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Abstract

The calculation of pair correlations and density profiles of quasiholes are routine steps
in the study of proposed fractional quantum Hall states. Nevertheless, the field has
not adopted a standard way to present the results of such calculations in an easily re-
producible form. We develop a polynomial expansion that allows for easy quantitative
comparison between different candidate wavefunctions, as well as reliable scaling of
correlation and quasihole profiles to the thermodynamic limit. We start from the well-
known expansion introduced by Girvin [PRB, 30 (1984)] (see also [Girvin, MacDonald
and Platzman, PRB, 33 (1986)]), which is physically appealing but, as we demonstrate,
numerically unstable. We orthogonalize their basis set to obtain a new basis of modified
Jacobi polynomials, whose coefficients can be stably calculated. We then apply our ex-
pansion to extract pair correlation expansion coefficients and quasihole profiles in the
thermodynamic limit for a wide range of fractional quantum Hall wavefunctions. These
include the Laughlin series, composite fermion states with both reverse and direct flux
attachment, the Moore-Read Pfaffian state, and BS hierarchy states. The expansion pro-
cedure works for both abelian and non-abelian quasiholes, even when the density at the
core is not zero. We find that the expansion coefficients for all quantum Hall states con-
sidered can be fit remarkably well using a cosine oscillation with exponentially decaying
amplitude. The frequency and the decay length are related in an intuitive, but not ele-
mentary way to the filling fraction. Different states at the same filling fraction can have
distinct values for these parameters. Finally, we also use our scaled correlation functions
to calculate estimates for the magneto-roton gaps of the various states.
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1 Introduction

The fractional quantum Hall effect (FQHE) [1,2] has long been a phenomenon of considerable
interest; for its surprising experimental properties, rich theoretical description, and potential
usefulness in the field of quantum computing [3]. Among other approaches, the construction
of trial wavefunctions has proven highly successful at modeling FQHE systems. The pair cor-
relation function, g(r), giving information about the probability of finding two electrons at
a relative distance r, constitutes an important tool when examining a trial wavefunction. It
can be used to estimate the ground state energy and, through the single-mode approximation,
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the gap to neutral excitations [4]. The general shape of the graph of g(r) is also often used
in more qualitative arguments to check that the trial wavefunction represents an interacting
incompressible quantum liquid. Such incompressibility is characterized by damped oscillatory
behavior. Further, a modified shape of the correlation hole is used as an indicator of pairing or
clustering behavior, often associated with the presence non-Abelian anyons in the excitation
spectrum. Similarly, when wavefunctions for quasihole excitations are available, the density of
the system in the presence of a quasihole is an important quantity. The density then reflects the
typical size of the quasihole, contains information about quasihole correlations, and allows for
electrostatic calculations involving quasiholes. For example, quasiholes of simple FQH states,
such as the Laughlin states, tend to have zeros in the electron density near the center of the
excitation. In contrast, quasiholes in paired and clustered states may only show a depression
of the electron density but no zeroes.

It is straightforward to find an estimate for the pair correlation function of a real-space
trial wavefunction involving a finite number of particles N using Monte Carlo sampling. It is
natural to represent the results using graphical plots, and this is the most common approach
in the literature. See e.g. refs. [5–16] for some new and old example plots of pair correlation
functions for FQHE trial wavefunctions. See also the works of refs. [17, 18] on pair correla-
tion functions in fractional Chern insulators, where the correlation profiles reflects the FQHE
nature of these systems. There are, however, reasons to seek a more quantitative and repro-
ducible form of g(r): Rigour when comparing the pair correlations of different wavefunctions,
extrapolation to the thermodynamic limit N →∞, reusability for the future, and computing
the single-mode approximation are just a few reasons. One may also hope that a more quan-
titative approach could help put some of the intuitive arguments about compressibility etc.,
which are based on the shape of the graph, on a more rigorous footing.

This paper presents a polynomial expansion of FQH correlation functions and quasiparticle
density profiles that allow for easy high-precision reproduction of the complete correlation
functions and scaling to the thermodynamic limit. We also demonstrate how the single-mode
approximation of the dispersion can be calculated directly from the expansion coefficients. We
provide expansion coefficients for the correlations functions and quasihole densities, as well as
dispersion results for several prominent quantum Hall states. These should be useful in future
studies of those states and comparisons with alternative or newly proposed trial wavefunctions.
In particular, we present extrapolations of the pair correlation functions and quasihole profiles
to the thermodynamic limit. This is of interest since it is only in this limit that observables are
free from finite-size effects, as should be expected in the bulk of the actual physical system;
such extrapolations are standard for i.e. ground state energy calculations but have so far not
been attempted for pair correlation functions.

The expansion we introduce is inspired by an earlier expansion of g(r) developed by Girvin
[5], (see also Ref. [4]). While this earlier expansion is physically appealing it is, as we will
show, numerically unstable, which makes it unsuitable for quantitative analysis at large sizes
and in particular for extrapolation to the thermodynamic limit. The instability is due to high
overlaps between Girvin’s basis functions. The alternative basis we use is orthogonal and can
in fact be obtained from Girvin’s basis by direct Gram-Schmidt orthogonalization.

The rest of this paper is organized as follows: In section 2 we review the non-orthogonal
pair correlation expansion on the plane laid out in Ref [5], and some of its shortcomings. In
section 3 we adapt the non-orthogonal planar expansion to the sphere, and produce a numer-
ically stable expansion by orthogonalizing the basis functions. In section 4 we benchmark the
orthogonal expansion against the previous non-orthogonal one and discuss e.g. convergence
and scaling behavior. In section 5 we apply the orthogonal pair correlation expansion to deter-
mine the shape of the correlation function, in the thermodynamic limit, for several prominent
FQH states. We also determine the density of abelian and non-abelian quasiholes on top of the
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Laughlin and Moore-Read states. Finally, in section 6, as a concrete application, we discuss in
some detail how one estimates the magneto-roton collective mode directly from the expansion
coefficients obtained in section 5. An early version of this work appeared in the PhD thesis by
J.F [19]. The expansion coefficients (including their uncertainties) for all the states treated in
this work is available in digital form in the supplementary material.

2 The pair correlation function and planar expansion

The general pair correlation function for a system of N electrons with coordinates {r 1, r 2, . . . , r N}
is formally defined through the electron wavefunction Ψ as

g(r 1, r 2) =
N(N − 1)
ρ2

∫ N
∏

i>2

dSi |Ψ(r 1, r 2, . . . , r N )|2 , (1)

where dSi is the surface measure associated with the configuration space of particle i and ρ
is the average density. This definition exploits the fact that g does not depend on the chosen
pair, due to the permutation symmetry of |Ψ|. The function g(r 1, r 2) is proportional to the
probability density of finding one particle at r 1 and another at r 2. It is normalised by ρ−2 so
that it equals one when the particles’ positions are completely uncorrelated. This normalization
removes the asymptotic dependence on the density, which in the FQHE setting, is proportional
to the filling fraction. This also means that this g is not strictly speaking a probability density.

Assuming isotropy and homogeneity of the system leads to two simplifications. First, the
center of mass of the particle pair is irrelevant, and we use this to fix one coordinate at the
origin, i.e. we set r 1 = 0. Secondly g should only depend on the distance r = |r 12|= |r 2− r 1|
between the two particles. Using this we define the reduced pair correlation

g(r) =
N(N − 1)
ρ2

∫ N
∏

i>2

dSi |Ψ(0, r 12, . . . , r N )|2 , (2)

which will be the focus of this paper.
An approximate plot of the pair correlation can be obtained using the average values ḡi of

g on the intervals [ri , ri+1] for some chosen set of r j . The bin values are given as

g i =

∫ ri+1

ri

g(r)dSr

À

∫ ri+1

ri

dSr , (3)

with the integration measure dSr = 2πr dr on the infinite plane. The approximate values ḡi
can be computed using Monte Carlo methods for real-space wavefunctions Ψ.

The lowest Landau level single particle wavefunctions on the disk are given by
φm ∝ zm exp(−|z|2/4) in terms of the complex position coordinate z = x + i y . Girvin used
these, together with the independence of g on the center of mass and circular symmetry to
construct the following expansion [5]:

g
�

r
�

=1− e−r2/2 +
∞
∑

m=1, odd

cmhm(r) , (4)

hm =
2

m!

�

r2

4

�m

e−r2/4 , (5)
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Figure 1: a) The elements of the overlap matrix Mmk in (8), for m, k = 1, 3, . . . 29 and
b) it’s inverse M−1

mk. All elements of Mmk are positive and many off-diagonal elements
are of order unity. As a result, the inverse has many elements on the order of 108!
Panels c) and d) show the same phenomena for the spherical geometry orbitals fk(η)
in eq. 13 and eq. 15, with 2Q = 15.

where r = |z|, and the index m is restricted to odd integers because the electrons are fermions.1

The coefficients cm should eventually decrease in size as m increases, so that only a limited
number are necessary to represent the correlation function. The first two terms in (4) cor-
respond to the pair correlation of the non-interacting integer quantum Hall state at filling
fraction ν= 1 [20],

g1

�

r
�

= 1− e−r2/2 . (6)

Thus, we may think of g1(r) as a “reference correlation function” and the coefficients cm mea-
sure the deviation from this “reference correlation function” of ν = 1. Note that one may in
principle use any function instead of g1(r) as the “reference correlation function”, and this
will in turn of course affect the expansion coefficients cm.

For future convenience we define an inner product for correlation functions, as

〈 f |g〉=
∫

dSr f (r)g(r) , (7)

where, just as in (3), dSr = 2πr dr is the integration measure for r. Using this definition of
the inner product, Girvin’s expansion functions hm(r) are normalized, 〈hm|hm〉= 1.

The expansion in (4) is intended to make it possible to represent the pair correlation to
a high accuracy using only a handful of coefficients. The coefficients themselves, however,
are numerically unstable, as expanded upon and demonstrated in section 4. This expansion
is therefore unsuitable for applications that use the coefficients directly; e.g. comparing coef-
ficients of different wavefunctions or scaling the coefficients with system size.

To get an idea of how the instability in this basis choice comes about, we refer to Fig. 1.
There, the overlap matrix

Mmn = 〈hm|hn〉=

�m+n
2

�

!

n!

�m+n
2

�

!

m!
, (8)

and its inverse are plotted for the first 15 terms m = 1, 3, . . . , 29 of (4). As should be evident,
all elements of M are positive definite, and therefore the functions hk(r) are forming a non-
orthogonal set. We will refer to this expansion as a planar non-orthogonal expansion (NOE).
This nonzero overlap between the basis functions means it is possible to decompose two very
similar correlation functions using dramatically different coefficients, causing instability. One
way to see this instability is that the inverse of M (which is needed when estimating the best
choice for cm) has rapid sign changes and many elements that are orders of magnitude larger

1Note that the 1/4 in the exponential e−r2/4 means that the expansion cannot be thought of as expanding in
|φm(r)|2.

5

https://scipost.org
https://scipost.org/SciPostPhys.14.6.149


SciPost Phys. 14, 149 (2023)

than unity. In the example given in the figure, many coefficients take values around 108. There
is further discussion of this instability in Appendix D.

The core issue is that the expansion proposed by Girvin does not constitute a set of or-
thogonal functions (for any positive measure), since all the individual functions are positive
definite.

3 Spherical orthogonal basis

We now construct an expansion of g into orthogonal functions. To achieve this, we first move
to the spherical geometry, and construct an expansion there. The planar expansion is then
obtained in the limit of an infinitely large sphere.

The spherical geometry is commonly used in the literature, especially for numerical studies
of the Fractional Quantum Hall Effect, and was introduced in Ref. [21]. An expansion in
this geometry should therefore be of independent interest. We construct an expansion basis
adapted to the sphere, in two steps. Firstly, to account for the finite geometry of the sphere,
we base the expansion on spherical single-particle wavefunctions instead of planar ones. This
leads to an non-orthogonal expansion analogous to Girvin’s. Secondly, we orthogonalize the
basis, which will remedy the above-mentioned problems with instability. At the end of this
section, we take the limit of an infinitely large sphere to produce an orthogonal expansion
suitable for the planar geometry.

We begin with a small primer on Fractional Quantum Hall wave functions on the sphere.
The electrons are placed on a sphere of radius R, where the magnetic field emanates from a
central Dirac monopole. Demanding that the number of magnetic flux quanta piercing the
surface is an integer 2Q leads to the relationship

R= ℓ
p

Q , (9)

where ℓ =
p

ħh/eB is the magnetic length. On the sphere there is a geometrical shift S in the
relationship between the number of electrons N , flux 2Q and filling factor ν, defined by

2Q = N/ν− S . (10)

The shift is a topological quantum number (for homogenous states), and can be used to dis-
tinguish different topological states residing at the same filling fraction.

We define a dimensionless distance η between two particles at positions r 1 and r 2 as

η=
|r 1 − r 2|

2R
=

r
2R

, (11)

where r is the chord distance (through the interior of the sphere) between the two particles.
It is often convenient to use spinor coordinates u andv on the sphere, related to the polar and
azimuthal angles θ and φ by u= cos(θ/2)exp(iφ/2) and v = sin(θ/2)exp(−iφ/2). In terms
of these, we can write η = |u1v2 − u2v1|. Similarly to Girvin’s planar version, we would like
the expansion to consist of the ν = 1 pair correlation function g1(η) plus a superposition of
basis functions. The function g1 is given as (see appendix A):

g1(η) = 1− (1−η2)2Q . (12)

Following a procedure similar to Girvin’s [5] then gives the following spherical expansion
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(see appendix B):

g(η) = 1−
�

1−η2
�2Q
+

2Q
∑

k=1

dk fk(η) ,

fk(η) =

√

√4Q+ 1
4π

�

4Q
2k

�

(1−η2)2Q−kη2k . (13)

This is a finite basis due to the finite dimensionality of the Landau levels on the sphere. The
functions fk are normalized under the measure dS = 8πηdη and the inner product over η is
defined as

〈 f |g〉= 8π

∫ 1

0

dηη f (η) g(η) . (14)

Just like on the plane, these functions are not orthogonal, but have the positive definite inner
products

〈 fm| fn〉=
�

4Q
m+ n

�−1
√

√

�

4Q
2m

��

4Q
2n

�

. (15)

This expansion is exact, as long as the pair correlation function is isotropic and homoge-
neous. We are interested in extracting the expansion coefficients in the thermodynamic limit,
and we note that the basis automatically scales in size like the quantum Hall system. The basis
functions are localized at roughly the same values of r (not η) irrespective of the system size.
As more basis functions are added (for larger Q), one can probe details in the pair correlation
function at larger separation between the particles. We mention in passing that one may, in
principle, use a value of 2Q that does not correspond to the strength of the Dirac monopole,
but then the above mentioned properties may be lost.

Orthogonalizing the functions fk through the Gram-Schmidt procedure with respect to
the integration measure dS = 8πηdη yields the following expansion in a basis of orthogonal
polynomials (see appendix C for details)

g(η) = 1− (1−η2)2Q +
2Q
∑

n=1

cnGn(η) ,

Gn(η) =Nnη
2(1−η2)2Q−nJ (2,4Q+1−2n)

n−1 (1− 2η2) ,

Nn =

√

√(4Q+ 2− n)(4Q+ 1− n)(4Q− 2n+ 1)
4πQn(n+ 1)

, (16)

with the Jacobi polynomials J (α,β)
k (x) [22]. The explicit form used in our calculations is thus

Gn(η) = (−1)nNnη
2

n−1
∑

s=0

�

n+ 1
n− 1− s

��

4Q− n
s

�

�

−η2
�s �

1−η2
�2Q−1−s

. (17)

The overall factor of (−1)n is inserted for later convenience in order to give cn a smooth enve-
lope shape. Some of the orthogonal basis functions are plotted in figure 2. The basis functions
have three properties, which can be identified in the image: 1) The number of oscillations,
i.e., maxima, of the function Gn is precisely n. 2) The position of the last maxima of Gn(η) is
approximately located at the peak position of fn(η), and that distance grows as

p
n. 3) The

distance to the first peak of Gn(η) decreases as 1/
p
η. From these three properties we con-

clude that our basis has the peculiar property that larger n is modeling g(η) at both shorter
and longer distances simultaneously.

Even though (16) is an exact expression for Gn(η), in practice it is not possible to accu-
rately evaluate it numerically if n is too large, n ≳ 35. The reason for this loss of accuracy is
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Figure 2: Dashed lines: The first 3 odd orthogonal basis functions in the thermo-
dynamic limit G(∞)n (r) (19). Solid lines: The same basis functions Gn(η) given by
equation (16), is plotted for 2Q = 20. The coordinate r = 2Rη with 2R2 = 2Q = 20
has been employed in order to compare with the infinite functions.

the almost canceling positive and negative contributions in the sum. These can, in turn, be
traced back to the instability of the original expansion basis demonstrated in figure 1. This is
essentially the same phenomenon as that described in Figure 1. Instead, we evaluate Gn(η)
by numerically integrating the appropriate second-order differential equation, which is much
more well behaved (see Appendix E).

3.1 The planar limit

One goal of constructing an orthonormal set of basis functions is to enable scaling of the
coefficients to the limit N →∞. This is only meaningful if the corresponding limits of the
functions in (16) exist, which indeed they do. In practice, we use a subset of the functions by
imposing a cutoff K so that n ∈ {1, . . . , K}.

From (9) and (10) the limit implies 2Q →∞, so that the radius of the sphere becomes
infinite and the geometry approaches a plane. Then writing 2Q ≈ N/ν and reverting to the
chord length r through η= r

2R ≈
rp

2N/ν
, we find that the non-orthogonal basis has

lim
N→∞

fk∝ e−r2/2r2k∝ hk(r) . (18)

The orthogonalized functions inherit this limit and become

G(∞)n (r) = lim
N→∞

Gn(η) = (−1)n
e−r2/2r2

p

πn(n+ 1)
L2

n−1

�

r2
�

, (19)

where Ls
t(x) are the associated Laguerre polynomials [22]. The functions G(∞)n are orthonor-

mal with respect to the planar integration measure (7) given by dS = 2πrdr.
The astute reader will notice that the expansion by Girvin on the plane only used odd

powers of r2, whereas here we produce also the even powers. The reason for this discrepancy
is that Girvin used a center of mass frame, where both particles were an equal distance from
the origin. To preserve the fermionic nature, the expansion has to only contain odd powers
of r2. In our expansion we first explicitly split off the antisymmetric behavior of the wave
function for particles 1 and 2 and then break the symmetry between particles 1 and 2 by
placing particle 1 at the origin, or the north pole of the sphere before we take the planar limit,
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Figure 3: Expansion of the Laughlin ν = 1/3 state at N = 22 electrons, N = 6× 106

samples onto Kmax = 30 orbitals, using the non-orthogonal (13) and orthogonal
spherical (16) expansions. To indicate the coefficient (in)stability, we also perform
the same exercise with half of the orbitals (Kmax = 15, marked with “/H” in the
legend). Note the abbreviations IP (inner product) and LS (least squares) for the
method used to obtain the coefficients.
a) Absolute values of expansion coefficients. The NOE coefficients dk are orders
of magnitude larger than the OE coefficients and depend strongly on Kmax and the
method to find them. The OE coefficients, on the other hand, are stable, and show
clear decreasing magnitude with n.
b) The measure ε as defined in (20) versus the number K of functions included
in expansion. For the OE, the reconstruction becomes monotonically better with
more included coefficients. For Kmax = 15, the NOE reconstruction becomes worse
at intermediate K , only to become as good as the OE at K = Kmax. For Kmax = 30,
the NOE reconstruction immediately worsens and never recovers, indicating its lack
of stability.

see Eq. (B.1) and (B.2) in Appendix B. This yields a different expansion with both odd and
even powers of r2. This may seem inefficient but we need to keep in mind that our r is the
actual distance between the particles whereas Girvin’s r is only half that distance, as it gives
the distance to the joint centre of mass. Therefore the expansions need the same number of
nonzero coefficients to model g out to the same actual distance.

4 Benchmarking the expansions

We now benchmark how the new orthogonal expansion (OE) in equation (16) performs com-
pared with the non-orthogonal expansion (NOE) in equation (13) and (4). An expansion
should be robust in terms of the coefficients, not only with respect to perturbations and the
number of basis functions but also to the chosen method of finding the coefficients. We will
use two different methods to obtain expansion coefficients and compare them.

The first method consists of a straightforward least squares (LS) fit of the Monte Carlo
approximated bin averages to the relevant basis functions. To be precise, the LS method min-
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Figure 4: Evolution of the pair correlation expansion coefficients cKmax
n when a num-

ber Kmax are included. The orthogonal coefficients computed though the least squares
method (a) quickly stabilize whereas the nonorthogonal coefficients depend on Kmax
tend to increase as Kmax increases.

imizes the cost function

ε=

√

√

√

∑

j

�

g(η j)− gMC(η j)
�2

, (20)

where g is the NOE/OE expansions in (13) and (16), and gMC is the target pair correlation
function approximated with bins as in (3). The η j are the midpoints of the bins. The least
square fits are approximating gMC by minimizing ε, which also is an expression for the recon-
struction error.

The second way to find the coefficients uses the inner product (IP) method

cn = 〈Gn|gMC − g1〉 , (21)

where g1 is the spherical pair correlation function (12) for ν = 1. The IP method can be
adjusted for use with the non-orthogonal basis to read

dm =
Kmax
∑

k=1

(M−1)mk〈 fk|gMC − g1〉 , (22)

where Mmk = 〈 fm| fk〉 is the overlap matrix between the first Kmax functions in (13).
We now have four approaches to decomposing the pair correlation function: using the

non-orthogonal spherical basis (NOE) and the orthogonal spherical basis (OE) with either of
the methods least squares (LS) and inner products (IP). Here, both the LS and the IP method
use pre-binned values for gMC, so the main difference is that the two methods use different
measures. For LS the measure is dS∝ dη and for IP it is dS∝ η dη.

By making use of (19) in place of (17) a similar benchmarking is also possible directly on
the plane, but we will not pursue that in this work.

4.1 Coefficient dependence on Kmax

As a demonstration we decompose the Laughlin ν = 1/3 state [23] at N = 22 electrons and
2Q = 3Ne − 3 = 63, using 40× 106 samples. Since the sphere is a finite geometry, there is an
upper bound to Kmax ≤ 2Q, as seen in (16). We choose two different cutoffs, Kmax = 15 and
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Figure 5: Expansion of the Laughlin ν= 1/3 state at N = 22 electrons, into the same
coefficients as in figure 3.
a) Absolute MC errors σn of the coefficients cn. The absolute errors in the OE are
almost constant, whereas the NOE has errors that are several orders of magnitude
larger and vary over several orders of magnitude. The larger absolute errors reflect
the larger magnitude of the NOE coefficients.
b) Relative MC errors σn/cn of the coefficients cn. The relative errors of the OE re-
flects the size of the coefficients cn. As the coefficients become smaller, the relative
errors become larger. For the NOE the relative errors on the coefficients are consid-
erably larger when Kmax is reduced.

Kmax = 30, and the corresponding expansion coefficients are plotted for the orthogonal and
non-orthogonal expansion in figure 3a.

It is immediately striking that the orthogonal (OE) coefficients are independent of the
method used to find them, in contrast to the non-orthogonal (NOE) ones. The latter’s size also
increases with K , rather than decreases – note the logarithmic scale. An important observation
here is that if one changes the number Kmax of included orbitals, this does not affect the OE
coefficients obtained using the LS method. (The OE coefficients obtained using the IP method
are also clearly unaffected by the choice of Kmax.) It does, however, change the size of the NOE
coefficients by several orders of magnitude. This observation clearly indicates the non-stability
of using the non-orthogonal expansion.

We have noted that changing Kmax can profoundly impact the NOE coefficients, and now
we look at this in more detail. We now study explicitly how the expansion coefficients depend
on Kmax. In figure 4, we plot the evolution of the different coefficients cn as Kmax is increased
up to Kmax = 30. This is done using LS on both the orthogonal and non-orthogonal functions
as well as IP for the non-orthogonal functions. The IPs of the orthogonal functions are, of
course, independent of Kmax.

The non-orthogonal coefficients depend strongly on Kmax, both the least-squares and for
the inner product method. In fact, the data in figure 4b-c suggests that most of the coefficients
will continue to grow as Kmax increases.

The orthogonal coefficients in figure 4a on the other hand, show much better convergence
properties. As a rule of thumb, one may say that while the OE coefficients cn are converged
for all n≤ Kmax − 3, the NOE coefficients are not converging at all.
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Figure 6: Expansion coefficients of the Laughlin ν= 1/3 wavefunction in the orthog-
onal spherical expansion, obtained using inner products, plotted against 1/N . The
first 15 coefficients are shown together with linear extrapolation in 1/N . The various
coefficients have almost perfect linear scaling in 1/N , allowing the thermodynamic
limit to be determined with high accuracy.

4.2 Reconstruction error

Another measure we investigate is how well the various expansions g manage to recreate the
target correlation function gMC. For this, we may use the residual ε, as defined in (20). There
are several potential errors that prevents us from reaching ε = 0. The first is the statistical
error due to the finite number of MC samples used to generate gMC. The second is the binning
error introduced by discretizing the correlation function into bins. On top of that, there are
machine precision errors in the evaluation of the expansion functions and inverses of their
overlaps. The last error is the main source of error for the NOE.

In figure 3b we plot how ε, develops as more and more components are included in the
expansions (13) and (16). This is done for fixed Kmax, using the coefficients shown in figure 3a.
There are several interesting things to note here. First, we see that ε decreases monotonically
for the OE expansion, whereas adding more terms will initially make the fit worse for the
NOE expansion. That the fit is not perfect, is partially due to the cutoff in Kmax, but also
the truncation error introduced when binning the original Monte Carlo data, as well as the
bin-fluctuations introduced by the Monte Carlo procedure itself.

Further, we note that when all K ≤ Kmax = 15 have been included, the fit error ε is the
same for the OE and NOE expansions. This is natural since when all K ≤ Kmax are included,
the two expansions should be equivalent – remember that the OE is just an orthonormalized
version of the NOE. This also means (since the orthogonal IP expansion is independent of Kmax)
that the (blue) orthogonal IP curves are also the best approximation achievable by including
the first K non-orthogonal functions. The same thing is not observed in the Kmax = 30 case,
simply because of the numerical instability in extracting the correct coefficients when Kmax is
too large.

We may understand the large reconstructing error of the non-orthogonal expansion from
the arguments presented in Figure 1. More formally, we may consider the condition number
of the overlap matrix M , which is computed in Appendix D. In the Appendix it is demonstrated
that the condition number grows super-exponentially fast as a function Kmax, leading to re-
duced numerical stability. From the above considerations, we can conclude that the NOE only
yields good representations of the pair correlation for small Kmax, whereas the OE is stable at
all Kmax considered.
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Table 1: The first 20 expansion coefficients cn for the pair correlation function of the
Laughlin wavefunction at ν= 1/3,1/5, 1/7.

n ν= 1/3 ν= 1/5 ν= 1/7 n ν= 1/3 ν= 1/5 ν= 1/7

1 2.6449(6± 3) 3.5613(97±12) 3.73192(5±5) 11 0.0643(9± 5) −0.306(69±10) −1.278(43±14)
2 1.0027(4± 3) 2.8439(4± 3) 3.4647(95±19) 12 0.0550(6± 5) −0.1317(2± 9) −1.150(80±16)
3 −0.0606(5± 3) 1.8254(8± 4) 3.0906(9± 3) 13 0.0408(3± 7) 0.0079(5± 9) −0.9593(9± 7)
4 −0.4104(0± 5) 0.7141(2± 4) 2.4537(1± 3) 14 0.0257(4± 6) 0.110(52±13) −0.740(17±13)
5 −0.3951(0± 5) −0.1679(0± 5) 1.5920(8± 5) 15 0.0126(4± 7) 0.1778(7± 8) −0.518(20±11)
6 −0.2601(6± 6) −0.6854(6± 7) 0.6622(1± 6) 16 0.0028(2± 9) 0.214(22±10) −0.309(31±10)
7 −0.1220(6± 6) −0.8784(1± 4) −0.1632(7± 6) 17 −0.0041(4± 6) 0.2255(5± 9) −0.123(5± 2)
8 −0.0216(7± 9) −0.8504(3± 7) −0.7750(8±10) 18 −0.0082(5± 8) 0.2181(3±10) 0.033(94±12)
9 0.0365(8± 7) −0.7015(7± 7) −1.1434(5± 9) 19 −0.0101(1± 6) 0.197(27±11) 0.161(95±15)

10 0.061(48±10) −0.5051(7± 9) −1.2941(4± 5) 20 −0.0102(8± 7) 0.1676(8± 7) 0.260(29±14)
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Figure 7: Pair correlation functions at finite sizes and in the thermodynamic limit for
the Laughlin wavefunctions at a) ν= 1/3 b) ν= 1/5 and c) ν= 1/7.

4.3 Monte Carlo Convergence

We now turn to the Monte Carlo convergence of the coefficient expansion for a fixed Kmax. The
Monte Carlo errors σn of individual coefficients are plotted in 5a, and the relative errors in
5b. The absolute errors in the orthogonal expansion are hovering at an almost constant 10−4,
whereas the NOE expansion has absolute errors that are several orders of magnitude larger.
The larger absolute errors for the OE are, however, mostly a reflection of the larger size of
the coefficients (see figure 3). The relative errors of the OE reflects the size of the coefficients
cn. As the coefficients become smaller, the relative errors become larger. For the NOE the
relative errors on the coefficients are considerably larger when Kmax is reduced. The relative
Monte Carlo errors on the NOE coefficients are not a good reflection of their (lack of) ability
to reconstruct the pair correlation function.

4.4 Thermodynamic Limit Extrapolation

Finally (and maybe most importantly), we wish to confirm that the expansion coefficients
have a well-defined thermodynamic limit. Figure 6 shows the first 15 orthogonal coefficients
obtained through inner products, plotted against 1/N for system sizes up to N = 150, all
using 40 × 106 Monte Carlo points. Linear (dash-dotted line) extrapolations in 1/N are su-
perimposed. As the figure clearly shows, the various coefficients have an almost perfect linear
scaling in 1/N , allowing the thermodynamic limit value for the coefficients cn to be determined
with high accuracy. As we have argued earlier in section 4.1, obtaining good limits using the
non-orthogonal expansion is not even a converging problem.
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imposed best fit of equation (23), which is remarkably accurate.
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n/A to highlight the periodic behavior in

p
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Also here the best fit is superimposed.

5 Pair correlations

We now apply the orthogonal spherical expansion basis, to scale the pair correlation functions,
of some of the most prominent trial wavefunctions, to the thermodynamic limit: The Laughlin
wavefunction [23–27] at ν= 1/3, 1/5 and 1/7, Composite Fermions [28–31] at ν= 2/5 and
ν = 3/7, and reverse flux CF [32–34] at 2/3 and 3/5. We also consider Moore-Read [35–38]
at ν= 5/2 and Bonderson-Slingerland [39,40] at ν= 12/5.

The number of basis functions 2Q at a given system size N goes to infinity in the macro-
scopic limit. However, since quantum Hall effect states have the property that g(η)→ 1 when
η is much bigger than the correlation length, the number of functions required for a good
description of the pair correlation function is limited.

The first 20 coefficients for the Laughlin ν = 1/3, ν = 1/5 and ν = 1/7 states, scaled
to the thermodynamic limt, are displayed in table 1 together with their error estimates. The
resulting pair correlation functions are plotted together with the finite system versions in figure
7. For these three systems we see a smooth progression of pair correlations with the number
of particles N . The functions for individual system sizes are clearly converging towards the
thermodynamic limit, with decreasing differences between lines corresponding to increasing
system size. A longer table for ν= 1/5 and ν= 1/7 is shown in Table 7 in Appendix H.

The reach of basis function number n in equation (16) is η∝
p

n, which means that the
required number of coefficients depends on how much of the length of the pair correlation
function we want to model. It is natural that adding more coefficients always gives a better
fit, but we note that the improvements come in steps (again see figure 3b). The midpoints of
these steps correspond to the pronounced minima separating certain groups of coefficients in
both Figure 3a and Figure 8. One may roughly think of the number of improvement steps as
corresponding to the number of (half) oscillations in the pair correlation function compared
with the g1 background. Indeed, by looking at the inset in Figure 8 one can see how cn roughly
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Table 2: Best fit parameters to the anzats cn ≈ Ae−
p

nτ cos(
p

nω+δ) in (23). For the
first few coefficients the fit is not so good, but then it is excellent - especially for the
Laughlin series.

State A τ δ ω

Laughlin ν= 1
3 12.91 1.56 3.20 2.71

Laughlin ν= 1
5 10.23 0.89 3.05 2.21

Laughlin ν= 1
7 7.93 0.59 2.88 1.92

RCF Laughlin ν= 1
3 9.33 1.35 2.90 2.86

CF ν= 2
5 5.54 1.14 2.75 3.20

BS ν= 2+ 2
5 4.44 0.96 3.61 2.08

MR ν= 1
2 4.86 1.34 3.24 2.52

Laughlin ν= 1
3 qh 4.01 1.60 4.67 2.65

MR ν= 1
2 q = 1

2 ab. qh 2.48 1.36 4.79 2.47

MR ν= 1
2 q = 1

4 n-ab. qh 1.59 1.41 4.53 2.54

follows a damped exponential of the form

cn ≈ Ae−
p

nτ cos(
p

nω+δ) , (23)

where τ is the half-life and ω is the oscillation frequency. To bring out the oscillatory shape,
cn is scaled by our best estimate of e

p
nτ/A. The oscillations with frequencyω then correspond

directly to the steps in improvements discussed above.
We tabulate the best fit of the coefficients A, τ, ω, and δ in table 2. The best fit is further

plotted on top of the coefficients in Figure 8. It should be evident from the figure that this
4-parameter fit does a remarkable job of fitting the expansion coefficients. There are notice-
able deviations only for the very first coefficients. One can see in Figure 8, and table 2, that
the larger ν means both stronger oscillations (smaller τ), and longer wavelength oscillations
(smallerω). The image suggests that the oscillations will never stop but become exponentially
damped at long distances.

The most noticeable feature of the tabulated/graphed coefficients for the Laughlin series is
that the sizes of the coefficients increase with decreasing filling fraction, ν. This is consistent
with the observation that these states have larger correlation holes and stronger oscillations
due to the decreasing density. As the coefficients measure the deviation from the ν = 1 state,
which is described by cn = 0 for all n, larger oscillations/deviations should mean larger coeffi-
cients. It is conceivable that if one pushes the filling fraction beyond ν−1 ≳ 70 where the state
becomes a Wigner crystal [41], that the g(η → 1) = 1 limit will no longer be valid, causing
the coefficient scaling to break down.

It is tempting to try and derive a simple expression for especially τ and ω in terms of the
filling fraction ν, which is the only parameter. However, for several reasons, it’s unlikely that
such an expression exists. Firstly, we know that there is a phase transition to a Wigner crystal
at low filling, leading to potentially non-analytic behavior in cn. Secondly, since the NOE basis
models both long and short distance features at the same time, the coefficients cn are also
sensitive to both length scales. As a result, they depend on a mix of long range behaviour,
including topological features, and microscopic short-range details. We will comment more
on this is the next section.
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Figure 9: Pair correlation functions for the Reverse flux Composite fermion Laughlin
wavefunctions at ν = 1/3. This corresponds to choosing d = 1 in equation (24). b)
The correlation coefficients for the Reverse Flux and Laughlin wavefunctions scaled
to the thermodynamic limit. While the pair correlation functions a) of the two Laugh-
lin states are almost indistinguishable in the thermodynamic limit (dashed lines vs.
dotted lines), the difference can be clearly detected by comparing the expansion co-
efficients in b).

A technical comment is warranted: In order to resolve the coefficients cn with larger n
properly, we choose to scale the number of histograms bins as NBins ∝

p

2Q. This way the
density of bins, R/NBins is roughly constant as a fuction of system size N . Using this scaling
allows us e.g. to accurately resolve more than 170 coeffcients for the ν= 1/7 Laughlin state.

5.1 Systems at the same filling fracton

A direct application of our expansion is that we now can in a quantitative way compare two
correlation functions at the same filling fraction.

5.1.1 The Laughlin family at ν= 1/3

As an example of this we first consider the filling fraction ν = 1/3, where there is a family of
Laughlin-like wavefunctions given by

Ψ = e−
1
4

∑

i |zi |2
∏

i< j

�

zi − z j

�3 �
�zi − z j

�

�

2d
, (24)

where d ≥ 0 can take any real value. These functions were introduced in Ref. [42] and ex-
plored in detail in Ref. [10]. The d = 0 case is the normal Laughlin wavefunction, and the
d = 1 case is a reverse flux composite fermion construction of the same state. This state is
constructed by forming a n = 1 composite fermion lambda level whose composite fermions
capture four reverse fluxes (p = 2). These two functions exist at the same shift and are topolog-
ically identical, but the latter one has a better overlap with the Coulomb ground state [10,43].
The pair correlation function for the (modified) Laughlin state can be seen in Figure 9a with
the thermodynamic limit of the conventional Laughlin state added as a dotted line. On the
scale of the plot, the difference between the two is (almost) indistinguishable. However, in
Figure 9b, the difference can readilly be seen in the OE coefficients.

Comparing these two wave functions allows us to gain further intuition when interpreting
the coefficients cn. It is known that the pair correlation function of d = 1 state has slightly
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Figure 10: Pair correlation functions at finite sizes and in the thermodynamic limit for
a) the Composite fermion wavefunctions at ν = 2/5, b) the Bonderson-Slingerland
wavefunctions at ν= 2/5. , c) the Moore-Read wavefunctions at ν= 1/2. d) The cor-
relation coefficients for the three wavefunctions scaled to the thermodynamic limit.
The graph in b) looks noticeably different from that plotted in Ref. [40] – a different
correlation function was accidentally plotted there.

stronger oscillations than the usual (d = 0) Laughlin state. This can be seen by looking care-
fully at Figure 9a, and is reflected also in the d = 1 having coefficients that decay at a lower rate
(τ = 1.35 as compared to τ = 1.56). Both set of coefficients are well described by equation
(23), but with slightly different frequencies (ω= 2.86 as compared to ω= 2.71).

We note that the first handful of OE coefficients is almost the same for the two correlation
functions. At the first two dips in the graphs of the coefficients, the differences between the
coefficients for the states look large, but this is mostly due to the use of a logarithmic scale;
these coefficients are small and a small difference between them translates to a large relative
difference, which then shows up as a large difference in the logarithm. Conversely, we must
be careful not to dismiss small differences between larger coefficient, as seen on a logarithmic
scale, as they could still be relevant when reconstructing g. The systematic differences between
the two sets becomes visible from around n = 9 and becomes more pronounced at larger
n. We wrote earlier that the coefficients with higher indices were responsible for modeling
features at larger distances and this is also the case here. While this is true, the basis function
Gn actually has support in the range between 1p

n and
p

n, so that features at both longer and
shorter distances are better modeled with inclusion of higher n functions. Of course the longer
distance behaviour is often more interesting when 1p

n lies well inside a correlation hole. These
considerations do mean that one should be careful when attempting an interpretation of the
relative sizes of the coefficients.

17

https://scipost.org
https://scipost.org/SciPostPhys.14.6.149


SciPost Phys. 14, 149 (2023)

0 1 2 3 4 5 6 7 8
r/

0.0

0.2

0.4

0.6

0.8

1.0

g(
r)

Laughlin qh = 1/3a)

Ne = 5
Ne = 10
Ne = 15
Ne = 20

Ne = 30
Ne = 50
Ne = 100
Ne

0 1 2 3 4 5 6 7 8
r/

0.0

0.2

0.4

0.6

0.8

1.0

g(
r)

Moore-Read abelian qh = 1/2b)

Ne = 5
Ne = 10
Ne = 20

Ne = 30
Ne = 50
Ne

0 1 2 3 4 5 6 7 8
r/

0.6

0.7

0.8

0.9

1.0

g(
r)

Moore-Read non-abelian qh = 1/2c)

Ne = 10
Ne = 20
Ne = 30
Ne = 50

Ne = 70
Ne = 90
Ne

1 4 9 16 25
Coeffiecnt number n

10 3

10 2

10 1

Ab
so

lu
te

 W
ei

gh
t |

c n
|

d)

Laughlin q = 1/3 qh Moore-Read q = 1/2 qh Moore-Read q = 1/4 qh

1 3 6 10 16
Coefficient number n

2

0

(1
/A

)c
ne

n

2 4 6 8 10

Figure 11: Density profiles of the Laughlin quasihole at ν = 1/3 and abelian and
non-abelian Moore-Read quasiholes at ν = 1/2 for finite size and scaled systems.
The to estimate the thermodynamic shape of the non abelian quasihole only corre-
lation function data from the nother hemisphere is used, and the other non-abelian
quasihole on the sourther hemisphere is ignored).

5.1.2 CF and BS at ν= 2/5

A more interesting comparison is arguably that of the composite fermions state at ν = 2/5
compared with the Bonderson-Slingerland state at ν = 2+ 2/5 [39,40]. The two states have
different shifts and thus represent different topological states. However, since the shift is
“sub-leading” in the number of particles in the thermodynamic limit, these two correlation
functions can be directly compared. This is done in figure 10. Visual inspection allows us
to see the differences between the two correlation functions easily. While the CF state has a
correlation hole that is reminiscent of the Laughlin state, the BS state displays a “shoulder”
at r ∼ 1.5ℓ, much in similarity with the shoulder that is found in the Moore-Read state (see
Figure 10c).

That these two pair correlation functions are different can also be seen in the expansion
coefficients in Figure 10d. There, one can see that the coefficients’ strength and “wave-length”
are different. It is perhaps not straightforward to deduce the existence of the shoulder from
inspection of the coefficients. However, the first BS coefficient c1 = 1.53(2±5) is significantly
smaller than the first CF coefficient c1 = 2.01(7 ± 3) (see Table 8 in Appendix H). One can
then argue that the smaller c1 may remove less weight from the inner part of the correlation
hole and give room for a shoulder to appear on the BS state.
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5.2 Quasiholes in the thermodynamic limit

We now apply and adapt the above-developed formalism to expansions of quasihole densities.
The density of the Laughlin quasihole [23] is closely related to the pair correlation function of
the ground state. Therefore we might expect that the orthogonal expansion is also suitable for
the quasihole density profile. The generated expansion coefficients confirm this for quasiholes
of all states examined. We find that the thermodynamic limits are well defined and converge
similarly to those in figure 6. The coefficients can be found in table 3, and a plot of the finite
size and extrapolated density is shown in figure 11, for both the Laughlin q = 1/3 quasihole
and the Moore-Read q = 1/2 abelian and q = 1/4 non-abelian quasihole. A comparison of the
coefficients with the pair correlations functions for the Laughlin quasihole can also be found
in fig 11d. The figure clearly shows that the Laughlin quasihole, which is smaller than the
electron, also has smaller expansion coefficients.

We note that the τ = 1.60 and ω = 2.65 for the Laughlin quasiholes are similar to the
τ = 1.59 and ω = 2.71 of the Laughlin state itself (see Table 2) Similarly, the abelian MR
quasihole has τ= 1.36 and ω= 2.47, which is close to the values for τ= 1.34 and ω= 2.52
of the Moore-Read state itself. Thus, the values of τ and ω appear to be a property of the
phase, more than the particular type of correlation function.

For the Laughlin quasiholes and the abelian Moore-Read quasiholes, the procedure for ex-
tracting the expansion coefficients is identical to that for the pair correlation functions. How-
ever, for the non-abelian Moore-Read quasiholes, the procedure is somewhat different. Here
two modifications compared with the above-outlined method have been applied. The first
change is that the non-abelian quasiholes come in pairs, and we choose to place the quasiholes
at the north and south poles. The presence of the quasihole at the south pole will change the
density at large η and the expansion coefficients will pick up this change if one is not careful.
To reduce this finite size effect, we manually set the density in the southern hemisphere to
unity, i.e. we enforce g(η > 1/

p
2) = 1. This choice causes a small discontinuity in g(r) on

the equator, but this does not strongly affect the coefficients at lower indices.
The second difference with the abelian quasiholes (a difference that is shared with abelian

quasipartices) is that the density at η = 0 is not zero. Therefore the “background” reduction
1− (1− η2)2Q is not a good one. We choose here to introduce an extra fit parameter c0 such
that the background reduction is

(1− (1−η2)2Q)(1− c0) + c0 ,

with c0 = 1 corresponding to the fitting used earlier. As the background is not orthogonal to
the other functions in the expansion, we can not use inner products to compute c0. Rather
it is defined as c0 = g(η = 0), and estimated using a quadratic fit near η = 0. In table 3
one can see that this value in the thermodynamic limit is c0 = 0.55(30± 15). There we can
also see that the two abelian quasiholes have very similar early expansion coefficients (e.g.
c1 = 0.3834(5± 8) and c1 = 0.37(8± 6)), whereas the non-abelian quasihole is significantly
different (c0 ̸= 0 and c1 = 0.25(95± 16)).

The similarity between the coefficients of the two abelian quasiholes can be understood
in the following way. Both quasiholes enter the wavefunction (on the plane) as the same
factor
∏N

i (zi − ξ), where ξ is the position of the quasihole. Thus particles are excluded from
the position ξ in the same way, and the difference in density at long distances enters as a
sub-leading correction.

The reader should be aware that a nonzero value of c0, in this case, does not, mean a finite
probability (density) to find two overlapping fermions. It only means a finite probability for
a fermion to be at the location of a non-Abelian quasiparticle. In principle, there is nothing
forbidding an electron to be at the location of an Abelian quasihole, but for the wave functions
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Table 3: Expansion coefficients cn for the Laughlin ν= 1/3 quasihole and the Moore-
Read ν= 1/2 quasihole.

n qh ν= 1/3 Abelian qh Non-Abelian qh n qh ν= 1/3

0 0.0 0.0 0.55(30± 15) 10 0.022(46±18)
1 0.3834(5± 8) 0.37(8± 6) 0.25(95± 16) 11 0.012(55±13)
2 −0.233(35±12) −0.18(9± 4) −0.061(2± 10) 12 0.004(67±14)
3 −0.250(14±11) −0.23(5± 6) −0.125(5± 9) 13 −0.000(51±15)
4 −0.144(99±11) −0.15(6± 6) −0.088(0± 9) 14 −0.003(76±14)
5 −0.050(65±16) −0.07(5± 4) −0.05(15± 13) 15 −0.005(48±18)
6 0.006(98±10) −0.00(5± 6) −0.01(11± 14) 16 −0.005(71±13)
7 0.032(19±16) 0.02(6± 6) 0.00(69± 11) 17 −0.005(3± 2)
8 0.0371(5± 8) 0.04(0± 6) 0.01(78± 11) 18 −0.004(4± 2)
9 0.0317(4±10) 0.03(8± 5) 0.01(69± 13) 19 −0.003(06±16)

considered here, this does not happen. The reason that this doesn’t happen for the Laugh-
lin states or the Abelian ν = 5/2 quasihole (studied in this work) has to do with the fact that
these holes carry a full flux quantum and require some winding in the electron wave function’s
phases, which then requires at least one zero in the wave function near the core of the quasi-
hole. To see this, imagine you make a loop around the quasihole, far away from its core: To
get a winding, you should consider the value of the wave function as a function of one single
electron coordinate on the loop with all other electrons fixed. The phase of the wavefunction
should have a winding of 2π. If you shrink the loop to a point, this winding has to go down to
zero, and jumps of the winding number can only happen when the loop crosses a zero of the
wave function.

With paired/clustered states, it is only required that the “wave function of the pair/cluster”
picks up an integer winding. Thus, in the case of the Pfaffian, if you try to bring a pair of
electrons to the site of the non-Abelian quasihole, the wave function then vanishes with an
extra zero compared to what you might expect already from bringing the two fermions to the
same position. However, if you bring only one electron to the quasihole site, the same does
not apply. Something similar also happens for the (Abelian) minimal quasiholes of the multi-
Lambda level Jain states like the charge 1/5 quasihole of the ν= 2/5 state. Those quasiholes
would also have a nonzero probability density to find an electron at the site of the hole.

Finally, when considering the quasiholes, keep in mind that one gets considerably less
precision for the same numbers of Monte Carlo samples than for the two-particle correlation
functions. This is since for N particles one can extract N ·(N−1)/2 relative distances, whereas
one can only extract N absolute positions, which is what is used for the quasihole correlation
functions. Thus to obtain the same precision for the quasiholes, one needs about N/2 times
more data points.

6 Estimation of Magneto-Roton Gap

Having established a stable scheme to extract correlation functions in the thermodynamic
limit, we can now use this to estimate the magneto-roton gap [4, 44]using the single-mode
approximation. The magneto-roton branch is often the lowest-lying neutral excitation and
therefore plays a vital role in the stability of the fractional quantum Hall liquid. It gained
much attention in the early literature [45, 46], and has more recently seen a revival due to
the connection with gravity modes and holography [47–51]. The magneto-roton gaps have
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Figure 12: a) Pair correlation function g(x), structure factor s(k) and projected struc-
ture factor s̄(k) for the Laughlin ν = 1/3 state in the thermodynamic limit using
Kmax = 30 terms.
b) P(k), F(k) and ∆(k) computed using Kmax = 39 terms. Vertical lines mark the
lower convergence range kL and the upper convergence range kU for the polynomial
part P(k) of the projected structure factor s̄(k). The different lines for F(k) and∆(k)
illustrate the uncertainty introduced by applying the cutoff kU when computing F(k)
and the lines correspond to choosing kU +δk where δk = −0.2,−0.1,0.0, 0.1.

been studied in detail using the composite fermion theory [52,53], finite thickness calculations
[54], and recently also using DMRG [55]. Further there are recent studies of the magneto-
rotons in bilayer graphene [56], nematic FQHE states [57], as well as experiments [58] and
experimental proposals [59].

It is well known that the single-mode approximation will not accurately reproduce the cor-
rect shape of the magneto-roton gap, and is only expected to be correct in the long wavelength
limit [60]. Nevertheless it is a good test-bed for our correlation function expansion. The orig-
inal derivation of the single-mode approximation can be found in Ref. [4] and here we only
recall the most important ingredients. Following Ref. [4] the magneto-roton gap is given by

∆ (k) = f̄ (k)
s̄(k) , where s̄ (k) is the projected static structure factor

s̄ (k) = s (k)−
�

1− e−
k2
2

�

,

with s (k) being the bare structure factor

s(k) = 1+ρ

∫

d2R e−ık·R g(R) , (25)

where ρ is the density of the system. The function f̄ (k) is defined as

f̄ (k) = 2

∫

d2q
(2π)2

v(q) sin2
�

1
2
|q× k|
�

�

ek·qs̄(k+ q)− e−
1
2 k2

s̄(q)
�

, (26)

where v(q) = 2π
|q| is the Fourier transforms of the Coulomb interaction. Since g → 1 at large

distances s̄ (k) has a delta function component at k = 0. Since this delta function does not
contribute to s̄ (k) we drop it and work with g − 1 instead of g.

Assuming a spherically symmetric correlation function, the angular degree of freedom may
be integrated out giving

s (k)− 1= 2πρ

∫ ∞

0

dr J0 (kr) [g (r)− 1] · r , (27)
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Table 4: The expansion coefficients for the first terms in the projected structure fac-
tor as given in (30) in the main text. An overall factor of 1/

p

πn (n+ 1) has been
omitted.

n
∑n

t=0λ
(n)
t k2t

1 −k2 + 2

2 k4 − 5k2 + 2

3 − k6

2 + 5k4 − 10k2 + 4

4 k8

6 −
17k6

6 + 13k4 − 18k2 + 4

5 − k10

24 +
13k8

12 −
53k6

6 + 27k4 − 27k2 + 6

6 k12

120 −
37k10

120 +
47k8

12 −
127k6

6 + 48k4 − 39k2 + 6

7 − k14

720 +
5k12

72 −
19k10

15 +
32k8

3 − 43k6 + 78k4 − 52k2 + 8

where J0(x) is a Bessel function of the first kind and we now have g − 1 instead of g.
In the thermodynamic limit the expansion for g(r) reduces to

g (r) = 1− e−
1
2 r2
+

Kmax
∑

n=1

cnGn (r) , (28)

where Gn(r)was given in equation (19). Integrating the e−
1
2 r2

term and using that 2πρℓ2 = ν,
the projected structure factor after inserting (28) may be expressed as

s̄ (k) = (1− ν) e−
1
2 k2
+ ν

∫ ∞

0

dr r J0 (kr)
Kmax
∑

n=1

cnGn (r) = (1− ν) e−
1
2 k2
+ ν

Kmax
∑

n=1

cn In(k) ,

where In(k) are the Fourier transforms of Gn(r). Using the structure of the Bessel function J0
and Gn we find that

In(k) =

∫ ∞

0

dr r J0 (kr)Gn (r) = (−1)n
∫ ∞

0

dr
r3e−

1
2 r2

p

πn (n+ 1)
J0 (kr) L(2)n−1

�

r2
�

= −e−
1
2 k2

n
∑

t=0

λ
(n)
t k2t ,

has a polynomial part with the coefficients λ(n)t . The coefficients λ(n)t are computed analytically
in Appendix F, yielding the formula

λ
(n)
t =

(−1)n

t!
p

πn (n+ 1)

n
∑

s=t

(−2)s−t
�

n+ 1
n− s

��

s
t

�

s . (29)

The first few polynomials are given in Table 4.
For convenience, we define P(k) = e

1
2 k2

s̄(k) such that the analytic projected structure factor
s̄(k) can now be expanded in the compact form

P(k) = s̄ (k) e
1
2 k2
= 1− ν

Kmax
∑

n=0

cn

n
∑

t=0

λ
(n)
t k2t , (30)

where we defined λ(0)0 = c0 = 1. The definition of c0 = 1 coincides with the c0 introduced in
Section 5.2, for the fermionic pair correlation function, and abelian quasiholes.
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Figure 13: n-dependence for P(k) shown as a) Pn(k) and b) |Pn/Pn−1−1| for n≤ 60.
Dotted and dashed lines trace out how the convergence region is expected to grow as
a function of n, if all the expansion coefficients were exact. Note that for too large n,
convergence goes down, as the expansion coefficients cn are not resolved to enough
accuracy. In a) Pn ≤ 0 is marked with gray, and in b) Pn/Pn−1 ≤ 0 is marked with
gray.

Table 5: Cutoff parameters used in the fitting for the Magneto-roton gap.

Name kL kU Kmax Name kL kU Kmax

Laughlin ν= 1/3 0.30 3.8 39 CF ν= 2/5 0.50 3.7 30
Laughlin ν= 1/5 0.55 3.4 42 CF ν= 3/7 0.50 3.0 30
Laughlin ν= 1/7 0.45 3.1 57 CF ν= 2/3 0.50 3.1 33

Modified Laughlin ν= 1/3 0.4 3.70 36 CF ν= 3/5 0.40 3.5 39
Moore-Read ν= 2+ 1/2 0.30 3.4 31 BS ν= 2+ 2/5 0.60 3.1 25

For a correlation function that has the limit g(r →∞) = 1 then s (0) = s̄ (0) = 0. Consid-
ering equation (30), this condition takes the form of the sum rule

1= ν
∞
∑

n=0

cnλ
(n)
0 = ν+ ν

1
p
π

∞
∑

k=1

�

c2k−1

√

√ 2k
2k− 1

+ c2k

√

√ 2k
2k+ 1

�

. (31)

In the last equality we used that λ(2k)
0 = 1p

π

q

2k
2k+1 and λ(2k−1)

0 = 1p
π

q

2k
2k−1 . With a finite Kmax

and/or with uncertainties on the coefficients cn, this equation will never be perfectly satisfied.
In order to take this lack of precision into account, we may use equation (31) to solve for
ν. Defining Γ = 1+

∑Kmax
n=1 cnλ

(n)
0 , gives the effective filling fraction ν⋆ = 1/Γ , which we can

reinsert into equation (30).
The structure factor and projected structure factor can be seen extrapolated to the ther-

modynamic limit in figure 12a, for Kmax = 30 terms. For small values of r one can see that the
truncation of the approximation to g(r) is not monotonic, likewise, we find that the projected
structure factor dips below zero for small k. To get a sense of how well converged P(k) is we
may study P(k) as a function of Kmax. In figure 13a we can see Pn(k)where n= Kmax. Note the
logarithmic scale, which allows to resolve both the small k and large k regions. Gray regions
indicate where Pn(k) is negative.

For n ≲ 35 we can see a growing region kL ≲ k ≲ kU with converged Pn(k). We here
observe the approximation of P(k) becoming increasingly better as we add more terms for the
expansion. Looking a bit closer we note that the bounds of this region scale as kL ∝ 1/

p
n
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and kU ∝
p

n. As a guide to the eye, dashed and dotted lines show the upper, kU , and lower,
kL , approximate boundaries for the convergence. For Kmax = 30 we estimate kU ≈ 3.5 and
kL ≈ 0.55. Black dotted and dashed lines trace out how the convergence region is expected to
grow as a function of n. Beyond n ≈ 35, the region of convergence starts to shrink, reflecting
that the expansion coefficients cn are not resolved to enough accuracy.

In figure 13b we plot the absolute value of (Pn − Pn−1)/Pn−1, where still n = Kmax. Again
we use a logarithmic scale to better resolve the convergence of the low k and large k regions.
Here, the gray regions indicate where Pn/Pn−1 ≤ 0 and thus signal a sign change of Pn(k) as
a function of n. This figure tells the mostly same story as figure 13a, but highlights that the
sweet spot where kL is minimal and kU is maximal does not seem to occur for the same Kmax.
The upper limit kU , has its maximal value are around Kmax ≈ 35−40, whereas the lower limit
is still shrinking at Kmax = 60.

The square root behavior in kL and kU for early n can be qualitatively understood as fol-
lows: Inspecting Gn(r) in equation (C.1) we note that the function has its last peak at a distance
that scales with

p
n. This means that we can only model long-wavelength features to a cutoff

r0 that scales with
p

n. For the static structure factor s(k) this means that the long wavelength
(short k) bound on k will scale as 1/r0∝ 1/

p
n. At the same time Gn(r) will undergo n os-

cillations for r < r0, meaning that Gn(r) has a wavelength that scales as r0/n∝ 1/
p

n. Thus
we see that the shortest converged wavelength features of g(r) will also converge as 1/

p
n.

This in turn means that the large k convergence of s(k) will scale as k∝
p

n, just as observed
in figure 13a. We note that the expansion presented in this work will systematically improve
both the low-k and high-k features of P(k) with increasing Kmax.

We now compute f̄ (k) through (26). Using that we may write s̄(k) = P(k)e−
1
2 k2

as in (30)

we find that f̄ (k) = e−
k2
2 F(k) where

F (k) = 2

∫

d2q

(2π)2
v (q) sin2
�

1
2
|q × k|
�

e−
1
2 q2
[P (k + q)− P (q)] . (32)

This allows us to evaluate the magneto-roton gap

∆̄(k) =
f̄ (k)
s̄(k)

=
F(k)
P(k)

,

in terms of the functions P(k) and F(k) only. Further, using that v(q) = 2π
|q| and changing to

polar coordinates gives the function

F (k) =
2
π

∫ π

0

dφ

∫ ∞

0

dq sin2
�

qk
2

sinφ
�

e−
1
2 q2 �

P
�

|k+ eıφq|
�

− P (q)
�

, (33)

which we will integrate numerically.
When integrating (33) it will be important to take into account that we really only trust

P(k) in the range kL ≲ k ≲ kU . Out of these two uncertainties, the upper limit is far more
important as P(k) has growing (and sign changing) oscillations, where as for small k then
P(k) is already so small that it hardly affects the integral. However since P(k) appears in the
denominator of ∆(k) is has a critical impact on the result. In order to regularize F(k) we
impose a cutoff in the integrand such that we only use the parts of the integral where q < kU
and |k⃗+ q⃗| < kU . Roughly speaking this implies that we should not expect F(k) to be trusted
for k ≳ kU/2.

To estimate the range of validity of F(k) we vary the cutoff kU around kU ≈ 3.5 and
observe the effect on F(k). The result can be found in figure 12b, with four different values of
kU indicated by dotted lines. We find that the lines converge in the region k ≲ 1.5−2≈ kU/2,
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Figure 14: Estimate of the magneto-roton gap, ∆(k), from the parametrization of
g(r) in the thermodynamic limit.
a) Laughlin ν = 1/3,1/5,1/7, b) (Reverse flux) Composite fermions
ν = 2/5,3/7, 2/3,3/5, c) Moore-Read and Bonderson-Slingerland at ν = 2 + 1/2
and ν = 2 + 2/5. The plots extend from the lower convergence range kL to the
upper convergence range kU for the polynomial part P(k) of the projected structure
factor s̄(k). The different lines illustrate the uncertainty in kU when computing F(k)
and the lines correspond to choosing kU + δk where δk = −0.2,−0.1, 0.0,0.1. The
Kmax and kU cutoff’s are tabulated in table 5.

and thus that F(k) can be trusted there. More details about how the truncation of the integral
affect the result can be found in Appendix G, where we especially direct the reader to figure 18.

When computing ∆(k) we see that the uncertainty in P(k) for small k will cause ∆(k) to
diverge, so too small k can also not be trusted. We therefore conclude that our estimate for
∆(k) is valid in the range .55≲ k ≲ 2, but not much beyond that.

The good news is that one may systematically expand the range of validity of the estimate
of ∆(k) by improving the estimate of the coefficients ck. From figure 13 we saw that adding
extra terms, even if the coefficients are small, will systematically extend the validity of P(k).

We can now apply the same procedure to obtain the roton-gap for all the FQH-states con-
sidered in this work and compare it to earlier literature. This is illustrated in figure 14. The
Kmax and kU cutoff’s are tabulated in table 5. For the Laughlin states in figure 14a we obtain
gaps that are comparable with those obtained in Ref [4] (Fig. 4). For the Jain series, the
gap is also comparable to that obtained in Ref [61] (fig 1). For the Moore-Read it is a bit
smaller than reported in Ref [52], presumably due to a lack of precision in the coefficients cn.
Here the single-mode approximation is in any case dubious as there is also a neutral fermion
mode [60,62].
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Figure 15: Comparison between the Laughlin ν = 1/3 coefficients cn and the fit
in equation (23). For the coefficients, the plot is the same as in figure 12. a) Pair
correlation function g(x), structure factor s(k) and projected structure factor s̄(k)
with Kmax = 30 terms. For g(r), the difference is largest at r ≈ ℓ, giving a softer
approach to zero when r → 0. Also for s(k) there is a significant difference when
k → 0. For the fit, s(k) is positive for all k whereas for the coefficients, s(k) goes
negative at around k = 0.3 (see figure 12 for a zoom in). Apart from that, all the
main features are essentially the same. b) P(k), F(k) and ∆(k) computed using
Kmax = 39 terms. Here, larger differences can be seen. In short, at large k, P(k) is
smaller which gives an even smaller F(k). This results in a reduced ∆(k) for the fit
compared to the coefficients. The difference is, however, not that dramatic, given
that the fit only uses four parameters.

All in all, we find that our expansion works well. We note that the lack of precision for
small k mainly stemmed from an uncertainty in the structure factor P(k). This can be improved
upon by taking more terms into account when computing P(k) for small k compared to large
k, but we have not attempted such a scheme in this work.

7 Using the fit to the coefficients

As a first application of the fit developed in Section 5, we will now reconstruct the pair-
correlation function and compute the magneto-roton gap of the Laughlin wave function at
filling nu=1/3. We will use the fit coefficients as given in table 2. The hope is that, especially
at high coefficient numbers, hence at long distances, the fit coefficients will provide higher
accuracy than the coefficients obtained by direct numerical calculation. At the very least, they
will provide smoother behavior. In addition, if desired, the fit can be extrapolated to arbitrarily
large numbers of coefficients. The numerical values of both sets of coefficients are given in
table 6.

We begin with the correlation function g(r), and we use the subscript “fit” for the func-
tions constructed using the fitted coefficients. A comparison of the two versions are plotted
in figure 15a) for Kmax = 30 (in blue). In the figure, for r > 3ℓ, there is very little difference
between the two functions. The largest difference occurs at around r ≈ ℓ, giving gfit(r) a
softer exclusion region than that of g(r). The maximum difference is about of 0.05 and occurs
at r ≈ ℓ. This difference is consistent with the 0.12 difference between c1 and cfit

1 , and the
height G1(r ≈ ℓ)≈ 0.3 of the first term in the expansion.
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Table 6: The first 30 expansion coefficients cn for the pair correlation function of the
Laughlin wavefunction at ν = 1/3 and the fit in equation (23). These numbers are
graphically depicted in figure 8.

n ν= 1/3 Fit n ν= 1/3 Fit n ν= 1/3 Fit

1 2.6449(6± 3) 2.52752 11 0.0643(9± 5) 0.06773 21 −0.0092(0± 6) −0.01001
2 1.0027(4± 3) 1.02980 12 0.0550(6± 5) 0.05761 22 −0.0078(7± 9) −0.00829
3 −0.0606(5± 3) −0.04169 13 0.0408(3± 7) 0.04227 23 −0.0059(7± 9) −0.00631
4 −0.4104(0± 5) −0.39708 14 0.0257(4± 6) 0.02642 24 −0.0041(9± 5) −0.00435
5 −0.3951(0± 5) −0.38774 15 0.0126(4± 7) 0.01267 25 −0.002(47±11) −0.00258
6 −0.2601(6± 6) −0.25644 16 0.0028(2± 9) 0.00212 26 −0.0012(8± 8) −0.00109
7 −0.1220(6± 6) −0.11953 17 −0.0041(4± 6) −0.00507 27 −0.000(37±14) 0.00006
8 −0.0216(7± 9) −0.01868 18 −0.0082(5± 8) −0.00926 28 0.000(81±11) 0.00090
9 0.0365(8± 7) 0.04023 19 −0.0101(1± 6) −0.01105 29 0.0014(1±10) 0.00145

10 0.061(48±10) 0.06527 20 −0.0102(8± 7) −0.01110 30 0.0014(8± 9) 0.00174

We move on to the projected structure factor s̄(k), shown in the same figure as g(r). Also,
here, there is a significant difference when k→ 0. For the fit, s̄fit(k) is positive for all k whereas
for the directly calculated coefficients, s̄(k) goes negative at around kℓ = 0.3 (see figure 15a)
for a zoom in). At larger k, the two functions appear essentially the same. We see here that
the fit is actually working better than the directly computed coefficients, in the sense that s(k)
should be positive for all k.

If we now scale away the Gaussian dampening and look at P(k), in Figure 15b), we see
that there is another discrepancy developing beyond kℓ = 2. This discrepancy, of course, has
to do with the difference in the coefficients. However, we argue that its origin is also related
to machine precision problems. We consider Figure 16 to shed some light on the phenomena.
In the figure, we plot the n-dependence for P(k). In the left column, the coefficients cn are
used, whereas, in the right column, the cfit

n coefficients are used.
The upper panels a) and b) show the same view as in figure 12a). The two images are qual-

itatively the same, and both show an onset of large positive and negative oscillations appearing
for large k when n≈ 35. For Pn, we argued earlier that this was due to the coefficients cn not
being adequately resolved. While that is still true, the fact that we see the same phenomena
also for P fit

n means that the resolution of the coefficients is not the whole story.
We believe that what we observe here is a machine precision error. Recall that when

computing P(k), we use the expansion given in (30). This expansion, for order n, contains
terms up to order k2n. As a consequence, for n = 35, the largest order term at k = 4 (where
the instability begins), is of size 470 ≈ 1042. Given that double precision decimals only can
keep track of 16 digits, and that the λ(n)t are alternating in sign, numerical instability is to be
expected.

We now turn to the lower panels c) and d). These zoom in on smaller k and use a larger
Kmax. For the extracted coefficients cn, we see that for small n, Pn(k) sometimes goes negative,
which was already discussed in the previous section. We also see that for n > 70, the lobes
with negative Pn(k) start reappearing with increased intensity. For the fitted coefficients cfit

n d),
the same phenomenon is observed at small n, but not at large n. For n> 35, Pn(k) (with small
k) is positive for all values of n we have examined. This is a clear signal that the coefficients
cn are not resolved with enough accuracy, whereas the fitted coefficients cfit

n are well behaved.
Finally, we compute the magneto-roton gap for the fitted parameters. A comparison be-

tween∆(k) and∆fit(k) can be seen in figure 15b), for Kmax = 39. Here, larger differences can
be seen; at large k, F fit(k) < F(k), which stems from P fit(k) < P(k). This results in a reduced
∆fit(k) compared with ∆(k). However, the difference between the two is not that dramatic,
given that the fit only uses four parameters.
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Figure 16: n-dependence for P(k) for for ν = 1/3. In a) and c), the coefficients cn
are used, whereas in b) and d), the fit in equation (23) is used. In all plots, Pn ≤ 0
is marked with gray. Panels a) and b) have the same view, which is also identical to
that in figure 12a). The two images are qualitatively the same, and we infer that the
appearance of (spurious) large positive and negative oscillations in Pn(k) at large
k near n = 35 are due to machine precision errors, and not uncertainties on the
coefficients cn. The lower panels (c) and d) zoom in on smaller k and uses larger n.
We see there, that using the extracted coefficients c), Pn ≤ 0 for larger n. This is a
clear signal that the coefficients are cn are not resolved to enough accuracy. For the
fitted coefficients in d), the same phenomena are not observed, and Pn(k)> 0 for all
values of k.

To summarize, we have explored the possibility of directly using the four-parameter fit in-
stead of the coefficients cn. We find that these coefficients distort the r → 0 region of g(r), but
do keep s̄(k)> 0 when k→ 0. We also identified an important point for further improvement:
the numerical instability in the large-k expansion of P(k).

Even though the final magneto-roton gap came out slightly differently, we find these results
encouraging and worthy of further exploration. Further, we note that the fit results can be
easily improved upon by e.g. only using the exact coefficients for low n and then switching to
the fit at high n.

8 Conclusions and Discussion

We have developed a basis for the expansion of FQH-pair correlation functions, which allows
for a controlled extrapolation to the thermodynamic limit. This expansion should enable re-
sults involving pair correlations and quasihole densities to be more easily compared and reused
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in later works.
We first reviewed the expansion due to Girvin and collaborators (cf. refs [4, 5]). This

expansion is ill-suited for extrapolation to the thermodynamic limit since it is highly non-
orthogonal. As a consequence, it renders causes the evaluation of the expansion coefficients
to be numerically unstable. We have found that by orthogonalizing the original basis using the
Gram-Schmidt procedure, a new basis is obtained in the form of (modified) Jacobi polynomi-
als. Using this basis, we have been able to extract pair correlation expansion coefficients for
a wide range of wavefunctions, including the Laughlin series, composite fermions with both
reverse and direct flux-attachment, as well as Moore-Read and Bonderson-Slingerland states.
We have also been able to extrapolate these coefficients to the thermodynamic limit. This way,
we obtain expressions for the correlation functions on an infinite disk.

We further applied the expansion to both abelian and non-abelian quasiholes and found
that the procedure works equally well. There are two minor complications. Firstly, a coefficient
c0 has to be introduced to allow for a nonzero density at the centre of the quasihole. This
coefficient cannot be computed through an inner-product procedure and needs to be fitted for.
Secondly, the one-particle correlation functions need many more samples than pair correlation
functions to give the same degree of numerical convergence.

We showed a direct application of the expansion where we estimated the Magneto-Roton
gap for all wave correlation functions where a thermodynamic scaling was performed. We
could accurately construct the projected structure factor, and consequently the magneto-roton
gap, in a window of kL ≲ k ≲ kU where kL∝ 1/

p

Kmax and kU ∝
p

Kmax.
The lack of precision for small k is mainly related to the uncertainty in the polynomial

P(k) in the structure factor, and one may improve on this bound by taking more terms into
account when computing P(k) for small k. Such a scheme would be more advanced than that
presented here, as it would require Kmax to be k-dependent when computing P(k), and was
not attempted in this work. For larger k, one may also need to implement higher precision
arithmetic or find a differential equation with In(k) as its solution.

We demonstrated that the extrapolated coefficients cn show a lot of structure, and can be
well approximated with cn∝ exp(τ

p
n) cos(ω

p
n), where τ and ω are real coefficients. The

four-parameter expression works remarkably well, especially at large distances. Also, while
four parameters suggest a lot of freedom, this is, in fact, just the decay length, frequency,
amplitude, and phase of an oscillation. Further, the approximate parameter values can be
read off directly from the graph and agree well with the parameters obtained by the fitting
routine. By fitting cn to this form, one may construct an expression for g(r) that effectively
has Kmax =∞. Such an expression can also be used as a starting point for a single-mode
approximation that is well defined in the limit k→ 0. Identifying this simple parametrization
has been one of the more exciting aspects of this work. These parameters could prove crucial in
comparing and distinguishing candidate descriptions of FQH states at the same filling fraction.

The presented formalism can, with minor modifications, be generalized to, e.g., bosonic
wave functions. The main difference would be that the correlation hole at r = 0 not necessarily
is maximally excluding, i.e. g(0) ̸= 0. At the pair correlation function level, it is an analogous
phenomenon to the nonzero density that the non-abelian quasihole had, in the case of the
fermionic Moore-Read state at ν = 1/2. A nonzero g(0) would be present for the ν = 1
bosonic Moore-Read state, where two bosons (but not three) can be at the same position.

Another natural extension is to allow for non-isotropic wave functions. At the simplest
level, this is done by adding an angular momentum l phase factor eılθ to the basis Gn. Al-
lowing for an angular degree of freedom would allow us to make contact with the bi-metric
[49, 51, 56, 63, 64] theory and the graviton mode. It is also a natural extension when consid-
ering correlation functions on the torus or strip/rectangle, where rotation symmetry is explic-
itly broken.
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However, already with the current development of the correlation functions expansion
and the available coefficients, many follow-up projects are immediately within reach. These
include calculating interaction energies of quasiholes (assuming they don’t deform too much
in each other’s presence) and different types of gap estimates.

The methods presented here still leave much room for improvement. In particular, in
this work, the coefficients cn were computed using pre-binned approximations of g(r). The
pre-binning limits the resolution reachable in the coefficients cn for large n. The reason is
that the bin sizes start becoming comparable with the wavelength of the basis functions, Gn.
Thus, a better approach would be to compute cn directly using the Monte-Carlo data, with no
intermediate pre-binning.

An interesting application of our method would be to extract the Fermi wave vector kF of
composite fermions and compare it with experimental results [65]. Earlier attempts [66,67] to
extract the kF of CFs from finite-size systems by fitting to g(r) could get reasonable estimates of
kF that were roughly consistent with experiments. The error bars were, however, still relatively
large. Since our method can produce high-quality estimates of g(r) in the thermodynamic
limit, it is well suited for this problem.
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A Spherical pair correlation function for ν= 1

In this section we derive the pair correlation function for the ν= 1 state. In general, when the

wavefunction in question is a single determinant, we have 〈r j|Ψ〉= Ψ(r j) =
1
p

N !
Det
�

φi(r j)
�

where φi are the occupied single particle orbitals. Removing state number k, in this case the
one corresponding to r 1, gives

〈r j>1|ak|Ψ〉=
1

p
N − 1

Det
�

φi ̸=k(r j>1)
�

, (A.1)

where ak is the annihilation operator.
Using the expansion of a determinant into its minors

Det[ai j] =
n
∑

k=1

(−1)k+l aklDet[ai ̸=k, j ̸=l] ,

we first find an expression for the expectation value of the density:

ρ(r 1) = N

∫

∏

i>1

dSi |Ψ|2 =
N
∑

k=1

|φk(r 1)|2 , (A.2)
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where we also have used that
∫ ∏

j>1 dS j |r j>1〉〈r j>1| is an identity in the space of

N−1 particles and that Ψ with one state removed yields an orthonormal set: 〈Ψ|a†
kal |Ψ〉= δkl .

In a similar manner we can find an expression for the pair correlation function:

g
�

|r 1 − r 2|
�

=
N(N − 1)
ρ2

∫

∏

i>2

dSi |Ψ|2

=
1
ρ2

N
∑

k,l=1

�

|φk(r 1)|2|φl(r 2)|2 −φ∗k(r 1)φl(r 1)φ
∗
l (r 2)φk(r 2)
�

. (A.3)

At this point we turn to the state ν = 1, i.e. a determinant consisting of all the lowest
Landau level functions for the chosen magnetic flux. It is convenient to use spinor coordinates

u= cos(θ/2)exp(iφ/2) , v = sin(θ/2)exp(−iφ/2) , (A.4)

with the polar and azimuthal angles (θ ,φ). The spherical lowest Landau level single particle
wavefunctions are given as [68]

φk(u, v) =

√

√2Q+ 1
4πQ

�

2Q
k

�

(−1)kukv2Q−k , (A.5)

with k ∈ {0, 1, . . . , 2Q} and in terms of the spinor coordinates in (A.4). As a consistency check
we find using (A.2) that the density is ρ = N/A. Following (A.3) we get for the pair correlation
function, in terms of the chord distance r = 2R|u1v2 − u2v1|,

g1(r) = 1−
�

1− |u1v2 − u2v1|2
�2Q
= 1−
�

1−
r2/2
2Q

�2Q
. (A.6)

In terms of the unit distance (11) we have g1(η) = 1−(1−η2)2Q. In the limit of infinite radius
we regain the planar ν= 1 function (6):

lim
2Q→∞

g1(r) = 1− e−r2/2 . (A.7)

Note that expressions for the pair correlation functions of all the excited states of ν = 1
can be obtained in the same manner, due to the fact that they all consist of a single Slater
determinant.

B The Spherical expansion basis

We now derive the expansion basis for correlation functions on the sphere. The derivation here
closely follows the one for the plane in Ref. [5]. As a starting point we write the wavefunction
in a form exposing the dependence on particle 1 and 2:

Ψ =
2Q
∑

j<k

a jk(u3, v3, . . . , uN , vN )
�

φ j(u1, v1)φk(u2, v2)−φk(u1, v1)φ j(u2, v2)
�

, (B.1)

where the antisymmetry of Ψ under exchange of (u1, v1) and (u2, v2) is explicit and a jk ∈ C.
Using that the state is isotropic we can assume that particle 1 is at the north pole without loss
of generality. With the distance between the particles measured in unit length η= r

2R we then
have for the spinor coordinates:

(u1, v1) =
�

1,0
�

,

(u2, v2) =
�
Æ

1−η2eiφ2/2,ηe−iφ2/2
�

,
(B.2)

31

https://scipost.org
https://scipost.org/SciPostPhys.14.6.149


SciPost Phys. 14, 149 (2023)

where φ2 is the azimuthal coordinate of the second particle. Using this together with (A.5),
the first term in the brackets of (B.1) is zero unless j = 2Q, while the same holds true for the
second term with k = 2Q. Since j < k ≤ 2Q the first term vanishes, and we end up with

Ψ = −
2Q−1
∑

j=0

a j,2Q(1−η2)
j
2η2Q− jei( j−Q)φ2 . (B.3)

Substituting this into (2) and using the fact that g(η) should be independent of φ2 then
yields

g(η) =
2Q−1
∑

k=0

Ak(1−η2)kη4Q−2k , (B.4)

where Ak =
N(N−1)
ρ2

∫ ∏

i>2 dΩi |ak,2Q|2. In order to extract the terms of g1 (12) we define

expansion coefficients by Ak =
�2Q

k

�

+ dk. After reordering the terms by k→ 2Q− k so that the
functions with low indices are centered around the north pole, we end up with

g(η) = 1−
�

1−η2
�2Q
+

2Q
∑

k=1

dk fk(η) ,

fk(η) = (1−η2)2Q−kη2k .

(B.5)

This constitutes a spherical expansion of the pair correlation function.

C Orthonormality of the spherical basis in eq. (16)

In the main text it is mentioned that we use the Gram-Schmidt orthogonalization procedure to
find the basis in equation (16). Rather than giving that argument, we find it more illuminating
to prove that the basis is orthonormal. Combined with the observation that Gn is a linear
combination of f1, . . . , fn it should be clear that Gn can be reached though the Gram-Schmidt
procedure.

We thus set out to prove that the following functions are orthonormal under the integration
measure dS = 8πQηdη:

Gn(η) =Nnη
2(1−η2)2Q−nJ (2,4Q+1−2n)

n−1 (1− 2η2) ,

Nn =

√

√(4Q+ 2− n)(4Q+ 1− n)(4Q− 2n+ 1)
4πQn(n+ 1)

,
(C.1)

where 1≤ n≤ 2Q.

C.1 Orthogonality

We begin by showing that (C.1) is an orthogonal set. For this the normalization is irrelevant,
and we ignore all constants. Note that although the inner product 〈Gn, Gm〉 is reminiscent of
that in the orthogonality relation between two Jacobi polynomials J (α,β)

k [22] we cannot use
this relation directly. This is because the relation assumes that the parameters (α,β) are equal
in the two polynomials, which is not the case for Gn and Gm when n ̸= m.

As a first step we substitute the variable x = 1−2η2 for η. This leads to dS = −2πQd x and
gives the integration limits x(η = 0) = 1 and x(η = 1) = −1. Thus (C.1) gives the following
inner product:

〈Gn, Gm〉 ∝
∫ 1

−1

d x
�

1− x
2

�2�1+ x
2

�4Q−n−m

J (2,4Q+1−2n)
n−1 (x)J (2,4Q+1−2m)

m−1 (x) . (C.2)
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At this point it is convenient to introduce the shorthand

A(x) = 1− x ,

B(x) = 1+ x .
(C.3)

We note that A(−1)B(−1) = A(1)B(1) = 0. With this convention Rodrigues’ formula [22] reads

J (α,β)
k (x) =

(−1)k

2kk!
A−αB−β

dk

d xk

�

Aα+kBβ+k
�

. (C.4)

Using this (C.2) can be written as

〈Gn, Gm〉 ∝
∫ 1

−1

d x A−2Bn+m−2−4Q dn−1

d xn−1

�

An+1B4Q−n
� dm−1

d xm−1

�

Am+1B4Q−m
�

. (C.5)

We will show that this equals zero when n ̸= m using repeated integration by parts. In prepa-
ration we observe that

The polynomial
dk

d xk

�

ApBq
�

, has a factor AB when p > k < q . (C.6)

Without loss of generality we assume n< m. A first integration by parts leaves (C.5) as

〈Gn, Gm〉 ∝
�

¦

A−2Bn+m−2−4Q dn−1

d xn−1

�

An+1B4Q−n
�

©¦ dm−2

d xm−2

�

Am+1B4Q−m
�

©

�1

−1

−
∫ 1

−1

d x
d

d x

¦

A−2Bn+m−2−4Q dn−1

d xn−1

�

An+1B4Q−n
�

© dm−2

d xm−2

�

Am+1B4Q−m
�

. (C.7)

First we show that the boundary term is zero. We note that the first factor
A−2Bn+m−4Q dn−1

d xn−1

�

An+1B4Q−n
�

is zero or a polynomial of order m− 2, and therefor regular.

Next we examine the second factor: dm−2

d xm−2

�

Am+1B4Q−m
�

. Looking at the derivative and the
polynomial powers we have that m − 2 < m + 1 and that m − 2 < 4Q − m (since m ≤ 2Q).
(C.6) therefore implies that it has a factor AB. Thus the boundary term is a product of regular
terms and a factor AB, and therefore equals zero when evaluated at both boundaries x = −1
and x = 1.

Applying further integrations by parts will produce boundary terms similar to that in (C.7)
but with derivatives acting on the whole of the first factor, in increasing order, while the deriva-
tive in the second factor decreases in order. This does not change the reasoning in the previous
paragraph, and we see that all boundary terms vanish. Thus the result after k integrations by
parts is

〈Gn, Gm〉 ∝
∫ 1

−1

d x
dk

d xk

�

A−2Bn+m−2−4Q dn−1

d xn−1

�

An+1B4Q−n
�

�

dm−1−k

d xm−1−k

�

Am+1B4Q−m
�

. (C.8)

We see that the first factor in (C.8) will have order zero, i.e. be a constant, when k = m−2.
At this point the integrand is a pure differential:

〈Gn, Gm〉 ∝
∫ 1

−1

d x
d

d x

�

Am+1B4Q−m
�

=
�

Am+1B4Q−m
�1

−1
= 0 , (C.9)

concluding our proof of orthogonality.
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Figure 17: Condition number of the matrix in (D.2) at chosen values of 2Q, plotted
against dimension Kmax.

C.2 Orthonormality

To prove that the functions are orthonormal it only remains to show that 〈Gn, Gn〉= 1. In this
case the caveat of α ̸= β no longer holds, and we may use the Jacobi polynomial orthogonality
relation directly, since the two functions now have the same parameters. We remind that the
Jacobi polynomial orthogonality relation reads
∫ 1

−1

(1− x)α(1+ x)β J (α,β)
m (x)J (α,β)

n (x) =
2α+β+1

2n+α+ β + 1
Γ (n+α+ 1)Γ (n+ β + 1)
Γ (n+α+ β + 1)n!

. (C.10)

Comparing (C.10) with the integral 〈Gn, Gn〉 we find that α = 2, β = 4Q + 1− 2n, m = n
precisely gives (C.5). This proves that Gn is normalized and that the set of functions Gn are
orthonormal.

D Condition number

In the main text we argued that the orthogonal spherical basis is stable whereas the non-
orthogonal one is not. We here present a quantitative argument as to why this is the case based
of the condition number. The condition number C gauges the stability of a map between two
quantities: if it is big it means that a small change in one induces a large change in the other.
As a rule of thumb, if C ∼ 10k, up to k digits of accuracy may be lost in the map [69].

For a linear transformation a 7→ M b the condition number is defined as

CM = ||M ||·||M−1|| , (D.1)

where in our case we use the Euclidian norm. Transforming between the two spherical bases
involves the Gram matrix Mnk defined through Gn(η) =

∑n
k=1 Mnk fk(η), and from (13) and

(16) this is given as

Mnk =Nn

√

√8π(4Q− 2n)!(2n− 1)
4Q+ 1

(2+ n− 1)!
(4Q+ 2− n)!(n− 1)!

�

n− 1
k− 1

�

(4Q+ 1− n− k)!
(k+ 1)!

. (D.2)

Figure 17 plots CM for this matrix at some chosen values of the flux 2Q against the number
of functions included Kmax, i.e. the dimension of M . For a given flux the condition number
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grows faster than exponentially with the dimension, quickly becoming very large. This in-
dicates that the non-orthogonal coefficients will be imprecise while the orthogonal remain
accurate.

E Evaluating Gn(η) as a differential equation

In the main text we mentioned that equation (17), albeit being exact, is not easy to evaluate to
sufficient accuracy. Instead we will in this appendix derive a (stable) second order differential
equation that we can solve numerically.

From (16) we know that we may write

Gn (η) =Nnη
2
�

1−η2
�2Q−n

J (2,4Q−2n+1)
n−1 ,

where Jα,β
n′ is a Jacobi polynomial.

The Jacobi polynomials y (x) = J (α,β)
n′ (x) solves the differential equation

y ′′ = Ay ′ + B y (E.1)

for the parameters

A=
β −α− (α+ β + 2) x

x2 − 1
,

B =
n′
�

n′ +α+ β + 1
�

x2 − 1
.

We now define the function f (x) = g (x) · y (x) where g (x) =
�

1−η2
�M
=
� x+1

2

�M
. We

then have Gn (η) =Nnη
2 f (η), with M = 2Q− n, α= 2, β = 4Q− 2n+ 1 and n′ = n− 1.

We now derive a differential equation for f . By taking successive derivatives of f and and
using equation (E.1) we arrive at

f ′′ =
�

B +
g ′′

g
−
�

2
g ′

g
+ A
��

g ′

g

��

f +
�

A+ 2
g ′

g

�

f ′ .

In our case g =
� x+1

2

�M
so g ′

g =
M

x+1 and g ′′

g =
M(M−1)
(x+1)2 . This gives the second order differential

equation

f ′′ =
�

B −
M

x + 1

�

M + 1
x + 1

+ A
��

f +
�

A+
2M

x + 1

�

f ′ ,

which may integrated numerically by your favorite method. We mention in this regard that
the numerical integration is well behaved for the full length of the oscillatory part of f but
will diverge just beyond that point, due to the other solution growing exponentially fast. This
is not so bad because the desired function f is exponentially suppressed and can be safely set
to zero by an appropriate algorithm whenever the numerical instability kicks in.

F The λ(n)t coefficient

In this appendix we will work out the coefficients λ(n)t appearing in equation (29) in the main
text. Thus, we wish to compute the integral

In = (−1)n
∫ ∞

0

dr
r3e−

1
2 r2

p

πn (n+ 1)
J0 (kr) L(2)n−1

�

r2
�

,
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Figure 18: Inspection of how imposing a cutoff impedes on the gap integral (33), ex-
emplified for the ν= 1/3 Laughlin state, with Kmax = 30. The panels show F(q,φ; k)
with k fixed as a) k = 0.5, b) k = 1.5, c) k = 2.0, d) k = 2.5. We here estimate
kU = 3.5 and kL = 0.55, and a dashed (dotted) line marks when |k⃗ + q⃗| = kU (kL).
a) For small k, the integrand is well behaved, and we may cut the integration off at
|k⃗+ q⃗| = kU . b-c) For larger k, numerical noise, coming from badly resolved pars of
s(k) start creeping in from larger q. d) If k is too large, the numerical noise merges
with the converged parts of the integral and pollutes the result.

and expand it in powers of k2. The first step is to use that the Laguerre polynomials have an
expansion

L(2)n−1

�

r2
�

=
n−1
∑

s=0

(−1)s
�

n+ 1
n− 1− s

�

r2s

s!
.

Inserting this expansion yields the expression,

In =
(−1)n
p

πn (n+ 1)

n−1
∑

s=0

(−1)s
�

n+ 1
n− 1− s

�

1
s!

Ss+1(k)
︷ ︸︸ ︷

∫ ∞

0

dre−
1
2 r2

J0 (kr) r2(s+1)+1 , (F.1)

where we have also defined

Sn (k) =

∫ ∞

0

dr r2n+1e−
1
2 r2

J0 (kr) . (F.2)

The integral is evaluated by expanding the Bessel function as

J0 (kr) =
∞
∑

m=0

(−1)m

m!Γ (m+ 1)

�

kr
2

�2m

, (F.3)

and integrating the resulting Gaussian integral. Insertion of (F.3) into (F.2) gives
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Sn =
∞
∑

m=0

(−1)m

(m!)2

�

k
2

�2m∫ ∞

0

dr r2(m+n)+1e−
1
2 r2

,

which after using the following standard formula for Gaussian integration

∫ ∞

0

x2n+1e−
x2

a2 d x =
n!
2

a2n+2 ,

gives

Sn = 2n
∞
∑

m=0

(m+ n)!

(m!)2

�

−
k2

2

�m

.

We proceed by renaming x = k2 and rewrite (m+n)!
m! xm = dn

d xn xm+n. We may then perform the
sum over m and obtain

Sn (x) = 2n dn

d xn
xne−

x
2 .

We then apply the binomial rule for derivatives

dn

d xn
g (x) f (x) =

n
∑

t=0

�

n
t

�

g(n−t) (x) f (t) (x) ,

to Sn (x) with g = xn and f = e−
x
2 we have f (t) (x) =

�

−1
2

�t
e−

x
2 and g(k) (x) = n!

(n−k)! xn−k.
Putting all the pieces together gives

Sn = e−
x
2 2n

n
∑

t=0

�

n
t

�

n!
t!

�

−
x
2

�t
, (F.4)

which is a power series expansion in x = k2.
Next, we reinsert (F.4) into (F.1) and obtain

In =
−e−

x
2 (−1)n
p

πn (n+ 1)

n
∑

s=1

(−1)s
�

n+ 1
n− s

�

2s
s
∑

t=0

�

n
t

�

s
t!

�

−
x
2

�t
, (F.5)

where we also shifted the sum over s by one. We now would like to make the identification

In = −e−
x
2

n
∑

t=0

λ
(n)
t x t .

To be able to perform the identification we change the order of the sums in (F.5) from
∑n

s=1

∑s
t=0 to
∑n

t=0

∑n
s=t . The new sum formally has an extra term with t = s = 0, which

is zero. Rearranging (F.5) then leads to

In =
−e−

x
2 (−1)n
p

πn (n+ 1)

n
∑

t=0

n
∑

s=t

(−1)s
�

n+ 1
n− s

�

2s
�

n
t

�

s
t!

�

−
x
2

�t
, (F.6)

where we now identify λ(n)t as

λ
(n)
t =

(−1)n

t!
p

πn (n+ 1)

n
∑

s=t

(−2)s−t
�

n+ 1
n− s

��

n
t

�

s , (F.7)

which is equation (29) in the main text.
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G Cutoff in the integral (33)

In the main text, it was noted that we do not trust P(k) for all values of k, but only in the range
kL ≲ k ≲ kU . This uncertainty spills over to the integral (33) such that we naively would expect
that we should not integrate further than q < kU − k. This means that our estimate of F(k) is
only valid in the range k ≲ kU/2.

To see how this comes about, we write the integral in (33) as

F(k) =

∫ π

0

dφ

∫ ∞

0

dqF(q,φ; k) ,

and examine F(q,φ; k) further. This is done in figure 18 for the ν= 1/3 Laughlin state, with
Kmax = 30 and k = 0.5,1.5, 2.0,2.5. For this number of terms we estimate kU = 3.5 and
kL = 0.55. In these figures q is plotted in the range 0 < q < kU + k and a dashed (dotted)
line marks when |k⃗ + q⃗| = kU (kL). For small values of k (figure 18a) nothing is really going
on close to |k⃗ + q⃗| = kU , but as k grows (figure 18b and figure 18c), one can see how large
divergent contributions are creeping closer to |k⃗+ q⃗|= kU from larger q.

When k is too large (figure 18d) the regions with converged contributions to F(k) merge
with the unconverged regions. The merges takes place precisely where |k⃗ + q⃗| = kU . In this
work we regularize the integral by only integrating up to |k⃗+ q⃗| ≤ kU and discarding the rest
of the integral. While this gives excellent results when k is sufficiently small, the precise value
of the integral will depend on kU when k ≈ kU/2, which is seen in figures 18c and 18d. By
varying kU we get an estimate of how sensitive F(k) is to the cutoff and thus for how large
values of k we may trust the calculation.

H Extra Data

In this section we list some auxiliary data that was not explicitly mentioned in the main text.
We list

• The pair correlation functions for reverse flux composite fermions at ν = 2/3 and
ν= 3/5; Figure 19.

• Extensive list of expansion coefficients the Laughlin ν = 1/5 and ν = 1/7 states in
Table 7.

• Expansion coefficients CF ν= 2/5 and ν= 3/7 states as well as the reverse flux state at
ν= 2/3 and ν= 3/5 in Table 8.

• Expansion coefficients for the Moore-Read wavefunction at filling ν = 2+ 1/2 and the
Reverse flux modified Laughlin wavefunction at ν= 1/3 in Table 9

• The expansion coefficients (including their uncertainties) for all the states treated in this
work is available in digital form in the supplementary material.
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Table 7: Expansion coefficients cn for the Laughlin ν= 1/5 and ν= 1/7 states.

n ν= 1/5 ν= 1/7 n ν= 1/5 ν= 1/7 n ν= 1/5 ν= 1/7 n ν= 1/7

1 3.5613(97±12) 3.73192(5±5) 36 −0.0382(7± 8) −0.043(50±17) 71 −0.005(28±13) 0.046(69±15) 106 −0.013(46±12)
2 2.8439(4± 3) 3.4647(95±19) 37 −0.030(99±16) −0.071(59±12) 72 −0.005(25±12) 0.044(14±12) 107 −0.012(50±18)
3 1.8254(8± 4) 3.0906(9± 3) 38 −0.023(44±11) −0.094(50±18) 73 −0.0050(2±10) 0.041(03±18) 108 −0.010(91±19)
4 0.7141(2± 4) 2.4537(1± 3) 39 −0.016(09±13) −0.112(40±15) 74 −0.004(56±20) 0.038(21±19) 109 −0.010(52±15)
5 −0.1679(0± 5) 1.5920(8± 5) 40 −0.0097(7± 7) −0.125(60±19) 75 −0.004(24±15) 0.034(3± 3) 110 −0.009(71±13)
6 −0.6854(6± 7) 0.6622(1± 6) 41 −0.003(86±13) −0.135(05±10) 76 −0.004(26±11) 0.030(79±16) 111 −0.008(08±16)
7 −0.8784(1± 4) −0.1632(7± 6) 42 0.001(95±12) −0.140(33±11) 77 −0.0033(0± 9) 0.027(5± 2) 112 −0.006(88±17)
8 −0.8504(3± 7) −0.7750(8±10) 43 0.006(30±10) −0.141(23±11) 78 −0.003(05±15) 0.023(52±18) 113 −0.005(7± 2)
9 −0.7015(7± 7) −1.1434(5± 9) 44 0.010(13±12) −0.139(46±16) 79 −0.002(76±18) 0.020(13±15) 114 −0.004(5± 3)

10 −0.5051(7± 9) −1.2941(4± 5) 45 0.0127(2± 9) −0.135(19±17) 80 −0.002(05±18) 0.016(09±19) 115 −0.003(6± 2)
11 −0.306(69±10) −1.278(43±14) 46 0.014(44±15) −0.128(3± 3) 81 −0.001(89±16) 0.012(50±19) 116 −0.002(74±14)
12 −0.1317(2± 9) −1.150(80±16) 47 0.016(49±12) −0.119(21±13) 82 −0.001(41±13) 0.008(94±18) 117 −0.001(82±14)
13 0.0079(5± 9) −0.9593(9± 7) 48 0.0170(6± 9) −0.108(5± 3) 83 −0.001(03±15) 0.005(52±16) 118 −0.000(8± 2)
14 0.110(52±13) −0.740(17±13) 49 0.017(11±13) −0.097(2± 2) 84 −0.000(80±14) 0.002(5± 2) 119 0.000(7± 2)
15 0.1778(7± 8) −0.518(20±11) 50 0.017(01±15) −0.085(11±15) 85 −0.000(31±14) −0.000(55±17) 120 0.001(47±18)
16 0.214(22±10) −0.309(31±10) 51 0.016(41±12) −0.071(8± 2) 86 −0.0002(7±10) −0.003(33±18) 121
17 0.2255(5± 9) −0.123(5± 2) 52 0.015(16±15) −0.058(90±14) 87 −0.000(24±14) −0.005(61±20) 122
18 0.2181(3±10) 0.033(94±12) 53 0.013(96±15) −0.046(5± 2) 88 0.0001(9± 9) −0.008(27±19) 123
19 0.197(27±11) 0.161(95±15) 54 0.012(67±16) −0.033(6± 2) 89 0.000(6± 2) −0.010(72±15) 124
20 0.1676(8± 7) 0.260(29±14) 55 0.010(98±15) −0.021(6± 2) 90 0.000(57±15) −0.012(31±13) 125
21 0.133(90±12) 0.331(38±14) 56 0.009(03±15) −0.010(1± 3) 91 0.000(88±13) −0.013(66±19) 126
22 0.0992(2±10) 0.377(61±19) 57 0.007(73±11) 0.000(3± 2) 92 0.001(27±14) −0.015(28±15) 127
23 0.065(54±11) 0.401(16±14) 58 0.006(16±12) 0.009(54±17) 93 0.001(30±13) −0.016(6± 2) 128
24 0.033(78±11) 0.405(72±15) 59 0.004(56±19) 0.018(51±15) 94 0.001(54±17) −0.017(3± 2) 129
25 0.0071(0±10) 0.395(04±11) 60 0.002(60±15) 0.026(14±16) 95 0.001(85±17) −0.017(75±17) 130
26 −0.0151(0± 9) 0.371(54±14) 61 0.000(75±15) 0.032(29±16) 96 0.001(28±12) −0.018(35±12) 131
27 −0.0331(2± 6) 0.337(99±15) 62 0.000(23±20) 0.037(85±16) 97 0.001(6± 2) −0.017(88±18) 132
28 −0.0460(9± 9) 0.297(40±15) 63 −0.001(24±16) 0.041(9± 3) 98 0.001(41±17) −0.018(1± 2) 133
29 −0.0547(8± 9) 0.252(43±16) 64 −0.002(19±14) 0.045(95±15) 99 0.001(0± 2) −0.018(6± 2) 134
30 −0.059(98±12) 0.205(45±12) 65 −0.0026(1±10) 0.048(36±17) 100 0.001(69±16) −0.017(5± 2) 135
31 −0.061(61±13) 0.157(78±12) 66 −0.003(60±12) 0.049(81±11) 101 0.001(60±15) −0.017(35±19) 136
32 −0.0601(9± 9) 0.111(15±13) 67 −0.004(05±17) 0.050(4± 2) 102 0.001(0± 3) −0.017(5± 2) 137
33 −0.056(41±11) 0.066(92±13) 68 −0.0046(6±10) 0.050(2± 2) 103 0.000(91±14) −0.016(5± 2) 138
34 −0.0512(1±10) 0.025(68±15) 69 −0.004(88±11) 0.049(61±15) 104 0.000(69±19) −0.015(75±16) 139
35 −0.045(06±15) −0.011(19±16) 70 −0.004(95±12) 0.048(2± 2) 105 0.001(0± 2) −0.014(6± 2) 140

Table 8: The first 20 expansion coefficients cn for the BS state at ν= 2+2/5, the CF
states at ν = 2/5 and ν = 3/7, as well as the reverse flux composite fermion states
at ν= 2/3 and ν= 3/5.

n BS ν= 2/5 CF ν= 2/5 CF ν= 3/7 CF ν= 2/3 CF ν= 3/5

1 1.53(2± 5) 2.01(7± 3) 1.79(9± 2) 0.651(63±15) 0.891(7± 6)
2 1.0(04± 10) 0.63(18± 17) 0.54(04± 16) 0.240(6± 3) 0.271(6± 2)
3 0.49(3± 7) −0.19(2± 3) −0.19(3± 3) −0.016(5± 3) −0.09(18± 11)
4 0.09(4± 5) −0.37(4± 2) −0.33(2± 3) −0.090(3± 4) −0.160(9± 8)
5 −0.16(0± 5) −0.25(7± 3) −0.21(28± 17) −0.079(5± 6) −0.10(09± 12)
6 −0.28(9± 8) −0.08(8± 2) −0.05(10± 15) −0.048(5± 5) −0.026(7± 7)
7 −0.29(3± 6) 0.03(6± 2) 0.06(34± 14) −0.021(7± 5) 0.023(7± 6)
8 −0.23(9± 8) 0.08(9± 3) 0.10(9± 2) −0.006(2± 8) 0.044(9± 8)
9 −0.18(4± 8) 0.09(2± 3) 0.09(5± 5) 0.001(7± 5) 0.04(35± 12)

10 −0.10(6± 6) 0.08(2± 3) 0.06(2± 3) 0.007(0± 8) 0.030(5± 5)
11 −0.03(7± 5) 0.06(25± 19) 0.02(08± 20) 0.006(2± 4) 0.01(59± 10)
12 0.02(0± 7) 0.02(0± 3) −0.02(1± 3) 0.004(7± 5) 0.00(46± 13)
13 0.0(44± 10) −0.00(6± 4) −0.05(2± 5) 0.004(7± 7) −0.00(36± 14)
14 0.0(2± 2) −0.02(3± 3) −0.06(9± 7) 0.001(9± 6) −0.01(03± 16)
15 0.0(35± 17) −0.03(9± 3) −0.06(9± 8) 0.000(5± 7) −0.01(10± 11)
16 0.0(47± 14) −0.04(1± 3) −0.06(8± 7) 0.001(6± 5) −0.01(48± 12)
17 0.04(8± 8) −0.04(4± 4) −0.02(8± 3) 0.00(07± 12) −0.01(29± 13)
18 0.04(5± 4) −0.04(0± 3) −0.02(9± 3) −0.00(02± 11) −0.00(98± 18)
19 0.04(9± 6) −0.03(8± 4) −0.02(0± 3) −0.000(6± 7) −0.009(7± 9)
20 0.0(10± 10) −0.01(9± 3) −0.00(5± 3) 0.000(6± 5) −0.00(59± 15)
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Figure 19: Pair correlation functions at finite sizes and in the thermodynamic limit
for the Reverse flux composite fermion states at a) ν = 2/3 b) ν = 3/5 and the c)
Composite Fermion state at ν= 3/7.

Table 9: Expansion coefficients cn for the Moore-Read wavefunction at filling
ν= 2+ 1/2 and the Reverse flux modified Laughlin wavefunction at ν= 1/3.

n MR ν= 2+ 1/2 LCFR ν= 1/3 n MR ν= 2+ 1/2 LCFR ν= 1/3 n MR ν= 2+ 1/2 LCFR ν= 1/3

1 1.210(9± 8) 2.650(20±16) 16 0.01(09± 14) 0.002(4± 5) 31 0.00(00± 18) 0.004(8± 9)
2 0.57(5± 2) 1.011(1± 3) 17 0.00(26± 10) −0.006(1± 6) 32 −0.00(1± 2) 0.003(6± 10)
3 0.11(02± 14) −0.057(38±19) 18 0.00(02± 12) −0.012(5± 7) 33 0.00(37± 18) 0.002(6± 9)
4 −0.12(23± 14) −0.41(38± 13) 19 0.00(07± 18) −0.014(6± 5) 34 −0.00(12± 16) 0.003(8± 8)
5 −0.19(04± 15) −0.40(47± 19) 20 −0.00(13± 20) −0.015(1± 4) 35 −0.00(3± 3) 0.00(17± 12)
6 −0.17(57± 11) −0.276(0± 2) 21 −0.00(46± 13) −0.017(1± 6) 36 0.00(2± 3) 0.000(3± 7)
7 −0.11(99± 18) −0.133(4± 4) 22 −0.00(67± 18) −0.012(8± 4) 37 0.00(1± 3) 0.001(2± 7)
8 −0.05(6± 2) −0.026(5± 6) 23 −0.00(45± 15) −0.008(6± 4) 38 −0.00(1± 2) 0.001(0± 9)
9 −0.00(99± 17) 0.039(4± 8) 24 −0.00(52± 13) −0.006(7± 5) 39 0.00(1± 3) 0.00(26± 15)

10 0.014(6± 9) 0.068(6± 8) 25 −0.00(42± 15) −0.002(7± 6) 40 0.00(5± 2) 0.00(12± 16)
11 0.03(21± 14) 0.075(7± 2) 26 −0.00(68± 13) −0.001(4± 5) 41 0.00(3± 3) −0.00(01± 13)
12 0.03(76± 12) 0.06(87± 10) 27 −0.00(13± 20) 0.001(5± 4) 42 0.00(3± 4) −0.002(0± 8)
13 0.03(65± 12) 0.050(4± 5) 28 −0.00(5± 2) 0.003(1± 4) 43 0.00(2± 3) −0.00(37± 14)
14 0.028(5± 10) 0.032(0± 5) 29 0.00(1± 3) 0.002(4± 7) 44 0.00(3± 3) −0.00(13± 13)
15 0.01(72± 14) 0.017(1± 4) 30 0.00(32± 16) 0.004(5± 5) 45 0.00(4± 3) −0.000(2± 8)
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