps are not symmetric
with respect to zero energy; rather, the overlap behavior for R j = +1 sector is a mirror image
(with the mirror axis being E = 0) of the R j = −1 sector.

Another tell-tale signature for the presence of QMBS is that such states have anomalously
low bipartite entanglement entropy compared to neighboring eigenstates with similar ener-
gies. The bipartite entanglement entropy is given by

S(A) = −Tr[ρA lnρA] , (33)

for each eigenstate |Ψ〉 where ρA = TrA|Ψ〉〈Ψ| where ρA represents the reduced density matrix
obtained by partitioning the system in to two spatial regions, A and its complement A. We
find it convenient to compute the bipartite entanglement entropy by adopting the one-to-one
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Figure 27: The behavior of fidelity F(t) shown for the wire with two different initial
Fock states with the top-left panel for | f u〉w, and the the top-right panel for | f uu〉w.
The bottom-left (bottom-right) panel shows the fidelity as a function of time with the
initial state being |r〉 j (| f u〉 j) for a junction of two wires.
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Figure 28: Density plots showing the overlap of the | f uu〉w state with energy eigen-
states of the wire with Np = 18 (left panel), Np = 19 (middle panel) and Np = 20
(right panel) respectively. In all the panels, the density of states is indicated by the
same color map where warmer color corresponds to higher density of states.

mapping of Fock states in a wire or a junction of two wires to pseudospins with values 0,±1
in a 1D open chain with Np sites, with the mapping explained in Sec. 5.1. We then take A
to be the first Np/2 sites of the 1D chain for the wire (as shown in Fig. 25) and the first
(Np/2)−1 sites of the 1D chain for the junction of two wires (as shown in Fig. 26). The results
of such a computation from ED are shown in Fig. 30 for the wire (top-left panel) and the
junction of two wires (top-right panel) respectively. While both the panels show a presence
of several anomalous eigenstates with lower bipartite entanglement entropy than the bulk of
the spectrum, the wire shows a broader distribution of values especially in the neighborhood
of E = 0 compared to the junction of two wires.
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Figure 29: Density plots that show the overlap of the | f u〉 j state for a junction of
two wires with energy eigenstates of the junction with two wires with Np = 23 for
the R j = +1 (left panel) and the R j = −1 (right panel) sectors respectively. In both
panels, the density of states is indicated by the same color map where warmer color
corresponds to higher density of states.

The expectation value of any local operator in a high-energy eigenstate is supposed to
approach the thermal result, with the inverse temperature being fixed by the energy density
of the eigenstate, for a system that satisfies ETH. In Fig. 30 (bottom panels), we consider the
expectation value 〈Ψ|O|Ψ〉 as a function of energy, where |Ψ〉 denotes an eigenstate of the wire
(bottom left panel) or the junction of two wires (bottom right panel) and O = σz

1σ
z
3 +σ

z
2σ

z
4

where sites 1,2, 3,4 represent the four sites (in a clockwise manner) of the Np/2-th elementary
plaquette from the top-left for a wire and the central junction plaquette for the junction of two
wires. Since this local operator is located away from the edges of the system, it represents a
bulk operator in both the cases. The thermal result as a function of energy is represented by
dotted curves on both the lower panels of Fig. 30. While the expectation value of the local
operator for the bulk of the spectrum indeed approaches the thermal result, several eigenstates
do show an expectation value that is quite far from the corresponding thermal result. The
wire again shows a much larger variation in the range of expectation values compared to
the junction of two wires, especially in the vicinity of E = 0. Interestingly, the latter case
shows tower-like structures that are equidistant in energy (Fig. 30 (bottom right panel)) with
a similar spacing between them as the tower of scar states visible in the overlap plots (Fig. 28,
two panels).

6 Discussion

In conclusion, we have considered a spin-1/2 model on the two-dimensional square lattice
in a constrained Hilbert space where no two nearest-neighbor sites can have up-spins simul-
taneously. The interaction Hamiltonian is composed of ring-exchange terms on elementary
plaquettes that not only conserve the total magnetization but also the magnetization along
each column and row of the square lattice. These additional subsystem symmetries imply
conservation of a global dipole moment that leads to the phenomenon of Hilbert space frag-
mentation. While microscopic models of both weak and strong fragmentation are known in
one dimension, we show that this particular interacting model with both hard-core constraints
and subsystem symmetries presents a rich structure of emergent quantum drums as well as a
rare example of strong Hilbert space fragmentation in two dimensions.

All the many-body eigenstates of this model can be expressed in terms of the tensor product
of modes of appropriate quantum drums and any left-over inert spins. Given an initial unen-
tangled product state in the computational basis, the associated quantum drums get fixed and
come in a variety of shapes and sizes starting from one-plaquette drums to truly extensive
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Figure 30: The behavior of the bipartite entanglement entropy for each eigenstate
shown for (top left panel) a wire with Np = 18 in the Rw = +1 sector and for
(top right panel) a junction of two wires with Np = 19 for both R j = ±1 sectors
together. The expectation value of a local diagonal operator defined on an elementary
plaquette for each energy eigenstate shown for the wire with Np = 22 (bottom left
panel) and the junction of two wires with Np = 23 (bottom right panel) respectively,
both in the symmetry sector Rw/ j = +1. The dotted lines in both the lower panels
indicate the thermal values as a function of the energy E. In all the panels, the
density of states is indicated by the same color map where warmer color corresponds
to higher density of states.

structures made of plaquettes that share edges and/or vertices with each other. Specifying the
plaquettes that belong to a drum uniquely fixes its spectrum. Crucially, these drums can be
“shielded” from each other by shielding regions that only grow as the perimeter and not the
area of such drums.

Large quantum drums and their associated fragment dimensions can be most easily esti-
mated by using a “wire” decomposition of such drums and then counting the number of ways
in which such wires can fluctuate simultaneously without violating the kinematic constraints.
This allows us to identify the appropriate drums that dominate statistically for a given density
of up-spins (bosons). The largest Hilbert space fragment is generated by the “checkerboard
drum” at a density of n = 1/4 for the up-spins (bosons). It is shown that initial states that
belong to such fragments evade ETH-predicted thermalization (in the full Hilbert space) due
to the presence of either an extensive number of inert spins or an extensive number of next-
nearest neighbor spin correlations that retain the memory of the initial state. In particular,
initial states that belong to the checkerboard drum fragment contain zero density of inert
spins but a finite density of next-nearest neighbor correlations that are pinned to athermal
values under time evolution with H.

We consider the spectrum of some small drums analytically to show the emergence of
interesting zero, non-zero integer and irrational modes. Close packing an extensive number
of the elementary one-plaquette drums already generate many-body eigenstates with integer
energies (including zero) and strict area-law scaling of entanglement entropy. Large quasi-one-
dimensional and two-dimensional quantum drums can be viewed as interesting interacting
systems with constrained Hilbert spaces. A class of these drums harbor a large number of
exact zero modes. The simplest quasi-one-dimensional drum, which we dub as a wire, is
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shown to be exactly equivalent to the well-known PXP chain with open boundary conditions.
However, a particular junction of two wires is also studied which cannot be mapped in to the
PXP chain and represents a different constrained model. Both these quasi-one-dimensional
drums support distinct families of quantum many-body scars that cause periodic revivals from
certain simple initial states. Our numerics for the wire also shows that the period-3 state with
Rydberg excitations on every third site shows strong revivals for open chains of length 3n+ 1
without the necessity of adding further perturbations to the PXP chain. This result can have
possible implications for experiments with Rydberg atoms.

Several possible open directions emerge from our study. Other junctions of wires, like junc-
tions of three wires and four wires, as well as some of the two-dimensional drums introduced
here should have interesting high-energy properties. It is further possible to add diagonal in-
teractions in the computational basis which preserve the fragmented structure of the model.
Using such additional interactions, one can possibly access different phases and phase tran-
sitions at zero temperature in both quasi-one-dimensional and two dimensional theories in
the presence of subsystem symmetries. Whether many-body localized phases can emerge in
quasi one-dimensional and two-dimensional drums in the presence of subsystem symmetries
on adding diagonal interactions with random couplings presents another interesting research
direction.

Note added: While preparing this manuscript, we came to know of a related work by
Lehmann et al. [83] which discusses strong Hilbert space fragmentation in higher dimensions
using a different Hamiltonian (correlated hopping model).
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ergodicity breaking from quantum many-body scars, Nat. Phys. 14, 745 (2018),
doi:10.1038/s41567-018-0137-5.

[13] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn and Z. Papić, Quan-
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