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Abstract

Quantum r -Airy structures can be constructed as modules of W(glr )-algebras via re-
striction of twisted modules for the underlying Heisenberg algebra. In this paper we
classify all such higher quantum Airy structures that arise from modules twisted by au-
tomorphisms of the Cartan subalgebra consisting of products of disjoint cycles of the
same length. An interesting feature of these higher quantum Airy structures is that the
dilaton shifts must be chosen carefully to satisfy a matrix invertibility condition, with a
natural choice being roots of unity. We explore how these higher quantum Airy struc-
tures may provide a definition of the Chekhov, Eynard, and Orantin topological recursion
for reducible algebraic spectral curves. We also study under which conditions quantum
r -Airy structures that come from modules twisted by arbitrary automorphisms can be
extended to new quantum (r +1)-Airy structures by appending a trivial one-cycle to the
twist without changing the dilaton shifts.
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1 Introduction

The topological recursion of Chekhov, Eynard, and Orantin [10–12] is a formalism that can
be used to solve various enumerative problems involving Riemann surfaces. It relies on the
geometry of a spectral curve, which is realized as a branched covering of P1, and constructs
generating functions for enumerative invariants via residue analysis on the spectral curve.

Kontsevich and Soibelman introduced the concept of quantum Airy structures in [1, 13]
as an algebraic reformulation (and generalization) of the topological recursion. A quantum
Airy structure is a set of second-order partial differential operators Hi that satisfy certain spe-
cific conditions. The key result is that, under these conditions, there always exists a unique
solution to the differential constraints Hi Z = 0, where Z has the specific form of a generating
function. It can be shown that the topological recursion of Chekhov, Eynard, and Orantin can
be reformulated as a special case of quantum Airy structures [1,5,13].

Meanwhile, the original topological recursion of Chekhov, Eynard, and Orantin was also
generalized in [7–9]. In the original formulation, the spectral curve was required to be a
branched covering of P1 with only simple ramification points. The restriction was removed
in [7–9], to allow for branched coverings with arbitrary ramifications. However, the resulting
topological recursion is not a special case of quantum Airy structures anymore as originally
formulated by Kontsevich and Soibelman.

This conundrum was resolved in [4], where the concept of higher quantum Airy structures
was introduced. The main difference with the original quantum Airy structures of Kontsevich
and Soibelman is that the restriction that the differential operators are second-order is relaxed,
and differential operators of arbitrary order are considered. In particular, a large class of
higher quantum Airy structures was constructed in [4] as modules for W(g)-algebras, where
g is a Lie algebra. It was then shown that the generalized topological recursion of [7–9] can
be reformulated as a special case of higher quantum Airy structures realized as modules of
W(glr)-algebras.

Those modules of W(glr)-algebras that take the form of higher quantum Airy structures
were constructed in [4] by restricting twisted modules for the Heisenberg VOA associated to
the Cartan subalgebra h of glr (see also [2,3,14] for related work). As such, the construction
relies on a choice of automorphism σ of h. In principle, arbitrary automorphisms can be
considered. But it is not a priori obvious that the resulting modules may take the form of
quantum higher Airy structures. While arbitrary automorphisms were briefly considered in [4],
the paper mostly focused on the case where σ is either the automorphism induced by the
Coxeter element of the Weyl group (i.e. it permutes all basis vectors of h cyclically) – see
Theorem 4.9 in [4] – or the case whereσ permuted all but one basis vectors of h – see Theorem
4.16. From the point of view of enumerative geometry, the former are related to various
flavours of (closed) intersection theory on Mg,n (or variants thereof), while the latter are
related to open intersection theory.
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A natural question then is to attempt to classify all higher quantum Airy structures that
arise as modules of W(glr)-algebras via the construction above, for abitrary automorphisms
σ. This is the main motivation behind the current paper. At this stage, a full classification
remains out of reach. But we make a small step in this direction in Section 3. We classify
all higher quantum Airy structures that arise from automorphisms σ consisting of products of
disjoint cycles of the same length. This is achieved in Theorem 3.5.

One byproduct of Theorem 3.5 as that the dilaton shifts cannot simply be 1 anymore, as
in [4]. In Section 3.5 we study a particularly interesting class of examples of the quantum
r-Airy structures constructed in Theorem 3.5, where the dilaton shifts are taken to be roots of
unity. This is perhaps the most natural way to achieve the invertibility requirement stated in
Theorem 3.5.

It is also interesting to investigate the connection of these higher quantum Airy structures
with topological recursion. The generalized topological recursion of [7–9] is a special case
of higher quantum Airy structures for W(glr) obtained by taking σ to be the automorphism
induced by the Coxeter element of the Weyl group. What should the higher quantum Airy struc-
tures constructed from other choices of automorphisms correspond to? The natural guess is
that they should produce a further generalization of topological recursion for spectral curves
that are formulated as reducible algebraic curves. While we do not pursue this research di-
rection in detail in this paper, we briefly explore this potential interpretation in Section 3.6,
focusing on the higher quantum Airy structures obtained in Section 3.5 with dilaton shifts
being roots of unity. It should be possible to use these higher quantum Airy structures to for-
mulate such a generalization of topological recursion in terms of residue analysis on reducible
spectral curves. We hope to probe this research direction further in the near future.

We also study whether the idea of Theorem 4.16 of [4] can be generalized further. In
essence, what Theorem 4.16 is saying is that, given a quantum r-Airy structure constructed as
a W(glr)-module forσ the fully cyclic automorphism (Theorem 4.9), one can always construct
a new quantum (r+1)-Airy structure as a W(glr+1)-module by “appending” to σ a trivial one-
cycle, with no extra dilaton shift. As the higher quantum Airy structures of Theorem 4.9 are
related to closed intersection theory, and those of Theorem 4.16 to open intersection theory,
this could be understood as some sort of open/closed correspondence.

In Section 4 we prove under which conditions this idea of “appending a one-cycle” works.
Namely, we start with any quantum r-Airy structure constructed from an arbitrary automor-
phism σ, and we prove under which condition appending a one-cycle, with no extra dilaton
shift, gives rise to a new quantum (r+1)-Airy structure (see Theorem 4.1). While the enumer-
ative geometric side of the story is unknown at this stage, if these arbitrary quantum r-Airy
structures do have an interpretation in terms of closed intersection theory, the new ones may
be expected to provide an open version of the enumerative geometric problem.

We conclude with future directions in Section 5. In particular, it would be very interesting
to investigate whether these higher quantum Airy structures for more general automorphisms
σ have an enumerative geometric interpretation, and whether “appending one-cycles” as in
Section 4 leads to a general open/closed correspondence statement.

Remark

Shortly after this paper was submitted to arXiv, a paper by Borot, Kramer and Schüler was
submitted to arXiv [6], in which they also study the classification of higher quantum Airy
structures obtained as modules of W(glr+1)-algebras. Their classification goes beyond the one
presented in the current paper. They also propose a precise formulation of the corresponding
topological recursion on reducible spectral curves that we discuss in Section 3.6.
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2 Background

In this section we review the concept of higher quantum Airy structures, and the construction
of [4], in order to motivate the problem addressed in this paper. We note that this paper is not
meant to be self-contained: we simply recall the definitions and results that are necessary for
the remainder of the paper. For the detailed construction of higher quantum Airy structures
as modules of W-algebras, the reader should consult [4].

2.1 Higher quantum Airy structures

We start by defining higher quantum Airy structures. For simplicity, we only state the explicit,
basis-dependent definition:

Definition 2.1 ( [4], Definition 2.6). Let V be a vector space over C. Let (ei)i∈I be a basis of V ,
and (x i)i∈I the corresponding basis of linear coordinates, where I is an appropriate index set.
Let ℏ denote a formal parameter. Let Dℏ be the completed algebra of differential operators on
V , and define an algebra grading by assigning

deg x l = deg ℏ∂x l
= 1 , deg ℏ= 2 . (1)

A higher quantum Airy structure on V is a family of differential operators (Hk)k∈I such that:

1. They take the form
Hk = ℏ∂xk

− Pk , (2)

where Pk ∈ Dℏ is a sum of terms of degree ≥ 2 (this is a condition on the degree 0 and
1 terms of the Hk).

2. There exist gk3
k1,k2
∈Dℏ such that

�

Hk1
, Hk2

�

= ℏ
∑

k3∈I

gk3
k1,k2

Hk3
. (3)

We define a quantum r-Airy structure as a higher quantum Airy structure such that all Pk only
have terms of degree ≤ r.

2.2 Higher quantum Airy structures as modules of W(glr)-algebras

In this paper we focus on higher quantum Airy structures that are obtained as modules of
W(glr)-algebras, following the construction of [4]. We will not go through the details of this
construction here, but simply highlight its main features. The reader should supplement this
paper with a careful reading of [4].

Before we describe these higher quantum Airy structures we make the following combina-
torial definition.

Definition 2.2. For r ∈ Z+ we define a λ-good index set

Λr :=
�

(i, m) ∈ Z2
≥0 : 1≤ i ≤ r, m≥ i −λ(i)

	

, (4)

where we have defined
λ(i) =min{s|λ1 + · · ·+λs ≥ i} ,

and λ= (λ1,λ2, . . . ,λl) with λ1 ≥ λ2 ≥ . . .≥ λl ≥ 1 is an integer partition of r.
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With this definition out of the way, we can highlight the main features of the construction
of [4]. The starting point is the realization that the W(glr)-algebra with central charge c = r
is strongly freely generated by exactly r vectors |vi〉, i = 1, 2, . . . , r, in the Heisenberg VOA
associated to the Cartan subalgebra h of glr , with conformal weights 1, 2, . . . , r. The idea then
is to construct a module Y for the W(glr)-algebra such that an appropriate subset of the modes
of the fields H i(z) = Y (|vi〉, z) takes the form of a higher quantum Airy structure.

More precisely, the construction is carried through the following steps (see Section 4 in
[4]). Let h be the Cartan subalgebra of glr , and σ be an element of the Weyl group of glr . Let
|vi〉, i = 1,2, . . . , r be the strong, free, generators of the W(glr)-algebra with central charge
c = r.

1. We construct a σ-twisted module T of the Heisenberg VOA associated to h. Upon re-
striction to the W(glr)-algebra (which is a sub-VOA of the Heisenberg VOA), the module
becomes untwisted. The underlying vector space of T is the space of formal series in
countably many variables x1, x2, . . ., and elements of W(glr) act as differential operators
(of order at most rank(glr) = r) in the xks.

2. We denote by W i(z) = T (|vi〉, z) the fields of the strong, free, generators of the W(glr)-
algebra. We pick a subset of the modes W i

m of these fields, such that (i, m) ∈ Λr for some
partition λ of r. We call such a subset λ-good. It is shown in Section 3.3 of [4] that a
subset of the modes W i

m fulfils condition (2) in the definition of a higher quantum Airy
structure (Definition 2.1) if and only if it is λ-good for some partition λ of r.

3. For the modes W i
m to form a higher quantum Airy structure, they must also satisfy condi-

tion (1) in Definition 2.1. This can potentially be achieved by conjugation (the so-called
dilaton shift):

H i
m = T̂sW

i
m T̂−1

s , T̂s := exp

�

−
Q∂xs

s

�

, (5)

for some integer s and constant Q, in conjunction with potential linear combinations of
modes. (Note that by the Baker-Campbell-Hausdorff formula, (5) is equivalent to the
shift

xs 7→ xs −
Q
s

, (6)

in the modes W i
m.) If condition (1) can be achieved in this way, the H i

m form a quantum
r-Airy structure, with the index set I = Λr for the chosen partition λ of r.

This construction was carried out in Section 4.1 of [4] for σ the automorphism of the Car-
tan subalgebra h of glr induced by the Coxeter element of the Weyl group, which permutes
cyclically all r basis vectors of h. In this context, the main result is Theorem 4.9 of [4], which
states that, for a given r, the construction above does produce a unique quantum r-Airy struc-
ture for each choice of integer s ∈ {1,2, . . . , r + 1} such that r = ±1 mod s. The partition λ
defining the appropriate subalgebra of modes is uniquely fixed by the choice of s. See Theorem
4.9 in [4] for details.

But there is no reason a priori to focus on the automorphism σ induced by the Coxeter
element of the Weyl group: one could start with any automorphism σ of the Weyl group.
As an example, a more general case is studied in Section 4.2.2 of [4], where σ is chosen
to permute the r − 1 first basis vectors of h and leave the last one invariant. The result is
Theorem 4.16, which states that, for a given r, the construction does again produce a unique
quantum r-Airy structure, but this time for each choice of integer s ∈ {1, . . . , r} such that s|r.
As before, the partition λ is uniquely fixed by the choice of s. In this case however, a new
subtelty arises: one must consider linear combinations of the conjugated modes H i

m to ensure
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that the condition (1) in Definition 2.1 is satisfied. But for this particular choice of σ, this can
be achieved fairly easily (see Theorem 4.16).

One may then ask the following questions. Does the construction outlined above produce
quantum r-Airy structures for all choices of automorphisms σ of the Weyl group? And if so,
for what choices of integer s? And, given a choice of σ and s, is the corresponding partition λ
uniquely fixed?

In other words:

Can one classify all quantum r-Airy structures that can be produced as modules of
W(glr)-algebras via the construction above?

It turns out that the main difficulty in producing such a classification lies in step (3). It is
straightforward to construct the σ-twisted module (and its restriction to the W(glr)-algebra)
in step (1) for an arbitrary automorphism σ: in fact, this is already done in Section 4.2.1
of [4]. As for step (2), the classification of the subsets of modes that satisfy condition (2) in
Definition 2.1) is already completed, as it is a purely algebraic property: it does not depend
on the particular choice of W(glr)-module. As mentioned above, the result is that the subset
of modes satisfies condition (2) if and only if it is λ-good with respect to some partition λ of
r. What is tricky is to show that we can bring all modes W i

m in a chosen λ-good subset in a
form that satisfies the condition (1) of Definition 2.1 via conjugation and linear combinations,
i.e. step (3). This is rather non-trivial.

We can be a little more explicit. One can think of condition (1) of Definition 2.1 as having
three parts:

(a) All operators have no degree 0 terms;

(b) All operators have no degree 1 terms that are coordinates xks;

(c) The degree one terms are all of the form ℏ∂k, and all derivatives ℏ∂k appear exactly once
in the degree 1 term of an operator.

If we have achieved conditions (a) and (b) by conjugation of the modes W i
m, then what re-

mains to be checked is that condition (c) can be satisfied by taking linear combinations of the
conjugated modes. If the algebra was finitely generated, then this problem would be equiva-
lent to the problem of determining invertibility of a finite-dimensional matrix. However, the
subsets of modes that we are considering are infinite-dimensional. We are thus faced with the
problem of determining invertibility of an infinite-dimensional matrix (via countably infinite
elementary row operations).

The problem of inverting infinite-dimensional matrices is in general quite difficult. How-
ever, if the matrix is block-diagonal, then we may invert it if and only if the blocks are invertible,
which drastically simplifies the problem.

In this paper we provide a classification of quantum r-Airy structures that can be obtained
via the method above for a class of automorphisms σ such that the resulting invertibility prob-
lem is block-diagonal. More specifically, we consider the case where σ ∈ Sr is an automor-
phism of h which is a product of disjoint cycles of the same length, and classify all resulting
modules that take the form of quantum r-Airy structures. We also generalize Theorem 4.16
of [4], by studying under which conditions higher quantum Airy structures constructed from
arbitrary automorphisms do produce new higher quantum Airy structures by “appending a
one-cycle” with no extra dilaton shift.

However, a full classification of quantum r-Airy structures obtained as modules of W(glr)-
algebra via the recipe above for arbitrary automorphismσ remains out of reach for the moment
being. We hope to come back to this in the near future.
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3 Higher quantum Airy structures forσ a product of disjoint cycles
of the same length

In this section we provide a classification of higher quantum Airy structures that can be ob-
tained as modules of W(glr)-algebras via the construction of the previous section, with the
automorphism σ ∈ Sr consisting of products of disjoint cycles of the same length. For our
purposes, only the cycle structure of σ matters.

We make heavy use of the construction of [4]. In particular, Lemma 4.15 in Section 4.2.1,
which expresses the modes W i

m of the fields associated to the generators of the W(glr)-algebra
in terms of the Heisenberg modes, is our starting point.

3.1 Notation and previous results

Let us start by fixing notation. We consider W(glr). We write σ =
∏n

j=1σ j ∈ Sr for the
automorphism used to construct the twisted module of the underlying Heisenberg VOA, where
each σ j is a cycle of length ρ, with nρ = r.

In the construction of [4], there is a set of bosonic modes associated to each cycle of σ,
and a corresponding set of coordinates. We denote by K j

m, j ∈ {1, . . . , n}, m ∈ Z, the bosonic
modes associated to the cycle σ j , and we introduce the quantization

K j
0 = ℏ1/2C j , K j

m = ℏ∂x j
m

, K j
−m = mx j

m , m ∈ Z+ , (7)

where the C j are constants (see Remark 4.14 in [4] for the appearance of the factor of ℏ1/2).
Lemma 4.15 in [4] gives an explicit expression for the modes W i

m, i ∈ {1, . . . , r}, m ∈ Z,
of the fields associated to the generators of the W(glr)-algebra in terms of the Heisenberg
modes, as a result of the outlined construction for arbitrary automorphisms σ. For our choice
of automorphism σ =

∏n
j=1σ j , the modes take the form

W i
m =

1
ρi

∑

M⊆{1,...,n}

ρ|M |
∑

1≤i j≤ρ, j∈M
∑

j∈M i j=i

∑

m j∈Z, j∈M
∑

j m j=m+1−|M |

∏

j∈M

W
j,i j

m j
, (8)

where the W
j,i j

m j
, j ∈ {1, . . . , n}, i j ∈ {1, . . . ,ρ}, m j ∈ Z, are the modes of the W(glρ)-module

constructed from the automorphism σ j induced by the Coxeter element of the Weyl group.

Those are written in terms of the bosonic modes K j
m as:

W j,i
m =

1
ρ

⌊i/2⌋
∑

ℓ=0

i!ℏℓ

2ℓℓ!(i − 2ℓ)!

∑

p2ℓ+1,...,pi∈Z
∑

k pk=ρ(m−i+1)

Ψ(ℓ)ρ (p2ℓ+1, . . . , pi) :
i
∏

k=2ℓ+1

K j
pk

: . (9)

We refer the reader to Definition 4.3 of [4] (and Section 4.2.1) for the definition of the Ψ(ℓ)ρ .

3.2 Dilaton shifts

Equations (8) and (9) together express the modes W i
m in terms of the bosonic modes K j

m.
What remains to be shown is that we can find dilaton shifts, and possible linear combinations
of modes, so that there exists a λ-good subset of modes (for some partition λ of r) that satisfies
condition (1) of Definition 2.1 in order to be a quantum higher Airy structure. For simplicity
we will restrict to the case where we apply the same dilaton shift to all sets of bosonic modes
associated to the n cycles σ j of the automorphisms σ.
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First, we recall from the proofs of Theorems 4.9 and 4.16 in [4] that if we do the dilaton
shift

K j
−s 7→ K j

−s −Q j (10)

in the modes W j,i
m of the W(glρ)-module constructed from σ j , we obtain the resulting opera-

tors
H j,i

m = −Qi
jδρ(m−i+1)+si +Qi−1

j K j
ρm−(ρ−s)(i−1) +O(2) , (11)

where by O(2) we mean terms of order ≥ 2 according to the algebra grading (1). The first
term is of degree zero, while the second term is of degree one.

We may already restrict to the case where s is coprime with ρ.1 Indeed, let d = GCD(ρ, s).
Then the only modes K j

q that appear in the degree one terms of H j,i
m have q divisible by d. So

it will never be possible to achieve the degree condition (2) for a quantum r-Airy structure if
s is not coprime with ρ, as some derivatives ℏ∂x j

m
will never appear in the degree one terms.

We thus assume from now on, without loss of generality, that s is coprime with ρ. This
implies that the degree zero term will be non-zero if and only if i = ρ and m = ρ − s − 1. So
we can rewrite the shifted operators as

H j,i
m = −Qi

jδi,ρδm,ρ−s−1 +Qi−1
j K j

ρm−(ρ−s)(i−1) +O(2) . (12)

With this under our belt we can prove the following lemma.

Lemma 3.1. Consider the modes W i
m, i ∈ {1, . . . , r}, m ∈ Z, of the W(glr)-module constructed

from an automorphism σ =
∏n

j=1σ j , where all σ j are disjoint cycles of length ρ, with nρ = r.
The expressions for the W i

m in terms of the bosonic modes are given by (8) and (9).
Apply the same dilaton shifts

K j
−s→ K j

−s −Q j , j ∈ {1, . . . , n} , (13)

for all sets of bosonic modes on the operators W i
m to get new operators H i

m. Here the Q j are some
(potentially zero) constants, with s an integer coprime with ρ. Then the resulting operators take
the form:

Hk+lρ
m =

1
ρk+lρ−l−1






δk,ρδm,(l+1)(ρ−s)−1







∑

M⊆{1,...,n}
|M |=l+1

∏

j∈M

(−Qρj )







+
n
∑

µ=1

Kµ
ρ(m−l(ρ−s))−(ρ−s)(k−1)Q

k−1
µ







∑

M⊆{1,...µ̂,...,n}
|M |=l

∏

j∈M

(−Qρj )













+O(2) , (14)

where k ∈ {1, 2, . . . ,ρ}, l ∈ {0,1, . . . , n − 1}, m ∈ Z, and we used the standard notation that
{1, . . . , µ̂, . . . , n} stands for the set {1, . . . , n} with the number µ omitted.

Proof. The operators resulting from the chosen dilaton shifts are found by replacing the W
j,i j

m j

in (8) by the dilaton-shifted modes H
j,i j
m j

in (12). The result is:

H i
m =

1
ρi

∑

M⊆{1,...,n}

ρ|M |
∑

1≤i j≤ρ, j∈M
∑

j∈M i j=i

∑

m j∈Z, j∈M
∑

j m j=m+1−|M |

×
∏

j∈M

�

−Q
i j

j δi j ,ρδm j ,ρ−s−1 +Q
i j−1
j K j

ρm j−(ρ−s)(i j−1) +O(2)
�

. (15)

1Of course, in the case with ρ = 1, this is trivial, as all integers s are coprime with 1.
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We are interested in the degree zero and degree one terms in H i
m.

The degree zero term will appear when all factors in the product over j ∈ M in (15)
contribute a degree zero term. This will happen if and only if i j = ρ and m j = ρ− s−1 for all
j ∈ M . Since

∑

j i j = i, we conclude that this will happen only if i = |M |ρ for some integer
|M | between 1 and n. Furthermore, since

∑

j m j = m+1−|M |, we obtain that this will happen
only if m= |M |(ρ − s)− 1.

It is thus appropriate to reindex the modes H i
m as Hk+lρ

m , with 1≤ k ≤ ρ and 0≤ l ≤ n−1.
We then obtain

Hk+lρ
m =

1
ρ(l+1)(ρ−1)

δk,ρδm,(l+1)(ρ−s)−1







∑

M⊆{1,...,n}
|M |=l+1

∏

j∈M

(−Qρj )






+O(1) . (16)

Next, we need to figure out the degree one terms. Degree one terms will appear when all
factors in the product over j ∈ M in (15) but one contribute a degree zero term. Let µ ∈ M ,
and suppose that all terms with j ∈ M and j ̸= µ contribute a degree zero term. Thus i j = ρ
and m j = ρ− s− 1 for all j ̸= µ. We use the notation i = k+ lρ as above to index the modes.
Since

∑

j i j = k+ lρ, we conclude that iµ = k+ lρ−(|M |−1)ρ. But iµ must satisfy 1≤ iµ ≤ ρ:
we conclude that |M |= l + 1, and hence iµ = k. Furthermore, since

∑

j m j = m+ 1− |M |, we
conclude that mµ = m− l(ρ − s). Putting all this together, we obtain:

Hk+lρ
m =

1
ρk+lρ−l−1






δk,ρδm,(l+1)(ρ−s)−1







∑

M⊆{1,...,n}
|M |=l+1

∏

j∈M

(−Qρj )







+
n
∑

µ=1

Kµ
ρ(m−l(ρ−s))−(ρ−s)(k−1)Q

k−1
µ







∑

M⊆{1,...µ̂,...,n}
|M |=l

∏

j∈M

(−Qρj )













+O(2) . (17)

A direct corollary of this lemma is the following:

Corollary 3.2. Consider the modes Hk+lρ
m , k ∈ {1, . . . ,ρ}, l ∈ {0, 1, . . . , n − 1}, m ∈ Z from

Lemma 3.1. If we restrict to the subset of modes Hk+lρ
m with

m≥ l(ρ − s) + k− 1−
�

s
ρ
(k− 1)

�

+δk,1 , s ≥ 1 , (18)

then the Hk+lρ
m have no degree zero terms, and the degree one terms all involve only bosonic modes

Kµj with j ≥ 1 (i.e. only derivatives ℏ∂xµj
).

Proof. This follows by direct inspection of (14).

We will focus on subsets of modes satisfying this condition from now on. We record for
future use the form of the modes in this case, without the degree zero terms:

Hk+lρ
m =

1
ρk+lρ−l−1

n
∑

µ=1

Kµ
ρ(m−l(ρ−s))−(ρ−s)(k−1)Q

k−1
µ







∑

M⊆{1,...µ̂,...,n}
|M |=l

∏

j∈M

(−Qρj )






+O(2) . (19)
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What remains to be shown is twofold. First, that this subset of modes is a λ-good subal-
gebra, for some partition λ of r (so that condition (2) of Definition 2.1 is satisfied). Second,
that there exist linear combinations of the Hk+lρ

m that satisfy condition (1) of Definition 2.1.

3.3 Linear combinations of operators

We address the second condition first. Looking at the linear terms in (19), we see that for a
fixed value of q, the linear terms Kµq , for µ= 1, . . . , n, all appear together in the same operators.
This is key. What it means is that we are in a block-diagonal case. In other words, in order
to show that there exist linear combinations of the operators Hk+lρ

m that satisfy condition (1)
of Definition 2.1, all we have to do is determine whether the finite-dimensional matrices of
coefficients corresponding to the block of modes where the Kµq appear (for fixed values of q)
are invertible. The existence of a quantum r-Airy structure hinges on a block diagonal matrix
inversion problem. This is what we now make rigorous.

Definition 3.3. Let (Q j)nj=1 be a set of (possibly zero) constants, and let µ,ℓ ∈ {1, . . . , n}. We
define the n-by-n shift matrix:

M(Q1, . . . ,Qn)µ,ℓ =
∑

M⊆{1,...µ̂,...,n}
|M |=ℓ−1

∏

j∈M

(−Qρj ) , (20)

where we define M(Q1, . . . ,Qn)µ,1 = 1, so that if n= 1 we have M(Q) = 1 for any value of Q.
We will use the shorthand notation Mµ,ℓ when the dependence on the constants Q1, . . . ,Qn is
clear from context.

Using this definition, we can rewrite (19) as:

Hk+lρ
m =

1
ρk+lρ−l−1

n
∑

µ=1

Mµ,l+1Qk−1
µ Kµ

ρ(m−l(ρ−s))−(ρ−s)(k−1) +O(2) . (21)

This means that the block matrices in our block diagonal inversion problem are in fact all the
same matrix M , with its µ’th column multiplied by the constant Qk−1

µ . This means that for

Qk−1
µ ̸= 0 we have reduced the problem to the inversion of one finite-dimensional matrix.

More precisely:

Lemma 3.4. Let Hk+lρ
m , k ∈ {1, 2, . . . ,ρ}, l ∈ {0,1, . . . , n − 1}, m ∈ Z, be the operators con-

structed in Lemma 3.1. Consider the subalgebra of modes in Corollary 3.2, with

m≥ l(ρ − s) + k− 1−
�

s
ρ
(k− 1)

�

+δk,1 , (22)

where s ≥ 1. Then there exist linear combinations of the operators Hk+lρ
m that satisfy condition

(1) of Definition 2.1 if and only if the shift matrix M(Q1, . . . ,Qn) is invertible, and either:

(a) ρ = 1;

(b) ρ > 1, s is coprime with ρ, and Q j ̸= 0 for all j = 1, . . . , n.

Proof. We have already seen in Corollary 3.2 that the modes in the specified subset have no
degree zero terms, and that the degree one terms are all derivatives ℏ∂xµm . What remains to be
shown is that there exist linear combinations of the modes such that all derivative operators
ℏ∂xµm appear exactly once in the degree one terms.
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Consider first the case ρ = 1. Then the operators read:

H1+l
m =

n
∑

µ=1

Mµ,l+1Kµm−l(1−s) +O(2) , (23)

with m≥ l(1− s) + 1. We then notice that, for any fixed value of q ≥ 1, the modes Kµq appear
together in the n modes H1+l

q+l(1−s), all of which are in the specified subset. For any q, the matrix
of coefficients is precisely the shift matrix M . Therefore, there exist linear combinations of the
operators such that all bosonic modes Kµq appear exactly once in the linear terms if and only
if the shift matrix M is invertible.

Now consider the case ρ > 1. The operators read:

Hk+lρ
m =

1
ρk+lρ−l−1

n
∑

µ=1

Mµ,l+1Qk−1
µ Kµ

ρ(m−l(ρ−s))−(ρ−s)(k−1) +O(2) , (24)

with

m≥ l(ρ − s) + k− 1−
�

s
ρ
(k− 1)

�

+δk,1 . (25)

An argument similar to the case ρ = 1 holds here as well. For any fixed value of q ≥ 1,
the modes Kµq appear together in exactly n modes, with the matrix of coefficients given by
Mµ,l+1Qk−1

µ . Indeed, fix a q ≥ 1, and consider the modes Hk
m (with l = 0). Then, one can

always find a unique choice of m and k such that the modes Kµq appear in the linear terms Hk
m

by solving the equation ρm−(ρ− s)(k−1) = q, if and only if s is coprime with ρ (otherwise it
would only be possible for a subset of q’s that are multiple of GCD(ρ, s), see the discussion at
the beginning of Section 3.2). But then the same modes Kµq also appear in the linear terms of

the operators Hk+lρ
m+l(ρ−s) for all l ∈ {0, . . . , n− 1}. Furthermore, the inequality (25) is precisely

such that all these modes are included in the specified subset. As a result, assuming that all
Qµ ̸= 0, we can always find linear combinations of the operators such that all bosonic modes
Kµq appear exactly once in the linear terms if and only if the shift matrix M is invertible and s
is coprime with ρ.

We assumed however that all Qµ ̸= 0. Is that a necessary condition? What happens if some
of the constants Qµ vanish? Assume that there is a vanishing constant, which we take to be
Q1, without loss of generality. Then the operators with k > 1 become

Hk+lρ
m =

1
ρk+lρ−l−1

n
∑

µ=2

Mµ,l+1Qk−1
µ Kµ

ρ(m−l(ρ−s))−(ρ−s)(k−1) +O(2) . (26)

Thus the modes K1
q only appear in the operators H1+lρ

m (with k = 1). But only the modes K1
q

with q divisible by ρ appear in these operators. Therefore, in the case ρ > 1, it is necessary
for all the Qµ to be non-zero for all the bosonic modes to appear in the linear terms.

3.4 Classification Theorem

All that remains is to determine whether the specified subsets are λ-good for some choice of
integer partition λ of r. The result is the main theorem of this section. We only consider
the case with n ≥ 2 (i.e. automorphisms σ with more than one cycle), as the case n = 1
corresponds to the quantum r-Airy structures constructed in Theorem 4.9 of [4].

Theorem 3.5. Let Hk+lρ
m , k ∈ {1, 2, . . . ,ρ}, l ∈ {0, 1, . . . , n − 1}, m ∈ Z, n ≥ 2, and r = nρ,

be the operators constructed in Lemma 3.1 (that is, they are constructed as restrictions of twisted

11

https://scipost.org
https://scipost.org/SciPostPhys.14.6.169


SciPost Phys. 14, 169 (2023)

modules of the Heisenberg algebra, where the twist is given by the automorphism σ =
∏n

j=1σ j
with the σ j disjoint cycles of length ρ). Consider the subset of modes in Corollary 3.2, with

m≥ l(ρ − s) + k− 1−
�

s
ρ
(k− 1)

�

+δk,1 , (27)

where s ≥ 1. Then there exist linear combinations of the operators Hk+lρ
m that form a quantum

r-Airy structure if and only if
∑n

j=1 K j
0 = 0, the shift matrix M(Q1, . . . ,Qn) is invertible, and one

of the following conditions is satisfied:

(a) ρ = 1, s = 1, any number n of 1-cycles;

(b) ρ > 1, s = 1, any number n of ρ-cycles, and Q j ̸= 0 for all j = 1, . . . , n;

(c) ρ = 1, s = 2, n= 2 (two 1-cycles);

(d) ρ > 1, ρ is odd, s = 2, n= 2 (two ρ-cycles), and Q j ̸= 0 for all j = 1, . . . , n.

Remark 3.6. Before we prove this classification theorem, let us mention that the result is
perhaps a little bit unexpected. In the case with n = 1 considered in Section 4.1 of [4],
there are much larger choices of s that give rise to quantum r-Airy structures, namely any
s ∈ {1, 2, . . . , r + 1} such that r = ±1 mod s. One could have expected a similar range of
possibilities here. However, it appears to be much more constrained when n ≥ 2. Basically,
the operators can form a quantum r-Airy structure only for s = 1, with the exception of the
case with n= 2 (i.e. two cycles) where s = 2 can also work.

Proof. We first prove that cases (a)-(d) form quantum r-Airy structures. We then prove that
these are the only possibilities.

In all cases (a)-(d), we know from Lemma 3.4 that condition (1) of Definition 2.1 is satis-
fied. What we need to check is that the subset of modes is λ-good for some choice of partition λ
of r, from which we can conclude that condition (2) of Definition 2.1 is satisfied, and therefore
that the operators form a quantum r-Airy structure.

(a) For ρ = 1 and s = 1, we must have k = 1, and the operators read

H1+l
m =

n
∑

µ=1

Mµ,l+1Kµm +O(2) , (28)

with l ∈ {0,1, . . . , n− 1}, and
m≥ 1. (29)

We need to check whether this subset is λ-good for some partition λ of r = n. It clearly is
not, since any λ-good subset must include the operator H1

0 .2 But if we add the operator H1
0

to the subset, then it is straightforward to check that the subset is λ-good for the partition

λ= (2,1, . . . , 1) (30)

of r, as it corresponds to the subset of modes given by

m≥ 1+ l −λ(1+ l) = 1−δl,0 . (31)

However, the extra operator H1
0 =

∑n
µ=1 Kµ0 does not satisfy condition (1) of Definition

2.1, and hence we must require that
∑n
µ=1 Kµ0 = 0 so that the operator identically vanishes.

2Indeed, recall that for a partition λ of r, the index set Λr is defined as
Λr =

�

(i, m) ∈ Z2
≥0 : 1≤ i ≤ r, m≥ i −λ(i)

	

. In particular, since for any partition λ(1) = 1, we must have
(1, 0) ∈ Λr , and hence H1

0 must be in the λ-good subset.
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(b) We now consider the case ρ > 1 and s = 1. The operators read:

Hk+lρ
m =

1
ρk+lρ−l−1

n
∑

µ=1

Mµ,l+1Qk−1
µ Kµ

ρ(m−l(ρ−1))−(ρ−1)(k−1) +O(2) , (32)

with

m≥ k+ lρ − (l + 1)−
�

k− 1
ρ

�

+δk,1 = k+ lρ − (l + 1) +δk,1 , (33)

where the equality follows since k ∈ {1,2, . . . ,ρ}. We need to check whether this subset
is λ-good for some partition λ of r. As before, it clearly is not, since H1

0 is not included.
But after adding H1

0 to the subset, it becomes λ-good with respect to the partition

λ= (ρ + 1,ρ, . . . ,ρ,ρ − 1) (34)

of r. Indeed, for this partition we have λ(k + lρ) = l + 1− δk,1 + δk,1δl,0, and thus the
λ-good subset of modes is given by

m≥ k+ lρ −λ(k+ lρ) = k+ lρ − (l + 1) +δk,1 −δk,1δl,0 . (35)

As H1
0 =

∑n
µ=1 Kµ0 does not satisfy condition (1), we require that

∑n
µ=1 Kµ0 = 0 so that the

operator identically vanishes.

(c) We now consider the case ρ = 1 and s = 2. Then k = 1, and the operators read:

H1+l
m =

n
∑

µ=1

Mµ,l+1Kµm+l +O(2) , (36)

with
m≥ −l + 1 , (37)

for l ∈ {0, . . . , n − 1}. To get a λ-good subset, all m must be at least non-negative (see
Section 3.3 of [4], for instance the beginning of the proof of Theorem 3.16, and also
Proposition 3.14: the largest λ-good subset corresponds to the partition λ= (r) of r, and
it consists of all modes with m≥ 0). Thus we cannot get a λ-good subset for n> 2, as the
specified subset contains negative modes, since l ∈ {0, . . . , n−1}. Now consider n= 2. In
this case, this is not quite a λ-good subset, but if we include, as usual, the mode H1

0 , we
get the λ-good subset corresponding to the partition

λ= (2) (38)

of r = n= 2. Thus we get a quantum 2-Airy structure if we impose that H1
0 =

∑2
µ=1 Kµ0 = 0.

(d) We consider ρ > 1 and s = 2. We note that ρ must be odd, as it is coprime with s = 2.
The operators read:

Hk+lρ
m =

1
ρk+lρ−l−1

n
∑

µ=1

Mµ,l+1Qk−1
µ Kµ

ρ(m−l(ρ−2))−(ρ−2)(k−1) +O(2) , (39)

with

m≥ k+ lρ − (2l + 1)−
�

2
ρ
(k− 1)

�

+δk,1 , (40)

for k ∈ {1,2, . . . ,ρ} and l ∈ {0, . . . , n− 1}. We need to determine whether these subsets
are λ-good.
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Consider first the case n = 2. To get a λ-good subset, as usual we need to include the
mode H1

0 . Thus we must require that H1
0 =

∑2
µ=1 Kµ0 = 0. With this mode included, the

subset is λ-good for the partition λ of r = 2ρ given by (recall that ρ is odd):

λ=
�

ρ + 1
2

,
ρ + 1

2
,
ρ − 1

2
,
ρ − 1

2

�

. (41)

Indeed, for this partition λ(k+ lρ) = 2l + 1+
�

2
ρ (k− 1)

�

−δk,1 +δk,1δl,0, and hence the
subset of modes is determined by the condition

m≥ k+ lρ −λ(k+ lρ) = k+ lρ − (2l + 1)−
�

2
ρ
(k− 1)

�

+δk,1 −δk,1δl,0 . (42)

For n≥ 3 however, one can show that there is no partition of r that gives rise to the desired
subset of modes. Indeed, what we are trying to find is a partition λ = (λ1, . . . ,λa) of r,
with λ1 ≥ λ2 ≥ . . .≥ λa ≥ 1, such that

λ(k+ lρ) = 2l + 1+
�

2
ρ
(k− 1)

�

−δk,1 +δk,1δl,0 , (43)

for k ∈ {1, 2, . . . ,ρ} and l ∈ {0, . . . , n− 1}. We start with l = 0. For k ∈ {1, . . . , ρ+1
2 }, the

condition is that λ(k) = 1. Continuing with k ∈ {ρ+3
2 , . . . ,ρ}, we get λ(k) = 2. This tells

us that the first part of the partition λ should be λ1 =
ρ+1

2 . Continuing with l = 1, for k = 1
we get λ(1+ρ) = 2, for k ∈ {2, . . . , ρ+1

2 }, we get λ(k+ρ) = 3, and for k ∈ {ρ+3
2 , . . . ,ρ}we

get λ(k+ρ) = 4. This tells us that the second part of the partition λ should be λ2 =
ρ+1

2 ,
and the third part should be λ3 =

ρ−1
2 . But then, continuing with l = 2, for k = 1 we get

λ(1+ 2ρ) = 4, for k ∈ {2, . . . , ρ+1
2 }, we get λ(k + 2ρ) = 5, and for k ∈ {ρ+3

2 , . . . ,ρ} we
get λ(k+2ρ) = 6. This tells us that the fourth part of the partition λ should be λ4 =

ρ+1
2 ,

which is a contradiction, since λ4 ≥ λ3. We conclude that the chosen subset is not λ-good
for n ≥ 3, and thus we cannot get a quantum r-Airy structure for n ≥ 3; only the n = 2
case survives.

Now that we have proved that cases (a)-(d) form quantum r-Airy structures, what remains
is to show that these are the only possibilities. In other words, we want to show that the
specified subsets of modes for other choices of s ≥ 1 are not λ-good.

First, from Lemma 3.4, we know that condition (1) of Definition 2.1 is satisfied if and only
if the shift matrix M is invertible, and either ρ = 1, or ρ > 1, in which case s must be coprime
with ρ and Q j ̸= 0 for all j = 1, . . . , n.

Consider first the case ρ = 1 (in which case k = 1), with a shift s ≥ 3 coprime with ρ. The
operators read

H1+l
m =

n
∑

µ=1

Mµ,l+1Kµm−l(1−s) +O(2) , (44)

with
m≥ 1− l(s− 1) , (45)

with l ∈ {0, 1, . . . , n− 1}. We know that all m must be at least non-negative to get a λ-good
subset (as mentioned before, see Section 3.3 of [4], in particular the beginning of the proof of
Theorem 3.16 and Proposition 3.14). But since n ≥ 2, this is impossible for s ≥ 3 (even after
adding the mode H1

0 to the subalgebra). Therefore the only possible choices of s are s = 1,2,
which were considered in cases (a) and (c).
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Consider now the case ρ > 1, with a shift s ≥ 3. The operators read

Hk+lρ
m =

1
ρk+lρ−l−1

n
∑

µ=1

Mµ,l+1Qk−1
µ Kµ

ρ(m−l(ρ−s))−(ρ−s)(k−1) +O(2) , (46)

with

m≥ l(ρ − s) + k− 1−
�

s
ρ
(k− 1)

�

+δk,1 , (47)

for k ∈ {1,2, . . . ,ρ} and l ∈ {0,1, . . . , n− 1}.
Let us assume first that s > ρ. Then some of the modes in the subset (consider for instance

k = 2 and l = 1) will have negative m’s. But as mentioned above, we know that all m must be
at least non-negative for the subset to potentially be λ-good, and thus we must have s < ρ.

The question then is: for 3≤ s ≤ ρ − 1, can we find a partition λ of r = nρ such that

λ(k+ lρ) = sl + 1+
�

s
ρ
(k− 1)

�

−δk,1 +δk,1δl,0 ? (48)

We can try to build such a partition. After a tedious calculation similar to what we did above
for case (d), we see that the “partition” would have to look like:

λ= (A1, A2, . . . , As−1, As + 1, A1 − 1, A2, . . . , As−1, . . .) , (49)

where we defined

A j =
¡

ρ j
s

¤

−
¡

ρ( j − 1)
s

¤

. (50)

But for this to be a partition, we must have that λ1 ≥ λ2 ≥ . . . ≥ 1. Since all A j with
j = 2, . . . , s− 1 appear before and after A1 − 1, we must have

A2 = A3 = . . .= As−1 = A1 − 1= a , (51)

for some positive integer a, and then we must also have

As + 1= a . (52)

But by definition of the A j , we have:
s
∑

j=1

A j = ρ , (53)

and thus we get:
as = ρ . (54)

But s is coprime with ρ, which is a contradiction. Therefore, there is no λ-good subset of
operators for s ≥ 3 and ρ > 1. The only possible choices are s = 1 and s = 2, which were
considered in cases (b) and (d).

This completes the proof of the theorem.

3.5 An interesting class of examples

An interesting feature of Theorem 3.5 is that the dilaton shifts Q j , j = 1, . . . , n, cannot be
taken to be simply 1 anymore, in contrast to Theorem 4.9 in [4]. Indeed, the shift matrix
M(Q1, . . . ,Qn) must be invertible, which restricts possible choices of dilaton shifts.

There is however a natural way of ensuring invertibility of the shift matrix for all quantum
r-Airy structures constructed in Theorem 3.5. The idea is to let Q j =ω j , j = 1, . . . , n, whereω
is a primitve r ’th root of unity (recall that r = nρ). We study this interesting class of examples
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in this section. They appear to be intimately connected to the geometry of reducible spectral
curves, as we briefly explore in Section 3.6.

Let us start by proving a simple lemma about roots of unity, which will be necessary to
prove invertibility of the shift matrix.

Lemma 3.7. Let n ∈ Z+, with n ≥ 2, and µ,ℓ ∈ {1, 2, . . . , n}. Let θ be a primitive n-th root of
unity. Then

∑

M⊆{1,...µ̂,...,n}
|M |=ℓ−1

∏

j∈M

(−θ j) = θµ(ℓ−1) . (55)

Proof. Vieta’s formula gives:
∑

M⊆{1,...,n}
|M |=ℓ−1

∏

j∈M

θ j = 0 . (56)

We can separate on the left-hand-side contributions from subsets that include the index
µ ∈ {1, . . . , n}. Rearranging, we get:

∑

M⊆{1,...,µ̂,...,n}
|M |=ℓ−1

∏

j∈M

θ j = −θµ
∑

M⊆{1,...,µ̂,...,n}
|M |=ℓ−2

∏

j∈M

θ j . (57)

Doing this iteratively, we conclude that
∑

M⊆{1,...,µ̂,...,n}
|M |=ℓ−1

∏

j∈M

θ j = (−1)ℓ−1θµ(ℓ−1) , (58)

from which the statement of the lemma follows.

An immediate corollary is the following:

Corollary 3.8. Let ρ, n ∈ Z+ with n ≥ 2, and µ,ℓ ∈ {1, 2, . . . , n}. Let r = nρ, and ω be a
primitive r-th root of unity. Let Q j = ω j for j = 1,2, . . . , n, and define θ = ωρ, which is a
primitive n-th root of unity. Then the shift matrix (see Definition 3.3)

M(ω,ω2, . . . ,ωn)µ,ℓ =
∑

M⊆{1,...µ̂,...,n}
|M |=ℓ−1

∏

j∈M

(−ωρ j) =ωρµ(ℓ−1) = θµ(ℓ−1) . (59)

Note that the shift matrix M can be written explicitly as the n× n Vandermonde matrix:

M =













1 θ1 θ2 . . . θ (n−1)

1 θ2 θ4 . . . θ2(n−1)

...
...

...
. . .

...
1 θ (n−1) θ2(n−1) . . . θ (n−1)(n−1)

1 1 1 . . . 1













. (60)

In particular, it is invertible.

The upshot is that we have constructed a large class of quantum r-Airy structures with
interesting potential interpretations. Consider a quantum r-Airy structure constructed as in
Theorem 3.5, that is, as a W(glr)-module descending from a twisted module of the underlying
Heisenberg algebra with the twist given by an automorphism σ =

∏n
j=1σ j , with each cycle

σ j of length ρ. Here r = nρ. Then choose the dilaton shifts Q j , j = 1, . . . , n to be given
by Q j = ω j , where ω is a primitive r-th root of unity. This choice of dilaton shifts always
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satisfy the invertibility condition in Theorem 3.5, and, assuming that we are in one of the
cases specified in the theorem, we obtain a quantum r-Airy structure.

We will come back to a potentially interesting interpretation for this class of quantum r-
Airy structures in Section 3.6. Meanwhile, let us write down in detail one of the simplest
higher quantum Airy structures in this class, to make things explicit.

Example 3.9. We write down in detail the operators of the quantum 4-Airy structure ob-
tained as a module of the W(gl4)-algebra via restriction of a twisted module of the underlying
Heisenberg algebra, where the twist results from the automorphism σ = σ1σ2 with two dis-
joint 2-cycles. We consider the case with s = 1, which is part of the family (b) in Theorem 3.5.
To satisfy the invertibility condition of the shift matrix, we take the dilaton shifts Q j , j = 1, 2
to be given by Q1 = i, Q2 = i2 = −1, where i =

p
−1, as in Corollary 3.8.

We let K j
m, j = 1,2, be the bosonic modes associated to the two 2-cycles, and let W j,i

m ,
j = 1, 2, i = 1, 2, be the modes of the two W(gl2)-modules associated to the cycles σ j , j = 1,2.
The modes W i

m, i = 1, . . . , 4 of the resulting W(gl4) can be written in terms of those as:

W 1
m =W 1,1

m +W 2,1
m ,

W 2
m =

1
2

W 1,2
m +

1
2

W 2,2
m +

∑

m1,m2∈Z
m1+m2=m−1

W 1,1
m1

W 2,1
m2

,

W 3
m =

1
2

∑

m1,m2∈Z
m1+m2=m−1

�

W 1,1
m1

W 2,2
m2
+W 1,2

m1
W 2,1

m2

�

,

W 4
m =

1
4

∑

m1,m2∈Z
m1+m2=m−1

W 1,2
m1

W 2,2
m2

,

(61)

with the subalgebra condition m≥
� i+1

2

�

. We then implement the dilaton shifts:

K j
−1 7→ K j

−1 − i j , j = 1,2 . (62)

After the shift, the modes of the two W(gl2)-modules become:

H j,1
m = K j

2m ,

H j,2
m = i jK j

2m−1 −
(−1) j

2
δm,0 +

1
2

∑

p1,p2∈Z
p1+p2=2(m−1)

�

2δ2|p1
δ2|p2
− 1

�

: K j
p1

K j
p2

: −
3ℏ
24
δm,1 , (63)

for j = 1,2. Finally, replacing the W j,i
m in (61) by the shifted H j,i

m , which implements the dilaton
shifts on the W(gl4)-module, yields the operators of the resulting quantum 4-Airy structure.
We write down explicitly the resulting expanded form of H1

m, H2
m, and H3

m, but leave out H4
m

for brevity, as its expanded form is rather long:
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H1
m =K1

2m + K2
2m , (64)

2H2
m =iK1

2m−1 − K2
2m−1 +

1
2

∑

p1,p2∈Z
p1+p2=2(m−1)

�

2δ2|p1
δ2|p2
− 1

�

�

: K1
p1

K1
p2

: + : K2
p1

K2
p2

:
�

+ 2
∑

m1,m2∈Z
m1+m2=m−1

K1
2m1

K2
2m2
−

3ℏ
12
δm,1 , (65)

4H3
m =− K1

2m−2 + K2
2m−2 −

3ℏ
12

�

K1
2m−4 + K2

2m−4

�

− 2
∑

m1,m2∈Z
m1+m2=m−1

K1
2m1

K2
2m2−1 + 2i

∑

m1,m2∈Z
m1+m2=m−1

K1
2m1−1K2

2m2

+
∑

m1,m2∈Z
m1+m2=m−1

∑

p1,p2∈Z
p1+p2=2(m2−1)

�

2δ2|p1
δ2|p2
− 1

�

K1
2m1

: K2
p1

K2
p2

:

+
∑

m1,m2∈Z
m1+m2=m−1

∑

p1,p2∈Z
p1+p2=2(m1−1)

�

2δ2|p1
δ2|p2
− 1

�

K2
2m2

: K1
p1

K1
p2

: , (66)

8H4
m =− iK1

2m−3 − K2
2m−3 +O(2) , (67)

with the subalgebra of mode given by m≥
� i+1

2

�

. As required by Theorem 3.5, we also impose
that

H1
0 = K1

0 + K2
0 = 0 , (68)

but each K j
0 does not have to vanish independently.

3.6 Higher quantum Airy structures and topological recursion

It is interesting to try to connect the construction of higher quantum Airy structures in The-
orem 3.5 to the Chekhov, Eynard, and Orantin topological recursion. It is shown in [4] that
the generalized topological recursion of [7–9] can be reformulated as a special case of higher
quantum Airy structures realized as W(glr)-modules, originating from twisted modules of the
underlying Heisenberg algebra with the twist given by the automorphism induced by the Cox-
eter element of the Weyl group. Indeed, this was the original motivation for the study of higher
quantum Airy structures [4]. Note that the original topological recursion of Chekhov, Eynard,
and Orantin then corresponds to the special case of (quadratic) quantum Airy structures orig-
inally studied by Kontsevich and Soibelman [1,13].

The higher quantum Airy structures that are relevant for the generalized topological re-
cursion of [7–9] are those of Theorem 4.9 [4], which are indexed by an integer r ≥ 2 and
another integer s ∈ {1, . . . , r + 1} such that r = ±1 mod s (in particular, r and s are coprime).
They are constructed as W(glr)-modules, with dilaton shift

K−s 7→ K−s − 1 . (69)

Recall that the topological recursion relies on the geometry of a spectral curve. It is shown in
[4] that those quantum r-Airy structures encapsulate the same information as the topological
recursion of [7–9] on the so-called (r, s)-spectral curves, which are realized as the algebraic
curves

r r−s x r−s y r − (−1)r = 0 (70)
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in standard polarization (for the meaning of “standard polarization” here, see Section 5.1
in [4]). One can also think of these spectral curves in parametric form, as being given by the
two following rational functions on P1:

x =
zr

r
, y = −

1
zr−s

. (71)

Following through the steps of the correspondence established in Section 5 of [4], one sees
that the value of the dilaton shift can be extracted as follows. One constructs the one-form

ω0,1(z) = y(z)d x(z) = −zs−1dz . (72)

The index m of the mode Km that is shifted should be one more than the exponent of the
power of z in ω0,1, and the shift should be the coefficient. For instance, if one considered the
quantum r-Airy structure of Theorem 4.9 but with dilaton shift

K−s 7→ K−s −Q , Q ̸= 0 , (73)

it would correspond to topological recursion on the spectral curve

x =
zr

r
, y = −

Q
zr−s

, (74)

that is, on the algebraic curve

r r−s x r−s y r − (−Q)r = 0 . (75)

The coprime condition between r and s is crucial here: it ensures that the spectral curve,
as an algebraic curve, is irreducible. The current formulation of topological recursion is only
defined if the spectral curve is irreducible.

From the point of view of topological recursion, a natural question then is whether it
is possible to generalize the definition of topological recursion to allow reducible algebraic
spectral curves. We claim that the higher quantum Airy structures that we construct in this
paper may give precisely such a generalization.

Let us be a little more precise. We consider the quantum r-Airy structures constructed
in Theorem 3.5, originating from twisted modules of the underlying Heisenberg algebra with
automorphisms given by σ =

∏n
j=1σ j , with each σ j a cycle of length ρ, and n ≥ 2, and

r = nρ. We use the dilaton shifts by r-th roots of unity explored in Corollary 3.8:

K j
−s 7→ K j

−s −ω
j , j = 1, . . . , n , (76)

where ω is a primitive r-th root of unity. According to Theorem 3.5, we have two choices:
either s = 1, or s = 2, n= 2, and ρ is odd.

We claim that the case s = 1 should give an explicit formulation of topological recursion
on the following reducible algebraic spectral curve:

ρr−n x r−n y r − (−1)r = 0 . (77)

We note that this spectral curve is certainly reducible, as r = nρ, and thus r and n are never
coprime (since n≥ 2).

In fact, substituting r = nρ, we can rewrite this curve in reduced form as:

ρr−n x r−n y r − (−1)r =
n
∏

j=1

�

ρρ−1 xρ−1 yρ − (−ω j)ρ
�

= 0 , (78)

19

https://scipost.org
https://scipost.org/SciPostPhys.14.6.169


SciPost Phys. 14, 169 (2023)

whereω is a primitive r-th root of unity. It has precisely n components. It is now clear why we
expect our quantum r-Airy structures to be connected to this spectral curve. Each component
is a (ρ, 1)-spectral curve, but with dilaton shift Q =ω j . This is precisely what our construction
is doing, with each cycleσ j of the automorphismσ corresponding to an irreducible component
of the reducible spectral curve.

More precisely, as topological recursion is not currently defined for reducible spectral
curves, our claim is that:

The quantum r-Airy structures of Theorem 3.5, with ρ ≥ 1, n ≥ 2, s = 1, r = ρn,
and the dilaton shifts being given by r-th roots of unity as in Corollary 3.8, may
provide a definition of topological recursion on the reducible (r, n)-spectral curves
(78). (Here, for the reducible (r, n)-spectral curve, n≥ 2 and n | r.)

What about the other class of Theorem 3.5, with n = 2, s = 2, and ρ odd? Following
the same logic, it should define topological recursion on the reducible algebraic curves (here
r = 2ρ):

ρr−4 x r−4 y r − (−1)r =
2
∏

j=1

�

ρρ−2 xρ−2 yρ − (−ω j)ρ
�

= 0 , (79)

where ω is a primitive 2ρ-th root of unity. In other words, we claim that:

The quantum r-Airy structures of Theorem 3.5, with ρ ≥ 1, ρ odd, n = 2, s = 2,
r = 2ρ, and the dilaton shifts being given by r-th roots of unity as in Corollary
3.8, may provide a definition of topological recursion on the reducible (r, 4)-spectral
curves (79). (Here, for the reducible (r, 4)-spectral curve, r is even but 4 ∤ r.)

Remark 3.10. What is surprising however is that, with this construction, we do not recover
all reducible (r, n)-spectral curves, but only these two particular families. It is unclear to us
what is special about these families of reducible spectral curves, and why other families do not
appear to have counterparts in our construction of quantum r-Airy structures.

Example 3.11. As an example, according to our claim, the quantum 4-Airy structure studied
in Example 3.9 should correspond to the reducible (4,2)-spectral curve:

4y4 x2 − 1=
2
∏

j=1

�

2y2 x − (−i j)2
�

= 0 . (80)

4 Appending 1-cycles

In Section 3, we provided a classification of higher quantum Airy structures that arise as mod-
ules of W(glr)-algebras following the method of [4], for arbitrary automorphisms σ that are
products of n disjoint cycles of the same length. One can think of this construction as a natural
generalization of Theorem 4.9 of [4], which considers the case n = 1 (i.e. σ is the automor-
phism induced by the Coxeter element of the Weyl group).

Theorem 4.9 was also generalized in a different direction in [4]. Theorem 4.16 studied
higher quantum Airy structures that can be obtained from automorphisms σ that permute
all but one of the basis vectors of the Cartan subalgebra. Moreover, in this context the extra
one-cycle did not come with an extra dilaton shift. Thus, one may think of this result as
follows. Given a quantum r-Airy structure constructed as a module of the W(glr)-algebra as
in Theorem 4.9, one can always construct a new quantum (r + 1)-Airy structure as a module
of the W(glr+1)-algebra by “appending” to it a one-cycle, with no extra dilaton shift. This is,
in essence, what Theorem 4.16 is doing.

20

https://scipost.org
https://scipost.org/SciPostPhys.14.6.169


SciPost Phys. 14, 169 (2023)

In this section we investigate the question of whether, given a quantum r-Airy structure
constructed as W(glr)-module for an arbitrary automorphism σ, we can always construct a
new quantum (r+1)-Airy structure as a W(glr+1)-module by appending toσ a one-cycle, with
no extra dilaton shift.

For r ∈ Z+, let Λr be a λ-good index set for some integer partition λ of r (see Definition
2.2). Let H i

m, (i, m) ∈ Λr , be the operators of a quantum r-Airy structure obtained as a W(glr)-
module descending from a twisted module of the underlying Heisenberg algebra, with the
twist given by an automorphism σ =

∏n
j=1σ j , where the σ j are disjoint cycles of length ρ j

respectively (and thus r =
∑n

j=1ρ j), and dilaton shifts

K j
−s j
7→ K j

−s j
−Q j , j = 1, . . . , n , (81)

for some positive integers s j coprime with ρ j . Suppose that Q j ̸= 0 for all j ∈ {1, . . . , n}.
Now consider operators H̃ i

m obtained as a W(glr+1)-module descending from a twisted
module of the underlying Heisenberg algebra, with the twist σ̃ given by the same automor-
phism σ but with an extra one-cycle appended, and the dilaton shifts still given by (81) (i.e.
the extra bosonic modes associated to the one-cycle are not dilaton shifted). More precisely, if
the K r+1

m are the bosonic modes associated to the extra one-cycle in σ̃, then the operators H̃ i
m

are obtained from the H i
m as follows:

H̃1
m = K r+1

m +H1
m ,

r i−1H̃ i
m = H i

m + r
∑

m1,m2∈Z
m1+m2=m−1

K r+1
m1

H i−1
m2

, i = 2, . . . , r ,

r r H̃ r+1
m = r

∑

m1,m2∈Z
m1+m2=m−1

K r+1
m1

H r
m2

.

(82)

We set the extra bosonic zero-mode to zero: K r+1
0 = 0, and assume that H1

0 = 0.

Theorem 4.1. Suppose that there exists an integer partition λ̃ of r +1 such that λ̃(i) = λ(i) for
all i = 1, . . . , r and λ̃(r + 1) =

∑n
j=1 s j . Denote by Λ̃r+1 the associated λ̃-good index set. Then

the subset of operators H̃ i
m constructed above, with (i, m) ∈ Λ̃r+1, forms a quantum (r + 1)-Airy

structure.

Proof. We need to determine whether conditions (1) and (2) of Definition 2.1 are satisfied for
the set of operators H̃ i

m with (i, m) ∈ Λ̃r+1. Condition (2) is obviously satisfied by construction,
since the set of modes H̃ i

m is λ̃-good with respect to some partition λ̃ of r + 1. What we need
to check is whether condition (1) is satisfied. That is, we need to make sure that the H̃ i

m have
no degree zero terms, that the degree one terms only involve positive bosonic modes, and
that there exist linear combinations of the modes such that all positive bosonic modes appear
exactly once in the degree one terms.

Start with degree zero terms. Clearly, the operators H̃ r+1
m cannot have degree zero terms.

Now consider the operators H̃ i
m with i ∈ {1, . . . , r}. Since λ̃(i) = λ(i) for all i = 1, . . . , r, it

means that for all i = 1, . . . , r, (i, m) ∈ Λ̃r+1 if and only if (i, m) ∈ Λr . In other words, we keep
the same subset of modes for the H̃ i

m as we did for the H i
m, for i = 1, . . . , r. As a result, since

the H i
m with (i, m) ∈ Λr have no degree zero terms (they form a quantum Airy structure), the

H̃ i
m with (i, m) ∈ Λ̃r for i = 1, . . . , r also have no degree zero terms.

We move on to degree one terms. We show first that they only involve positive bosonic
modes. We start with the modes H̃1

m, m ≥ 1. We know that the modes H1
m, m ≥ 1 are in the

original quantum Airy structure, and thus involve only positive bosonic modes. As a result,
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the same is true for the modes H̃1
m, m ≥ 1. As for the zero mode, since H1

0 is in the original
quantum Airy structure, we must have H1

0 = 0. We impose that K r+1
0 = 0, and therefore

H̃1
0 = 0.

Moving on to the H̃ i
m with i ∈ {2, . . . , r}, inspecting (82) we see that there are two sources

of degree one terms: the degree one terms from the H i
m, and potential degree one terms arising

from degree zero terms of H i−1
m2

in
∑

m1,m2∈Z
m1+m2=m−1

K r+1
m1

H i−1
m2

. (83)

Since the H i
m are in a quantum Airy structure, we know that their degree one terms only

involve positive bosonic modes. As for the second source of degree one terms, they will only
involve positive bosonic modes K r+1

m1
, m1 > 0, if the H i−1

m2
with m2 ≥ m do not have degree

zero terms. (Here we use the fact that K r+1
0 = 0.) But the H i−1

m2
with m2 ≥ m are part of

the original quantum Airy structure. Indeed, if (i, m) ∈ Λr , then m ≥ i − λ(i). But for any
partition, either λ(i) = λ(i − 1) or λ(i) = λ(i − 1) + 1. Either way, λ(i) ≤ λ(i − 1) + 1, and
thus m ≥ i − λ(i) ≥ i − 1− λ(i − 1), which means that (i − 1, m) ∈ Λr . Thus the H i−1

m2
with

m2 ≥ m have no degree zero terms. We conclude that the degree one terms of the H̃ i
m with

i ∈ {2, . . . , r} and (i, m) ∈ Λ̃r+1 involve only positive bosonic modes.
Consider finally the modes H̃ r+1

m . The only potential degree one terms arise from degree
zero terms of H r

m2
in

∑

m1,m2∈Z
m1+m2=m−1

K r+1
m1

H r
m2

. (84)

Using the same argument as above, it is clear that those potential degree one terms will also
only involve positive bosonic modes.

Finally, we need to make sure that there exist linear combinations of the modes such that
all positive bosonic modes appear exactly once in the degree one terms. Consider first the
degree one terms in the modes H̃ r+1

m . It is fairly straightforward to calculate that

H r
m2
= A

 

n
∏

j=1

(−Q j)
ρ j

!

δm2,r−
∑

j s j−1 +O(1) , (85)

for some number A. As a result, H̃ r+1
m has a degree one term of the form

r r H̃ r+1
m = rA

 

n
∏

j=1

(−Q j)
ρ j

!

K r+1
m−r+

∑

j s j
+O(2) . (86)

Since we assume that all Q j ̸= 0, this term is non-vanishing. Moreover, since the partition λ̃
is such that λ̃(r + 1) =

∑n
j=1 s j , we know that the λ̃-good subset of modes only contain the

modes H̃ r+1
m with m≥ r +1− λ̃(r +1) = r +1−

∑n
j=1 s j . We conclude that all positive modes

K r+1
k with k ≥ 1 appear exactly once in the degree one terms of the H̃ r+1

m in the λ̃-good subset.
For the remaining modes H̃ i

m with i ∈ {1, . . . , r}, the degree one terms always consist of
the degree one term of H i

m plus some linear combination of positive modes K r+1
k , k ≥ 1. As

the H i
m form a quantum Airy structure, we know that all positive bosonic modes associated to

the cycles of σ appear exactly once in the linear terms of the H i
m, and hence of the H̃ i

m. Then,
by taking linear combinations with the H̃ r+1

m , we can remove the modes K r+1
k from the linear

terms. We conclude that condition (1) of Definition 2.1 is satisfied, and that the H̃ i
m form a

quantum Airy structure.
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Remark 4.2. In the construction above we set the extra bosonic zero-mode to zero K r+1
0 = 0,

and assumed that H1
0 = 0 so that H̃1

0 = 0. However, it may be interesting to generalize the
construction by letting K r+1

0 = ℏ1/2q = −H1
0 for some q ∈ C, such that H̃1

0 = 0. This is for
instance what was considered in the special case of Theorem 4.17 in [4]. Looking back at the
proof of the Theorem above, in particular the paragraph below (83), we note that this will be
allowed if the modes H i−1

i−λ̃(i)−1
, for i ∈ {2, . . . , r + 1}, do not have degree zero terms. This is

necessary so that K r+1
0 does not appear as a degree one term in the H̃ i

m. However, the modes
H i−1

i−λ̃(i)−1
may or may not be in the original quantum Airy structure (they are if λ̃(i) = λ̃(i−1),

but they are not if λ̃(i) = λ̃(i − 1) + 1). If they are, then they certainly do not have degree
zero terms, but if they are not, then it is unclear a priori whether they have degree zero terms.
Nevertheless, if for a given example one can check that these modes do not have degree zero
terms, then the construction above can be extended by letting K r+1

0 = ℏ1/2q = −H1
0 for some

q ∈ C.

As an example, we can apply this theorem to the higher quantum Airy structures con-
structed in Theorem 3.5.

Corollary 4.3. Consider the quantum r-Airy structures constructed in Theorem 3.5. Assuming
that all dilaton shifts Q j , j = 1, . . . , n are non-zero, a one-cycle can be appended to the quantum
r-Airy structures as in Theorem 4.1 in cases (a) and (b) to produce new quantum (r + 1)-Airy
structures, but not in cases (c) and (d).

Proof. This follows by inspection of the partitions.
Case (a) consists of an automorphism σ which consists of r disjoint one-cycles, with

s j = 1 for all j = 1, . . . , r. The partition of r is λ = (2,1, . . . , 1). Then we must have
λ̃ = (2, 1, . . . , 1, 1), which is a partition of r + 1 such that λ̃(i) = λ(i) for all i = 1, . . . , r
and λ̃(r + 1) = r =

∑r
j=1 s j .

Case (b) consists of an automorphism σ which consists of n disjoint ρ-cycles, with s j = 1
for all j = 1, . . . , n. The partition of r = nρ is λ = (ρ + 1,ρ, . . . ,ρ,ρ − 1). Then we can
construct a partition λ̃ of r + 1 as λ̃ = (ρ + 1,ρ, . . . ,ρ,ρ). It is such that λ̃(i) = λ(i) for all
i = 1, . . . , r, and λ̃(r + 1) = n=

∑n
j=1 s j .

However, this doesn’t work for cases (c) and (d). Case (c) corresponds to an automorphism
σ which consists of two disjoint one-cycles, with s j = 2 for both. The partition of r = 2 is
λ= (1,1). The only possibility for the partition λ̃ of r+1= 3 such that λ̃(i) = λ(i) for i = 1,2
is λ̃= (1,1, 1), but then λ̃(3) = 3 which is not equal to

∑2
j=1 s j = 4.

Case (d) corresponds to two disjoint ρ-cycles, with ρ odd, and s j = 2 for both cycles.

The partition λ of r = 2ρ is λ =
�

ρ+1
2 , ρ+1

2 , ρ−1
2 , ρ−1

2

�

. The only choice for the partition λ̃ of

r + 1 = 2ρ + 1 such that λ̃(i) = λ(i) for i = 1, . . . , r is λ̃ =
�

ρ+1
2 , ρ+1

2 , ρ−1
2 , ρ−1

2 , 1
�

, but then

λ̃(r + 1) = 5, which is not equal to
∑2

j=1 s j = 4.

5 Future directions

In this paper we made a first step towards a classification of higher quantum Airy structures
constructed as W(glr)-modules following the method of [4], by classifying those that arise
from twisted modules of the underlying Heisenberg algebra with the twist corresponding to an
automorphism with arbitrary disjoint cycles of the same length. We also studied the question
of when new higher quantum Airy structures can be constructed by “appending a one-cycle
with no dilaton shift”.
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A few open questions immediately come to mind:

• It would be very interesting to complete the classification for arbitrary automorphisms
σ. The key insight that the degree condition (2) can be thought of as a matrix inversion
problem could prove useful.

• The proposed interpretation of our quantum r-Airy structures as defining topological re-
cursion on reducible spectral curves in Section 3.6 deserves to be studied further. For in-
stance, a residue formulation of topological recursion on reducible spectral curves could
potentially be extracted from our quantum r-Airy structures. The fact that only partic-
ular families of reducible spectral curves seem to have counterparts in our classification
of quantum r-Airy structures is also intriguing and deserves further investigation.

• The quantum r-Airy structures constructed as W(glr)-modules for fully cyclic automor-
phisms, as in Theorem 4.9 of [4], have natural interpretations in enumerative geometry.
They are known to produce generating functions for various flavours of (closed) intersec-
tion theory on Mg,n (or variants thereof). It would be interesting to explore whether the
quantum r-Airy structures for more general automorphisms, such as those constructed
in Theorem 3.5, also have interesting enumerative geometric interpretations.

• The idea of “appending a one-cycle with no dilaton shift” to a higher quantum Airy struc-
ture has a compelling interpretation in enumerative geometry, for the particular families
of higher quantum Airy structures studied in [4]. Indeed, while the higher quantum Airy
structures for fully cyclic automorphisms from Theorem 4.9 are connected to various
flavours of closed intersection theory on Mg,n (or variants thereof), the corresponding
higher quantum Airy structures obtained by appending a one-cycle, as in Theorem 4.16,
are related to the open version of the appropriate intersection theory. “Appending a
one-cycle” to the higher quantum Airy structures may then be understood as some sort
of open/closed correspondence. If an enumerative geometric interpretation for higher
quantum Airy structures for arbitrary automorphisms is found, it would be fascinating
to see whether such an open/closed correspondence holds for the general procedure of
appending a one-cycle studied in Theorem 4.1.
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