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Abstract

The quasiparticle effective mass m∗ of interacting electrons is a fundamental quantity
in the Fermi liquid theory. However, the precise value of the effective mass of uniform
electron gas is still elusive after decades of research. The newly developed neural canon-
ical transformation approach [Xie et al., J. Mach. Learn. 1, (2022)] offers a principled
way to extract the effective mass of electron gas by directly calculating the thermal en-
tropy at low temperature. The approach models a variational many-electron density
matrix using two generative neural networks: an autoregressive model for momentum
occupation and a normalizing flow for electron coordinates. Our calculation reveals a
suppression of effective mass in the two-dimensional spin-polarized electron gas, which
is more pronounced than previous reports in the low-density strong-coupling region.
This prediction calls for verification in two-dimensional electron gas experiments.

Copyright H. Xie et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 24-10-2022
Accepted 11-04-2023
Published 14-06-2023

Check for
updates

doi:10.21468/SciPostPhys.14.6.154

Contents

1 Introduction 2

2 Method 3

3 Results 7

4 Discussions 9

A Benchmark for three-dimensional spin-polarized uniform electron gas 10

B Entropy of non-interacting fermions in the canonical ensemble 10

C Twist-averaged boundary conditions 11

D Model architectures 12

1

https://scipost.org
https://scipost.org/SciPostPhys.14.6.154
mailto:linfeng.zhang.zlf@gmail.com
mailto:wanglei@iphy.ac.cn
https://global-sci.org/intro/article_detail/jml/20371.html
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.14.6.154&amp;domain=pdf&amp;date_stamp=2023-06-14
https://doi.org/10.21468/SciPostPhys.14.6.154


SciPost Phys. 14, 154 (2023)

D.1 Autoregressive model for p(K) 12
D.2 Normalizing flow for ΨK (R) 13

E Details of the training procedure 14
E.1 The Hutchinson’s trick 15
E.2 Stochastic reconfiguration for density matrices 15

References 16

1 Introduction

Landau’s Fermi liquid theory [1] is one of the cornerstones of condensed matter physics [2]. It
explains the mystery why the non-interacting picture can largely apply to real metals despite
the strong Coulomb repulsion between electrons. The essence is that a Fermi liquid consists
of quasiparticles that are adiabatically connected to bare electrons. Such a renormalization
procedure can be encapsulated in only a handful of parameters, from which one can predict
a broad range of physical properties of the system. One such parameter is the quasiparticle
effective mass m∗, which is the central focus of this work.

Surprisingly, the precise value of the quasiparticle effective mass of uniform electron gas
is still controversial after more than fifty years of research [3–17]. The uniform electron gas
consists of electrons distributed homogeneously in a background of positive charges. Despite
of being simple, the model captures the essence of electron correlation effects and serves as a
foundational model of interacting electrons [18,19].

Depending on the spatial dimension and spin polarization of the uniform electron gas,
previous results may differ quantitatively or even qualitatively on whether the quasiparticle
effective mass is enhanced (m∗/m> 1) or suppressed (m∗/m< 1) compared to the bare elec-
tron mass m. Resolving these discrepancies within the same approach can be challenging. For
example, there lacks a systematic way of improving various approximate analytic calculations
to reach a consensus [3–9]. It is hoped that numerical calculations offer more reliable predic-
tions to the effective mass. However, two recent quantum Monte Carlo (QMC) studies [16,17]
report drastically different effective masses for the three-dimensional electron gas. The rea-
son for such discrepancy is unclear and may be related to different (but equivalent) ways of
defining the effective mass as well as different approximations employed in the methods. The
situation is also not clear in the two-dimensional case, even if one employs the same kind of
QMC method [12–15]. There, the predicted effective mass differ qualitatively depending on
how to process the QMC data.1 These discrepancies are related to ambiguities in relating ex-
cited state energies to the effective mass [19], which again entangle with approximations and
finite size errors in the calculations.

Resolving the discrepancy on the effective mass of uniform electron gas is not only a theo-
retical question with pure academic interests, but also of direct experimental relevance. One
can measure the effective mass in a semiconductor quantum well via quantum oscillations [20–
24] or thermodynamics [25], which is a high-quality realization of the two-dimensional elec-
tron gas (2DEG) with tunable densities. Unless otherwise specified, we will focus on the spin-
polarized case in this paper, which can be conveniently realized in experiments by applying an
in-plane magnetic field.

1In fact, the predictions from each group also evolve over years; see Refs. [10–12] and [13–15] respectively.
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At sufficiently low temperature, the entropy per particle of 2DEG s/kB =
π2

3
m∗
m

T
TF

exhibits
linear dependence on the temperature T , where kB is the Boltzmann constant and TF is the
Fermi temperature. Therefore, one can directly estimate the effective mass from the entropy
ratio of interacting (s) and non-interacting (s0) electron gases [26]:

m∗

m
=

s
s0

. (1)

By direct access of the thermodynamic observables, one can avoid subtleties in relating excita-
tion energies of finite size system to the quasiparticle effective mass [19]. However, previous
finite-temperature calculations of the uniform electron gas do not resolve the issue related to
the effective mass [26] because they focus on melting of the Wigner crystal [27] or the equation
of state in the warm dense matter region [28–30], both are outside the scope of Fermi-liquid-
like behavior. This is partially due to the fact that the adopted QMC methods typically suffer
less from the sign problem at low density and high temperature, where the fermionic nature
of the system is less pronounced.

In this paper, we employ the recently developed neural canonical transformation ap-
proach [31] to study 2DEG at low temperature and estimate the effective mass via the entropy
ratio Eq. (1). Neural canonical transformation leverages recent advances in deep generative
models [32] for variational free energy calculation of interacting fermions at finite tempera-
ture. This approach is particularly suitable for the present task for two reasons: firstly, the
employed variational density matrix ansatz fits nicely to the philosophy of Fermi liquid the-
ory; secondly, the thermal entropy can be directly accessed unlike other conventional QMC
methods.

Consider N electrons in a two-dimensional periodic box of length L. We set the energy unit
to be Rydberg ħh2/2ma2

0, where a0 = ħh2/me2 is the Bohr radius. The dimensionless Wigner-
Seitz parameter rs = L/(

p
πNa0)measures the average distance between electrons in the unit

of Bohr radius. The Hamiltonian reads [33]

H = −
1
r2
s

N
∑

i=1

∇2
i +

2
rs

N
∑

i< j

1
�

�r i − r j

�

�

+ const. , (2)

where r i = (x i , yi) is the coordinate of the i-th electron. The constant term in Eq. (2) refers
to the energy due to the neutralizing background.

2 Method

To investigate the finite-temperature properties of Eq. (2), we minimize the variational free
energy

F =
1
β

Tr(ρ lnρ) + Tr(ρH) (3)

with respect to a many-electron density matrixρ, where β = 1/kB T is the inverse temperature.
In practice, T is measured relative to the Fermi temperature kB TF = 4Ry/r2

s . The variational
free energy Eq. (3) is lower bounded by the true free energy of the system, i.e., F ≥ − 1

β ln Z ,

where Z = Tre−βH is the partition function. The equality holds only when the variational
density matrix coincides with the exact one, i.e., ρ = e−βH/Z .

The variational density matrix is expressed as a weighted sum over a family of many-body
orthonormal basis states

ρ =
∑

K

p(K) |ΨK 〉〈ΨK | . (4)
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Figure 1: (a) A set of occupied momenta K residing on the reciprocal space grid
within an energy cutoff indicated by the circle. In the figure there are N = 13
electrons distributed in M = 49 allowed momenta. We use the autoregressive net-
work Eq. (6) to model the Boltzmann distribution of such configurations. (b) A set of
electron coordinates R residing in a periodic box. A normalizing flow network trans-
forms R to a new set of quasiparticle coordinates ζ in the same box. This induces
a unitary transformation which, when acting upon the plane-wave Slater determi-
nants, produces a set of many-body basis states Eq. (8).

Here K ≡ {k1, k2, . . . , kN} represents a set of occupied momenta, each (under the periodic
boundary conditions) taking one of the discrete values k = 2πn

L (n ∈ Z2) without duplication
as required by the Pauli exclusion principle. Such setting is closely in line with an essential
point of Fermi liquid theory [1]: one can label the low-energy excited states using the same
quantum number as the ideal Fermi gas. In practice, one has to truncate the momenta within
an energy cutoff, which is set to be sufficiently large to avoid bias in the considered temperature
range. Therefore, for M possible momenta within the energy cutoff, the summation Eq. (4)
involves
�M

N

�

terms. See Fig. 1(a) for a schematic illustration.
Substituting the density matrix ansatz Eq. (4) into Eq. (3), one finds an unbiased estimator

for the variational free energy:

F = E
K∼p(K)

�

1
β

ln p(K) + E
R∼|ΨK (R)|

2

�

Eloc
K (R)
�

�

. (5)

Here R ≡ {r 1, r 2, . . . , r N} is the set of electron coordinates and ΨK (R) = 〈R|ΨK 〉 the cor-
responding basis wavefunction. The local energy is defined
as Eloc

K (R) = −
1
r2
s

∑

i

�

∇2
i lnΨK (R) + (∇i lnΨK (R))

2� + 2
rs

∑

i< j
1

|r i−r j |
+ const. We use Ewald

summation to evaluate the Coulomb interaction term, while the gradient and Laplacian oper-
ator appearing in the kinetic term can be computed using automatic differentiation. We model
the Boltzmann distribution p(K) and wavefunction ΨK (R) using two generative networks.

We use a variational autoregressive network [34,35] to model the normalized Boltzmann
distribution p(K) over a set of discrete momenta:

p(K) =
N
∏

i=1

p (k i|k<i) , (6)

where each factor in the product is a parametrized conditional probability. To facilitate the
sampling of these conditional probabilities, we assign a unique index idx(k) ∈ {1,2, . . . , M}
to each of the M available momenta, e.g., according to their single-particle energies.2 We

2In practice, we choose to arrange the momenta in the order of decreasing energy. This stems from the observa-
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Figure 2: Two limiting cases of the present approach. The red horizontal lines indi-
cate benchmark values. (a) Non-interacting limit. The entropy per particle of N = 37
free electrons at T/TF = 0.15. The converged result 0.4227(4) agrees well with the
exact value 0.4232 calculated by recursion in the canonical ensemble [39].3 (b)
Zero-temperature limit. The ground-state energy per particle of N = 37 electrons at
rs = 5. The converged result −0.28746(8) is lower than the variational Monte Carlo
result −0.2863(1) of Ref. [40].

then model p(K) using a neural network that maps the set K = {k1, k2, . . . , kN} to N vectors
k̂1, k̂2, . . . , k̂N , where k̂ i ∈ RM denotes the conditional log-probability of idx(k i) given k<i .
To ensure the autoregressive property, i.e., k̂ i depends only on k j with j < i, we implement the
network as a transformer with causal self-attention layers [36]. In addition, to accommodate
the Pauli principle, we require Eq. (6) assign nonzero probabilities only to those momentum
configurations satisfying idx(k1) < idx(k2) < . . . < idx(kN ). This can be achieved by care-
fully masking out disallowed configurations in the output logits k̂ i .

3 We note that Refs. [37,38]
devised an alternative autoregressive model in the bit string representation with fixed number
of nonzero elements.

Using the autoregressive model Eq. (6) rather than enumerating all possible excita-
tions [31] in the summation Eq. (4) allows us to incorporate a combinatorially large number
of many-body states and access broader temperature range. One can estimate the thermal
entropy unbiasedly via the estimator

s = −
1
N
E

K∼p(K)
[ln p(K)] . (7)

Note such a simple and tractable expression for the entropy is a direct consequence of or-
thonormality of the many-body basis |ΨK 〉.

Next, to parametrize a family of orthonormal many-body states |ΨK 〉, we perform a unitary
transformation on the basis of plane-wave Slater determinants. In practice, we construct the

tion that a random parameter initialization of the present autoregressive network tends to assign higher probability
to configurations with large indices, which then have large overlap with the target Boltzmann distribution.

3See the Appendix for (a) additional benchmark for three-dimensional spin-polarized uniform electron gas; (b)
the analytic method to compute the thermal entropy of non-interacting Fermi gas in the canonical ensemble; (c)
discussion and implementation details about the use of twist-averaged boundary conditions; details on (d) model
architectures and (e) the training procedure.
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unitary transformation as a learnable bijection from the electron coordinates R to a new set of
quasiparticle coordinates ζ, as illustrated in Fig. 1(b). The wavefunction reads [31]

ΨK (R) =
det
�

eik i ·ζ j/L
�

p
N !

·
�

�

�

�

det
�

∂ ζ

∂ R

�

�

�

�

�

1
2

. (8)

The originally non-interacting plane waves possessed by individual electrons would interfere
with each other due to correlation effects introduced by the coordinate transformation. Such
a picture closely mimics the renormalization process as depicted in Fermi liquid theory. Tech-
nically, Eq. (8) differs from the standard Slater-Backflow trial wavefunction by the presence of
an additional Jacobian determinant. This factor turns out to play a crucial role of preserving
orthonormality of the basis

∫

dRΨ∗K (R)ΨK ′(R) = δK K ′ . Note also that the state Eq. (8) in-
volves coordinate transformation in a many-body context [41], where one needs to deal with
the extra issue of permutation equivariance compared to the single-particle setting [42–44].

We use a normalizing flow [45] to implement the bijective map between the electron and
quasiparticle coordinates. This can be regarded as a generalization of the backflow transfor-
mation with invertible neural networks [46]. We compose the FermiNet [47] blocks into a
residual network to carry out permutation and translation equivariant transformation of elec-
tron coordinates. We also modify the electron distance features to comply with the periodic
nature of the simulation box.3

It is instructive to examine the present approach in two limiting cases. Firstly, in the non-
interacting limit the problem reduces to a classical statistical mechanics problem: one needs to
distribute N particles in M possible momenta according to the probability distribution p(K) to

minimize the free energy F = EK∼p(K)

h

1
β ln p(K) +
∑N

i=1
ħh2k2

i
2m

i

, where the second term is the

non-interacting energy. In this case, one can trivially set the normalizing flow to an identity
map and optimize only the autoregressive network. Figure 2(a) shows a typical training pro-
cess, where the entropy Eq. (7) steadily approaches the exact value [39]. Note the calculation
of exact non-interacting entropy in the canonical ensemble is not a completely trivial task.3

Secondly, in the zero-temperature limit, p(K) is nonzero only for one particular momentum
configuration K0 corresponding to the closed-shell non-interacting ground state. The present
approach then reduces to the usual ground-state variational Monte Carlo method. As an ex-
ample, Fig. 2(b) shows the optimized ground-state energy density e = 1

N ER∼
�

�

�ΨK0
(R)
�

�

�

2

�

Eloc
K0
(R)
�

for a particular set of system parameters, which is lower than previous report using the Slater-
Jastrow ansatz [40]. In general cases, one has to jointly optimize the autoregressive model and
the normalizing flow. We show some additional benchmark results for the three-dimensional
spin-polarized electron gas in the Appendix.3

To understand how variational free energy calculation reveals the quasiparticle effective
mass, note the effective mass affects low-temperature thermodynamics of the system via the
density of states of low-lying excitations. In practice, we pretrain the state occupation p(K)
using non-interacting energies as in Fig. 2(a). Thus, p(K)will initially give the same entropy of
the ideal Fermi gas. We initialize the normalizing flow network to be close to an identity map.
Training of the normalizing flow will modify the many-body basis Eq. (8) and thus change
the quasiparticle energy spacing and density of states. On the other hand, the autoregressive
model will also adjust the Boltzmann distribution accordingly, causing the entropy to depart
from the initial non-interacting value. Putting it all together, the entropy ratio Eq. (1) thus
provides a principled way to extract the effective mass from the quasiparticle energy spectrum.
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Figure 3: (a) Entropy per particle of two-dimensional ideal Fermi gas for several
electron numbers N , including the thermodynamic limit. The dashed line shows
the linear behavior in the low-temperature limit. For finite N , we have used the
twist-averaged boundary conditions to reduce the finite size effect. (b) Entropy per
particle as a function of training epochs for N = 29 electrons at T/TF = 0.15 for
various densities rs. The reduction of entropy from the initial non-interacting value
indicates suppression of the quasiparticle effective mass.

3 Results

To access the quasiparticle effective mass of electron gas via the entropy ratio Eq. (1), one
should consider temperatures T well below the Fermi temperature TF . Figure 3(a) shows the
entropy per particle of ideal Fermi gas in the thermodynamic limit N =∞,4 which exhibits
linear behavior s0/kB =

π2

3
T
TF

in the low-temperature limit and crosses over to s0/kB = 2+ln T
TF

in the high-temperature limit. On the other hand, the temperature should also not be too low in
practical calculations, otherwise the finite size effect would cause the entropy to deviate from
the ideal linear behavior due to a small energy scale ħh2/mL2 ∼ N−1, as shown in Fig. 3(a) for
N = 29 and 57 non-interacting electrons. We choose to set T/TF = 0.15 to balance these two
considerations.

To obtain conclusive predictions of the effective mass, we adopt the twist-averaged bound-
ary conditions [48] to alleviate the finite size effect.3 Moreover, one can reasonably expect that
by taking the entropy ratio Eq. (1), the remaining finite size errors involved in the interacting
and non-interacting systems would further cancel out. Fig. 3(b) shows the interacting entropy
as a function of training epochs for N = 29 and various densities rs. One clearly sees the
entropies are reduced from the initial non-interacting values, indicating a suppression of the
effective mass upon increasing rs. The entropy fluctuates more strongly than the free energy
since it is more sensitive to the variation of model parameters in the training.

Early analytical calculations [7,49] find enhanced or non-monotonic rs-dependence of the
effective mass in spin-polarized 2DEG. On the other hand, several QMC calculations [13–15]
consistently find monotonically suppressed effective mass as rs increases, but the quantitative

4For two-dimensional ideal Fermi gas in the thermodynamic limit, one has s/kB = 2 f2(z)/ f1(z) − ln z and
T/TF = 1/ f1(z). Here 0≤ z <∞ is the fugacity and fν(z) = z − z2/2ν + z3/3ν − · · · is the Fermi-Dirac function.
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Figure 4: Quasiparticle effective mass computed using the entropy ratio Eq. (1) for
N = 29, 49 and 57 electrons at T/TF = 0.15. Also shown for comparison are the
QMC data [14, 15] extrapolated to the thermodynamic limit, as well as the analytic
result [49] which is valid in the weak-coupling limit rs→ 0.

predictions still differ, especially for large rs as shown in Figure 4.5 The discrepancy is due to
different ways of extracting effective mass from the excitation energies. Refs. [13, 14] obtain
the effective mass by differentiating the fitted energy band, while Ref. [15] is based on its
relation to other Landau Fermi liquid parameters by Galilean invariance. Both approaches
possess a number of uncertainties, such as the fitting range of momentum space and integration
error in estimating the Fermi liquid parameters. Though, the authors of Ref. [15] appeared to
be more confident with the larger effective mass values reported in Refs. [13,14].

Figure 4 also shows our estimates of the effective mass for N = 29, 49 and 57 electrons
based on the entropy ratio Eq. (1). We extract the interacting entropy by performing an
exponentially-weighted moving average over the training epochs. The error bars take into
account both the statistical uncertainties due to Monte Carlo sampling and the fluctuation of
variational parameters due to noisy gradients.6 The computed effective mass decreases mono-
tonically with increasing interaction strength. In the small rs region, the predicted effective
mass appears to converge well to the analytical result reported in Ref. [49], shown as the
green dashed line in Fig. 4, which is reliable in the weak-coupling limit rs → 0. However,
our predictions are lower than previous QMC results [14, 15] when rs is large. Such differ-
ences cannot be attributed to the remaining finite size errors.3 Since the present approach
based on the entropy ratio Eq. (1) is less subject to ad hoc assumptions and data processing

5Data taken from table IV of Ref. [15]. These results are extrapolated to the thermodynamic limit based on the
data of N = 29,57 and 101 electrons with a presumed N -scaling dependence. The data of Ref. [14] are improved
upon that of Ref. [13] so we only plot the former.

6See https://github.com/fermiflow/CoulombGas for code written in Jax [81]. The repository also contains the
original data, trained models and data processing scripts that can be used to reproduce the main results in Fig. 4.
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schemes, we believe it offers a cleaner and more reliable prediction on the effective mass of
spin-polarized 2DEG.

On the experimental side, both enhanced [50] and later then suppressed [51, 52] effec-
tive mass of the spin-polarized 2DEG are reported in different systems. The discrepancy was
attributed to the valley degeneracy [53,54] involved in the sample used in Ref. [50]. The ex-
perimental data [51, 52] spread widely between our predictions and those of Refs. [13–15].7

Confirmation of the present results calls for a new generation of experimental efforts, where
besides data uncertainty issue one also has to account for various complications in reality
for a fair comparison, such as thickness of the electron layer, disorder and temperature ef-
fects [7,55–57].

4 Discussions

The variational approximation of the present approach may be improved by adopting alter-
native network ansatz [58–60] and optimization schemes [61,62]. We have documented the
original data and trained models in the code repository6 to facilitate further developments.
In the present implementation, the finite size errors have been largely reduced by adopting
the twist-averaged boundary conditions. To scale up the calculation to larger systems one
can employ machine learning techniques such as gradient checkpointing [63] and distributed
training [64]. Specifically, techniques for efficiently training flow models and invertible neural
networks [65–70] can be useful. It is also profitable to integrate the present standalone imple-
mentation into an existing software framework [71]. On the other hand, a rigorous finite-size
scaling theory for the entropy of uniform electron gas is also valuable for a direct extrapolation
to the thermodynamic limit.

With suitable extensions of the model architecture, the technique developed in this paper
can apply equally well to the spin-unpolarized case. This may shed new light on the conflicting
results reported in the literature on the three-dimensional [16,17] and two-dimensional [10–
15] electron gases. While we have been focusing on the quasiparticle effective mass, the
outcomes of the present approach are also directly relevant to the exchange-correlation free
energy, which are useful for the thermal density functional theory [26,30] and thermodynamic
measurements in the 2DEG [25]. Along this line, it is also possible to extend the present study
to the grand canonical ensemble and compute the compressibility and susceptibility of electron
gas measurable in experiments [22,23,72,73]. Finally, having direct access to the energy and
wavefunction of low-lying excitations may also allow for calculation of spectral functions at
real frequencies.

Neural canonical transformation [31] not only serves as a variational free energy approach
powered by deep learning techniques, but also nicely incorporates basic notions of Fermi liquid
theory. For example, the probabilistic model p(K) in Eq. (4) actually encapsulates the Landau’s
energy functional for quasiparticles. Moreover, the unitary transformation implemented as a
normalizing flow between the electron and quasiparticle coordinates vividly illustrates the
notion of adiabatic continuity when switching on interactions [2]. Because of these technical
and physical considerations, we are optimistic with the outcome of applying neural canonical
transformation to a broader class of interacting fermion problems.

7We note that the indicated rs values of the same data plotted in Fig. 2 of Ref. [49] and Fig. 9 of Ref. [14] differ
by a factor of two.
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Figure S1: (a) Kinetic energy and (b) potential energy per particle of N = 33 spin-
polarized electrons in 3D with rs = 10 and T/TF = 0.0625. The converged values are
k = 0.04250(7) and v = −0.14360(7), while the red horizontal lines k = 0.0426(1)
and v = −0.14358(1) are from the restricted path integral Monte Carlo calcula-
tion [28].
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A Benchmark for three-dimensional spin-polarized uniform elec-
tron gas

We carry out additional benchmark calculation for three-dimensional spin-polarized uni-
form electron gas in a periodic cubic box of length L. We use the same network architec-

tures and training procedure as described in the main text, except that rs =
� 3

4πN

�
1
3 L

a0
and

kB TF =
�9π

2

�
2
3 Ry/r2

s in the three-dimensional case. The two panels of Fig. S1 display a typ-
ical training process of the kinetic energy k and potential energy v per particle, respectively.
Note that rs = 10 is within the low-density parameter range where the restricted path integral
Monte Carlo method [28] can favorably produce accurate results.

B Entropy of non-interacting fermions in the canonical ensemble

To compute the entropy of N non-interacting fermions at (inverse) temperature β , we first
compute the partition function ZN of the system in the canonical ensemble via the recursion
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formula [39]

ZN =
1
N

N
∑

ℓ=1

(−1)ℓ−1zℓZN−ℓ , (B.1)

where Z0 = 1 and zℓ =
∑

k exp
�

−ℓβ ħh
2k2

2m

�

is the single-particle partition function at temper-
ature ℓβ . Note that Eq. (B.1) involves adding exponentially small numbers with alternating
signs, thus one needs to use high-precision arithmetics to obtain reliable results for large par-
ticle number N .

After obtaining ZN , we evaluate the entropy per particle of ideal Fermi gas using the stan-
dard formula

s0 =
1
N

�

ln ZN − β
∂

∂ β
ln ZN

�

. (B.2)

The derivative in Eq. (B.2) can be conveniently computed by automatic differentiation through
high-precision arithmetics, which is natively supported in, e.g., Julia [74]. Alternatively, one
can manually differentiate both sides of Eq. (B.1) with respect to β to derive a similar recursion
relation for the energy EN = −

∂
∂ β ln ZN :

EN =
1

ZN

1
N

N
∑

ℓ=1

(−1)ℓ−1zℓZN−ℓ(ℓeℓ + EN−ℓ) , (B.3)

where eℓ = −
∂

∂ (ℓβ) ln zℓ is the expected single-particle energy at temperature ℓβ . The starting
point of this recursion is, unsurprisingly, E0 = 0.

C Twist-averaged boundary conditions

In this work, we aim to simulate an interacting Fermi liquid consisting of finite number of
electrons in a finite box. Under the conventional periodic boundary conditions (PBC), the
single-particle momenta reside on a discrete lattice k = 2πn

L (n ∈ Z
2), as illustrated in Fig. 1(a)

of the main text, and the identification of a sharp spherical Fermi surface characteristic of the
system is ambiguous. This is a major contribution to the finite size errors of various physical
quantities.

A useful technique to alleviate the finite size effect is to use the twist-averaged boundary
conditions (TABC) [48]. This amounts to averaging physical observables over a twist vector
θ t ∈ [−π,π]2, which corresponds to the extra phase picked up when the electrons wrap
around the periodic boundaries of simulation box. Consequently, the single-particle momenta
k = 1

L (2πn+θ t)would be shifted away from the integer lattice points. When the twist average
is performed, the effective state occupation “smears out” continuously as in the thermodynamic
limit, thus yields better scaling behavior for various physical quantities.

To illustrate the impact of TABC on the simulation, we compute the entropies per particle
s0 of two-dimensional ideal Fermi gas at the temperature T/TF = 0.15 for various particle
numbers N , as shown in Fig. S2. The results labeled as “PBC” are computed at the Γ point
θ t = 0, whereas the “TABC” results are obtained by averaging the entropy over 10000 uni-
formly sampled twists. It is clear that TABC results in more regular scaling behavior for small
N and converges more smoothly to the thermodynamic limit N =∞. We also plot the same
data versus inverse particle number N−1 in the inset to better visualize how they extrapolate
to the thermodynamic limit.

In practice, we choose to implement the twist average over a 2 × 2 Monkhorst-Pack
grid [75], which corresponds to a single twist vector θ t = (

π
2 , π2 ) [76, 77] after taking into

account the point group symmetry of the simulation box. Such a scheme is more convenient
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Figure S2: Scaling behavior of the entropy per particle of two-dimensional free Fermi
gas at T/TF = 0.15 for various closed-shell particle numbers N from 13 up to 121,
as well as the value in the thermodynamic limit N =∞. The points N = 29,49 and
57 used for the calculation of quasiparticle effective mass in this work are specifically
annotated. See text for detailed explanations of the legend.

than randomly sampling the twist vectors, and introduces essentially no extra computational
cost and code development efforts. We also plot the non-interacting entropies per particle un-
der this scheme in Fig. S2 labeled as “2×2”, which are in excellent agreement with the results
obtained by random sampling. For the largest system size (N = 57 electrons) employed in our
calculation of the quasiparticle effective mass, the non-interacting entropy deviates from the
thermodynamic limit value by about 8%. One would then reasonably expect the uncertainties
in the final estimate of effective mass to be within the same level, assuming a similar N -scaling
behavior of the interacting entropy.

D Model architectures

This section summarizes the network architectures used for the autoregressive model and
normalizing flow. They are adapted from the transformer [36] and FermiNet [47], respectively.
Please refer to the original publications for more background on these models.

D.1 Autoregressive model for p(K)

In Algorithm 1, given the momenta k1, k2, . . . , kN occupied by the N electrons,
CausalTransformer [36] outputs N M -dimensional arrays k̂1, k̂2, . . . , k̂N , where k̂ i denotes
the logits of the index of k i corresponding to the conditional probability p(k i|k<i). The num-
ber M of available momenta k = 1

L (2πn+θ t) is determined by a single-particle energy cutoff
|n|2 ≤ Emax. For N = 29,49 and 57 in our calculations, Emax is chosen to be 25,36 and 49,
respectively, corresponding to the number of available momenta M = 81,113 and 149.
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Table S1: The hyperparameters of the causal transformer adopted in this work. Note
that we choose the non-linear activation of the fully connected neural network in-
volved in the architecture to be tanh, which is smooth enough to avoid potential
issues upon automatic differentiation.

Hyperparameter Description Value

nlayers Number of layers 2

modelsize
The size of input and output, also

known as the “embedding dimension”
16

nheads
Number of heads of the

self-attention part within each layer
4

nhidden
Number of hidden units of the

fully connected neural network within each layer
32

Algorithm 1 Autoregressive probabilistic model for a set of momenta.

Input: A set of momenta K = {k1, k2, . . . , kN}. An index function that identifies each available
momentum k to an integer idx(k) ∈ {1, . . . , M}.

Output: Log-likelihood ln p(K).
1: k̂1, k̂2, . . . , k̂N = CausalTransformer(k1, k2, . . . , kN )
2: for each i do ▷ ensure Pauli exclusion principle
3: k̂ i,≥M−N+i+1 = −∞
4: k̂ i,≤idx(k i−1) = −∞
5: k̂ i = k̂ i − logsumexp(k̂ i) ▷ normalization
6: end for
7: return
∑

i k̂ i,idx(k i)

Table S1 summarizes the adopted value of hyperparameters of the network
CausalTransformer throughout our calculations. For more implementation details, please
refer to our source code.6 Other architectures of the autoregressive model are also possible,
such as the masked autoencoder [78], but our choice here based on the transformer turns
out to scale more favorably to large systems regarding the number of trainable parameters
involved.

D.2 Normalizing flow for ΨK (R)

Recall that our goal is not to model a single wavefunction as done in ground-state calculations,
but an exponentially large family of orthonormal many-electron basis states ΨK (R). As shown
in Eq. (8) of the main text, we achieve this goal by bijectively mapping the original electron
coordinates R to the quasiparticle coordinates ζ.
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Algorithm 2 Translation and permutation equivariant coordinate transformation.

Input: Electron coordinates R = {r 1, r 2, . . . , r N} and box length L.
Output: Transformed quasiparticle coordinates ζ.

1: f1 = zeros_like(R) ▷ array shape: (N , 2)
2: r i j = r i − r j ▷ array shape: (N , N , 2)

3: f2 =
hÇ

sin2
�πx i j

L

�

+ sin2
�πyi j

L

�

, cos
�2πr i j

L

�

, sin
�2πr i j

L

�
i

4: for ℓ= 1, · · · , d do
5: g = [ f1, mean( f 1,axis= 0), mean( f 2,axis= 1)]
6: if ℓ= 1 then
7: f1 = softplus(FCℓh1

(g )) ▷ array shape: (N , h1)

8: f2 = softplus(FCℓh2
( f2)) ▷ array shape: (N , N , h2)

9: else
10: f1 = softplus(FCℓh1

(g )) + f1
11: f2 = softplus(FCℓh2

( f2)) + f2
12: end if
13: end for
14: g = [ f1, mean( f 1,axis= 0), mean( f 2,axis= 1)]
15: f1 = softplus(FCh1

(g )) + f1
16: return R+ FC2( f1)

Algorithm 2 implements this transformation using blocks from the FermiNet [47]. The
one- and two-electron features f 1 and f 2 are fed into a sequence of fully connected layers FCℓh1

and FCℓh2
, where h1, h2 are the one- and two-particle feature size, respectively, and ℓ ranges

from 1 to d. Initially, f 2 contains pairwise distance features of the electrons in a periodic
box [79], while f 1 is set to be zero to guarantee the translation equivariance property. Each
fully connected layer involved in the algorithm has its own independent parameters, including
those at the final stage. Throughout our calculations, the network depth is set to be d = 2 and
h1 = h2 = 16. We note that one can repeat Alg. 2 several times to compose an iterative-
backflow-like transformation [31,80] in terms of neural networks.

In principle, one may want to ensure invertibility of the coordinate transformation [66]
to make for a genuine normalizing flow model. To our best knowledge, there lacks such a
rigorous guarantee for Alg. 2 described above. Nevertheless, the practical training process
still appears stable. This is probably because the network we adopt is not very deep.

E Details of the training procedure

We sample electron momenta K directly from the autoregressive model in an ancestral man-
ner; see Eq. (6) in the main text. Given the momenta, we then sample the electron coordinates
R using the Metropolis algorithm according to Born probability of the wavefunction Eq. (8).
The batch size is set to be 8192. We compute the Jacobian ∂ ζ

∂ R of the coordinate transfor-
mation involved in the wavefunction ansatz using forward-mode automatic differentiation in
Jax [81].

Building on these self-generated samples, we train the autoregressive model Eq. (6) and
the normalizing flow Eq. (8) jointly to minimize the variational free energy Eq. (5). The
gradient estimators with respect to the parameters φ and θ in the autoregressive model and
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normalizing flow, respectively, can be easily derived as follows:

∇φF = E
K∼p(K)

�

∇φ ln p(K)

�

1
β

ln p(K) + E
R∼|ΨK (R)|

2

�

Eloc
K (R)
�

��

, (E.1a)

∇θ F = 2ℜ E
K∼p(K)

E
R∼|ΨK (R)|

2

�

∇θ lnΨ∗K (R) · E
loc
K (R)
�

, (E.1b)

where the wavefunction ΨK (R) has been assumed to be complex-valued, as suggested by
Eq. (8). One can employ the control variate method [31,34,82] to further reduce the variance
of these estimators.

Below we present some more techniques employed to make the training as efficient as
possible.

E.1 The Hutchinson’s trick

The computational bottleneck of the variational free energy Eq. (5) and gradient estimators
Eq. (E.1) lies in the Laplacian ∇2 lnΨK (R) involved in the local energy, which amounts to
computing the trace of the 2N × 2N Hessian matrix H (lnΨK (R)). In the standard automatic
differentiation approach, one needs to iterate over the rows or columns of the Hessian, which
can be inefficient for large systems.

To reduce the computational complexity, we employ the Hutchinson’s stochastic trace es-
timator [83]

∇2 lnΨK (R) = E
ε∼ f (ε)

�

εT ·H (lnΨK (R)) · ε
�

(E.2)

over a 2N -dimensional random vector ε with zero mean and identity covariance matrix. The
probability density f (ε) can, for example, be chosen as a standard Gaussian. The Hessian-
vector product involved in Eq. (E.2) can be efficiently computed by combining forward- and
reverse-mode automatic differentiation in Jax [81]. The price we pay, however, is an addi-
tional source of randomness on top of the original estimators Eqs. (5) and (E.1), which may
potentially require more samples to achieve a given statistical accuracy.

In practice, we choose to apply the Hutchinson’s trick only to Hessian of the Jacobian
determinant term in lnΨK (R); see Eq. (8). In this way, one can enjoy an overall speedup of
roughly one order of magnitude without sacrificing accuracy due to enlarged variance of the
estimators.

E.2 Stochastic reconfiguration for density matrices

The quantity of central interest for the purpose of this work is the thermal entropy, which turns
out to be fairly sensitive to the training process. We thus employ the stochastic reconfiguration
method [79], which is much more efficient than conventional first-order optimizers like Adam.

In the context of machine learning a classical generative model or the ground-state varia-
tional Monte Carlo of quantum systems, the conventional metric for the parameter space in-
volved is well known as the Fisher information. To find an appropriate metric for the present
quantum statistical mechanics setting, the arguably most natural candidate is the Bures dis-
tance, defined for two density matrices ρ and σ as [84]

d2
B(ρ,σ) = 2
�

1− Tr
Æp
ρσ
p
ρ
�

. (E.3)

The second term on the right-hand side is well known as the quantum fidelity [85].
Recall from Eq. (4) in the main text that ρ(φ,θ ) =

∑

K p(K ;φ) |ΨK (θ )〉〈ΨK (θ )|, where
φ and θ are the variational parameters in the classical Boltzmann distribution and quantum
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many-body basis, respectively. By expanding the Bures distance in the neighborhood of a
certain point (φ,θ ), one can obtain [84]

d2
B(ρ(φ,θ ),ρ(φ +∆φ,θ +∆θ ))≈

1
4

∑

i j

Ii j∆φi∆φ j +
∑

i j

Ji j∆θi∆θ j , (E.4)

for some positive-definite matrices I andJ . The most important observation is that the desired
metric is block-diagonal with respect to the two generative models in this work. This fact is
favorable in practice, since the metric needs to be inverted to determine the parameter update
direction in each training step. Note the size of I,J are equal to the number of parameters
in the autoregressive model and normalizing flow, respectively, both in the order of several
thousand throughout our calculations.

I coincides exactly with the classical Fisher information matrix

Ii j =
∑

K

1
p(K)

∂ p(K)
∂ φi

∂ p(K)
∂ φ j

= E
K∼p(K)

�

∂ ln p(K)
∂ φi

∂ ln p(K)
∂ φ j

�

, (E.5)

whereas the quantum component J reads

Ji j =ℜ
�

∑

K

p(K)

�

∂ΨK

∂ θi

�

�

�

�

∂ΨK

∂ θ j

�

−
∑

K ,K ′

2p(K)p(K ′)
p(K) + p(K ′)



∂ΨK

∂ θi

�

�

�

�

ΨK ′

·

�

ΨK ′

�

�

�

�

∂ΨK

∂ θ j

��

. (E.6)

The double summation over momenta in the second term of Eq. (E.6) is inconvenient to esti-
mate. In practice, we choose to approximate Ji j as the following covariance matrix

Ji j =ℜ
�

E
K∼p(K)

E
R∼|ΨK (R)|2

�

∂ lnΨ∗K (R)

∂ θi

∂ lnΨK (R)
∂ θ j

�

− E
K∼p(K)

E
R∼|ΨK (R)|2

�

∂ lnΨ∗K (R)

∂ θi

�

E
K∼p(K)

E
R∼|ΨK (R)|2

�

∂ lnΨK (R)
∂ θ j

��

. (E.7)

Notice the first term is the same as that of Eq. (E.6), which is clearly a natural generalization
of the usual quantum Fisher information matrix for pure states. The trainings turn out to still
behave quite well.

The update rules for the parameters φ,θ read as follows:

∆φ = −(I +η1)−1∇φF , (E.8a)

∆θ = −(J +η1)−1∇θ F , (E.8b)

where we have added a small shift η= 10−3 to the diagonal of (modified) Fisher information
matrices for numerical stability. The norms of updates are constrained within a threshold of
10−3 [47], which plays a similar role as the learning rate in other conventional optimizers.
See the source code6 for more details.
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