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Abstract

We study the holomorphic twist of 3d N = 2 supersymmetric field theories, discuss the
perturbative bulk local operators in general, and explicitly construct non perturbative
bulk local operators for abelian gauge theories. Our construction is verified by matching
the character of the algebra with the superconformal index. We test a conjectural relation
between the derived center of boundary algebras and bulk algebras in various cases,
including Landau-Ginzburg models with an arbitrary superpotential and some abelian
gauge theories. In the latter cases, monopole operators appear in the derived center of a
perturbative boundary algebra. We briefly discuss the higher structures in both boundary
and bulk algebras.
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1 Introduction

Twisting supersymmetric field theories [1,2] has been a very powerful and successful tool for
extracting mathematical structures from physical quantum field theories. Twisted theories, as
they were originally discovered, involve fully topological twist, which renders the original field
theories into topological field theories. Classical examples include A and B model topological
string [2] in 2d, Rozansky-Witten theory [3] in 3d, Donaldson-Witten theory [1], Vafa-Witten
theory [4] and Kapustin-Witten theory [5] in 4d.

Fully topological twist depends on the choice of a supercharge Q that transforms as a
scalar under a “twisted” Lorentz group action. The existence of such a scalar requires the
existence of a relatively large amount of supersymmetry. Actually, the twisting procedure can
be modified to adapt to a generic nilpotent supercharge. Early examples include [6–8] and
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this technique has been systematically developed in e.g. [9, 10] recently. After such a twist,
the resulting theories become holomorphic in most space time directions. In even spacetime
dimension d = 2n, the choice of the nilpotent supercharge specifies a complex structure on
R2n = Cn. All correlation functions of the twisted theory will depend holomorphically on Cn.
In odd spacetime dimension d = 2n+1, the choice of nilpotent supercharge specifies a splitting
R2n+1 = Cn ×R. Correlation functions of the twisted theory will depend holomorphically on
Cn and be independent of R.

In this paper, we study twisted 3d N = 2 theories following [11, 12]. The purpose of
this paper is twofold. First, we try to give a more detailed description of the bulk algebras
of the twisted theories. The study of monopole operators will play an important role here. A
monopole operator is defined by prescribed local singular behavior of fields. The strategy we
employ for studying them relies on the state-operator correspondence, which has also been
used in many previous works [13–15] that successfully identified their spectrum and various
quantum numbers. In this paper, we combine state-operator correspondence with the method
of geometric quantization to give a description of the full local operator algebras for abelian
gauge theories. The algebra is decomposed into different sectors labeled by monopole (topo-
logical) charges and each sector represents a family of gauge invariant dressed monopole op-
erators. As a justification of our construction, we compute the characters of the local operator
algebras and our results agree nicely with existing literature on superconformal index of 3d
N = 2 theory [16–19].

Then, we examine a conjectural relation between the bulk and boundary local operator
algebras [12]. This relation is actually a general feature of topological quantum field theories
[20], which links boundary information with bulk information. The 2d TQFT version of this
conjecture is the isomorphism between the bulk algebra and the Hochschild cohomology of
boundary algebra. In 3d, this conjecture becomes the isomorphism between the bulk algebra
and the derived center of the boundary chiral algebra, which is computed by self-Ext of the
boundary vacuum module. This technique has also been used in [21, 22] to study Higgs and
Coulomb branch operators of 3d N = 4 theories.

This paper is organized as follows. In Section 2, we review the twisted 3d N = 2 theories in
BV formalism and in AKSZ formalism. In Section 3, we analyze the bulk local operators of the
theories. A description of the perturbative algebras will be provided for the general situations.
We describe non perturbative algebras for theories with abelian gauge group, by utilizing state
operator correspondence. We also discuss characters of the local operator algebras and their
relation with the 3d superconformal indices. In Section 4, we study local operator algebras
and their characters in some explicit examples. The BRST cohomologies of the local operator
algebras will be computed in the first few spin sectors. The implications of 3d mirror symmetry
on the local operators will be discussed. In Section 5, we briefly review boundary conditions
and the corresponding boundary chiral algebras. In Section 6, we compute the self-Ext of
various boundary chiral algebras under different boundary conditions and prove that they
agree with bulk algebra in some non-trivial cases. A failure case of this technique will also be
provided. Finally, we touch on the algebraic structures on the self-Ext and their relations with
the algebraic structures of bulk local operators.

1.1 Future directions

We outline several other motivations for this work and a partial list of related open issues.

Three manifold invariants String Theory/M-Theory predicts the existence of the 6d super-
conformal field theories living on M5 branes. A twisted compactification of a 6d theory labeled
by a simply-laced Lie algebra g on a manifold M of dimension d defines a (6− d) dimensional
supersymmetric field theory T[M ,g]. In the IR, the theories T[M ,g] only depend on part of
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the geometry of M . Specifically, they all have a nilpotent supercharge whose cohomology is
invariant under the diffeomorphisms of M .

For d = 3, theories T[M3,g] are a family of 3d N = 2 supersymmetric field theories. For
g= su(2), theories T[M3, su(2)] are explicitly constructed in [23] based on a triangulation of
the 3 manifold M3 into tetrahedra, and a gluing of the “building block” theory T∆ through the
triangulation. This construction leads to the 3d N = 2 abelian Chern-Simons matter theories,
whose twisted versions are studied in this paper. Superconformal index of T[M3] is studied
in [19] and gives us an invariant of the three manifold M3. The bulk algebra ObsT[M3] then
provides a “categorification” of the 3d index in [19] (In the sense that we replace a number by
a graded vector space). The techniques in this paper can be applied to describe monopole op-
erators in T[M3], and to give an explicit construction of the three manifold invariant ObsT[M3].

Line operators Twisted 3d N = 2 theories admit a large collection of line operators ex-
tending in the real direction. They come in two basic varieties: Wilson lines and vortex lines.
Together, they generate a category C that is expected to be a chiral category [24] and holds a
wealth of algebraic information about the theory. For example, in this guise the bulk boundary
relation studied in this paper can be adapted to the statement that local operators are the same
as (or can be defined as) self-interfaces of the trivial line defect. More explicitly, we have

Obsloc = HomC(1C ,1C) . (1.1)

For topological twist of 3d N = 4 theories, line operators are systematically studied in [25].
It will be interesting to identify the category C in various N = 2 setups.

Mirror symmetry always makes nontrivial predictions for mathematical objects extracted
from mirror quantum field theories. For the category of line operators, mirror duality of two
3d N = 2 theories T and T ′ then suggests an equivalence of categories CT ∼= CT ′ . For 3d
N = 4 theories, such examples are explored in [25] and recently in [26].

Integrable system We can consider the twisted 3d N = 2 theories defined on a spacetime
of the form Σ×R, where Σ is a Riemann surface. We can also consider line defects passing
through Σ and this will lead to a punctured surface with some labels on the punctured points.
The twisted theory will assign a Hilbert space H(Σ) to the surface after quantization [27].
Bringing a bulk operator to the surface Σ defines an action of the operator on the Hilbert
space H(Σ).

H •(Obsloc,Q)→ End(H(Σ)) . (1.2)

If we place bulk local operators at different points separated from the line defects that we
inserted, then as a consequence of the twisted 3d theory being topological along R, the action
of the operators on H(Σ) all commute. This is a general pattern of the quantum integrable
system, where bulk local operators play the roles of commuting Hamiltonians. For example,
for theories with only vector multiplet at critical Chern Simons level, this construction will lead
to Hitchin integrable system [28, 29] and specifically the Gaudin integrable system [30, 31]
for Σ a punctured sphere. It will be interesting to figure out the integrable systems associated
with more general 3d N = 2 theories possibly with both vector and chiral multiplets.

Higher algebra and Deligne’s conjecture Structures of topological quantum field theories,
or quantum field theories in general, impose structures on the space of observables [32]. For
the case of d dimensional TQFT, the algebraic structures of the local operators at the chain level
are captured by the notion of Ed algebra. At the level of cohomology, an Ed algebra becomes
a shifted version of Poisson algebra, known as Pd algebra. The bulk boundary relations then
predict that the derived center of the boundary will carry these structures. For example in
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2d, we have the well known Gerstenhaber structure on the Hochschild cohomology HH •(A)
[33]. If we look at the chain level, this becomes Deligne’s conjecture (now a theorem) on the
existence of E2 structure on the Hochschild complex [34, 35]. In d ≥ 2 dimension, “higher”
Deligne’s conjecture states that E(d−1) Hochschild cohomology is furnished with an Ed algebra
structure [20,36].

We wish to find analogous statements for the holomorphic topological theories in 3d. The
general structure of the local operators should be captured by a higher analog of chiral algebra
that also includes the OPE structures along R. Though such a structure is still mysterious to
us, if we take cohomology, this structure becomes the more familiar (shifted) Poisson vertex
algebra [38, 39]. Therefore, we hope that the self-Ext Ext•V−mod(V, V ) of a vertex algebra V
can be endowed with a shifted Poisson vertex algebra structure. If we look at the chain level,
RHomV−mod(V, V ) should have the higher analog of vertex algebra structure. A proper chain
complex, namely, a chiral generalization of the Hochschild complex, is needed to elucidate
these structures. We believe that the chiral deformation complex constructed in [37] is the
right one. Moreover, when V comes equipped with a stress energy tensor, namely V is a
conformal vertex algebra, the bulk theory of it becomes topological (see [12] for more detail).
In this case, the self-RHom should be endowed with the structure of an E3 algebra. We explain
this story in more detail in Section 6.4.

2 Review of holomorphic twisted 3d N = 2 theory

In this paper, we mainly work in the flat Euclidean spacetime Rt ×Cz,z̄ . The 3d N = 2 SUSY
algebra has generators Q±, Q̄± and commutation relations

{Q+, Q̄+}= −2i∂z̄ , {Q−, Q̄−}= 2i∂z ,

{Q+, Q̄−}= {Q−, Q̄+}= i∂t .
(2.1)

In [11,12], a class of 3d holomorphic topological theories is studied. Such a theory arises
from a 3d N = 2 supersymmetric field theory after performing a holomorphic twist. This
amounts to changing the cohomological degree of fields using the R symmetry and adding the
supercharge Q̄+ into the BRST differential. By adding Q̄+ into the BRST differential, many
Q̄+-exact terms can be removed and we get a new (and much simpler) quantum field theory.
The fact that ∂t and ∂z̄ are Q̄+-exact tells us that all correlation functions of the new theory
will be independent of t and z̄. We call such a theory holomorphic topological, meaning that it
depends topologically in the t direction and holomorphically in the z direction. This explains
the name holomorphic twist or, to be more precise, holomorphic topological twist.

In this section, we review the 3d N = 2 theory in the twisted formalism introduced in
[11,12]. The advantage of directly working in the twisted formalism is that the field content,
the action functional and the equations of motion are greatly simplified, while many structures
that are contained in the Q̄+ cohomology of the original physical theory are still preserved in
the twisted formalism. We then recast the theory into AKSZ formalism. This encodes classical
information of the theory into a geometric structure, which paves the way for performing
geometric quantization later.

2.1 Twisted theory in BV formalism

A 3d N = 2 SUSY theory containing both vector multiplets and chiral multiplets is specified
by the following data.
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1. A compact gauge group G. (In twisted formalism, we always work with its complexifi-
cation. So we also use G to denote the complexification of the gauge group in the fol-
lowing.)

2. A unitary representation V of G. (After complexification, V becomes a complex linear
representation.)

3. A G invariant polynomial W : V → C, called superpotential.

4. An integer (or half-integer) k called Chern-Simons level.

To perform the holomorphic twist we require additional data of a U(1)R symmetry, under
which V decomposes into subspaces with different R charges: V = ⊕r V (r). Under the R charge
assignment, the superpotential W must be a quasi-homogeneous function of R-charge 2.

In this paper, we directly work with the twisted theories. These theories are generally
defined on a 3-manifold M with a transverse holomorphic foliation(THF). A 3-manifold is
equipped with a THF if it has local coordinate patches (t, z) ∈ R×C and the transition functions
take the form

�

f (t, z, z̄), h(z), h̄(z̄)
�

, (2.2)

where h(z) is a holomorphic function. The above form of coordinate transformation implies
that the (anti)holomorphic 1-forms Ω1,0(Ω0,1) are globally well defined. And we have well
defined ∂ , ∂̄ operators. The d t direction, on the other hand, is not globally defined. However,
we can define the quotient spaces Ω1/Ω1,0 and Ω1/Ω0,1. The projection map p : Ω1→ Ω1/Ω1,0

can be written in local coordinates as

p : ft d t + fzdz + fz̄dz̄→ ft d t + fz̄dz̄ . (2.3)

Using this projection, we can define a modified differential operator as

d̂ = p · d : f → ∂t f d t + ∂z̄ f dz̄ . (2.4)

We also introduce a dg algebra
A• = Ω•/(Ω• ∧Ω1,0) . (2.5)

In local coordinates, it takes the form C∞(U)[d t, dz̄]. The differential d̂ naturally extends to
A• and we still denote it by d̂. There are natural variants of A•:

A•,k =A• ⊗Ωk,0 . (2.6)

In local coordinates, it takes the form C∞(U)[d t, dz̄]dzk. The operator d̂ is still well defined
on A∗,k and takes the form d̂ = d t∂t + dz̄∂ z̄ in local coordinates. The wedge product gives us
a natural pairing

Ai,k ⊗A j,l →Ai+ j,k+l . (2.7)

Integration on M gives us a map
∫

: A2,1 = Ω3(M ,C)→ C . (2.8)

In this paper we study the local properties of these theories, hence it suffices to work in a
local coordinate. The cohomology of (A•,k, d̂) in a local coordinate consists of those functions
Hol(D) which are independent of t and holomorphic in z.

A convenient way to analyze gauge theories is through BV formalism. By adding ghosts,
anti-fields, and anti-ghosts, a gauge theory can be described by a differential graded (dg) Lie
algebra equipped with an invariant pairing of degree −3. For the holomorphic twisted 3d
N = 2 theory, the field content in BV formalism can be organized into the following “super-
fields”
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• A gauge field: A= c + A+ B∗ ∈A• ⊗ g[1].

• A coadjoint valued field: B= B + A∗ + c∗ ∈A•,1 ⊗ g∗.

• A matter field in representation V : Φ= φ +η∗ +ψ∗ ∈ ⊕kA
•,k ⊗ V (k).

• A matter field in the dual representation V ∗: Ψ=ψ+η+φ∗ ∈ ⊕kA
•,1−k ⊗ (V (k))∗[1].

where the symbol [1] indicates a shift of cohomological degree by 1, so that the gauge field
A has degree 0. Here, the fields A, B are obtained from twisting the vector multiplets of the
physical 3d N = 2 theory, and Φ,Ψ are obtained from twisting the chiral multiplets. Thus, we
will also use the names “vector multiplets” and “chiral multiplets” to call them in the twisted
formalism.

We can write down the full BV action functional in terms of the above data

SBV =

∫



B, d̂A+
1
2
[A,A]
·

+



Ψ, (d̂ +A)Φ
�

+W (Φ) +
k

8π
〈A,∂ A〉 . (2.9)

Here the inner product 〈−,−〉 is induced from the dual pairing between g,g∗ and V, V ∗ and
wedge product of differential forms. The integration map

∫

is defined by 2.8 that picks up the
top degree forms.

We mention that in the presence of a Chern-Simons term, the gauge theory part is actually
equivalent to a physical Chern-Simons theory. This fact can be obtained via a field redefinition
[12]. We provide another explanation in the next section.

Another important structure in the BV formalism of QFT is the degree 1 bracket that pairs
fields/ghosts with anti-fields/anti-ghosts, called the BV bracket. In our theory, the BV bracket
is given by

{Φ(x),Ψ(y)}BV = {A(x),B(y)}BV = δ(x − y)dVol . (2.10)

The BRST operator is easy to calculate from the BV bracket using the formula Q = {S,−}BV.
We find

QA= d̂A+ [A,A] ,

QB= d̂AB+µ(Φ,Ψ)−
k

4π
∂ A ,

QΦ= d̂AΦ ,

QΨ= d̂AΨ+
δW
δΦ

,

(2.11)

where we used (shifted) moment map µ : V⊗V ∗[1]→ g∗ associated with the action of G on V .

2.2 AKSZ formalism

Roughly speaking, the geometry of the (classical) BV formalism is given by a dg manifold
equipped with a −1 shifted symplectic form. A BV action functional is an even function S
such that Q = {S,−}. In some cases, the BV field theory can be formulated as an AKSZ sigma
model [40]. In the AKSZ construction, we have a dg manifold N equipped with a volume form
of degree l and a dg manifold M equipped with a symplectic form of degree −1− l. Then we
consider the mapping space Map(N , M), which can be shown to have the structure of a classical
BV field theory. The natural (−1)-shifted symplectic structureω is described as follows. Given
f : N → M , the tangent space of Map(N , M) at f is T f Map(N , M) = Γ (N , f ∗T M). Then the
symplectic form on the mapping space Map(N , M) can be written as

ω(α,β) =

∫

N
dVolN (α,β)M , α,β ∈ Γ (N , f ∗T M) , (2.12)
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where ( , )M denotes the pairing on TM that comes from the symplectic structure on M .
In this section, we show that the holomorphic twisted 3d N = 2 theory described above

can also be formulated as an AKSZ sigma model.
We first consider the vector multiplet with gauge group G at Chern Simons level 0, the

field content is
(A,B) ∈A• ⊗ g[1]⊕A•,1 ⊗ g∗ . (2.13)

As a graded manifold, these fields describe maps RdR × C∂̄ → g[1] ⊕ g∗. We can ob-
serve that the BRST differential is inherited from the Chevalley-Eilenberg differential of
C •(g; Symg∗) = C[T ∗[1]Bg]. Besides, the BV bracket comes from the natural symplec-
tic form on the shifted cotangent bundle T ∗[1]Bg. Therefore, in the AKSZ formulation,
the twisted vector multiplet (without a CS term) can be formulated as the mapping space:
Map(RdR × Σ∂̄ , T ∗[1]Bg). We should be careful here. By writing the target as T ∗[1]Bg, we
only defined a perturbation theory. The “global” version of this theory is

Map
�

RdR ×Σ∂̄ , T ∗[1]BG
�

. (2.14)

We can also understand the theory with a Chern-Simons term in a similar fashion. First,
we rewrite the mapping space as follows

Map(RdR ×Σ∂̄ , T ∗[1]BG) =Map(RdR × T[1]Σ∂̄ , BG) . (2.15)

This is because O(RdR × T[1]Σ∂̄ ) = A•[ε] = A• ⊕A1,•[−1]. Therefore the right hand side
gives the same field content and BRST differential as the left hand side.

Adding a Chern-Simons term has the effect of turning T[1]Σ∂̄ into ΣdR. Thus we obtained
the standard description of Chern-Simons theory [40]

Map ((R×Σ)dR, BG) . (2.16)

We can also make the dependence on complex structure more explicit. By using the identity
Map(X × Y, Z) =Map(X , Map(Y, Z)), we have

Map((R×Σ)dR, BG) =Map
�

RdR, T ∗k Map(Σ∂̄ , BG)
�

=Map
�

RdR, T ∗k BunG(Σ)
�

. (2.17)

In this way, we understand Chern-Simons theory as a topological quantum mechanics with
target T ∗k BunG(Σ) as a twisted cotangent bundle of BunG(Σ). Here we actually understand the
Chern-Simons level k as a Cartan-Killing form, which can be further identified as a symplectic
structure on BG and integrated to a closed two form on BunG(Σ). From this perspective, we
can regard the theory without Chern-Simons term as a topological quantum mechanics with
target T ∗BunG(Σ) = HiggsG(Σ), the Hitchin moduli space of G bundle on Σ. This suggests a
close relation between this theory and the Hitchin system.

For the chiral multiplet, the field content is

(Φ,Ψ) ∈
⊕

k

A•,k ⊗ V (k) ⊕A•,1−k ⊗
�

V (k)
�∗
[1] . (2.18)

They can be described by the mapping space Map(RdR ×Σ∂̄ , T ∗[1]V ).
We can describe twisted theory of chiral multiplet with a superpotential along the same

line. As we can see from 2.11, turning on a superpotential W deforms the BRST differential
Q by a term δW

δΦ
∂
∂Ψ . As is reviewed in Appendix A, we see the same differential A6 from the

algebra of function on dCrit(W ) – the derived critical locus of W . This tells us that turning on
a superpotential amounts to replacing T ∗[1]V with dCrit(W ) as the target. Thus we conclude
that the AKSZ formulation for chiral multiplet with superpotential W is given by the mapping
space:

Map
�

RdR ×Σ∂̄ , dCrit(W )
�

. (2.19)
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More generally, for theory with both vector and chiral multiplets, the AKSZ formulation is
given by the mapping space

Map
�

RdR ×Σ∂̄ , dCrit(W : V/G→ C)
�

, (2.20)

or equivalently
Map
�

RdR ×Σ∂̄ , dCrit(W ) // G
�

. (2.21)

We review the corresponding supermanifolds in Appendix A. We can check that this is compat-
ible with previous special cases. For G trivial, the target automatically becomes dCrit(W ). For
V = 0, V/G = BG, the derived critical locus for trivial superpotential is the 1 shifted cotangent
bundle, which gives us T ∗[1]BG.

3 Bulk algebras and their characters

In this section, we study the bulk local operator algebra for the holomorphic twisted 3d N = 2
theory. We study both perturbative and non perturbative algebra. This includes the consider-
ation of monopole operators, which cannot be expressed as polynomial functions of the fields.
After appropriately identifying the operators and their quantum numbers, we study the charac-
ter of the algebra, which reproduces the 3d superconformal index of the corresponding SUSY
theory.

At the perturbative level, the local operator algebra Obsper is easy to describe. Perturba-
tive local operators are polynomial functions in the fields (Φ,Ψ), (B,A), subject to the BRST
differential 2.11. As we have mentioned, locally, the cohomology of (A•,k, d̂) consists of those
functions Hol(D) that are independent in t and holomorphic in z. Therefore, by only taking
the bottom component of the superfields and restricting to fields that are holomorphic in z,
we find a smaller but quasi-isomorphic complex. This space consists of functions in the fields
{φ(z),ψ(z), b(z), c(z)}. The differential can be schematically written as

Qc =
1
2
[c, c] ,

Qb = [c, b] +µ(φ,ψ)−
k

4π
∂ c ,

Qφ = [c,φ] ,

Qψ= [c,ψ] +
δW (φ)
δφ

.

(3.1)

We can also explain this result in a geometric manner. We consider a cylinder
Cε = [−ε,ε] × Dε where Dε is a disk of radius ε in C. The perturbative local operators are
functions on the (derived) space of solution to the equation of motion on Cε as ε→ 0.

Obsper = lim
ε→0
C[EOM(Cε)] . (3.2)

The AKSZ formalism of the theory immediately tells us that perturbatively, EOM(Cε) is

Map
�

[−ε,ε]dR × (Dε)∂̄ , dCrit(W : V/g→ C)
�

. (3.3)

This space describes maps constant along the real direction and holomorphic on Dε. Equiva-
lently, we can ignore [−ε,ε]dR and we replace the disk by the formal disk D = Spec(C[[z]])
as ε → 0. Then the space of solutions to the equations of motion can be described by al-
gebraic maps {D → dCrit(W : V/g → C)}, which can be identified with the infinite jet
J∞(dCrit(W : V/g→ C)) of the target space dCrit(W : V/g→ C). Then we find the space of
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perturbative local operators to be the space of functions: C[J∞(dCrit(W : V/g→ C))]. Recall
that given an affine scheme X with ring of functions C[X ] = C[x i], its infinite jet J∞X has
ring of functions C[J∞X ] = C[x i

n, n = 0,1 . . . ]. For a derived scheme, its infinite jet scheme
has a similar interpretation. Given the coordinate description of dCrit(W : V/g→ C))] as in
A11, A14, we find that functions on the infinite jet J∞(dCrit(W : V/g→ C)) are the same as
functions of the fields {φ(z),ψ(z), b(z), c(z)} with differential 3.1.

However, even at the perturbative level, this answer is not correct, as we need to be more
careful about the ghost. In a quantum field theory with gauge symmetry, we can think of intro-
ducing ghosts as a homological method to compute gauge invariant local operators. However,
for a compact gauge group, taking G invariant is already an exact functor and there is no need
to do this homologically. It suffices to introduce only the higher order ghost modes. A similar
problem appears in [12] in the discussion of the boundary algebra, where more details about
(derived) invariants of Lie algebra and Lie group are provided. The upshot is that, instead
of introducing constant ghost mode in the local operator algebra, we impose the G invariant
by hand. Therefore, the perturbative operator algebra should be something that looks like
C[∂ c,∂ 2c, . . . ]G instead of C[c,∂ c, . . . ].

From a physical perspective, the first order derivative of the c ghost is cohomologous to
the gaugino in the physical SUSY theory before twisting [12]. In the computation of the su-
perconformal index in physics literature [16, 18], only gaugino and its derivatives contribute
to the index and it always involves an integration over the gauge G fugacities. This essentially
means that only G invariant polynomials without constant ghost mode c contribute to the bulk
algebra.

Accordingly, when G is a compact group, we write the perturbative local operator algebra
as

Obsper = C[J∞(dCrit(W ) // G)] . (3.4)

The symplectic quotient here is understood in a derived sense. The derived quotient by
J∞G = G[[z]] is divided into two parts using the decomposition G[[z]] = G⋉zG[[z]]. Taking
the derived quotient by zG[[z]] amounts to adding ghost valued in the Lie algebra and taking
quotient by G amounts to taking the G invariant by hand.

In this paper, all constructions are assumed to be “derived”. Mathematically, “derived”
means we keep track of all the homological information. Physically, this means that we keep
track of all the ghost, anti-field, etc. For the algebra of local operators, we consider the whole
complex of local operators of all ghost numbers. Typically, physicists only care about local
operators of zero ghost number, as operators of non-zero ghost number do not have direct
physically interpretation. However, in our setup, considering the whole complex is necessary
because the twisting procedure will mix the ghost numbers and the R charges. In other words,
physical fields in the original SUSY theory can become ghosts after the twist. As we will see
later, to reproduce the 3d N = 2 superconformal index from the twisted theory, we need to
take into account of the whole complex of local operators. This provide another evidence why
derived construction is necessary in our setup.

A full description of the local operators should also include monopole operators, which are
defined by specifying some singular behavior of fields around a point. A general strategy for
dealing with these operators is to use state-operator correspondence. For an n dimensional
TQFT, state-operator correspondence tells us that the space of local operators can be identified
with the Hilbert space of state Z(Sn−1) on the n − 1 sphere surrounding the point. More
generally, local operators of an n dimensional CFT are in one-to-one correspondence with
states in the radially quantized Hilbert space of the theory. This method is used in [13–15] to
construct monopole operators in “physical” 3d theories, and is also closely related to the BFN
construction of the Coulomb branch operators [41,42]. The theory we consider is holomorphic
topological. Therefore, instead of the sphere S2, it will be more convenient to consider the
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following punctured cylinder:

C× = Dε × [−ε,ε]\{(0,0)} . (3.5)

We take the limit ε → 0 in the end. Our goal is to construct the Hilbert space associated
with this punctured cylinder. The standard procedure for doing this consists of two steps, we
first construct the phase space on this cylinder as a symplectic manifold and then perform the
geometric quantization.

⇒× × =

B

First, we analyze the phase space EOM(C×) as the derived space of solutions to the equations
of motion on C×. It is important to note that this space describes maps that are independent
of t. Therefore, we can make the following simplification. We take two sets of solutions on Cε,
which are determined only by the data on Dε. Then we glue the two sets of solutions together
via an isomorphism over the punctured disk D×ε . We expect to have an equivalence between
the phase space on C× and the space constructed via the gluing procedure. Again, taking
ε→ 0 we replace disk by formal disk D. The above analysis suggests that the phase space can
be constructed formally as solutions on the “ravioli”, or “formal bubble” B= D

⊔

D× D defined
by gluing two formal disks through a punctured disk. A more detailed analysis of the phase
space is performed in the following sections.

3.1 Chiral multiplets

For theory with only chiral multiplets, we do not expect to have any non-perturbative local
operators. If we try to solve the equations of motion, any solution will be constant in t, and
there couldn’t exist non-perturbative objects that can localize in the t direction. In this case,
the smallest dimensional non-perturbative objects are line defects, instead of local operators.
Therefore, the perturbative description of the local operators should suffice, and we get from
3.4 functions on the infinite jet of the derived critical locus of W .

Obs= C[J∞dCrit(W )] . (3.6)

Although monopole operators are absent, the state-operator correspondence is still valid
to describe the local operators. This provides us with an alternative way to compute the space
of local operators, which should give us the same answer as the perturbative analysis. We will
do this in the following because this process exhibits us the simplest example of computation
on the formal bubble, which we will generalize later.

For chiral multiplets without superpotential, the phase space we need to consider is
Map(B∂̄ , T ∗[1]V ). The “derived” structure of this phase space is essential for our analysis.
For example, the ring of functions on B∂̄ can be modeled on the Čech cohomology, which
gives us the following complex

0→ C[[z]]⊕C[[z]]
d
→ C((z))→ 0 , (3.7)

where the differential d is given by d( f (z), g(z)) = f (z)−g(z) for ( f (z), g(z))∈C[[z]]⊕C[[z]].
Similarly, the phase space of the free chiral multiplet is modeled on the complex
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0→ (T ∗[1]V )[[z]]⊕2 d
→ (T ∗[1]V )((z))→ 0 . (3.8)

More precisely, we have direct sum of complexes 0 → (V (r)[[z]]dzr)⊕2 → V (r)((z))dzr → 0
and 0→ (V (r)∗[1][[z]]dz1−r)⊕2→ V (r)∗[1]((z))dz1−r → 0. Here we can absorb the factor dzr

into V and dz1−r into V ∗[1]. By this notation, V now has twisted spin grading and so does V ∗.
To correctly incorporate the spin grading of them, the shifted cotangent bundle T ∗[1]V need
to be corrected to T ∗[1](1)V , where by (1) we shift the twisted spin grading. To simplify the
notation we still denote it by T ∗[1]V . Remembering the shifting of spin grading is important
in the computation of the characters of the algebra.

The above complex has cohomology

P = T ∗[1]V [[z]]⊕ (T ∗[1]V ((z))/T ∗[1]V [[z]])[−1]

= V [[z]]⊕ V ∗[1][[z]]⊕ (V ∗[1][[z]])∗ ⊕ (V [[z]])∗ .
(3.9)

The symplectic form is given by the natural pairing between V [[z]] and (V [[z]])∗ and the
pairing between V ∗[1][[z]] and (V ∗[1][[z]])∗.

To perform geometric quantization, we need to choose a polarization. We can choose the
following Lagrangian fibration

π : P → T ∗[1]V ⊗ Ȟ0(B) = V [[z]]⊕ V ∗[1][[z]] . (3.10)

With this choice of polarization, we consider functions on P that are constant along the fiber
of π, which is equivalent to functions on (T ∗[1]V )[[z]] = J∞T ∗[1]V .

We could, of course, choose other polarizations. For example, we could take the polariza-
tion to be the Lagrangian fibration over

Map(B∂̄ , V ) = V [[z]]⊗ (V ∗[1][[z]])∗ . (3.11)

This looks like the polarization much often used in other related setups. However, global func-
tions on (V ∗[1][[z]])∗ = V ((z))/V [[z]][−1] are not well defined. Note that we can identify
(V ∗[1][[z]])∗ with V [z−1]z−1[−1] via the residue pairing. If we naively take functions on
V [z−1]z−1[−1] we meet the problem of operators of arbitrary negative spin. This is because
we assigned z with spin −1, so that linear dual of z−n has spin −n. Instead, “distributions”
on V ⊗ Ȟ1(B) (or global sections of the dualizing sheaf) are well defined. Note that distri-
butions behave like “dual” of functions. So they also have the correct spins. Therefore, in
this polarization, we need to define the Hilbert space to be functions on V ⊗ Ȟ0(B) tensoring
with “distributions” on V ⊗ Ȟ1(B). A similar phenomenon appears in [12] in studying the
boundary chiral algebra, where Dolbeault homology instead of cohomology is used to con-
struct boundary operators, and in [42] where equivariant Borel-Moore homology is used to
define Coulomb branch operators. In any case, the space of local operators we get should be
the only reasonable answer by appropriate construction, which is the space of functions on
J∞T ∗[1]V :

Obs= C[J∞T ∗[1]V ] . (3.12)

To turn on a superpotential, we simply replace T ∗[1]V by dCrit(W ) in the above analysis. This
gives us Obs= C[J∞dCrit(W )], which is the same as the perturbative analysis.

It is useful to write down an explicit expression for the local operators. Here we take the
usual physical notation. We denote ∂ nφi the n-th z derivatives of the bottom component of
the field Φi at z = 0, and ∂ nψi the n-th z derivatives of the bottom component of the field Ψi
at z = 0. They serve as the coordinates on the infinite jet of V and V ∗[1] respectively. Then
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the space of local operators can be written as C[{∂ nφi ,∂
nψi}n≥0,i]. The superpotential W

gives us a non-zero differential

Q∂ nψ= ∂ n
�

δW (φ)
δφ

�

. (3.13)

This expression will be useful later when we compare the Ext computation with the direct bulk
computation.

3.2 Theories with gauge fields

In this section, we take vector multiplets into consideration. The existence of monopole oper-
ators makes these theories much more complicated than theories with only chiral multiplets.
We will not attempt to give a systematic study of vector multiplets. Instead, we focus on theo-
ries with only abelian gauge group. Their moduli spaces of equations of motion have simpler
structure, which allows us to avoid many technical details but is still able to give us some
nontrivial results.

3.2.1 Perturbative algebra

Let’s first consider pure gauge theories. According to our previous discussion 3, perturbative
local operators consist of G invariant functions of fields b(z), c(z) with constant ghost modes
removed. This is exactly the cochain complex of relative Lie algebra cohomology. We can also
obtain this result through our “definition” 3.4. By taking V = 0, we have

Obsper = C[J∞(g∗/G)] = C[g∗[[z]]/G[[z]]] . (3.14)

As we have explained, we take zG[[z]] invariant by introducing ghost valued in the Lie algebra
of zG[[z]], and the G invariant is taken by hand. Then we get relative Lie algebra cohomology

Obsper = C •(g[[z]],g, Sym(g∗[[z]])∗) . (3.15)

When g is semisimple, we can identify g∗ with g by the Cartan-Killing form. Then the local
operator algebra can be equivalently written as

Obsper = C •(g[[z,ϵ]],g) , (3.16)

where ϵ is an odd parameter satisfying ϵ2 = 0. This relative Lie algebra cohomology is com-
puted in [43]. Here we follow the notation of [44]. Denote Cg∗ := g∗/G = Spec(C[g∗]G).
We choose generators Pi , i = 1, . . . l of C[g∗]G of degree di + 1. Then C[Cg∗] = C[P1, . . . , Pl].
Define the local Hitchin space as

Cg∗,K = Γ (D, K ×C× Cg∗) , (3.17)

where K is the canonical line bundle on the disk. We can identify the ring of functions C[Cg∗,K]
on the local Hitchin space as the polynomial algebra C[{Pi,n}i=1,...,l;n≥0]. It was proved in [43]
that, there is an isomorphism of graded algebras

H •(g[[z,ϵ]],g) = Ω•(Cg∗,K) . (3.18)

The ghost number zero part H0(g[[z,ϵ]],g) = O(Cg∗,K) of this algebra has been extensively
studied in the context of vertex algebra, Hitchin system and geometric Langlands. We define
the center z(ĝ) = Endĝκc

Vκc
of the vacuum Verma module Vκc

at the critical level. z(ĝ) has a

13

https://scipost.org
https://scipost.org/SciPostPhys.14.6.153


SciPost Phys. 14, 153 (2023)

filtration induced from the filtration of Vκc
. Then we have an isomorphism of the associated

graded
gr z(ĝ)∼=O(Cg∗,K) . (3.19)

Moreover, there is an isomorphism of filtered algebras [45,46]

z(ĝ)∼=O(OpLg(D)) , (3.20)

where OpLg(D) is the space of Lg-opers on D. The center z(ĝ) can be further identified with
the classical W algebra W∞(Lg) [45]. The appearance of the Langlands dual Lie algebra Lg

here is very interesting. The proof of 3.20 in [45, 46] and the appearance of the Langlands
dual Lie algebra is essentially a consequence of T-duality in 2d. We hope that there could also
be an S-duality argument for it.

The algebras O(Cg∗,K) and z(ĝ) also play important roles in the Hitchin integrable system
and its quantization. There is a classical Hitchin homomorphism [28,29]

hcl : O(Cg∗,K)→ Γ
�

BunG , p∗OT ∗BunG

�

, (3.21)

and its quantization [29]
h : z(ĝ)→ Γ
�

BunG ,D′T ∗BunG

�

. (3.22)

This provides an instance of the connection between the twisted 3d N = 2 theory and the
integrable system that we outlined in the introduction 1.2.

When there is a bare Chern-Simons term, we turn on a differential ϵ∂z on g[[z,ϵ]] and
make it into a dg Lie algebra. We have a quasi-isomorphism

g[[z,ϵ]]deformed := (g[[z,ϵ]],ϵ∂z)→ g . (3.23)

This map induces a quasi-isomorphism on Lie algebra cochain

C •(g,g)→ C • (g[[z,ϵ]]deformed,g) . (3.24)

Therefore the perturbative algebra for vector multiplet with a Chern-Simons term becomes
trivial in cohomology. We can also see this by noting that, turning on the Chern-Simons term
simply turn on the De Rham differential on Ω•(Cg∗,K) [44].

In the presence of chiral multiplets, perturbative operator algebra is given by 3.4. However,
we don’t have too much knowledge about its cohomology at the moment.

3.2.2 Non-perturbative algebra

Now we turn to discuss the full non-perturbative algebra. In this paper, we only consider
the special case of U(1) gauge theory since the structure of the phase space is more accessi-
ble. The complexified gauge group is G = C×, and the phase space for pure gauge theory is
Map(B∂̄ , T ∗[1]BG). Geometrically, the space Map(B∂̄ , T ∗[1]BG) describes a C× bundle on B∂̄
together with a coadjoint valued section. The space of holomorphic C× bundles on B as a set
is given by Z. For each integer m, we get a C× bundle Pm by defining its transition function
on the overlap D× to be zm. Therefore our phase space has a decomposition:

EOM(B) =
∏

m∈Z
EOMm(B) . (3.25)

Each component EOMn(B) describes the space of coadjoint valued sections of Pm module gauge
transformation. It contains rich structures as a “derived space”. It has a tangent space (com-
plex) RΓ (B, Pm ×C× (gl∗1 ⊕ gl1[1])). Computation of its cohomology is similar to the chiral
multiplet case, and we find

gl∗1[[z]]⊕ gl1[1][[z]]⊕ (gl
∗
1((z))/gl

∗
1[[z]])[−1]⊕ (gl1((z))/gl1[[z]]) . (3.26)
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We used the fact that the C× action on gl1 is trivial. The symplectic structure is given by the
natural pairing between gl∗1[[z]] and (gl1((z))/gl1[[z]]), and the pairing between gl1[1][[z]]
and (gl∗1((z))/gl

∗
1[[z]])[−1].

Next, we construct the polarization. To avoid the subtle construction of half homology
and half cohomology as in the discussion in Section 3.1, we don’t use the Lagrangian fibration
T ∗Map(B∂̄ , BG) → Map(B∂̄ , BG). Instead, we take polarized sections to be constant along
(gl∗1((z))/gl

∗
1[[z]])[−1]⊕ (gl1((z))/gl1[[z]]) directions as in Section 3.1. Using this polariza-

tion, we find the Hilbert space to be the space of functions on
∏

m∈Z
J∞gl∗1/J∞C

× , (3.27)

where, as before, the quotient is understood in the derived sense. It is easy to see that for
m= 0 we reproduce the perturbative algebra.

For theories with chiral multiplet, the analysis is similar. To simplify the notation we con-
sider the case when the superpotential is zero. The phase space, as before, has Z disconnected
components labeled byC× bundle Pm. For each component labeled by Pm, the tangent complex
is given by

RΓ (B, Pm ×C× (T ∗[1]V ⊕ gl∗1 ⊕ gl1[1]) . (3.28)

As an illustration, we first compute RΓ (B, Pm ×C× V ). The C× action on V is no longer trivial.
We decompose V into weight space V = ⊕w∈ZVw. Then RΓ (B, Pm ×C× V ) decomposes into

⊕wRΓ (B, Pm ×C× Vw) . (3.29)

Each summand is computed by the following Čech complex

0→ Vw[[z]]⊕ Vw[[z]]
dw−→ Vw((z))→ 0 , (3.30)

where the differential d is given by dw( f (z), g(z)) = f (z) − zwm g(z) for any
( f (z), g(z)) ∈ Vw[[z]]⊕ Vw[[z]]. We find that

H •(B, Pn ×C× Vw) =

¨

Vw[[z]]zwm ⊕ (Vw((z))/Vw[[z]])[−1] , wm≥ 0 ,

Vw[[z]]⊕ (Vw((z))/Vw[[z]]zwm)[−1] , wm< 0 .
(3.31)

Similarly,

H •(B, Pm ×C× V ∗w[1]) =

¨

V ∗w[[z]][1]⊕ (V
∗
w((z))/V

∗
w[[z]]z

−wm) , wm≥ 0 ,

V ∗w[[z]][1]z
−wm ⊕ (V ∗w((z))/V

∗
w[[z]]) , wm< 0 .

(3.32)

The symplectic pairing is given by the pairing between H0(B, Pm×C× Vw) and H0(B, Pm×C× V ∗w[1])
and the pairing between H1(B, Pm×C× Vw) and H−1(B, Pm×C× V ∗w[1]). Our previous experience
suggests that we should choose the polarization to be the Lagrangian fibration over

Γ (B, Pm ×C× T ∗[1]Vw) =

¨

Vw[[z]]zwm ⊕ V ∗w[[z]][1] , wm≥ 0 ,

Vw[[z]]⊕ V ∗w[[z]]z
−wm[1] , wm< 0 .

(3.33)

Summing over weight, and combining with the gauge fields, we find that the local operator
algebra is given by functions on the space

∏

m∈Z
Γ (B, Pm ×C× T ∗[1]V ⊕ gl∗1)/J∞C

× . (3.34)
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This construction easily generalizes to the case of an arbitrary abelian gauge theory. For
example, when the gauge group is G = U(1)r , and we have chiral multiplet in a representation
V of G, then local operators can be constructed from the following space

∏

m∈Zr

Γ (B, Pm ×C× T ∗[1]V ⊕ (gl∗1)
r)/(J∞C×)r . (3.35)

For non abelian gauge group, we expect that, for pure gauge theory, the bulk algebra can
be given by derived J∞G invariants of the WZW vacuum module WZWk[g]. However, it is
not clear what the full algebra will look like for the most general cases.

3.3 Superconformal index and operator counting

An important tool in studying physical 3d N = 2 theories is the superconformal index. It
computes the following partition function for a theory defined on S2 × S1 [17,47]

I(ta; x) = Tr

�

(−1)F e−β(E−R− j3)x E+ j3
∏

a

t Fa
a

�

. (3.36)

Here E is the energy, R is the R-charge, j3 is the third component of the angular momentum,
and Fa ’s run over the global flavor symmetry. Standard physical arguments tell us that only
states with E = R+ j3 contribute to the index. Therefore we can simplify the index as

I(ta; x) = Tr

�

(−1)F q
R
2+ j3
∏

a

t Fa
a

�

, (3.37)

where q = x2. This index is usually computed by localization technique [16,18].
In this paper, we study the holomorphic twisted version of physical 3d N = 2 theories.

For any such theory we consider its local operator algebra Obs. This algebra comes equipped
with twisted spin grading J , fermionic grading F , and other gradings Fa associated with some
global symmetry. Then we can define the character

χ(Obs) = TrObs

�

(−1)F qJ
∏

a

t Fa
a

�

. (3.38)

The twisting procedure identifies the twisted spin with J = R
2 + j3 and keeps other flavor

symmetry unchanged. It turns out that this character defined for the holomorphic twisted
theory coincides with the superconformal index of the physical theory. On the one hand, this
provides us with an alternative method to compute the superconformal index by counting
local operators. On the other hand, we can think of the space of local operators as providing
a “categorification” of the index.

For example, for a free chiral multiplet, the space of local operators is C[{∂ nφ,∂ nψ}n≥0].
This theory has a flavor symmetry that rotates the fields φ andψ. Suppose the spin and flavor
charge of the fields are given as follows

φ ψ

T 1 -1
J 0 1

Then the operator ∂ nφ contributes qn x to the index and ∂ nψ contributes qn+1 x−1 to the index.
We can easily write down the index of a free chiral

χ(Obssingle chiral) =
(qx−1, q)∞
(x , q)∞

, (3.39)

where we used the q-Pochhammer symbols

(x; q)∞ =
∏

n≥0

(1− qn x) . (3.40)
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3.3.1 Chern-Simons line bundle twist

In this section, we consider theory with a Chern-Simons term. In the presence of a Chern-
Simons term, the Hilbert space is no longer the space functions on the polarized phase space,
but the space of sections of a line bundle L⊗k, with k being the Chern-Simons coefficient. L is
also called the determinant line bundle. Details of the construction of this line bundle for an
arbitrary gauge group are given in [48, 49]. Here, we present its construction for the abelian
group C×.

A G bundle on the formal bubble B can be defined by a transition function on D module
gauge transformations on the two copies of D. Therefore we can regard Map(B, BG) as a
double quotient

G[[z]]\G((z))/G[[z]] = G[[z]]\GrG . (3.41)

The affine Grassmannian GrG describes G bundles on the disk D trivialized on the punctured
disk D×.

Let R = Cfund be the fundamental representation of G = C×. For a point in Map(B, BG)
represented by a P ∈ GrC× , we get an associated bundle RP on D. For P equivalent to the Pm
that we introduced in 3.2.2, we can describe the space of sections of RP as

R[[z]]zm , for m ∈ Z . (3.42)

We define a map F : Γ (D, RP)→ R[[z]] by the following composition of maps

Γ (D, RP) ,→ Γ (D×, RP) = R((z))→ R[[z]] . (3.43)

Then we define the fiber of the Chern-Simons line bundle at P to be the following

LP = det(ker F)⊗ det(cokerF)−1 . (3.44)

We are interested in the character of this space under the action of gauge group C× and spin
rotation C×q . Suppose P = Pm and m < 0. We have Γ (D, RP) = R[[z]]z−m. The map F is
injective and has cokernel

cokerF =
⊕

0≤i≤−m

Rz i . (3.45)

We can compute the character

χ(cokerF) =
m−1
∏

i=0

χ(det Rz i) =
−m−1
∏

i=0

sq−i = smq−
(m+1)m

2 . (3.46)

For m≥ 0, the map F : R[[z]]z−m→ R[[z]] is surjective and has kernel

ker F =
⊕

−m≤i≤−1

Rz i . (3.47)

It has character

χ(ker F) =
−m
∏

i=−1

sq−i = s−mq
(m+1)m

2 . (3.48)

We find that the character of LP is

s−mq
(m+1)m

2 for m ∈ Z . (3.49)
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3.3.2 Berezinian and Half-form twist

The final step in geometric quantization is the so called half-form correction. Here we briefly
explain the idea of it. Suppose that in the quantization problem, the polarization is given by
a Lagrangian fibration over X . If we consider the space of polarized sections as the Hilbert
space H of quantum states, we meet the problem of defining the inner product on H. The
inner product should be defined via integration, but the integration of polarized sections over
the whole phase space diverges, and there is no natural choice of a measure on X . So we are
unable to define an inner product on the space of polarized sections. To remedy this situation,
we consider the following half-form bundle

(detΩ1X )
1
2 . (3.50)

Suppose X has dimension n. Then detΩ1X has the familiar form ∧nΩ1X = ΩnX as top degree
differential form. We tensor the quantum line bundle with the half-form bundle. Then two
sections can be paired and integrated over X . This gives us the notion of inner product on the
Hilbert space.

In our situation, we get a supermanifold X after polarization. Differential forms of top
degree no longer make sense on X , as the one forms in the Grassmannian odd directions are
Grassmannian even variables. The right definition of integration over a supermanifold X is
provided by the Berezinian integration, where the integration map is defined on the space of
Berezinian, which replaces the determinant of one form

∫

: BerΩ1X → C . (3.51)

We provide the definition and properties of the Berezinian in Appendix B.
The half-form bundle in our case becomes

�

BerΩ1X
�

1
2 . (3.52)

In the case of free chiral multiples, we get J∞T ∗[1]V after polarization. The above dis-
cussion suggests that we consider the following line bundle

Æ

BerΩ1(J∞T ∗[1]V ) =
Æ

Ber(T ∗[1]V [[z]])∗ ⊗OJ∞T ∗[1]V . (3.53)

The space (J∞T ∗[1]V )∗ is infinite dimensional and its Berezinian is not well defined. Its
character is not well defined as well. The power of gauge fugacity s diverges if we try to
compute the character. The superconformal index of a free chiral in physical computation also
coincides with 3.39 without any correction, which suggests that we should ignore the half
form correction in this case.

It becomes more interesting when the chiral multiplet is coupled with a U(1) vector mul-
tiplet. In this case, we have Γ (B, Pm ×C× T ∗[1]V ) as the base of fibration for the monopole
charge m sector. Although it is again an infinite dimensional space, we get a finite and well
defined object by dividing the infinite part we found before. Here, we consider the following
“regularized” half form correction

Lh(m) =
�

Ber Γ (B, Pm ×C× T ∗[1]Vw)∗

Ber(T ∗[1]V [[z]])∗

�

1
2

=
�

Ber Γ (B, Pm ×C× T ∗[1]Vw)
Ber(T ∗[1]V [[z]])

�− 1
2

. (3.54)

Using the properties of Berezinian that

Ber(V1 ⊕ V2) = Ber(V1)⊗ Ber(V2) , (3.55)
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we can rewrite 3.54 as the Berezinian of a finite dimensional space. We substitute 3.33 into
the expression and found that each weight space Vw contributes to the half form bundle by the
following

Lh,w(m) =

¨

(Ber(⊕wm−1
i=0 Vwz i))

1
2 , wm≥ 0 ,

(Ber(⊕−wm−1
i=0 V ∗w[1]z

i))
1
2 , wm< 0 .

(3.56)

We have
Lh(m) =
⊗

w
Lh,w(m) . (3.57)

For wm ≥ 0, the space Vwz i has degree 0, so the Berezinian becomes the usual determinant.
We can compute the character of the determinant by taking the product of the characters of a
basis of it. We have

χ(Ber(Vwz i)) = sw dim Vwq−i dim Vw , (3.58)

where s is the gaugeC× fugacity. For the character of the Berezinian of V ∗w[1]z
i , we consider the

C× ×C×q action on V ∗w[1]z
i which induces an action on the Berezinian. The action on V ∗w[1]z

i

is given by a diagonal matrix diag(s−wq−i−1, s−wq−i−1, . . . , s−wq−i−1) that sits completely in
degree 1. The Berezinian of this diagonal matrix is (s−wq−i−1)−dim Vw , we get

χ(Ber(V ∗w[1]z
i)) = (−1)dim Vwsw dim Vwq(i+1)dim Vw , (3.59)

where we also include a (−1) factor coming from the Z2 grading of the Berezinian B. We
temporarily ignore the issue of possibly other flavor symmetry acting on V . We find that for
wm≥ 0

χ(Lh,w(m)) =
wm−1
∏

i=0

χ(Ber(Vwz i)
1
2 )

=s
1
2 mw2 dim Vwq

−wm(wm−1)
4 dim Vw ,

(3.60)

and for wm< 0

χ(Lh,w(m)) =
−wm−1
∏

i=0

χ(Ber(V ∗w[1]z
i))

=(−1)mw dim Vws−
1
2 mw2 dim Vwq

wm(wm−1)
4 dim Vw .

(3.61)

We can get the character of the half form bundle by

χ(Lh(m)) =
∏

w

χ(Lh,w(m)) . (3.62)

In summary, for theory with Chern-SImons level k, the space of local operators can be iden-
tified with sections of the line bundle Lh ⊗L⊗k

CS . In fact, this line bundle contains information
about “one loop correction” in the original physical theory. For example, we can consider the
gauge C× character of this bundle restricted to the monopole charge m= ±1 sectors

χC×(Lh ⊗L⊗k
CS(±1)) = s∓k+

∑

w
1
2 w|w|dim Vw . (3.63)

This corresponds to the C× gauge charge of the two “bare” monopole operators, and physically
comes from the one loop effective Chern-Simons level. This is compatible with results in
physics literature [50]. Similarly, the quantum correction of the spin of the monopole operator
is also contained in this construction.
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Using the decomposition 3.33, we see that the local operator algebra can be decomposed
into different monopole sectors

Obs=
⊕

m∈Z
Obsm . (3.64)

Each sector Obsm consists of a family of dressed monopole operators computed by the co-
homology of some complex. The “dressing” is provided by some polynomial of the fields,
carrying a certain C× gauge charge that cancels the gauge charge of the line bundle 3.63 on
that monopole component. We will provide some explicit examples in the next section.

4 Examples

In this section, we apply the general discussion above to some specific examples. We explicitly
write down the chain complexes of the operator algebras. Unfortunately, we are unable to
compute the whole cohomologies of these complexes. We only compute the cohomologies
of operators of small spins as an illustration. On the other hand, the character can be easily
computed by counting operators directly from the cochain complex.

4.1 XYZ model

We first consider the XYZ model, which is one of the most important examples in this paper.
This theory has three chiral multiplets denoted (X,ΨX), (Y,ΨY), (Z,ΨZ), and is equipped with
a cubic superpotential

W = XYZ . (4.1)

Using the notation in Section 3.1, the operator algebra is generated by bosonic operators
∂ nX ,∂ nY,∂ nZ for n ≥ 0 and fermionic operators ∂ nψX ,∂ nψY ,∂ nψZ for n ≥ 0. We write
down the complex of local operator algebra

ObsX Y Z =
�

C[{∂ nX ,∂ nY,∂ nZ ,∂ nψX ,∂ nψY ,∂ nψZ}n≥0] ,Q
�

, (4.2)

with the differential Q given as follows1

Q∂ nψX =
∑

0≤l≤n

∂ n−l Y ∂ l Z ,

Q∂ nψY =
∑

0≤l≤n

∂ n−l Z∂ l X ,

Q∂ nψZ =
∑

0≤l≤n

∂ n−l X∂ l Y .

(4.3)

The XYZ model has two flavor symmetry, denoted A and T . The spin and flavor symmetry
charges of various fields are given as follows

X Y Z ψX ψY ψZ

A 2 −1 −1 −2 1 1
T 0 1 −1 0 −1 1
J 0 1

2
1
2 1 1

2
1
2

It’s very hard to compute the cohomology of the whole complex. However, the complex is
graded by spin J and flavor symmetry T and so does the cohomology. For each spin J and T
charge, the cohomology can be computed by hand. Here, we list part of the cohomology of
small spins.

1More precisely we have Q∂ nψX =
∑

0≤l≤n

�n
l

�

∂ n−l Y ∂ l Z . However we can always get rid of this coefficient by
a field redefinition ∂ nψX →

1
n!∂

nψX etc.
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J = 0 J = 1 J = 2 ...

T = 0 {X n}n≥0

{X n∂ X , X n(XψX
−YψY )}n≥0,
YψY − ZψZ

{X n∂ 2X , X n(∂ X )2,
X n∂ (XψX − YψY ),
X n(∂ XψX − Y ∂ψY + ∂ ZψZ)}n≥0,
∂ Y Z − Y ∂ Z , ∂ (YψY − ZψZ),
X∂ (YψY − ZψZ)

T = 2 Y 2 Y 2(ZψZ − YψY ), Y ∂ Y
...

J = 1
2 J = 3

2 J = 5
2 ...

T = 1 Y
∂ X Y , ∂ Y ,
Y (YψY − ZψZ)

(∂ X )2Y , ∂ 2X Y , Y ∂ (YψY − ZψZ),
Y ∂ (XψX − YψY ) , ∂ 2Y

T = −1 Z
∂ X Z , ∂ Z ,
Z(YψY − ZψZ)

(∂ X )2Z , ∂ 2X Z , Z∂ (YψY − ZψZ),
Z∂ (XψX − ZψZ) , ∂ 2Z

...

Although the whole cohomology is hard to compute, its ghost number zero part is easy to find.
It can be identified with functions on the infinite jet of the critical locus of W

C[{∂ nX ,∂ nY,∂ nZ}n≥0]/



{∂ n(X Y ),∂ n(Y Z),∂ n(ZX )}n≥0

�

. (4.4)

Similarly, for chiral multiplets with an arbitrary superpotential, the ghost number zero part of
the cohomology is

C[J∞Crit(W )] = C[{∂ nφi}n≥0,i]/


{∂ n
�

δW
δφi

�

}n≥0,i

·

. (4.5)

The character of the XYZ model can be computed as if there is no superpotential, and is
simply the product of the characters of the three chiral multiplets. We have

χ(ObsX Y Z) =
(a−2q, q)∞
(a2, q)∞

(ax−1q
1
2 , q)∞

(a−1 xq
1
2 , q)∞

(axq
1
2 , q)∞

(a−1 x−1q
1
2 , q)∞

. (4.6)

4.2 U(1) pure gauge theory

As our first example of gauge theory, we consider pure abelian G = C× vector multiplet without
matter. The perturbative algebra is very simple. We have

Obsper
U(1) = C
�

J∞gl1/J∞C×
�

. (4.7)

As the adjoint action of C× on gl1 is trivial, all operators are C× invariant. So the operator
algebra consists of the field b and all its derivatives and derivatives of the field c. Explicitly
this gives us

Obsper
U(1) = C
�

{∂ n+1c,∂ n b}n≥0

�

. (4.8)

Non perturbative algebra is analyzed in Section 3.2.2. The phase space has connected com-
ponents labeled by π1(C∗) = Z. For each connected component, we see from 3.33 that the
operator algebra is a copy of Obsper. Therefore we get

ObsU(1) =
⊕

m∈Z
C
�

{∂ n+1c,∂ n b}n≥0

�

= C
�

v, v−1, {∂ n+1c,∂ n b}n≥0

�

. (4.9)

We can also write it as ObsU(1) = C[J∞T ∗[1]C×], which is the same as the bulk algebra of a
free chiral valued in C×.

The character of this theory is trivial because ∂ n+1c and ∂ n b contribute −qn+1 and qn+1 to
the character respectively, and they cancel with each other.
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4.3 Nf = Ñf = 1 SQED

The N = 2 SQED has one G = C× vector multiplet (B,A) and two chiral multiplets (Φ+,Ψ+),
(Φ−,Ψ−)with gauge charge+1,−1, respectively. There is no superpotential and Chern Simons
term. The global symmetry group of SQED comprises a U(1)A axial symmetry, U(1)T topo-
logical symmetry, and the usual U(1)R symmetry. The charges of various fields under gauge
symmetry, flavor symmetries and spin are

φ+ φ− ψ+ ψ− c b
Gauge 1 −1 −1 1 0 0

A 1 1 −1 −1 0 0
T 0 0 0 0 0 0
J 0 0 1 1 0 0

It’s very easy to write down the local operator algebra in the perturbative sector. We have

Obsper
SQED =
�

C[{∂ n+1c,∂ n b,∂ nφ±,∂ nψ±}n≥0]
C× ,Q
�

, (4.10)

where the differential Q is given by

Q∂ n b =
∑

0≤l≤n

∂ lφ+∂
n−lψ+ − ∂ lφ−∂

n−lψ− ,

Q∂ nφ± = ±
∑

1≤l≤n

∂ l c∂ n−lφ± ,

Q∂ nψ± = ∓
∑

1≤l≤n

∂ l c∂ n−lψ± .

(4.11)

As before, we decompose the cohomology by spin charges and do the computation of
cohomology for small spins

J = 0 J = 1 J = 2 ...

T = 0 {(φ+φ−)n}n≥0

{(φ+φ−)n∂ (φ+φ−),
(φ+φ−)n(φ+ψ+
+φ−ψ−)}n≥0, ∂ c

{(φ+φ−)n∂ 2(φ+φ−),
(φ+φ−)n(∂ (φ+φ−))2,
(φ+φ−)n(∂ (φ+ψ+ + φ−ψ−)),
(φ+φ−)n(b∂ c + ∂ φ+ψ+−
φ−∂ψ−)}n≥0, ψ+ψ−, ∂ 2c,
φ+φ−∂

2c

As we have discussed in Section 3.2.2, for operators at a non zero monopole sector T = m,
we need to consider the following space

Γ
�

B, Pm ×C× (T ∗[1]V )
�

. (4.12)

Here V = C2 and can be decomposed intoC+⊕C− on which theC× weights are+1,−1 respec-
tively. Note that operators are functions on the space of fields. So operators from functions
on C+[[z]] have −1 gauge charge and operators from functions on C−[[z]] have +1 gauge
charge. The computation of 4.12 is already explained in 3.2.2 and we find that

Γ
�

B, Pm ×C× (T ∗[1]V )
�

=

¨

zmC[[z]]⊕C[[z]]⊕C[[z]][1]⊕ zmC[[z]][1] , m≥ 0 ,

C[[z]]⊕ z−mC[[z]]⊕ z−mC[[z]][1]⊕C[[z]][1] , m< 0 .
(4.13)
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In summary, the local operator algebra at monopole charge m sector is given by2

Obsm
SQED =

¨

(C[{∂ n+1c,∂ n b,∂ nφ+,∂ m+nφ−,∂ −m+nψ+,∂ nψ−}n≥0]C
×
,Q) , for m≥ 0 ,

(C[{∂ n+1c,∂ n b,∂ −m+nφ+,∂ nφ−,∂ nψ+,∂ −m+nψ−}n≥0]C×,Q) , for m< 0 .
(4.14)

The differential Q is obtained from the differential 4.11 by discarding all terms not in the
complex. The full local operator algebra is

ObsSQED =
⊕

m∈Z
Obsm

SQED . (4.15)

We give some examples of operators of non-zero monopole charges.

J = 1
2 J = 3

2 J = 5
2 ...

T = 1 v+
v+φ+∂ φ−, v+∂ c,
v+b

v+(φ+∂ φ−)2, v+∂ (φ+∂ φ−),
v+(φ+∂ψ+ − ∂ φ−ψ−), v+b2,
v+∂

2c

T = −1 v−
v−∂ φ+φ−, v−∂ c,
v−b

v−(∂ φ+φ−)2, v−∂ (∂ φ+φ−),
v−(∂ φ+ψ+ − φ−∂ψ−), v+b2,
v+∂

2c

To compute the character for each monopole sector, we need to take the half form correction
into account. The gauge and spin fugacities are already considered in 3.3.2, so we only need
to consider the flavor C×A fugacity here. When m≥ 0 we have

Lh(m) =
�

Ber(⊕m−1
i=0 C+z i)
�

1
2 ⊗
�

Ber(⊕m−1
i=0 C

∗
−[1]z

i)
�

1
2 . (4.16)

C+ has A charge −1 and C∗− has A charge +1. Combining with spin and gauge fugacity 3.3.2
gives us the character

χ(Lh(m)) = (−1)ma−
1
2 ms

1
2 mq

−m(m−1)
4 a−

1
2 ms−

1
2 mq

m(m+1)
4

= (−1)ma−mq
1
2 m .

(4.17)

For m< 0 we have

Lh(m) = (Ber(⊕−m−1
i=0 C−z i))

1
2 ⊗ (Ber(⊕−m−1

i=0 C
∗
+[1]z

i))
1
2 . (4.18)

C− has A charge −1 and C∗+ has A charge +1. The character is

χ(Lh(m)) = (−1)ma
1
2 ms−

1
2 mq

m(m−1)
4 a

1
2 ms

1
2 mq

−m(m+1)
4

= (−1)mamq−
1
2 m .

(4.19)

Together we have

χ(Lh(m)) = (−1)ma−|m|q
|m|
2 . (4.20)

We can now compute the full character of the algebra. Contributions from ∂ n+1c and ∂ n b
cancel. ∂ nφ+ contributes saqn, ∂ nφ− contributes s−1aqn, ∂ nψ+ contributes −s−1a−1qn+1 and
∂ nψ− contributes −sa−1qn+1. Therefore, for m≥ 0 we have

χ(Obsm
SQED) = (−1)ma−|m|q

|m|
2

∫

ds
2πis

(sa−1q; q)∞(s−1a−1q1+m; q)∞
(sa; q)∞(s−1aqm; q)∞

. (4.21)

2More precisely, the local operator algebra at monopole charge m sector should be written as
�

L(m)[{∂ n+1c, . . . }n≥0]
�C×

, where L(m)∼= C correspond to the line bundle of 3.3.1,3.3.2 and carry both C× gauge
charge and spin charge. We will keep using the notation 4.14 in this paper, but keep in mind the various quantum
number of L(m).
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Similarly for m< 0 we have

χ(Obsm
SQED) = (−1)ma−|m|q

|m|
2

∫

ds
2πis

(sa−1q1−m; q)∞(s−1a−1q; q)∞
(saq−m; q)∞(s−1a; q)∞

. (4.22)

We can simplify our expression by making a change of the integration variable s→ sq
m
2 . This

gives us

χ(Obsm
SQED) = (−1)ma−|m|q

|m|
2

∫

ds
2πis

(sa−1q1+ |m|2 ; q)∞(s−1a−1q1+ |m|2 ; q)∞

(saq
|m|
2 ; q)∞(s−1aq

|m|
2 ; q)∞

. (4.23)

The index of the full local operator algebra is the sum

χ(ObsSQED) =
∑

m∈Z
xmχ(Obsm

SQED) =
∑

m∈Z
xma−|m|q

|m|
2

∫

ds
2πis

(s±a−1q1+ |m|2 ; q)∞

(s±aq
|m|
2 ; q)∞

. (4.24)

Here x is the fugacity of topological symmetry and we absorbed the phase factor (−1)m into xm.

4.4 U(1)− 1
2
+ a chiral

In this section, we consider a G = C× vector multiplet (A,B) at Chern Simons level −1
2 coupled

to a chiral multiplet (Φ,Ξ) of charge 1 under the gauge group.
For the operator algebra at the monopole zero sector, we get the dg algebra

�

C[{∂ nϕ,∂ nξ,∂ n b,∂ n+1c}n≥0]
C× ,Q
�

, (4.25)

with differential Q given by

Q∂ nϕ =
∑

1≤l≤n

∂ mc∂ n−lϕ ,

Q∂ nξ= −
∑

1≤l≤n

∂ l c∂ n−l ,

Q∂ n b =
∑

0≤l≤n

∂ lϕ∂ n−lξ .

(4.26)

We list the cohomology for small spins

J = 1 J = 2 J = 3 ...

T = 0 ∂ c ∂ 2c, ξ∂ ϕ + b∂ c
∂ 3c, ∂ c∂ 2c, bξ∂ ϕ + 1

2 b2∂ c,
ξ∂ 2ϕ−ϕ∂ 2ξ+2b∂ 2c+∂ c∂ b

For monopole charge m > 0, the operator algebras can be computed by the following com-
plexes

Obsm = (C[{∂ nϕ,∂ m+nξ,∂ n b,∂ n+1c}n≥0]
C× ,Q) , for m> 0 .

The differential is the truncation of 4.26. As before, we give some examples of operators here

J = 0 J = 1 J = 2 ...
T = 1 v+ v+∂ c, v+b v+b∂ c, v+b2, v+∂

2c
T = 2 v2

+ v2
+∂ c, v2

+b v2
+b∂ c, v2

+b2, v2
+∂

2c, v2
+∂ b
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According to 3.3.1 3.3.2, the half form correction and the Chern-Simons term contribute a
factor

s−
1
2 mq

m(m+1)
4

�

s−mq
(m+1)m

2

�− 1
2
= 1 . (4.27)

Then we have the character

χ(Obsm) =

∫

ds
2πis

(z−1q; q)∞
(sqm; q)∞

, m≥ 0 . (4.28)

By making change of the integration variable, s→ sq
m
2 , we get

χ(Obsm) =

∫

ds
2πis

(s−1q1+m
2 ; q)∞

(sq
m
2 ; q)∞

, m≥ 0 . (4.29)

For the monopole charge m sector with m < 0, the half form and line bundle twist con-
tribute a factor

(−1)ms
1
2 mq

−m(m+1)
4

�

s−mq−
(m+1)m

2

�− 1
2
= (−s)mq

−m(m+1)
2 . (4.30)

After the change of variable s → sq
m
2 as we have done before, we find that the character for

m< 0 is given by

χ(Obsm) =

∫

ds
2πis

(−s)mq
−m
2
(s−1q1−m

2 ; q)∞
(sq−

m
2 ; q)∞

, m< 0 . (4.31)

We can summarize the expression for m≥ 0 and m< 0 into one expression

χ(Obs) =
∑

m∈Z
xm

∫

ds
2πis

(−q
1
2 )−

1
2 (m−|m|)s

1
2 (m−|m|)

(s−1q1+ |m|2 ; q)∞

(sq
|m|
2 ; q)∞

. (4.32)

It is interesting to note that the character here contains a relative phase factor (−1)−
1
2 (m−|m|)

that only contributes when m< 0. This phase factor cannot be derived from the usual localiza-
tion computation of the index. However, it is predicted in [19] to incorporate various mirror
dualities for the index. In our setup, this phase factor naturally comes from the fermionic
grading of the Berezinian.

A closely related theory is the so called U(1) 1
2
+ chiral theory, where we have a G = C×

vector multiplet at Chern Simons level 1
2 coupled to a chiral multiplet of charge 1 under the

gauge group. This theory, together with the U(1)− 1
2
+ chiral theory and the free chiral theory,

consist of the simplest example of 3d N = 2 mirror “triality” [23].

free chiral↔ U(1) 1
2
+ chiral ↔ U(1)− 1

2
+ chiral . (4.33)

4.5 Bulk algebras and dualities

In this section, we consider local operator algebras of different theories related by infrared
dualities. It was argued in [12] that the Q cohomology of bulk local operator algebra is constant
along the RG flow. Therefore for two IR dual theories T ,T ′ (two theories that flow to the same
IR, also known as mirror dual theories [51, 52]), the corresponding local operator algebras
ObsT , ObsT ′ should have the same Q cohomology.

H •(ObsT ,QT )≈ H •(ObsT ′ ,QT ′) . (4.34)

The mirror map always mixes the monopole operators and perturbative operators on the two
sides. We should be able to observe this in cohomology. An even stronger statement is that
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the two complexes (ObsT ,QT ), (ObsT ′ ,QT ′) are quasi-isomorphic. If true, this will provide
us with a very strong and non-trivial test of 3d mirror symmetry. Although we are unable to
verify this statement at the moment, we provide some evidence by comparing the cohomology
of operators of small spins for mirror dual theories.

We have computed some operators for the U(1)− 1
2
+ chiral theory. From what we have

found in Section 4.4, we can observe an exact match of cohomologies of local operators for
the two theories. Some examples are listed below

T = 0 J = 1 J = 2 J = 3 ...
free chiral φψ ∂ (φψ) φ∂ψ− ∂ φψ ∂ 2(φψ) φ2ψ∂ψ

...
U(1)− 1

2
+ chiral ∂ c ∂ 2c ξ∂ ϕ + b∂ c ∂ 3c ∂ c∂ 2c

T = 0 J = 3 ...
free chiral ∂ φ∂ψ ∂ 2φψ−φ∂ 2ψ

...
U(1)− 1

2
+ chiral bξ∂ ϕ + 1

2 b2∂ c ξ∂ 2ϕ −ϕ∂ 2ξ+ 2b∂ 2c + ∂ c∂ b

T = 1 J = 0 J = 1 J = 2 ...
free chiral φ φ2ψ ∂φ φ∂φψ ∂ 2φ φ∂ (φψ)

...
U(1)− 1

2
+ chiral v+ v+∂ c v+b v+b∂ c v+b2, v+∂

2c

The mirror duality indeed maps monopole operators on one side to perturbative operators
on the other side. The identification φ↔ v+ is compatible with the studies of the correspond-
ing physical theories [23].

Another classical example is given by the duality between SQED and XYZ model [52]. By
comparing the cohomology of local operators with different quantum numbers, we can find
an identification of operators under the duality. For the T charge 0 sector, we have

T = 0 J = 1 J = 2 ...
XYZ X n X n∂ X X n(XψX − YψY ) YψY − ZψZ ...

SQED (φ+φ−)n (φ+φ−)n∂ (φ+φ−) (φ+φ−)n(φ+ψ+ +φ−ψ−) ∂ c

T = 0
J = 3

XYZ SQED
A= −2 ∂ Y Z − Y ∂ Z ψ+ψ−
A= 0 ∂ (YψY − ZψZ) ∂ 2c
A= 2 X∂ (YψY − ZψZ) (φ+φ−)∂ 2c

A= 2n
X n∂ (XψX − YψY ) (φ+φ−)n∂ (φ+ψ+ −φ−ψ−)

X n(∂ XψX − Y ∂ψY + ∂ ZψZ) (φ+φ−)n(b∂ c + ∂ φ+ψ+ − ∂ φ−ψ−)
A= 2n+ 2 X n∂ 2X (φ+φ−)n∂ 2(φ+φ−)
A= 2n+ 4 X n(∂ X )2 (φ+φ−)n(∂ (φ+φ−))2

For the nonzero T charge sectors, we also find the following identifications

T = 1 J = 1
2 J = 3

2 J = 5
2 ...

XYZ Y ∂ Y ∂ X Y Y (YψY − ZψZ) ∂ 2Y (∂ X )2Y
...

SQED v+ v+b v+φ+∂ φ− v+∂ c v+b2 v+(φ+∂ φ−)2

T = 1 J = 5
2 ...

XYZ ∂ 2X Y Y ∂ (XψX − YψY ) Y ∂ (YψY − ZψZ) ...
SQED v+∂ (φ+∂ φ−) v+(φ+∂ψ+ − ∂ φ−ψ−) v+∂

2c
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With the above identification of operators for the two theories, we can study how the Poisson
bracket behaves under the mirror map. For example, in the XYZ model, we have the following
bracket

{X , Y ∂ Z − Z∂ Y }= 0 . (4.35)

The corresponding bracket in the SQED is

{φ+φ−,ψ+ψ−}= φ−ψ− −φ+ψ+ = −Qb . (4.36)

This observation suggests that we expect the Poisson bracket to be preserved under the iso-
morphism only at the level of cohomology. If we find a quasi-isomorphism between the two
complexes (ObsXYZ,Q) and (ObsSQED,Q), it will not preserve the Poisson bracket (or λ-bracket)
at the cochain level. This inconsistency can be resolved by realizing that the bulk algebra actu-
ally has a higher analog of chiral algebra structure at the chain level. We will discuss more of
this structure in Section 6.4. The upshot is that the quasi-isomorphism between the two com-
plexes should be accompanied by an infinite series of higher maps between them so that the
full algebraic structure of the bulk algebras is preserved. Finding all the “higher” morphisms
between the algebras will be interesting.

5 Review of boundary conditions and boundary algebras

Half-BPS boundary conditions of physical 3d N = 2 theory preserving 2d N = (0, 2) super-
symmetry [53–56] are automatically compatible with the holomorphic twist, therefore leading
to boundary conditions of twisted theory [12]. Here we briefly review some of the results.

There are four basic classes of boundary conditions for the vector and chiral multiplet.

• Dirichlet boundary condition for the chiral multiplet, abbreviated D, by imposing Φ= 0
on the boundary.

• Neumann boundary condition for the chiral multiplet, abbreviated N, by imposingΨ= 0
on the boundary.

• Dirichlet boundary condition for the vector multiplet, abbreviated D, by imposing A= 0
on the boundary.

• Neumann boundary condition for the vector multiplet, abbreviated N , by imposing
B= 0 on the boundary.

There could be more complicated boundary conditions, but in this paper, we only study com-
binations of the above four.

5.1 Boundary algebras for chiral multiplets

We consider n chiral multiplet with a superpotential W . Suppose the boundary condition is
chosen such that the first k chiral multiplets are given Neumann boundary condition, and the
last n− k chiral multiplets are given Dirichlet boundary condition. Namely, we set

Ψi = 0, i = 1, . . . , k , Φi = 0, i = k+ 1, . . . , n (5.1)

at the boundary.
By passing to cohomology, the boundary algebra is generated by bosonic operators

{φi(z), i = 1, . . . , k} and fermionic operatos {ψ j(z), j = k + 1 . . . , n}. There are two situa-
tions to be discussed depending on the superpotential. First, if the superpotential vanishes at
the boundary
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W |∂ = 0 , (5.2)

then the boundary chiral algebra is specified by OPE

ψ jψl =
}h
z
∂ j∂lW |∂ , (5.3)

and BRST differential
Qψ j = ∂ jW |∂ . (5.4)

Another possibility is that the superpotential does not vanish at the boundary. In this case,
this boundary condition is anomalous due to the superpotential. We can easily see this by
considering the classical master equation:

{SBV , SBV }= 2

�∫

〈Ψi , d̂Φi〉,
∫

W (Φ)

�

= 2

∫

d̂W (Φ) = −2

∫

Σ

W
�

Φ∂
�

. (5.5)

This term measures the failure of the classical master equation to hold in the presence of the
boundary, and we see that it is proportional to W |∂ . Here, we can add boundary fermion to
cancel this anomaly. We introduce 2d boundary fermion in the BV formalism, and we use
superfield notation compatible with the 3d theories. We have fields

Γα ∈ Ωkα,•(Σ), Γα ∈ Ω1−kα,•(Σ) . (5.6)

They are equipped with the following BV bracket

{Γα,Γβ}= δαβδ(x − y)dVol . (5.7)

The BV action functional is given by

S =
∑

α

∫

Σ

Γα ∧ ∂̄ Γα . (5.8)

This BV action gives ∂̄ as the BRST operator. Now suppose that we have polynomials
Eα(Φ∂ ), Jα(Φ∂ ), which are of charge kα, 1 − kα respectively under the U(1)R symmetry and
satisfy:

Eα(Φ
∂ )Jα(Φ∂ ) =W (Φ∂ ) . (5.9)

Note that we can always find such a factorization of superpotential by adding enough boundary
fermion. We can add the following boundary term to the Lagrangian:

S∂ =
∑

α

∫

Σ

Γα ∧ ∂̄ Γα + ΓαEα(Φ
∂ ) + ΓαJα(Φ∂ ) . (5.10)

This boundary term contains the BV action of the 2d fermion and the coupling terms on the
boundary. Then we can show that the combined system Sbulk+S∂ satisfies the classical master
equation.

For the boundary chiral algebra, we now have the new fields (Γα,Γα). Since the cohomol-
ogy of the complex (Ωk,•, ∂̄ ) consists of holomorphic k-forms, we only need to consider the
bottom component of the fields just like what we have done in the 3d case. Therefore the
boundary algebras have new operators generated by Γα(z), Γα(z). The original OPE 5.3 and
BRST differential 5.4 do not change, but we have the following new OPE

Γα(z)eΓ
α(0) =

δαβ

z
, (5.11)
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and new BRST differential

QΓα = Eα(Φi) ,

QΓα = Jα(Φi) .
(5.12)

We can flip the boundary condition of a bulk chiral from Neumann to Dirichlet by intro-
ducing a boundary fermi multiplet. We start with the boundary condition with the first m
chiral multiplets given Neumann boundary condition, and the last n − m chiral multiplets
given Dirichlet boundary condition. Suppose the superpotential vanishes at the boundary. We
couple this system with a boundary fermi multiplet (Γ(z),eΓ(z)) by a E term E = X and no
J term as in 5.10. The vertex algebra of the coupled system is argued [12] to be equivalent
to that of another boundary condition where the first m− 1 chiral multiplets are given Neu-
mann boundary condition, and the last n−m+1 chiral multiplets are given Dirichlet boundary
condition. This isomorphism is only expected to be true at the level of cohomology.

We need to mention that if we only care about the vertex algebra structure at the level of
cohomology, then the dg vertex algebra model proposed in this section is enough. However,
this model does not fully characterize the algebraic structure of boundary algebra with general
superpotential. This is related to the fact that the superpotential might have non zero higher
derivatives (of order 3 or higher). That information should be contained in the structure of
boundary algebra but is lost in our model. In this case, the boundary chiral algebra should
form an A∞ analog of chiral algebra, where we have higher operations coming from the higher
derivatives of the superpotential. It should produce the familiar A∞ algebra upon reduction
on a circle. These higher operations might sound unfamiliar but will be important for the
conjectural bulk-boundary relation to work as we will see later.

5.2 Boundary algebras for vector multiplets

First, we consider Neumann boundary condition for the gauge fields, which set B = 0 at the
boundary. The boundary algebra is generated by A ∈A• ⊗ g[1] and by passing to cohomology
the boundary algebra is generated by the ghost fields ca. The OPE structure is trivial but we
have a nontrivial BRST operator.

Qca = f a
bcc

bcc . (5.13)

As we have discussed in Section 3.2, When the gauge group is compact, we should only intro-
duce ghosts for non-constant gauge transformations and impose G invariance by hand by only
considering G invariant operators. In summary, the boundary algebra is:

C • (zg[z])G . (5.14)

Explicitly, The boundary algebra is generated by G invariant combinations of ∂zca,∂ 2
z ca, . . .

having trivial OPE and equipped with the BRST operator

Q∂ n
z ca =
∑

l+k=n
l,k>0

f a
bc∂

l
z cb∂ k

z cc . (5.15)

Now we consider Dirichlet boundary conditions for the gauge field. This sets A= 0 at the
boundary. Naively, the boundary algebra is generated by fields Ba, the bottom component of
B ∈A1,• ⊗ g∗. The BRST differential is trivial and the OPE is given by

Ba(z)Bb(0)∼
f c
ab

z
Bc +

k
z2
δab −

h∨

z2
δab , (5.16)

where h∨ is the dual coxter number. We denote this vertex algebra by Vk−h∨(g). This is exactly
the vertex algebra associated with the vacuum representation of level k − h∨ of the affine
Kac-Moody algebra bg.
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There are further non-perturbative corrections to the boundary algebra with Dirichlet
boundary conditions. To describe the correct space of local operators on the boundary, we
should again use the operator-state correspondence by constructing the Hilbert space associ-
ated with the hemi-sphere ending on the boundary. A systematic analysis is performed in [12],
which shows that the boundary algebra is computed as Dolbeault homology of affine Grass-
mannian

H•
�

GrG ,L⊗(h−k)
�

= H •
�

Gr,L⊗(k−h)
�∗

. (5.17)

This space is also known [57, 58] to be isomorphic to Lk−h, the integrable highest weight
representation of bgk−h. It has been proved in [59] that Lk,0 possesses the structure of a vertex
operator algebra. This is exactly the vertex operator algebra associated with WZW model.

5.3 Boundary algebra with vector and chiral multiplets

Now suppose we have both vector and chiral multiplets. The boundary condition could be any
combination of Neumann and Dirichlet conditions. In this paper, we will focus on the case
when the vector multiples take Neumann boundary conditions, which, as we have seen, has
a much simpler structure. The boundary conditions for the chiral multiplets can be arbitrary.
As in Section 5.1, we give Neumann boundary conditions to the first k chiral multiplets and
Dirichlet boundary conditions to the last n−k chiral multiplets. We also add boundary fermions
(Γα,eΓα) with Eα and Jα terms to cancel the boundary anomaly. Including the gauge fields, the
boundary algebra is generated by

φi(z) ,ψ j(z) , Γ
α(z) ,eΓα(z) , i = 1, . . . , k , j = k+ 1, . . . , n , (5.18)

and their z derivatives, as well as the z derivatives of ghost ca(z). The nontrivial OPE is the
same as before:

ψ jψl =
}h
z
∂ j∂lW |∂ , Γα(z)eΓ

α(0) =
δαβ

z
. (5.19)

The BRST transformation is more complicated. Schematically, they can be written as

Qφ = c ·φ , Qψ= dW |∂ + c ·ψ ,

QΓ = c · Γ + E , QeΓ = c ·eΓ + J .
(5.20)

Due to the non-trivial OPE, the algebra is no longer a polynomial algebra. Hence we need to
pay extra attention to the BRST operator in this case. When computing the normal ordered
product of operators, some unexpected terms may appear in the BRST transformation. We
will see this in one of our examples.

In the presence of gauge fields, we should also be careful about the boundary gauge anoma-
lies. For the boundary theory to be consistent at the quantum level, all gauge anomalies must
be canceled. Details of boundary anomalies and their cancellation are provided in [56].

6 Self-Ext and bulk local operator algebra

It is conjectured in [12] that, the algebra of bulk local operators can be computed by the self-
Ext of the vacuum module of the boundary VOA. We explain, following [12, 21], why this
might be true. First, by bringing a bulk local operator O ∈ Obs to the boundary, we get an
action of bulk operators Obs on boundary vertex algebra V∂ [B]. This can be encoded as a
homomorphism

Obs→ End (V∂ [B]) . (6.1)
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On the other hand, the algebra of boundary charges
∮

V∂ [B] acts on the space of local bound-
ary operators via boundary OPE, and gives us a homomorphism

∮

V∂ [B]→ End (V∂ [B]) . (6.2)

Since the actions of bulk operator and boundary charges on V∂ [B] are defined by operator
product in R and C direction respectively, they must commute with each other. Therefore the
image of Obs in End(V∂ [B]) lies in End∮ V∂ [B](V∂ [B]), and we get a “bulk boundary” map

β : Obs→ End∮ V∂ [B](V∂ [B]) . (6.3)

The algebra End∮ V∂ [B](V∂ [B]) is also known as the center Z(V∂ [B]) of the VOA V∂ [B], so we
also write β : Obs→ Z(V∂ [B]). It was argued in [12] that this center is neither injective nor
surjective in general. However, we would expect this “bulk boundary” map to contain more
information if we consider its derived generalization. So to say, we conjecture that there is an
isomorphism

βder : Obs→ Zder(V∂ [B]) , (6.4)

for boundary condition B that is large enough (namely, when B is a generator of the category
of boundary conditions). Here, the center is replaced by the derived center, and is computed
by Ext•∮

V∂ [B]
(V∂ [B],V∂ [B]).

To explain this conjecture, we recall the 2d TQFT version of this statement. For a 2d TQFT,
the boundary conditions form a category C (usually a dg category). For any boundary condi-
tions B, HomC(B,B) = EndC(B) has the structure of a (dg) algebra. We call that the boundary
condition B is large enough (or a generator of the category) if the category of boundary con-
ditions is equivalent to the category of (dg) module of EndC(B). On the one hand, in the
axiomatic approach of TQFT [20], we take it as a definition that the bulk operator algebra is
given by the derived center of the category C, which is computed by the Hochschild cohomol-
ogy of A∂ [B] = EndC(B) for large enough B. On the other hand, in the physical approach of
TQFT, the bulk operators can be identified as closed string states and can be computed directly.
The isomorphism between the bulk operator algebra and Hochschild cohomology of boundary
algebra A∂ [B] is considered in various cases [60–62].

The analogous statement should hold in 3d TQFT. For A and B twist of 3d N = 4 theory,
this was used in [21,22] to compute Higgs and Coulomb branches operators. In the following
sections, we perform the calculation for various 3d holomorphic twist theories. The expected
relation is verified for “Landau-Ginzburg” model with arbitrary superpotential. For theories
with vector multiplets, it is much harder to compute the Ext, due to the rather complicated
structure of the boundary chiral algebra. At the moment, we are only able to check some
examples with abelian gauge group and in Neumann boundary condition. Even for these
simple examples, it is fascinating to see that bulk monopole operators show up in the self-Ext
of boundary algebra that is purely perturbative.

6.1 Chiral multiplet

In this section, we illustrate the above ideas by looking at theories with only chiral multiplets.
Although much of the analysis can be done in an abstract way by properties of RHom, we
still perform the calculation in a very concrete manner by writing down explicitly the Koszul
resolution.

Imposing a boundary condition usually “freezes” half of the bulk degrees of freedom. It’s
very interesting to see how the “frozen” half of degrees of freedom naturally arises from the
Koszul resolution and eventually gives us the right bulk algebra. It’s also very interesting to see
how the various terms in the differential of bulk algebra are obtained from the Ext calculation.
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6.1.1 Single chiral multiplet with D b.c.

We start by considering the simplest example, a single chiral multiplet (Φ,Ψ) without any su-
perpotential. We consider Dirichlet boundary condition. According to our previous discussion,
the boundary algebra is generated by a field ψ(z). There is no BRST operator and non-trivial
OPE. The algebra of charges is generated by

ψn =

∮

zn−1ψ(z) , n ∈ Z . (6.5)

All these modes commute because there is no OPE. We have
∮

V∂ [D] = C[{ψn}n∈Z] . (6.6)

The vacuum module Mvac is generated by a vacuum vector |0〉 annihilated by charges ψn for
n≥ 0. Equivalently we can write

Mvac = C[{ψn}n<0] . (6.7)

This vacuum module has a free resolution by adjoining
∮

V∂ [D] infinite many bosonic variables
λn, n≥ 0, which is also known as the Koszul resolution [63]. We have

ÝMvac =

∮

V∂ [D]⊗C[{λn}n≥0] . (6.8)

The differential d sends λn → ψn, for n ≥ 0. The self-Ext is computed as maps of
∮

V∂ [D]
module from ÝMvac to Mvac . We have3

Hom∮ V∂ [D](
ÝMvac ,Mvac) = HomC

�

C[{λn}n≥0],Mvac

�

=Mvac[{λ∗n}n≥0] .
(6.9)

This complex has no differential, hence the cohomology is the complex itself. If we change
our notation

ψ−n−1→ ∂ nψ , λ∗n→ ∂
nφ , (6.10)

the self-Ext can be written as
C
�

{∂ nψ,∂ nφ}n≥0

�

. (6.11)

This is exactly the bulk algebra for a single free chiral.
We can consider a complex mass deformation of the single free chiral by adding a super-

potential:

W (Φ) =
1
2

MΦ2 . (6.12)

With this deformation, the boundary chiral algebra in D b.c. has the following OPE

ψ(z)ψ(0)∼
M
z

. (6.13)

The algebra of charges now has the following anti commutation4 relation

[ψn,ψm] = Mδn+m,−1 . (6.14)

3We use restricted dual throughout this section.
4In this paper we write both commuting and anti commuting brackets by [−,−]. With this notation, the bracket

is defined by [ f , g] = f g − (−1)| f ||g|g f , where |a| is the cohomological degree of a.
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Then the associated algebra of charges is no longer the polynomial algebra 6.6, but a Clifford
algebra generated by relations 6.14. However, we can still identify the vacuum module as 6.7
and the resolution 6.8 is still valid as a resolution of the vacuum module. But we need to be
careful about the differential here. The ψn in the differential dλn = ψn is now understood
as a multiplication by ψn. The self-Ext is computed by the complex 6.9, but now with a non
vanishing differential. Given a f ∈ HomC(C[{λn}n≥0],Mvac). By definition, its differential is
computed by

d f (λn1
. . .λnk

) =
∑

f (λn1
. . . dλn j

. . .λnk
)

=
∑

ψn j
f
�

λn1
. . . λ̂n j

. . .λnk

�

, for n j ≥ 0 .
(6.15)

ψn j
acts on Mvac via the relation 6.14. We found that it is identified with ∂ψ−1−n j

. We further

identify HomC(C[{λn}n≥0],Mvac) =Mvac[{λ∗n}n≥0]. Then the differential onMvac[{λ∗n}n≥0]
is given by

d = M
∑

n≥0

λ∗n∂ψ−1−n
. (6.16)

By the change of variable 6.10, the self-Ext is then computed by the complex
�

C
�

{∂ nψ,∂ nφ}n≥0

�

,Q
�

, (6.17)

with differential Q∂ nψ = M∂ nφ. This is exactly the cochain complex computing the bulk
algebra of a massive chiral. It has cohomology H •(C[{∂ nψ,∂ nφ}n≥0],Q) = C.

6.1.2 XYZ model with NDD b.c.

Let’s consider the XYZ model with NDD boundary condition. In this case, the boundary algebra
is generated by X (z),ψY (z),ψZ(z). According to our discussion in Section 5.1, this algebra
has no BRST differential, but has a nontrivial boundary OPE

ψY (z)ψZ(0)∼
1
z

X (0) . (6.18)

The algebra of charges is generated by

Xn =

∮

znX (z)dz , ψY,n =

∮

znψY (z)dz , ψZ ,n =

∮

znψZ(z)dz , (6.19)

with (anti)commutation relations inherited from the OPE

[ψY,n,ψZ ,m] = Xn+m . (6.20)

If we define a super Lie algebra gN DD = spanC{X ,ψY ,ψZ} with one bosonic basis X and
two fermionic basis ψY ,ψZ and only one nontrivial commutator [ψY ,ψZ] = X . Then we
observe that the algebra of boundary charges is nothing but the universal enveloping algebra

∮

V∂ = U (gN DD((z))) . (6.21)

The vacuum module Mvac is generated by a vacuum vector |0〉which is annihilated by charges
Xn,ψY,n,ψZ ,n for n≥ 0. In other words

Mvac = U(gN DD((z)))⊗U(gN DD[z]) C . (6.22)
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Here C is the trivial one dimensional representation on which U(gX Y Z[[z]]) acts by zero. We
recall the well known Chevalley-Eilenberg cochain complex that provides a resolution of C

U(gN DD[[z]])⊗
∧•

gN DD[[z]]→ C . (6.23)

By tensoring with Mvac we find a free resolution of Mvac as a U(gN DD((z))) module,

ÝMvac = U(gN DD((z)))⊗
∧•

gN DD[[z]] . (6.24)

Explicitly we adjoin to
∮

V∂ infinite many fermionic variables ηX ,n and bosonic variables yn, zn
for n≥ 0. The Chevalley-Eilenberg differential can be written as

d =
∑

n≥0

Xn∂ηX ,n
+ψY,n∂yn

+ψZ ,n∂zn
+
∑

n,m≥0

ηX ,n+m∂yn
∂zm

. (6.25)

Here by ψY,n, we mean a left multiplication by ψY,n, and similarly for Xn,ψZ ,n.
The RHom of Mvac to itself is then the complex of maps of

∮

V∂ -module from ÝMvac to
Mvac:

RHom∮ V∂ (Mvac ,Mvac) = Hom∮ V∂ (
ÝMvac ,Mvac)

= HomC(
∧∗

gN DD[[z]],Mvac) .
(6.26)

This complex is Mvac ⊗C[{η∗X ,n, y∗n, z∗n}n≥0], where the generators η∗X ,n, y∗n, z∗n are linear dual
of ηX ,n, yn, zn, respectively. The differential on this complex is inherited from the Chevalley-
Eilenberg differential 6.25. It is given by

d =
∑

n,m≥0

y∗nz∗m
∂

∂ η∗X ,n+m
+
∑

n≥0

y∗nψY,n + z∗nψZ ,n . (6.27)

Since all the negative modes in the boundary charges commute with each other, we can
write the vacuum module as a polynomial algebra

C[{Xn,ψY,n,ψZ ,n}n<0] .

Then left multiplication by ψY,n for n≥ 0 is identified with the operator
∑

−n<m<0 Xn+m∂ψZ ,m

and left multiplication by ψZ ,n for n ≥ 0 is identified with
∑

−n<m<0 Xn+m∂ψY,m
. Hence the

differential becomes

d =
∑

n,m≥0

y∗nz∗m∂ηX ,n+m
+
∑

n≥0,−n<m<0

Xn+m y∗n∂ψZ ,m
+ Xn+mz∗n∂ψY,m

. (6.28)

To make things clear we can change the notation ∂ nψX = η∗X ,n,∂ nY = y∗n,∂ nZ = z∗n and
∂ nX = X−n−1,∂ nψY =ψY,−n−1,∂ nψZ =ψZ ,−n−1 for n ≥ 0. After this change of notation, the
complex computing self-RHom is generated by ∂ nX ,∂ nY,∂ nZ , ∂ nψX ,∂ nψY ,∂ nψZ for n≥ 0.
One can easily check that the differential is the same as 4.3.

Q∂ nψX =
∑

0≤l≤n

∂ n−l Y ∂ l Z , Q∂ nψY =
∑

0≤l≤n

∂ n−l Z∂ l X , Q∂ nψZ =
∑

0≤l≤n

∂ n−l X∂ l Y . (6.29)

This is indeed the bulk algebra of XYZ model.
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6.1.3 XYZ model with NNN b.c.

If we choose Neumann boundary condition for all the bulk chiral multiplets, the superpo-
tential W = XYZ does not vanish at the boundary. As we discussed in Section 5.1, we
must add boundary fermions with appropriate E and J terms to factorize the superpoten-
tial. In our case, a convenient choice is by adding one boundary Fermi multiplet (Γ(z),eΓ(z))
and taking E = X, J = YZ. With this choice, the boundary chiral algebra is generated by
X (z), Y (z), Z(z), Γ (z),eΓ (z) with boundary SUSY/BRST differential

QΓ (z) = X (z) , QeΓ (z) = Y Z(z) , (6.30)

and a nontrivial OPE

Γ (z)eΓ (0)∼
1
z

. (6.31)

The algebra of charges is generated by {Xn, Yn, Zn, Γn,eΓn}n∈Z where

Xn =

∮

znX (z)dz , (6.32)

and similarly for Yn, Zn, Γn,eΓn. The OPE gives us the following anti-commutation relation on
the algebra of charges

[Γn,eΓm] = δn+m,−1 . (6.33)

The boundary SUSY/BRST differential becomes the following differential

dΓn = Xn , deΓn =
∑

m+l=n−1

YmZl . (6.34)

The (differential graded) vacuum module Mvac is generated by a vacuum vector |0〉 anni-
hilated by Xn, Yn, Zn, Γn,eΓn for n ≥ 0. A free resolution is obtained by adjoining to the algebra
∮

V∂ infinite many fermionic variables {ηX ,n,ηY,n,ηZ ,n}n≥0 and bosonic variables {σn, eσn}n≥0.
Based on our previous construction, a naive choice of Koszul differential is

dηX ,n = Xn , dηY,n = Yn , dηZ ,n = Zn , dσn = Γn , d eσn = eΓn , (6.35)

where, as before, Xn represents left multiplication by Xn and so on. However, this differential is
not compatible with the original differential 6.34 on

∮

V∂ . For example, d2σn = dΓn = Xn ̸= 0.
To remedy this problem we modify our differential on the variable {σn, eσn}n≥0 as follows

dσn = Γn −ηX ,n ,

d eσn = eΓn −
∑

0≤m<n

(Yn−1−mηZ ,m + Zn−1−mηY,m)

−
∑

m≥n

(Yn−1−mηZ ,m + Zn−1−mηY,m) .

(6.36)

One can easily check that this modified d satisfies d2 = 0 and is a valid differential. We denote
this complex by (ÝMvac , d). We can also prove that this complex is quasi-isomorphic to the
vacuum module. To show this we consider a double complex whose horizontal differential
dh is given by 6.36 only, and whose vertical differential is dv = d − dh. Consider the associ-
ated spectral sequence whose first page has differential dh. Then we note that the complex
(ÝMvac , dh) is actually the standard Koszul resolution with respect to a regular sequence. The
cohomology of the first page then sits completely in degree 0, and we have

H0(ÝMvac , dh)∼=Mvac . (6.37)

35

https://scipost.org
https://scipost.org/SciPostPhys.14.6.153


SciPost Phys. 14, 153 (2023)

The vertical differential on Mvac is exactly the boundary SUSY/BRST differential on the vac-
uum module. Therefore the total complex (ÝMvac , d) is the resolution of Mvac that we are
looking for.

After obtaining the right resolution, we can proceed to compute the self-RHom. The com-
plex is given by Mvac ⊗C[{η∗X ,n,η∗Y,n,η∗Z ,n,σ∗n, eσ∗n}n≥0] with differential

d =
∑

n<0

Xn∂Γn +
∑

n,m<0

YnZm∂eΓn+m+1

−
∑

n≥0

�

σ∗n∂η∗X ,n
+
∑

0≤m≤n

eσ∗mZm−n−1∂η∗Y,n
+ eσ∗mYm−n−1∂η∗Z ,n

−σ∗nΓn − eσ
∗
n
eΓn

�

.
(6.38)

As before, we can identify the vacuum module with the polynomial algebra

C
�

{Xn, Yn, Zn, Γn,eΓn}
�

n<0 . (6.39)

Hence left multiplication by Γn is identified with ∂
eΓ−n−1

for n ≥ 0 and left multiplication by eΓn
is identified with ∂Γ−n−1

for n≥ 0. After this identification, we can rewrite the differential as

d =
∑

n<0

eσ∗−n−1∂Γn +σ
∗
−n−1∂eΓn +
∑

n<0

Xn∂Γn +
∑

n,m<0

YnZm∂eΓn+m+1

−
∑

n≥0

�

σ∗n∂η∗X ,n
+
∑

0≤m≤n

eσ∗mZm−n−1∂η∗Y,n
+ eσ∗mYm−n−1∂η∗Z ,n

�

.
(6.40)

This is a very large complex, but we can use a spectral sequence to eliminate the variable
σn, eσn for n≥ 0 and Γn,eΓn for n< 0. We prove in Appendix C that this complex has the same
cohomology as a complex freely generated by {X−n−1, Y−n−1, Z−n−1,η∗X ,n,η∗Y,n,η∗Z ,n}n≥0 with
differential

d =
∑

n≥0

∑

0≤m≤n

Y−m−1Zm−n−1∂η∗X ,n
+ X−m−1Zm−n−1∂η∗Y,n

+ X−m−1Ym−n−1∂η∗Z ,n
. (6.41)

We can observe that, by a change of notation, this is indeed the complex computing bulk
algebra of the XYZ model.

6.1.4 XYZ model with DDD b.c.

In this section, we choose Dirichlet boundary conditions for all three chiral multiplets in
the XYZ model. If we naively work with the vertex algebra model, we are left with fields
ψX (z),ψY (z),ψZ(z) at the boundary. The boundary chiral algebra neglecting all higher op-
erations is trivial. There are no boundary differential and non trivial OPE. Thus the self-Ext
computation will give us the algebra of three free chiral multiplets, which is not correct. To
give the right bulk algebra we need to encode the superpotential ∂X∂Y ∂ZW = 1 into the struc-
ture of boundary algebra. To do this we use the flipping technique, which provides us a dg
vertex model for the yet known A∞ vertex algebra at the boundary.

We couple a boundary fermi multiplet (Γ (z),eΓ (z))with the NDD boundary condition bound-
ary algebra (X (z),ψY (z),ψZ(z)) with coupling E = X . This dg vertex algebra has a boundary
differential

QΓ (z) = X (z) , QeΓ (z) = 0 , (6.42)

and boundary OPE

ψY (z)ψZ(0)∼
1
z

X (0) ,

Γ (z)eΓ (0)∼
1
z

.
(6.43)
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This dg vertex algebra is expected to provide us with the right model of the “A∞” boundary
algebra with DDD b.c. The algebra of charges of this dg vertex algebra can be described as
follows. We define gN DDF := spanC{Γ ,eΓ , X ,ψY ,ψZ} and

ĝN DDF := gN DDF ((z))⊗CK . (6.44)

We have the Lie bracket
[ψY ⊗ zn,ψZ ⊗ zm] = X ⊗ zn+m ,

[Γ ⊗ zn, Γ ⊗ zm] = Kδn+m,−1 ,
(6.45)

and a differential
dΓ ⊗ zn = X ⊗ zn . (6.46)

Then the algebra of charges of the boundary algebra can be written as
∮

V∂ [DDD]∼=
∮

V∂ [N DD+ fermi] = U(ĝN DDF )/(K − 1) . (6.47)

To make the relation between ĝN DDF and the DDD boundary algebra more clear, we can com-
pute the cohomology of (ĝN DDF , d). It is easy to find that

H •(ĝN DDF , d) = ĝDDD := gDDD((z))⊗CK , (6.48)

where gDDD = spanC{Γ̃ ,ψY ,ψZ}. We can identify Γ̃ with ψX in the boundary algebra of DDD
boundary condition. The bracket 6.45 on ĝN DDF induced a trivial bracket on ĝDDD. This is
expected because the vertex algebra of DDD boundary condition has trivial OPE. However,
interesting information is encoded in the higher operations. Homotopy transfer theorem [64]
tells us that there is an L∞ structure on ĝDDD such that there is an L∞ quasi-isomorphism
between (ĝDDD, {lk}k≥3) and the dg Lie algebra (ĝN DDF , d, [−,−]). We can explicitly construct
the higher operations {lk}k≥3 through the trees of [65] or by using homological perturbation
theory [66]. Consider the following data of a homotopy retract

h (ĝN DDF , d)
p
⇄
i
(ĝDDD, d = 0) , (6.49)

where i and p are the natural inclusion and projection respectively, and h is a homotopy sat-
isfying

dh+ hd = 1− p ◦ i . (6.50)

Explicitly, h is given by h(X ⊗zn) = Γ ⊗zn and maps all other elements to zero. The operations
l3 of ĝDDD can be constructed via the following tree

l3
=
∑

perm p

i i

h
i

−
p

i

i i

h

.

We find the following l3 on ĝDDD

l3(ψY ⊗ zn,ψZ ⊗ zm,ψX ⊗ z l) =
�

h ([ψY ⊗ zn,ψY ⊗ zm]) , Γ̃ ⊗ z l
�

= Kδn+m+l,−1 .
(6.51)

Indeed, this looks like a “triple OPE” ψYψZψX ∼ ∂X∂Y ∂ZW that encodes the 3rd derivative of
W at the boundary.
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We can proceed to compute self-Ext in two ways. We can either work directly with
the L∞ algebra ĝDDD or we can work with the dg Lie algebra ĝN DDF . Calculation of
self-Ext using
∮

V∂ [N DD + fermi] is very similar to the calculation in the previous sec-
tions and we omit them. Here we briefly comment on how to perform the calculation us-
ing ĝDDD. Resolution of the vacuum module will be given by adjoining bosonic elements
{xn, yn, zn}n≥0 with a version of Chevalley-Eilenberg differential. Then the self-Ext can be
computed by a complex C[{x∗−n−1, y∗−n−1, z∗−n−1,ψX ,n,ψY,n,ψZ ,n}n<0]with a differential of the
form d =
∑

perm

∑

n,m y∗nz∗ml3(ψY,n,ψZ ,m,−), which can be identified with the bulk algebra of
XYZ model.

6.1.5 Chiral multiplets with arbitrary superpotential

In this section, we generalize the above calculation of the XYZ model to chiral multiplets with
an arbitrary superpotential. The choice of boundary conditions requires some explanation.
Although we can perform the self-Ext computation in any boundary condition, our description
of the boundary algebra in Section 5.1 is not enough for this purpose in general. “Higher
operations” in the chiral algebra related to higher order derivatives of W are omitted, but they
turn out to be crucial in the self-Ext computation as we can see in the last section.

There are two ways to overcome this problem. Just like for every L∞/A∞ algebra we can
find a quasi-isomorphic dg Lie/Associative algebra, for every A∞ analog of vertex algebra we
wish to find a quasi-isomorphic dg vertex algebra. For the boundary algebra studied in this
paper, their quasi-isomorphic dg vertex algebra model can be found through the procedure
of “filliping” boundary conditions. We can turn Dirichlet boundary conditions into Neumann
boundary conditions until the W |∂ is at most quadratic as we did in the last section. Alterna-
tively, we can directly work with a boundary condition that the dg vertex algebra model 5.1
suffice. In the following, we work with the second method.

If we give Neumann b.c. for all the chiral multiplets, no higher operations are present
in our description of the boundary algebra. We only need to pay attention to the boundary
anomaly introduced by the superpotential. Suppose the boundary anomaly can be canceled
by a collection of boundary fermions {Γα,eΓα} and appropriate E and J terms Eα(Φ|∂ ), Jα(Φ|∂ ).
Since we have chosen Neumann b.c. for all the chiral multiplets, Φ|∂ = Φ.

The boundary chiral algebra, including boundary fermions, consists of fields φ i(z), Γα(z),
eΓα(z). Boundary BRST differential is given by

QΓα(z) = Eα(φ)(z) , QeΓα(z) = Jα(φ)(z) . (6.52)

Nontrivial OPE’s are

Γα(z)eΓα(0) =
1
z

, for all α . (6.53)

The boundary algebra of charges is generated by {φi,n, Γαn ,eΓα,n}n∈Z. OPE’s give us the
(anti)commutation relations

[Γαn ,eΓα,m] = δn+m,−1 . (6.54)

The BRST transformations give us the differential

dΓαn = Eαn , deΓα,n = Jα,n . (6.55)

Here the symbols Eαn , Jα,n need some explanations. Suppose the E terms polynomials are given
by

Eα(φ) =
∑

{ik}

a{ik}φi1φi2 · · ·φil , (6.56)
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for some constant a{ik} coefficients. Then we define

Eαn :=
∑

{ik}

a{ik}
∑

ni∈Z
n1+n2+···+nl=n+1−l

φi1,n1
φi2,n2

· · ·φil ,nl
. (6.57)

We define Jα,n in a similar way.
The vacuum module is generated by a vacuum vector |0〉 annihilated by φi,n, Γαn ,eΓα,n for

n ≥ 0. Motivated by our previous example, we obtain a Koszul type resolution of the vac-
uum module by adjoining to the algebra

∮

V∂ infinite many fermionic variables {ηi,n}n≥0 and
bosonic variables {σαn , eσα,n}n≥0. The nontrivial part is to construct an appropriate differen-
tial making the complex quasi-isomorphic to the vacuum module. We first define an operator
h : C[{φi,n}n∈Z]→⊕ j,m≥0C[{φi,n}n∈Z]η j,m as follows

h
�

φi1,n1
· · ·φil ,nl

�

=
1
∑

j=1,...,l
with n j≥0

1

∑

j=1,...,l
with n j≥0

φi1,n1
· · · φ̂i j ,n j

· · ·φil ,nl
ηi j ,n j

, (6.58)

if at least one n j ≥ 0, and h
�

φi1,n1
· · ·φil ,nl

�

= 0 if n j < 0 for all j.
We define the differential as follows

dηi,n = φi,n ,

dσαn = Γ
α
n − h(Eαn ), d eσα,n = eΓα,n − h(Jα,n) .

(6.59)

For n≥ 0, at least one n j in the sequence (n1, . . . , nl) ∈ Zl satisfying n1+n2+· · ·+nl = n+1− l
will be greater than 0. Thus we have

dh
�

φi1,n1
· · ·φil ,nl

�

=
1
∑

j=1,...,l
with n j≥0

1









∑

j=1,...,l
with n j≥0

1









φi j ,n j
· · ·φil ,nl

= φi j ,n j
· · ·φil ,nl

.

(6.60)

This implies that dh(Eαn ) = Eαn and dh(Jα,n) = Jα,n for n ≥ 0. It follows that d2 = 0, so this
is a well defined differential. Denote this complex by(ÝMvac , d). We also need to prove that
(ÝMvac , d) has the same cohomology as the vacuum module. We consider a double complex
whose horizontal differential is given by 6.59 only and whose vertical differential is given by
d−dh. As in our previous example, the cohomology with respect to the horizontal differential
is isomorphic to Mvac and sit completely in cohomological degree 0. dv restricted on Mvac
is the same as the BRST differential on Mvac . Hence (ÝMvac , d) is quasi-isomorphic to the
vacuum module.

We find that the self-RHom can be computed by the complex Mvac ⊗C[{η∗i,n,σα∗n , eσ∗α,n}]
with differential induced from d of ÝMvac . Equivalently, we have the polynomial algebra
C[{φi,−n−1, Γα−n−1,eΓα,−n−1,η∗i,n,σα∗n , eσ∗α,n}n≥0]with some differential. After appropriately iden-
tifying various terms in the differential, we find that

d =
∑

n<0,α

eσ∗α,−n−1∂Γαn +σ
α
−n−1∂eΓα,n

+ Eαn

�

�

�φ j,k=0
for k≥0

∂Γαn + Jα,n

�

�

φ j,k=0
for k≥0

∂
eΓα,n

+
∑

n≥0,m≥0,α

�

σα∗m 〈η
∗
i,n, h(Eαm)〉+ eσ

∗
α,m〈η

∗
i,n, h(Jα,m)〉
�

�

�

�φ j,k=0
for k≥0

∂η∗i,n ,
(6.61)
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where we used the dual pairing 〈η∗i,n,η j,m〉 = δi jδnm. We prove in C that this complex is
quasi-isomorphic to the complex C[{φi,−n−1,η∗i,n}n≥0] with differential given by

d =
∑

n≥0,m≥0,α

�

Jα,−m−1〈η∗i,n, h(Eαm)〉+ Eα−m−1〈η
∗
i,n, h(Jα,m)〉
�

�

�

�φ j,k=0
for k>0

∂η∗i,n . (6.62)

This differential can be further identified with (see C for a proof)

d =
∑

n≥0

�

δW (φ)
δφi

�

−n−1

�

�

�

�φ j,k=0
for k>0

∂η∗i,n . (6.63)

By a change of notation φi,−n−1→ ∂ nφi ,η
∗
i,n→ ∂

nψi , we see that this complex is exactly the
same as the bulk algebra of chiral multiplets with superpotential W that we wrote down in
Section 3.1.

6.2 Koszul duality in boundary chiral algebra

In our previous examples of the XYZ model, the computations in different boundary conditions
all give us the same result. The boundary algebras for distinct boundary conditions can be very
different. It is not obvious a priori that computations in different boundary conditions are the
same. This can be explained as follows. We expect the Ext computation to give us the same bulk
algebra, as long as we work with boundary conditions that are large enough. This assumption
that the boundary condition is large enough guarantees that the categories of modules of the
boundary algebras are always equivalent to the category of boundary conditions. Although the
self-Ext’s are computed in different ways in terms of the boundary algebras, we are essentially
working in the same category. We explain in this section that for two boundary conditions that
are complementary to each other, this equivalence of categories specializes to the notion of
Koszul duality.

Suppose our boundary conditions consist of a dg category C. Consider two generators
B,B! of the category. We call the two boundary conditions complimentary to each other if
they satisfy

HomC(B,B!)≈ C . (6.64)

Physically, this corresponds to the following situation. We consider the theory to be placed at
[0,1]×C. We give boundary conditions B and B! on the two sides of the interval respectively.
Then the condition 6.64 is equivalent to the bulk theory on [0,1] × C being trivial. More
explicitly, if we try to solve the Equation of motion on the interval with the boundary condition
that two sets of complementary fields are set to zero on the two sides, then we only get a trivial
solution.

Denote the two boundary algebras by A∂ = EndC(B) and A!
∂
= EndC(B!). The condition

that B,B! are generators guarantees that the two algebras A∂ , A!
∂

generate the whole com-
mutant of each other. Therefore A!

∂
= EndA∂ (C), A∂ = EndA!

∂
(C). This turns out to be the

definition for two Koszul dual algebras [67]. This is only a very rough argument. In fact, the
boundary algebra is not associative algebra but instead vertex algebra. The notion of Koszul
duality for vertex algebra has not yet been developed.5 In this paper, by Koszul duality, we
mean the Koszul duality of the corresponding algebra of charges. This is enough for our pur-
pose. Because we are interested in the Ext computation, which only concerns the category of
modules of the vertex algebra, which is equivalent to the category of modules of the associated
algebra of charges [69].

5For a physical approach to the definition of Koszul duality of vertex algebra, see [68].
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For instance, we consider a free single chiral without any superpotential. The boundary
algebra for Dirichlet boundary condition has been worked out in Section 5.1, we have

∮

V∂ [D] =
∧•
(C((z))) . (6.65)

For Neumann boundary condition, the boundary algebra is generated by a boson φ(z). There
is non boundary BRST operator and non trivial OPE, therefore the corresponding algebra of
charges is

∮

V∂ [N] = Sym (C((z))) . (6.66)

By identifying C((z)) with the dual of itself via the residue pairing, we see that
∮

V∂ [D] = (
∮

V∂ [N])!. This is the classical example of Koszul duality between symmetric
algebra and exterior algebra (Sym(V ))! = ∧•(V ∗).

We can also consider the XYZ model. We already studied the NDD boundary condition.
Using the notation of Section 6.1.2, the algebra of charges is the universal enveloping algebra

∮

V∂ [N DD] = U(gN DD((z))) . (6.67)

The boundary condition complimentary to the NDD is the DNN boundary condition. The
boundary algebra for DNN boundary condition is generated by fieldsψX (z), Y (z), Z(z). There
is no nontrivial OPE, but we have a boundary BRST differential

QψX = Y Z . (6.68)

We expand the fields into charges {ψX ,n, Yn, Zn}. The boundary BRST operator gives us the
following differential on the algebra of charges

dψX ,n =
∑

m+l=n−1

YmZl . (6.69)

We find that this algebra is exactly the Chevalley-Eilenberg algebra of the loop algebra gN DD((z))
∮

V∂ [N DD] = C •(gN DD((z))) . (6.70)

We see that the boundary algebras for the DNN and the NDD boundary condition are indeed
Koszul dual C •(gN DD((z))) = U(gN DD((z)))!. This is another classical example of Koszul duality
between the Universal enveloping algebra and the Chevalley-Eilenberg algebra of a Lie algebra.

It is a well-known fact that the derived categories of modules for two Koszul dual algebras
are equivalent [67, 70]. This provides an explanation of why we expect to obtain the same
results from the Ext computation from two complementary boundary conditions.

6.3 Including gauge fields

We expect that the boundary-bulk relation should work for a general holomorphic twisted
N = 2 theory. However, such a statement is harder to verify in the presence of gauge fields,
due to the rather complicated structure of the boundary algebra in this case.

If we choose Dirichlet boundary condition for gauge fields. The description of the boundary
chiral algebra is conjectural [12], and its vertex algebra structure is not clear. If we consider the
case without chiral multiplet, the boundary monopole correction makes the boundary chiral
algebra the WZW vacuum module, whose vertex algebra structure is given in [59]. We leave
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the analysis of self-Ext in this case to future work. However, if we are satisfied with perturbative
results, the computation can be simplified because the perturbative boundary algebra Vk(g) has
a relatively simple structure. We provide relevant results in the next section.

Things can get easier if we choose Neumann boundary condition for gauge fields. In this
case, we have better control of the vertex algebra structure, due to the absence of boundary
monopole operators and the fact that most OPE’s are trivial. However, imposing G invariant
causes difficulties in finding a resolution of the vacuum module directly. We expect that there
are cases when we have a better description of the cohomology of the boundary chiral algebra.
For example, theory with abelian gauge group or theory with U(N) gauge group when N is very
large. In the following section, we provide some examples with abelian gauge group. Large N
gauge theories are also very interesting, as some of them may have gravity dual [68,71]. We
leave its discussion to future work.

However, we have to be very careful about the self-Ext computation, as they not always
give us the correct bulk algebra. This is explained in [21], as we only expect Neumann bound-
ary condition to work when the theory is a CFT. We provide a simple example when the Ext
computation fails for Neumann boundary condition in Section 6.3.3.

Excluding those “Non-CFT” theories, the bulk boundary relation provided by the self-Ext
of Neumann condition boundary algebra is very nontrivial. As we have seen, the boundary
algebra for Neumann boundary condition is purely perturbative, and the bulk algebra contains
non-perturbative objects. This bulk boundary relation extracts non-perturbative information
merely from perturbative information on the boundary, and this amazing phenomenon only
comes as a result of the general structure of field theory.

6.3.1 Perturbative analysis for vector multiplet

Although we don’t have a good understanding of the non-perturbative result, the perturbative
part is more accessible. Here we consider Dirichlet boundary condition for a pure gauge theory
and focus on the perturbative algebra. At level k, the vacuum module is

Vk = U(bg)⊗U(g[[z]]⊕CK) Ck , (6.71)

where Ck is the one dimensional representation on which g[[z]] acts by 0 and K acts as mul-
tiplication by k. The mode algebra is given by Uk(bg) = U(bg)/(K − k). Computation of RHom
follows the standard argument as in Section 6.1.2. We have

RHom(Vk, Vk) = HomUk(bg)(Uk(bg)⊗ C •(g[[z]]), Vk)

= C •(g[[z]], Vk) .
(6.72)

Results on Lie algebra cohomology [63] imply that we have an isomorphism

H •(g[[z]], Vk)≈ H •(g[[z]],g, Vk)⊗H •(g) . (6.73)

The part H •(g) should be discarded since it corresponds to the constant gauge mode.6

This matches our previous analysis in Section 3.2.1. We focus on the relative Lie algebra
cohomology H •(g[[z]],g, Vk).

Computations in [44] tell us that for k ̸= kc , the cohomology H i(g[[z]],g, Vk) vanishes for
i > 0. For i = 0, H0(g[[z]],g, Vk) = C. From these results, we see that for k ̸= kc (when
the bare Chern-Simons level ̸= 0), the Ext calculation gives us an operator algebra that only

6An interesting result in [44] is that if we compute the self-Extension in a suitable category, namely the category
of Harish-Chandra modules HC(ĝκ, G[[t]]), then we automatically get relative Lie algebra cohomology instead of
Lie algebra cohomology.
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contains the identity operator in cohomology (if we discard the H •(g) part). This coincides
with our previous analysis in 3.2.1.

As we have discussed in Section 3.4, the local operator algebra drastically changes when
the level k is equal to the critical level kc . We expect a similar phenomenon to happen here.
For k = kc , we have the following results [44]

Theorem 6.1 For k = kc , we have an isomorphism

H •(g[[z]],g, Vkc
)≈ Ω•
�

OpLg(D)
�

, (6.74)

where Ω•(OpLg(D)) is the algebra of differential forms on the space of Lg-opers on D.

the H0 part is exactly the center z(ĝ) we mentioned in Section 3.2.1. The associated graded
of H •(g[[z]],g, Vkc

) is the algebra we proposed for the perturbative bulk algebra in 3.2.1. The
self-Ext construction naturally provides us with a quantization.

6.3.2 U(1) gauge theory at level 1

Non-perturbatively, WZW models are complicated to describe in general. We have a simple
example by making use of boson-fermion correspondence. Let’s consider the U(1)1 WZW
model, which, according to boson-fermion correspondence, is isomorphic to a fermionic vertex
algebra [72]. This fermion vertex algebra is exactly what we used in canceling boundary
anomaly in Section 5.1. We have fields (Γ (z),eΓ (z)) and OPE

Γ (z)eΓ (0)∼
1
z

. (6.75)

The algebra of charges is generated by (Γn,eΓn), with

Γ (z) =
∑

n∈Z
Γnz−n−1 , eΓ (z) =

∑

n∈Z

eΓnz−n−1 . (6.76)

They have commutation relation

[Γn,eΓm] = δn+m,−1 . (6.77)

We can consider the vector space C((t))[d t] with an inner product defined by residue pairing.
Let C l be the Clifford algebra associated to C((t))[d t]. Then the algebra of charges can be
identified with C l

The vacuum fermionic fock representation Mvac of C l is generated by a vacuum vector
annihilated by Γn,eΓn, n≥ 0. Equivalently

Mvac = C l ⊗∧C[[t,d t]] C , (6.78)

where C is the trivial representation of C[[t, d t]].
We have a resolution of the vacuum module given by adjoining infinite many even variable

Xn, eXn to the algebra of charges C l, written as C l[Xn, eXn]n≥0. The differential is

d = Γn
∂

∂ Xn
+eΓn

∂

∂ eXn
. (6.79)

As before the self-Ext can be computed by the complex Mvac[X ∗n, X̃ ∗n]n≥0. We can identify the
differential

d = X ∗n
∂

∂ eΓ−n
+ eX ∗n

∂

∂ Γ−n
. (6.80)

Computing the cohomology we find that Ext•Cl(Mvac , Mvac) = C. This is compatible with our
previous observation that the bulk operator algebra has trivial cohomology when the Chern-
Simons level is not zero.
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6.3.3 A failure case

In this section, we provide a simple example where the Ext computation fails for Neumann
b.c. Consider a pure U(1) gauge theory without Chern-Simons term. For Neumann boundary
condition, there is no boundary anomaly since the gauge group is abelian. The boundary
algebra is generated by derivatives of ghost ∂ nc. Since U(1) is abelian, there is no BRST
operator. G action on the ghost is also trivial, so we get the same algebra after imposing
G invariant. This algebra is the same as the boundary chiral algebra for a free chiral with
Dirichlet boundary condition (Section 6.1.1).

The Ext computation is the same as in Section 6.1.1 and we get

Ext• = C[J∞T ∗[1]C] . (6.81)

This is not the same as the bulk algebra C[J∞T ∗[1]C×] of the U(1) gauge theory we found
in Section 4.2.

This failure case also provides us with evidence why the self-Ext calculation only works
when the underlying field theory is a CFT. The operator algebra takes the form of functions
on the infinite jet space of some derived stack X . The self-Ext calculation of a given boundary
condition can only know about the infinitesimal neighborhood of the corresponding isotropic
subspace of X . For example, in Neumann b.c. of the U(1) gauge theory, the self-Ext calculation
only knows about the infinitesimal neighborhood of a fiber of T ∗[1]C× → C×. Therefore the
self-Ext only reproduces J∞T ∗[1]C instead of J∞T ∗[1]C×. However, when the theory is a
CFT, X becomes a “cone”. The tangent cone around the origin is the cone X itself. Therefore
everything is encoded in a neighborhood of the cone point. Only in this case do we expect Ext
calculation to reproduce the whole operator algebra. This indeed happens for our previous
analysis of chiral multiplets.

6.3.4 U(1)− 1
2
+ chiral with (N , N) b.c.

With the (N , N) boundary condition, we have boundary fields ϕ(z) and derivatives of c(z).
This boundary condition has gauge anomaly [56]. To cancel it we have to add a boundary
fermion Γ (z),eΓ (z) of gauge charge (+1,−1) and T charge (+1,−1). The chiral algebra is
generated by gauge invariant combination of ϕ(z), Γ (z), eΓ (z) and derivative of c(z), with OPE

Γ (z)eΓ (0)∼
1
z

, (6.82)

and BRST differential
Qϕ = cϕ , QΓ = cΓ , QeΓ = −ceΓ . (6.83)

It’s not easy to perform the Ext calculation with this VOA directly. However, its BRST coho-
mology has a very simple description. We first prove that the BRST cohomology of the above
boundary algebra is equivalent to the boundary algebra of a single chiral with Dirichlet b.c.,
namely the VOA generated by a single field ψ(z) with no nontrivial OPE. The equivalence is
provided by a map

ρ : ψ(z)→ (ϕeΓ )(z) . (6.84)

It is clear that ϕeΓ has gauge charge 0. Since ϕ has trivial OPE with eΓ , we have

Q(ϕΓ ) = cϕΓ +ϕ(−c)eΓ = 0 . (6.85)

Therefore, ρ is indeed a map to the cohomology of the U(1)− 1
2
+ chiral boundary algebra. The

non-trivial part is to prove that ρ is actually an isomorphism on the cohomology.
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First, we show that the cohomology of the U(1)− 1
2
+ chiral boundary operators are all in

cohomological degree 0. From the boundary fermion we can construct the following U(1)
current

b(z) := : ΓeΓ : (z) . (6.86)

Denote bn the modes of b(z), they satisfy U(1) current relation [bn, bm] = nδn,−m. Let M be
the vacuum module of the U(1)− 1

2
+ chiral boundary algebra, and let M0 be the sub-module

of the kernel of all the non-negative modes bn, n ≥ 0. Then the whole vacuum module M is
generated by applying operators bn, n< 0 to M0

M = M0 [b−1, b−2, . . . ] . (6.87)

Note that the ghost c(z) has trivial OPE with all other operators. Hence the vacuum module is
simply a tensor product of the exterior algebra of ghost modes and the rest. We denote N0 the
sub-module of states that are in the kernel of bn, n ≥ 0 and do not contain any ghosts. Then
we have

M = N0[c−2, c−3, . . . , b−1, b−2, . . . ] . (6.88)

Let’s study the action of BRST operators on the modes bn. We use the definition of normal
product to rewrite b(0) as

b(0) = : ΓeΓ : (0) = lim
z→0
Γ (z)eΓ (0)−

1
z

. (6.89)

Then we have

Qb(0) = lim
z→0
(QΓ (z)eΓ (0)− Γ (z)QeΓ (0))

= lim
z→0
(c(z)Γ (z)eΓ (0)− c(0)Γ (z)eΓ (0))

= lim
z→0
(c(z)− c(0))

1
z

= ∂ c(0) .

(6.90)

Therefore we found that the BRST operator sends bn to cn−1 for n< 0. The full BRST operator
can be complicated, but we can consider a spectral sequence whose differential at the first
page is given by Q0 bn = cn−1, Q0cn−1 = 0. Then at the first page, all ghosts cn−1 cancel with
bn, and the cohomology sits completely in degree 0. Because of this, it’s impossible to have
further differential, the spectral sequence converges here and the cohomology is isomorphic
to N0.

Then we show that N0 and the boundary algebra of a free chiral are isomorphic as a double
graded vector space. On the free chiral side, the grading is given by spin and flavor charge T .
Since there is only one fermionic operatorψ of T charge −1, the coefficients in the index is the
dimension of the space of operators of given quantum numbers. On the U(1)− 1

2
+ chiral side,

N0 is built from operators ϕ, Γ ,eΓ . We note that the bosonic operators have T charge 0 and
fermionic operators have T charge±1. Therefore no cancellation can happen when computing
the index, and the coefficients in the index are also the dimensions of the spaces of operators
of certain quantum numbers. It was shown in [19] that the indices of the two algebra are the
same, so the two algebra is indeed isomorphic as double graded vector space.

Finally, to prove that ρ is an isomorphism of vertex algebra, we only need to show that it
is injective. This is easy because ρ sends ψ to ϕΓ̃ , and there is no relation among operators
built from ϕΓ̃ and its derivatives. Therefore the kernel of the map ρ must be trivial.

Now we have proved that the cohomology of the U(1)− 1
2
+ chiral boundary algebra is

generated by a single operator ψ(z) with trivial OPE. The self-Ext for this VOA is computed,
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which gives us the bulk algebra of a single free chiral

C
�

{∂ nφ,∂ nψ}n≥0

�

. (6.91)

This is expected to be quasi-isomorphic to the bulk algebra of U(1)− 1
2
+ chiral theory by mirror

duality. Moreover, this algebra contains not only perturbative operators but also non pertur-
bative monopole operators.

We mention that it is very important to introduce the boundary fermion. They not only
cancel the boundary gauge anomaly but also are crucial for the boundary bulk relation to
work. We can easily figure out what the boundary algebra looks like without the fermion. c is
gauge neutral and φ has gauge charge 1. Therefore gauge invariant operators are generated
by derivatives of c(z). However, c has T charges 0. So we won’t even be able to get the right
bulk algebra as graded vector space.

6.3.5 SQED with (N , N , N) b.c.

With the (N , N , N) boundary condition, we have boundary fieldsφ+(z), φ−(z) and derivatives
of c(z). Like our previous example, this boundary condition also has gauge anomaly. To
cancel this gauge anomaly we add boundary fermion Γ (z),eΓ (z) of gauge charge (+1,−1).
This boundary algebra has OPE

Γ (z)eΓ (0)∼
1
z

, (6.92)

and BRST differential

Qφ+ = cφ+ , Qφ− = cφ− ,

QΓ = cΓ , QeΓ = −ceΓ .
(6.93)

Performing Ext computation directly with this algebra could be difficult. However, just like
our previous example, the BRST cohomology of this algebra has a much better description. It
was proved in [12] that the above dg vertex algebra is equivalent to the boundary algebra of
XYZ model with NDD boundary condition via a map

X → φ+φ− ,

ρ : ψY → Γφ− ,

ψZ → eΓφ+ .

(6.94)

The self-Ext computation for the XYZ model is performed in the previous section and we
obtained the bulk algebra of the XYZ model. By the SQED/XYZ mirror duality, this algebra
should be quasi-isomorphic to the bulk algebra of the SQED model. Moreover, monopole
operators of SQED automatically emerge from this algebra.

6.4 Algebraic structure from Ext

We have seen examples where the self-Ext computation reproduces the right vector space of the
bulk algebra. We might hope that more structure of the bulk algebra could be revealed from
this construction. More precisely, we conjecture that there is a shifted Poisson vertex algebra
structure on Ext•V−mod(V, V ) for a vertex algebra V . To motivate this conjecture we consider
again the 2d TQFT. We have mentioned in Section 6 that the bulk algebra of a 2d TQFT can
be computed by the Hochschild cohomology HH •(A). It is known since the pioneering work of
Gerstenhaber [33] that the Hochschild cohomology HH •(A) has the structure of a Gerstenhaber
algebra. We have a Hochschild cup product defined by

( f ∪ g)(a1 ⊗ · · · ⊗ an+m) = f (a1 ⊗ · · · ⊗ an)g(an+1 ⊗ · · · ⊗ an+m) , (6.95)
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for f ∈ Cn(A, A) and g ∈ Cm(A, A), and a Gerstenhaber bracket defined by

{ f , g}= f ◦ g − (−1)(m−1)(n−1)g ◦ f , (6.96)

where

f ◦ g(a1 ⊗ · · · ⊗ an+m−1) =
n
∑

i=1

(−1)(i−1)(m−1) f (a1 ⊗ . . . ai−1 ⊗ g(ai ⊗ . . . ai+m−1)⊗ . . . an+m−1 . (6.97)

This corresponds to the well-known Gerstenhaber algebra structure of the bulk operators of a
2d TQFT [73,74].

For any d dimensional TQFT of cohomology type, we expect the bulk algebra to have the
structure of a d-shifted Poisson algebra (which becomes Gerstenhaber algebra in d = 2). This
structure consists of a graded product and a d-shifted Poisson bracket with some compatibil-
ity conditions. The field theory explanation for the two operations is explored in [38]. The
product is also known as OPE of local operators, which comes from collisions of two operators

O1O2(y) = lim
x→y

O1(x)O2(y) . (6.98)

The bracket is constructed by integrating the (d − 1)-th descent of a operator around a small
(d − 1)-sphere surrounding the other operator

{O1, O2}=
∮

Sd−1
y

O1(x)O
(d−1)
2 (y) . (6.99)

They are also called the primary and secondary products.
For 3d N = 2 theory with holomorphic topological twist, the algebraic structure of the

bulk local operators is studied in [39], and can be summarized by saying that the space of local
operators possesses the structure of shifted Poisson vertex algebra. A Poisson vertex algebra
consist of a graded commutative product and λ bracket, and correspond to the primary and
secondary products respectively in the field theory context. We can combine the story of bulk
algebra with our bulk-boundary construction. Since we can reproduce the space of bulk local
operators from boundary algebra, we should also find the algebraic structures of Poisson vertex
algebra in the self-Ext construction.

6.4.1 The (graded) commutative product

In this section, we construct the primary product of bulk local operators from the self-Ext
construction and briefly comment on the secondary product.

We note that there is a natural isomorphism between Ext and Hochschild cohomology
(see [63])

Ext•A(M , N) = HH •(A, Hom(M , N)) , (6.100)

for an arbitrary algebra A and A-modules M and N . This isomorphism is obtained by using the
bar resolution Bn(A, M) = A⊗(n+2)⊗A M ≈ A⊗(n+1)⊗M . In our case the algebra A is the algebra
of charges A=

∮

V associated to the vertex algebra, and M = N = V is the vacuum module.
We have

Ext•A(V, V ) = HH •(A, End(V )) . (6.101)

We can define an analog of Hochschild cup product by Equation 6.95. For
f ∈ Hom(A⊗n, End(V )) and g ∈ Hom(A⊗m, End(V )), we define the cup product

( f · g)(a1 ⊗ · · · ⊗ an+m) = f (a1 ⊗ · · · ⊗ an)g(an+1 ⊗ · · · ⊗ an+m) , (6.102)
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by using the composition product on End(V ).
Note that there is another product naturally defined on ExtA(V, V ), the Yoneda product.

Actually, the Yoneda product and Hochschild cup product agree via the isomorphism 6.101.
To see this we first recall a definition of Yoneda product suited for our purpose. For any
projective resolution P • of V , we have a product on HomA(P

•, P •) defined via composition of
chain maps. The induced composition map on cohomology is defined to be the Yoneda product
on Ext. It is also known that this product does not depend on the choice of the projective
resolution, so we can use the Bar resolution B•(A, V ) to establish the identification. We have
an injective i : HomA(B•(A, V ), End(V )) → EndA(B•(A, V )) sending a f ∈ Hom(A⊗n ⊗ V, V ) to
i( f ) ∈
⊕

N≥n HomA(A⊗(N+1) ⊗ V, A⊗(N−n+1) ⊗ V ) defined by

i( f )(a⊗ a1 ⊗ · · · ⊗ aN ⊗m) = a⊗ a1 ⊗ . . . aN−n ⊗ f (aN−n+1 ⊗ . . . aN ⊗m) . (6.103)

The augmentation ϵ : B•(A, V ) → V induces a quasi-isomorphism
ϵ∗ : EndA(B•(A, V )) → HomA(Bn(A, V ), End(V )). We find that ϵ∗ ◦ i = id. Hence i is a quasi-
isomorphism. We can check that

i( f ) ◦ i(g)(a⊗ a1 ⊗ · · · ⊗ aN ⊗m)

= a⊗ . . . aN−n−m ⊗ f (aN−n−m+1 ⊗ · · · ⊗ aN−m ⊗ g(aN−m+1 ⊗ . . . aN ⊗m))

= i( f · g)(a⊗ a1 ⊗ · · · ⊗ aN ⊗m) .
(6.104)

Therefore i is also a morphism of algebra sending the Hochschild cup product to the Yoneda
product.

This is a very useful fact because we used Koszul resolution to compute the Ext and it
will be more convenient to use the Yoneda product instead of the Hochschild cup product in
the computation. We show that this product indeed corresponds to the graded commutative
product of the bulk algebra.

O1

O2

⇝ (O1O2) ⇒ Ext(V, V )⊗ Ext(V, V )→ Ext(V, V )

Figure 1: bulk product and Yoneda product

We consider the free chiral multiplet in Dirichlet boundary condition as an example. Recall
that the Ext is computed by the Koszul resolution

eMvac =

∮

V∂ [D]⊗C[{λn}n≥0]≈ C
�

{ψn}n∈Z, {λn}n≥0

�

, (6.105)

with differential dλn = ψn. The Yoneda product is the product on the endomorphism
ring End∮ V∂ [D](

eMvac). Then we can identify the endomorphism ring End∮ V∂ [D](
eMvac)

with the ring C[{ψn}n∈Z, {λn, ∂
∂ λn
}n≥0], by identifying λ∗n with ∂

∂ λn
. This complex

has cohomology the bulk algebra of free chiral C[{ψn,λ∗n}n≥0]. We have injective
j : C[{ψn,λ∗n}n≥0] → End∮ V∂ [D](

eMvac) sending ψn → ψn and λ∗n →
∂
∂ λn

, and a projection

p : End∮ V∂ [D](
eMvac)→ C[{ψn,λ∗n}n≥0] by sending all ∂

∂ λn
to zero. Then the Yoneda product

on C[{ψ−n−1,λ∗n}n≥0] can be defined by

ab = p( j(a) j(b)) , for any a, b ∈ C
�

{ψ−n−1,λ∗n}n≥0

�

. (6.106)
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It is easy to check that this is exactly the graded commutative product of the polynomial algebra
C[{ψ−n−1,λ∗n}n≥0] and induces the desired graded commutative vertex algebra structure on
it.

For a chiral multiplet with an arbitrary superpotential, the agreement between the Yoneda
product and the graded commutative product of the bulk algebra can be checked similarly.
For V the vacuum Verma module Mk of the affine Lie algebra ĝ, a similar statement is proved
in [44].

By its identification with the primary product on bulk algebra, the Yoneda product on the
self-Ext should be graded commutative. However, this is not obvious a priori. In fact, the
Yoneda product on Ext•A(M , M) is not necessarily a commutative product in general. We note
that there are extra structures on the category of vertex algebra module and V . The category of
V module has the structure of a modular tensor category and in particular a monoidal category.
The vacuum module is the unit object in this category. We expect that these structures should
be enough to guarantee the commutativity of the self-Ext.

In a more general setting, [75] defined a bracket [−,−]C on Ext•C(1C ,1C) for a strong
exact monoidal category (C,⊗C ,1C). When we take C to be the category of A bimodule,
Ext•C(1C ,1C) = HH •(A, A) and the bracket [−,−]C agrees with the Gerstenhaber bracket [33]
on the Hochschild cohomology. We expect that this construction will lead to the 0-th order
component of the λ bracket of the Poisson vertex algebra. However, the construction in [75]
does not provide us a very explicit formula for the bracket as in the definition of Gerstenhaber
bracket 6.96.

For the full Poisson vertex algebra structure, a proper construction of the chain complex
replacing Hochschild complex is needed. We conjecture that the chiral deformation complex
constructed by D. Tamarkin in [37] is quasi-isomorphic to the self-Ext we are computing. At
least for the commutative chiral algebra, the cohomology of the chiral deformation complex
is computed in loc. cit. and agrees nicely with the bulk algebra of free chiral multiplets.
Moreover, D. Tamarkin constructed a shifted Poisson vertex algebra structure (which is called a
c-Gerstenhaber algebra structure in loc. cit.) on the cohomology of the deformation complex.
For the commutative chiral algebra, the bracket computed in loc. cit. also agrees with the
bracket computed in [39] directly from the bulk algebra of free chiral multiplets. We believe
that this is not a coincidence. The shifted Poisson vertex algebra structure on the cohomology
of chiral deformation complex should be the same as the algebraic structure of bulk local
operators of the corresponding 3d theory.

6.4.2 A generalization of Deligne’s conjecture

The Yoneda product is only one piece of a series of algebraic structures on the self-Ext. Higher
multiplication maps can be defined on the self-Ext extending the Yoneda product and making
it into an A∞ algebra. For a projective resolution P • of V , we have a dga algebra EndA(P

•)
whose cohomology is the Ext•A(V, V ). As a result of the Homotopy Transfer Theorem for dga
algebra [76] (see also [64] for an introduction), there exists an A∞ algebra structure {mn}n≥2
on the cohomology Ext•A(V, V ), such that there is an A∞ quasi-isomorphism between Ext•A(V, V )
and the dga algebra EndA(P

•) and the m2 coincides with the Yoneda product. There are various
techniques to explicitly construct this A∞ algebra, for example using homological perturbation
theory [66].

The appearance of higher structure here is not a surprise. Higher products exist in a gen-
eral TQFT of cohomological type. In 2d we have the famous Deligne conjecture, which has
been verified by several people ( for examples [34, 35]). This conjecture states that the Ger-
stenhaber algebra structure on the Hochschild cohomology actually comes from the structure
of Hochschild complex as an algebra over the chain little disc operad. From the TQFT perspec-
tive, Deligne’s conjecture is very natural because the space of local operators of a 2d TQFT at
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the chain level has an E2-algebra structure.
The twisted theories studied in this paper can be considered as “holomorphic topological”

theories of cohomological type. Higher structures exist at the chain level that contain much
richer structures than OPE’s in the cohomology. Though we don’t have a clear picture of all
these higher structures that are present in the bulk algebra, we can try to understand it in a
hierarchical manner. For example, we can first understand the OPE’s of local operators in the
topological R direction, this structure should be characterized by an A∞ algebra. Then we
study the topological line defects and their OPE structure along the holomorphic C direction.
Alternatively, we can first study OPE’s of local operators in the holomorphic direction and then
OPE’s of holomorphic surface defects along the topological direction.

As we have seen, the Yoneda product correspond to the OPE of bulk operators in the topo-
logical R direction. We believe that the A∞ extension of the Yoneda product is a piece of the
whole structure of the local operator algebras that encode the operator product in the topolog-
ical R direction. It has been shown in [12] that the λ bracket of the bulk algebra encodes the
leading term of a bulk to line defect OPE. There must exist a coherent series of higher order
operations that encode all the higher order terms in the line defect OPE’s in the holomorphic
direction. We believe that these structures of higher order operations should also appear in
the self-RHom or the chiral deformation complex of [37]. More generally we expect that

EndC (1C ,1C) (6.107)

for a chiral category C to have this higher analog of chiral algebra structure.
This higher analog of chiral algebra structure is still mysterious to us. However, we can

get a variant of this conjecture by imposing some extra structure on the boundary vertex al-
gebra, and the resulting structure on the self-Ext will be more familiar to us. Specifically, as
is discussed in [12], when the boundary vertex algebra V has a stress energy tensor (i.e. V
is a conformal vertex algebra), the bulk theory will be topological. In this case the bulk local
algebra becomes an E3 algebra, and we expect that the self-RHom can be naturally equipped
with an E3 algebra structure.

7 Discussion & Conclusion

In this paper, we studied the bulk local operators of holomorphic twisted 3d N = 2 theories
from two different perspectives – the first being a direct bulk analysis and the second using the
bulk-boundary relation that relate the self-Ext (or the derived center) of the boundary algebra
and the bulk algebra.

From the first perspective, we constructed the perturbative bulk local operators in the most
general situations, and the full non perturbative local operators for abelian gauge theories. The
non perturbative operators are constructed using state-operator correspondence and geometric
quantization. A important construction is the line bundles on phase space, whose characters
reproduce one loop correction to the gauge charges of monopole operators. We also analyzed
the implication of mirror duality, which predict an isomorphism of the local operator algebras
for mirror dual pair. This is non trivial as the perturbative operators and monopole operators
are exchanged under the duality. We examined the isomorphism for part of the local operators
for some dual pairs. It will be an interesting problem to prove the isomorphism for the whole
algebras in some examples.

From the second perspective, we computed the self-Ext of boundary vertex algebras in
many examples. We analyzed different boundary conditions and the corresponding boundary
algebras for chiral multiplets. The self-Ext computations in these cases all coincide with our
direct bulk analysis. Along the way, we discussed an interesting phenomenon that complimen-
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tary boundary conditions lead to Koszul dual boundary vertex algebras. Theories with gauge
fields turns out to be more subtle, as the bulk-boundary relation can fail for certain cases. Nev-
ertheless, we expect that the bulk-boundary relation to hold when the theory is a CFT. We also
examined the bulk-boundary relation for SQED and U(1) 1

2
+ chiral theory. A remarkable fact is

that monopole operators can arise form the self-Ext of a perturbative boundary algebra without
monopoles. This might provide us with an easier way to access the bulk monopole operators
when the direct analysis is hard, especially for non abelian theories with chiral multiplets and
superpotential.

In the end, we touched on the algebraic structures of bulk operators from the boundary.
We believe that the best context to discuss this is via the chiral deformation complex defined
by [37]. It will be important to relate the chiral deformation complex, together with the c-
Gerstenhaber structure on it, with the self-Ext and the bulk algebraic structure.
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A Classical BV-formalism in finite dimension

In this section, we explain aspects of BV formalism in finite dimension following [32] and
introduce various derived schemes appearing as the target in the AKSZ formulation of our
theories.

In the Lagrangian approach to physics, we start with a space of fields V (a finite dimen-
sional space in our discussion) and an action functional S : V → R. Classical physics concerns
the solutions of equations of motion for this system. Namely, we are interested in the critical
locus of S.

Crit(S) = {φ ∈ V : dS(φ) = 0} . (A1)

The critical locus can also be considered as the intersection of the graph(dS) ⊂ T ∗V with
the zero-section of the cotangent bundle of V . In other words, Crit(S) = graph(dS)×T ∗V V .
Functions on Crit(S) can be written as

O(Crit(S)) =O(graph(dS))⊗O(T ∗V )O(V ) . (A2)

The “derived” philosophy tells us that the naive critical locus could be highly singular (e.g. in
the case of not transverse intersection). A better choice is to replace it by its derived version. In
particular, in the above situation we replace the tensor product by the derived tensor product:

O(dCrit(S)) =O(graph(dS))⊗LO(T ∗V )O(V ) . (A3)

This could be taken as a definition of the derived critical locus dCrit(S). Namely, we define it as
a dg scheme whose ring of function is given by the derived tensor product as above. Explicitly,
we can take Koszul resolution of O(V ) as a O(T ∗V ) module and realize O(dCrit(S)) as the
following complex

(Γ (V,∧•T V ),∨dS) = (O(T ∗[1]V ),∨dS) . (A4)
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The Polyvector fields Γ (V,∧•T V ) come equipped with a Poisson bracket of cohomological de-
gree 1, called Schouten-Nijenhuis bracket. For f , g ∈O(V ) and X , Y ∈ Γ (V, T V ), we have

{X , Y }= [X , Y ] , {X , f }= X f , { f , g}= 0 . (A5)

This bracket extends to whole Γ (V,∧•T V ) by Leibniz rule, and defined a shifted symplectic
structure on T ∗[1]V . Using this bracket, the differential ∨dS on O(T ∗[−1]V ) is identified
with {S,−}.

Explicitly, given a basis {x i} of V ∗ and a basis {θ i} of Γ (V, T V )[1], we can write
O(T ∗[−1]) = R[x i ,θ

i]. Then the differential ∨dS can be written as

∨dS =
∑

i

∂ S
∂ x i

∂

∂ θ i
. (A6)

An important class of field theories involves a gauge group G acting on the space of field V .
We want to make sense of the quotient space V/G and the space of functions on V/G. To avoid
discussion on derived stack we consider the quotient V/g by the Lie algebra. Again, the naive
quotient could be very badly behaved. It is always better to take the derived invariants for the
action of g on the algebra O(V ) of functions on V . This is given by the Chevalley-Eilenberg
complex

(C •(g,O(V )), dCE) = (O(g[1]⊕ V ), dCE) . (A7)

Explicitly, for {ta} a basis of g with respect to which we have structure constant f c
ab. g act on V

by vector field. We denote Xa = X ia(x)
∂
∂ x i

the vector field associated with ta. Write ca the dual
basis of g∗, then the Chevalley-Eilenberg complex is R[x i , ca] with the following differential

dCE =
∑

a

caXa +
∑

a,b,c

1
2

cacb f c
ab
∂

∂ ca
. (A8)

Having understood the derived version of V/g, we can combine our previous discussion to
understand the critical locus of S inside V/g. We model this space by

T ∗[1](g[1]⊕ V ) = g[1]⊕ V ⊕ V ∗[−1]⊕ g∗[−2] . (A9)

T ∗[1](g[1] ⊕ V ) is naturally equipped with a shifted Poisson bracket {−.−}, namely the
Schouten-Nijenhuis bracket on g[1] ⊕ V . The function S on g[1] ⊕ V pulls back to
T ∗[1](g[1]⊕V ) via the natural projection, and we still denote it by S. The Chevalley-Eilenberg
differential dCE can be regarded as a vector field on g[1] ⊕ V and induce a vector field on
T ∗[1](g[1]⊕ V ). There exists a function hCE such that its Hamiltonian vector field is dCE. The
differential on T ∗[−1](g[1]⊕ V ) can be expressed as

d = {S + hCE,−} . (A10)

Explicitly, using our previous notation and writing ba the corresponding basis of g[2], then

O(T ∗[−1](g[1]⊕ V )) = R[x i ,θ
i , ca, ba] . (A11)

The Poisson bracket is defined through

{x i ,θ
j}= δ j

i , {ca, bb}= δb
a . (A12)

The function S + hCE can be written as

S +
∑

caX iaθ
i +
∑ 1

2
cacb bc f c

ab . (A13)
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The differential can be written explicitly as

d =
∑

caXa +
∂ S
∂ x i

∂

∂ θ i
+ ca

∂ X ja

∂ x i
θ j ∂

∂ θ i

+
1
2

cacb f c
ab
∂

∂ ca
+ X iaθ

i ∂

∂ ba
+ cb bc f c

ab
∂

∂ ba
.

(A14)

The derived critical locus of V/g can be equivalently described as a derived symplectic
reduction

dCrit(S) // g . (A15)

Symplectic reduction consists of two steps, first we take the zero sections of the momentum
map and then we take the quotient. Derived symplectic reduction simply performs the above
two steps in a derived way. First, the action of g on the dg scheme induces a momentum map

µ : T ∗[1]V → g∗[−1] . (A16)

Functions on the homotopy fibre µ−1(0) is defined by

O(µ−1(0)) =O(T ∗[1]V )⊗LO(g∗[−1]) C . (A17)

By using Koszul resolution this can be modeled on a complex O(T ∗[1]V ⊕ g[−2]). Explicitly,
we use our previous notation of the basis, then this complex can be identified with R[x i ,θ

i , ba].
It has differential

d =
∂ S
∂ x i

∂

∂ θ i
+ X iaθ

i ∂

∂ ba
. (A18)

Next, we take the derived quotient of T ∗[1]V ⊕ g[−2] by g. This is performed similarly to A7.
We use Chevalley-Eilenberg complex

C • (g,O(T ∗[1]V ⊕ g[−2]))≈
�

R[x i ,θ
i , ca, ba], d
�

. (A19)

The differential here is exactly the same as A14.

B Berezinian and its properties

In this appendix, we introduce the definition of Berezinian following [77] and discuss its prop-
erties. Let A be a (super) commutative algebra, L a free module of rank p|q over A. We have
an isomorphism L = Cp|q ⊗ A= Ap|q. We will be most interested in the case A= C.

Definition B.1 Consider the super algebra Sym•(L∗). We view A as a Sym•(L∗) module by the
augmentation map that projects Sym≥1(L∗) to zero.

The Berezinian of L is
Ber L = Extp

Sym•(L∗)(A, Sym•(L∗)) . (B1)

Example B.1 For L = Cp|0, we consider the Koszul resolution of C

· · · → Sym•(L∗)⊗∧2 L∗→ Sym•(L∗)⊗ L∗→ Sym•(L∗)→ C . (B2)

Ext• can be computed by

HomSym•(L∗)(Sym•(L∗)⊗∧•L∗, Sym•(L∗))≈ ∧•L ⊗ Sym•(L∗) , (B3)
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where the differential is given by

d(ei1 ∧ · · · ∧ eik) =
p
∑

j=1

e∗j ⊗ e j ∧ ei1 ∧ · · · ∧ eik . (B4)

We have H •(∧•L ⊗ Sym•(L∗)) = H p(∧•L ⊗ Sym•(L∗)) = ∧p L. Moreover,

Ber L = ∧p L , (B5)

this gives us the usual definition of the determinant for an ordinary free module.
Let T ∈ EndC(L) be an endomorphism of L = Cp. The induced action of T on Ber L = det L

is given by multiplication of det T, the determinant of the operator T .

Example B.2 For L = C0|q, if we denote a basis of L∗ by θ1, . . . ,θq, then we have
Sym•(L∗) = C[θ1, . . . ,θq]. Note that C[θ1, . . . ,θq] is an injective module over itself. Therefore
Ext• = Ext0 = Hom. And

Ber L = HomC[θ1,...,θq]
�

C,C[θ1, . . . ,θq]
�

. (B6)

Ber L is spanned by a basis e ∈ HomC[θ1,...,θq](C,C[θ1, . . . ,θq]) defined by

e(a) = θ1θ2 · · ·θqa , for a ∈ C . (B7)

Moreover, we see from the above formula B7 that the Z2 grading of Ber L is even if q is even, and
odd if q is odd.

Let T be an endomorphism of L = C0|q. Suppose the corresponding matrix with respect
to the basis is N. The action on L induces an action on the dual L∗ and hence an action on
Sym•(L∗) also denoted by T. It maps θ1θ2 · · ·θq to (det N)θ1θ2 · · ·θq. It also induce an action on
HomC[θ1,...,θq](C,C[θ1, . . . ,θq]) defined as follows. For any f ∈ HomC[θ1,...,θq](C,C[θ1, . . . ,θq]),
T f is defined such that

C
f
// Sym•(L∗)

C
T f
//

1

OO

Sym•(L∗)

T

OO
(B8)

We see that T f is defined if and only if T ∈ EndC(L) is invertible, and Te = (det N)−1e. This
means that

Ber T = (det N)−1 . (B9)

More generally we can compute the Ext•Sym•(L∗)(A, Sym•(L∗)) for any free module L using
the standard Koszul resolution. We have the following results

Proposition B.1 Let L be a free module of rank p|q over C. Then we have

Extn
Sym•(L∗)(C, Sym•(L∗)) =











C1|0 , if n= p and q is even ,

C0|1 , if n= p and q is odd ,

0 , if n ̸= p .

(B10)

Note that the Koszul resolution for A as a Sym•((L1 ⊕ L2)∗) module is exactly the tensor
product of the Koszul resolutions of A as Sym•(L∗1) and Sym•(L∗2) modules respectively. Com-
bining with the Künneth theorem we have

54

https://scipost.org
https://scipost.org/SciPostPhys.14.6.153


SciPost Phys. 14, 153 (2023)

Corollary B.1 Let L1, L2 be two free modules over C. we have

Ber(L1 ⊕ L2) = Ber(L1)⊗ Ber(L2) . (B11)

Corollary B.2 Let T ∈ be an invertible endomorphism of Cp|q with matrix

�

K L
M N

�

. Then the

induced action of T on Cp|q is given by multiplication by the Berezinian defined as follows

Ber T = det(K − LN−1M)det(N)−1 . (B12)

C Computing some complexes

In this appendix we simplify the complexes appearing in Section 6.1.3 and in Section 6.1.5.
First we consider the simpler case, the XYZ model. We recall that the complex we wish to
compute is the following

C
�

{Xn, Yn, Zn, Γn,eΓn}n<0, {η∗X ,n,η∗Y,n,η∗Z ,n,σ∗n, eσ∗n}n≥0

�

, (C1)

with differential

d =
∑

n<0

eσ∗−n−1∂Γn +σ
∗
−n−1∂eΓn +
∑

n<0

Xn∂Γn +
∑

n,m<0

YnZm∂eΓn+m+1

−
∑

n≥0

�

σ∗n∂η∗X ,n
+
∑

0≤m≤n

eσ∗mZm−n−1∂η∗Y,n
+ eσ∗mYm−n−1∂η∗Z ,n

�

.
(C2)

By giving Γn,eΓn bidegree (1,0) and η∗X ,n,η∗Y,n,η∗Z ,n bidgree (0, 1) and all other elements
bidegree (0,0). The complex C1 becomes a double complex Cp,q with two differential
d1 : Cp,q→ Cp−1,q and d2 : Cp,q→ Cp,q−1 given by

d1 =
∑

n<0

(eσ∗−n−1 + Xn)∂Γn +
∑

n<0






σ∗−n−1 +
∑

m,l<0
m+l=n−1

YmZl






∂
eΓn+m+1

, (C3)

and

d2 = −
∑

n≥0

�

σ∗n∂η∗X ,n
+
∑

0≤m≤n

eσ∗mZm−n−1∂η∗Y,n
+ eσ∗mYm−n−1∂η∗Z ,n

�

. (C4)

We note that (C•,•, d1) is the standard Koszul resolution with respect to the sequence of elements
{r2n := eσ∗n + X−n−1}n≥0 and {r2n+1 := σ∗n +

∑

m,l<0
m+l=−n

YmZl}n≥0. Moreover, it is easy to check

that this sequence {rn}n≥0 is a regular sequence, therefore the cohomology only survives at
degree 0. We have

Hp

�

C•q, d1

�

= 0 , for p > 0 , (C5)

and

E1
0• = H0(C•,•, d1) = C

�

{Xn, Yn, Zn}n<0, {η∗X ,n,η∗Y,n,η∗Z ,n,σ∗n, eσ∗n}n≥0

�

/(r1, r2, . . . ) . (C6)

Note that we have an isomorphism

C
�

{Xn, Yn, Zn}n<0, {η∗X ,n,η∗Y,n,η∗Z ,n}n≥0

� ≈
→ E1

0• . (C7)
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Under this isomorphism, the differential d2 becomes

d2 = −
∑

n≥0







∑

m,l<0
m+l=−n

YmZl∂η∗X ,n
+
∑

0≤m≤n

X−n−1Zm−n−1∂η∗Y,n
+ X−n−1Ym−n−1∂η∗Z ,n






. (C8)

This is exactly the complex of 4.1.
Now we consider the complex in Section 6.1.5.

�

C
�

{φi,−n−1, Γα−n−1,eΓα,−n−1,η∗i,n,σα∗n , eσ∗α,n}n≥0

�

, d
�

, (C9)

where the differential is given by

d =
∑

n<0,α

eσ∗α,−n−1∂Γαn +σ
α
−n−1∂eΓα,n

+ Eαn
�

�

φ j,k=0
for k≥0

∂Γαn + Jα,n

�

�

φ j,k=0
for k≥0

∂
eΓα,n

+
∑

n<0,m≥0,α

�

σα∗m 〈η
∗
i,n, h(Eαm)〉+ eσ

∗
α,m〈η

∗
i,n, h(Jα,m)〉
�

�

�

�φ j,k=0
for k≥0

∂η∗i,n .
(C10)

As before we give {Γα−n−1,eΓα,−n−1}n≥0 bidegree (1, 0) and {η∗i,n}n≥0 bidegree (0, 1). Then we
get a double complex with differential

d1 =
∑

n<0,α

eσ∗α,−n−1∂Γαn +σ
α
−n−1∂eΓα,n

+ Eαn
�

�

φ j,k=0
for k≥0

∂Γαn + Jα,n

�

�

φ j,k=0
for k≥0

∂
eΓα,n

, (C11)

and
d2 =
∑

n≥0,m≥0,α

�

σα∗m 〈η
∗
i,n, h(Eαm)〉+ eσ

∗
α,m〈η

∗
i,n, h(Jα,m)〉
�

�

�

�φ j,k=0
for k≥0

∂η∗i,n . (C12)

The E0 page complex is the standard Koszul complex with respect to the regular sequence
rα2n := eσ∗α,n + Eα−n−1|φ j,k=0

for k≥0

and rα2n+1 := σαn + Jα,−n−1|φ j,k=0
for k≥0

. We have

E1
0• = C[{φi,−n−1,η∗i,n,σα∗n , eσ∗α,n}n≥0]/(r

α
n ) . (C13)

Moreover, there is an isomorphism

C[{φi,−n−1,η∗i,n}n≥0]
≈
→ E1

0• , (C14)

under which the differential d2 becomes

d =
∑

n≥0,m≥0,α

�

Jα,−m−1〈η∗i,n, h(Eαm)〉+ Eα−m−1〈η
∗
i,n, h(Jα,m)〉
�

�

�

�φ j,k=0
for k>0

∂η∗i,n . (C15)

Now, we further simplify this formula. We recall that for any polynomial F ∈ C[{φi}i=1...,N f
]

we defined a polynomial (see 6.1.5) (F)n ∈ C[{φi}i=1...,N f ,n∈Z], which is defined on monomial
by

(φi1φi2 . . .φil )n =
∑

ni∈Z
n1+n2+···+nl=n+1−l

φi1,n1
φi2,n2

· · ·φil ,nl
, (C16)

and extend linearly to C[{φi}i=1...,N f
]. With this definition we immediately find that for any k

that 1≤ k ≤ l

(φi1 . . .φil )n =
∑

m∈Z

∑

ni∈Z
n1+n2+···+nk=n−m−k

φi1,n1
· · ·φik ,nk

∑

ni∈Z
nk+1+n2+···+nl=m+k+1−l

φik+1,nk+1
· · ·φil ,nl

=
∑

m∈Z
(φi1 . . .φik)n−m−1(φk+1 . . .φl)m .

(C17)
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By linearity we have (FG)n =
∑

m∈Z(F)n−m−1(G)m for any polynomial F and G.
Since W = EαJα, we have δW

δφi
= δEα
δφi

Jα + Eα δJα
δφi

and
�

δW
δφi

�

−n−1
=
∑

m∈Z

�

δEα

δφi

�

m−n−1
(Jα)−m−1 +
�

δJα
δφi

�

m−n−1
(Eα)−m−1 . (C18)

When we restrict these polynomial by letting φ j,k = 0 for k ≥ 0 we find that

�

δW
δφi

�

−n−1
|φ j,k=0
for k>0

=
∑

0≤m≤n

�

�

δEα

δφi

�

m−n−1
(Jα)−m−1 +
�

δJα
δφi

�

m−n−1
(Eα)−m−1

��

�

�

�φ j,k=0
for k>0

.

(C19)

Then we consider the expression
�

Jα,−m−1〈η∗i,n, h(Eαm)〉+ Eα−m−1〈η
∗
i,n, h(Jα,m)〉
�

�

�

�φ j,k=0
for k>0

. We

prove that for any F ∈ C[{φi}i=1...,N f
] we have

¬

η∗i,n, h((F)m)
¶

�

�

�φ j,k=0
for k>0

=
�

δF
δφi

�

m−n−1

�

�

�

�φ j,k=0
for k>0

. (C20)

We only need to prove this for monomial
¬

η∗i,n, h((φi1 . . .φil )m)
¶

�

�

�φ j,k=0
for k>0

=
∑

ni∈Z
n1+n2+···+nl=m+1−l

1
∑

j=1,...,l
with n j≥0

1

∑

j=1,...,l
with n j≥0

δi,i j
δn,n j

φi1,n1
· · · φ̂i j ,n j

. . .φil ,nl

�

�

�φ j,k=0
for k>0

=
∑

j=1,...,l

∑

ni≤0
n1+···+n̂ j+···+nl=m−n+1−l

δi,i j
φi1,n1

· · · φ̂i j ,n j
. . .φil ,nl

=

�

δ(φi1 . . .φil )

δφi

�

m−n−1

|φ j,k=0
for k>0

.

(C21)

Using this we find that

d2 =
∑

n≥0,0≤m≤n

�

(Jα)−m−1

�

δEα

δφi

�

m−n−1
+ (Eα)−m−1

�

δJα
δφi

�

m−n−1

��

�

�

�φ j,k=0
for k>0

∂η∗i,n

=
�

δW
δφi

�

−n−1

�

�

�

�φ j,k=0
for k>0

∂η∗i,n .

(C22)

This is exactly the complex computing the bulk algebra of chiral mutiplets with an arbitrary
superpotential W .
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