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Abstract

In this work we propose a way to promote the anomalous axial U(1) transformations
to exact non-invertible U(1) symmetries. We discuss the procedure of coupling the non-
invertible symmetry to a (dynamical or background) gauge field. We show that as part of
the gauging procedure, certain constraints are imposed to make the gauging consistent.
The constraints emerge naturally from the form of the non-invertible U(1) conserved
current. In the case of dynamical gauging, this results in new type of gauge theories we
call non-invertible gauge theories: These are gauge theories with additional constraints
that cancel the would-be gauge anomalies. By coupling to background gauge fields, we
can discuss ’t-Hooft anomalies of non-invertible symmetries. We show in an example that
the matching conditions hold but they are realized in an unconventional way. Turning
on non-trivial background for the non-invertible gauge field changes the vacuum even
when the symmetry is not broken and the background is very weak. The anomalies are
then matched by the appearance of solitons in the new vacuum.
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1 Introduction

One of the fascinating recent developments in theoretical physics is the notion of non-invertible
symmetries. See for example [1–15] for a partial list of references. Symmetries play an ex-
tremely important role in physics. Given a physical system, the first thing we should do is
to identify and classify all the symmetries of the theory. This is obviously true for ordinary
symmetries, but also for special symmetries, such as the so-called non-invertible symmetries.
Once we found the symmetries, the next question we should ask our selves is what can we do
with it. For ordinary invertible symmetries the answer is well known. It includes conservation
laws, selection rules, anomaly matching conditions, Goldstone bosons and many more. We
can also gauge ordinary symmetries assuming they don’t suffer from anomalies. Is the same
true for non-invertible symmetries? In this note we would like to study the non-invertible ver-
sion of two important concepts: Gauging and anomaly matching conditions [16]. Let us start
by briefly reminding how this works for ordinary symmetries. Given a theory T with a global
symmetry group G, we can add gauge fields A for G. At this point we don’t integrate over the
values of A but choose to study the theory in a specific background A(x). It happens to be that
even though G is an exact symmetry of the theory, once we add A, the partition function is not
necessarily invariant under the action of G but satisfies,

Z[A]→ eiS[ω,A]Z[A] . (1)

S[ω, A] is a local action of the gauge parameters ω and the gauge fields A that cannot be
removed by adding local counter terms. eiS[ω,A] is an overall phase that can be taken out of
the path-integral. Equation (1) is RG invariant in the sense that the same relation must be
satisfied by the partition function at any scale. The action S[ω, A] is the anomaly action and
the conditions (1) are the ’t-Hooft anomaly matching conditions. If G (or a subgroup of it) is
anomaly free, i.e. S[ω, A] = 0, we can consistently integrate over all the values of A(x). Now
the gauge fields A become dynamical field in the theory. This dynamical gauging cannot be
done if G suffers from anomalies. The reason is that when we gauge a symmetry, we identify
all the configurations that differ by the action of the symmetry. This can be done consistently
only if all these configurations are really equivalent. In the case of anomalies, configurations
that differ by the action of the symmetry are note equivalent- they differ by the phase eiS[ω,A],
and therefore it makes no sense to identify them. To understand how to do it for non-invertible
symmetries, we first need to understand what non-invertible symmetries are. It will be useful
to first explain how to define symmetries using the terminology of topological operators [17].
Having a p-form symmetry is equivalent to having an operator Ug(Md−p−1) defined on some
d − p − 1 manifold Md−p−1. This operator is topological- it can be twisted and deformed,
and as long as it doesn’t cross an insertion of another operator, the theory is invariant. This
operator is also unitary. In particular, there always exists an inverse operator Ug−1 such that if
we bring the two of them together we get the identity operator. Since the operator is unitary,

we can always write it as Ug(Md−p−1) = e
i
∫

Md−p−1
⋆Jg with a well defined current Jg . While

this construction is very general, we will focus on 0-form U(1) symmetries for simplicity. In
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this case we can write Uα(Md−1) = e
iα
∫

Md−1
⋆J

with d⋆J = 0. These operators are topological,
unitary and obviously invertible. They are well defined when acting on any operator or state
in the Hilbert space. Now we will move on to non-invertible symmetries. We will describe
here a way to construct non-invertible symmetries that works in several cases. Let’s assume
that we found a topological unitary operator U that has only one (not so minor) downside-
Its action is not well defined on every state in the Hilbert space. The conservative approach
to this operator is that it is illegal and we should ignore it. A bolder approach is to say that
this operator still generates a well defined symmetry on a subspace and we can try to combine
U with a projection operator P that projects to the subspace on which U is well defined. The
combined operator Ũ = U · P is well defined but isn’t unitary nor invertible.

As a concrete realization, let’s assume that we are able to write a current J which is con-
served d⋆J = 0, but not gauge invariant. Under gauge transformations parametrized by g, the
current goes to J → Jg with d ⋆ Jg = 0. So actually we have a family of conserved non-gauge
invariant currents {Jg}. We can define the operator (up to normalization)

Ũα(Md−1) =
∑

g

exp

�

iα

∫

Md−1

⋆Jg

�

. (2)

Ũ is a sum of topological operators, and hence topological itself. It is gauge invariant, since
gauge transformations just reshuffle the different terms in the sum. However, it is in gen-
eral not unitary and non-invertible. We conclude that Ũ generates a non-invertible symmetry.
Through out the paper we will use the ˜ symbol to denote objects related to non-invertible
symmetries (operators, currents, gauge fields...). Effectively, the sum over gauge transforma-
tions projects us to the subspace on which Uα = eiα

∫

⋆J is gauge invariant.
This construction may seem too simple to work. Indeed, there are cases (see section 5)

where the sum over g in (2) is so drastic such that Ũ is identically 0. Still, there are cases in
which Ũ is non-trivial and generates a true non-invertible symmetry. The case we will mainly
focus on in this work is U(1) gauge theories in four spacetime dimensions. These theories
contain an anomalous axial current [18, 19], satisfying d ⋆ j = k

8π2 da ∧ da where a is the
dynamical U(1) gauge field and k is an integer that depends on the details of the theory. We
can define the current ⋆J = ⋆ j− k

8π2 a∧ da which is conserved but not gauge invariant. Under
gauge transformations,

a→ a− dφ ⇒ ⋆J → ⋆J̃ = ⋆J +
k

8π2
dφ ∧ da . (3)

Therefore we can define the operator

Ũα(M3) =Dφ exp

�

iα

∫

M3

�

⋆ j −
k

8π2
a ∧ da+

k
8π2

dφ ∧ da
�

�

. (4)

Summing over gauge transformations is equivalent to adding an auxiliary compact scalar living
only on M3. We claim that this operator generates a non-invertible U(1) symmetry. Recently,
the authors of [13, 14] proposed adding a new Chern-Simons gauge field that lives on M3
and argued that this gives rise to a well defined non-invertible symmetry for every rational α.
While the two operators may look different, we claim they are completely equivalent. Similar
to the scalar φ, also the auxiliary gauge field of [13,14] effectively projects us to the subspace
on which Uα is gauge invariant. The two operators are equivalent for every rational α. The
advantage of the approach presented here is that the definition of (4) can be easily extended to
any real value of α and therefore results in a continuous U(1) symmetry, instead of a discrete
subgroup. This construction makes it easier to gauge the non-invertible U(1) symmetry and
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study its ’t-Hooft anomalies as will be shown. The main results can be summarized as follows.
We know that the anomalous U(1) generated by j above is not a symmetry of the theory due to
the ABJ anomaly. As such, it cannot be coupled to gauge fields- background or dynamical- and
doesn’t give rise to rigorous ’t-Hooft anomaly matching conditions. It’s non-invertible version
is an exact symmetry and therefore we can try and couple it to a gauge field b̃. As part of the
gauging procedure, we add to the Lagrangian the term

b̃ ∧ ⋆J̃ = b̃ ∧ ⋆J +
k

8π2
b̃ ∧ dφ ∧ da . (5)

Notice that once we introduce the gauge field b̃, φ becomes a 4d field that lives everywhere in
space-time. φ appears only in (5) and acts as a Lagrange multiplier enforcing the constraint

d b̃ ∧ da = 0 . (6)

This constraint holds no matter if b̃ is a background or a dynamical gauge field. Even if b̃ is
background, we still path-integrate over φ. The constraint is a crucial ingredient in gauging
the non-invertible symmetry. It eliminates all the “bad” configurations that would have made
the gauging inconsistent. Explicitly, we will see that this constraint eliminates all the would-
be gauge anomalies giving rise to new type of gauge theories we call non-invertible gauge
theories. The constraint also plays an important role in ’t-Hooft anomaly matching conditions
for the non-invertible symmetries. In particular, when studying the theory in a specific b̃
background, the constraint modifies the dynamics of the theory and drives the theory to a
different vacuum from the one with b̃ = 0. In the new vacuum, the anomalies that can be
observed by the choice of b̃ are matched.

The outline of the paper is as follows. In section 2 we construct explicitly the non-invertible
U(1) symmetry and discuss some of its general properties. We will also comment about the
similarities between our construction and the construction of [13,14]. In section 3 we gauge
the U(1) dynamically and show that we get a constrained gauge theory. In section 4 we
study anomalies of the non-invertible symmetry by coupling it to background gauge fields. In
section 5 we explain why the procedure of 2 fails to work in other cases. Section 6 is a more
general discussion about the relation between non-invertible symmetries and the ideas of [20].
These are two apparently different methods to promote the anomalous axial U(1) to an exact
symmetry and use this symmetry to learn new things about the dynamics of the theory. We
argue that in some sense the two methods are equivalent and give two completing ways to
look at the axial symmetry.

2 Non-invertible axial U(1) in QED

We will start by introducing a way to redefine the anomalous axial U(1) in QED to be an exact
non-invertible symmetry. Related strategies were introduced in [13,14]. Consider U(1) gauge
theory with a gauge field aµ, and a charged Dirac fermion ψ with charge 1. Under an axial
transformation of the fermion, ψ→ eiαγ5/2ψ, the action is modified by

δS =
α

8π2

∫

da ∧ da ,
1

8π2

∫

da ∧ da ∈ Z , (7)

such that the transformation is trivial for α = 2πZ. The axial current jµ =
1
2ψ̄γ5γµψ is not

conserved but satisfies d ⋆ j = 1
8π2 da ∧ da. We can instead define the current

⋆J = ⋆ j −
1

8π2
a ∧ da , (8)
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which is conserved. However, it is not gauge invariant. Instead of looking at the current, we
can look at the operator generating the symmetry,

Uα = eiα
∫

⋆J = exp

�

iα

∫

⋆ j −
iα

8π2

∫

a ∧ da

�

, (9)

where the integration is over some 3-manifold M3. This operator is topological- this is a direct
consequence of the fact that the current is conserved. However, it is gauge invariant only when
the coefficient of the Chern-Simons action is 1

4πZ. This is true when α = 2πZ which is the
same condition we had before. But for α= 2πZ the operator acts on the fermion as ψ→−ψ
which is gauge equivalent to the identity. Can we find a way to redefine the symmetry to get
something gauge invariant and topological for non-trivial values of α? The problem with Uα
is that it is not gauge invariant. Under gauge transformations,

a→ a− dφ : Uα→ Uφα = eiα
∫

⋆J̃ , ⋆J̃(φ) = ⋆J +
1

8π2
dφ ∧ da . (10)

If we sum over all the values of φ, we get a gauge invariant operator,

Ũα =

∫

Dφeiα
∫

⋆J̃ . (11)

Here
∫

Dφ is a suitably normalized path integral over all the configurations of φ on M3. This
procedure guarantees gauge invariance, as well as conservation. This is true since d⋆Jφ = 0 for
every φ. An alternative way to interpret this procedure is that we add new degrees of freedom
living only on M3. The idea to add new degrees of freedom in such a way to make the axial
U(1) an exact symmetry was used before. In [20] it has been shown that by adding new heavy
fields, it is possible to make a ZN discrete subgroup of the axial symmetry an exact symmetry of
the theory. The effect of the heavy fields on the low energy theory is in the emergence of Chern-
Simons terms on ZN domain walls. This construction can give new non-trivial constraints on
the low energy theory similar to conventional anomaly matching conditions. A little bit later, a
similar approach has been taken in [13,14] where it has been shown that the operator Uα can
become gauge invariant by adding Chern-Simons gauge fields living on it. It was shown that
the modified Uα is non-invertible. In particular, it acts on fermions simply by axial rotations,
but annihilates ’t-Hooft lines. Also in this approach, only a subgroup of the axial U(1) can be
restored. We propose to add instead a compact scalar φ on M3. The advantage is that the
new current J̃ is conserved locally and therefore the operator Ũα is topological for every value
of α.

Let’s try to understand better some of the properties of the operator, which we write here
in full glory,

Ũα(M3) =

∫

Dφ exp

�

iα

∫

M3

�

⋆ j −
1

8π2
a ∧ da+

1
8π2

dφ ∧ da
�

�

. (12)

As we already said, this operator is gauge invariant for every value of α. Another way to view
it is by defining the covariant derivative of φ as Dφ = dφ−a. Then the current can be written
in a manifestly gauge invariant way,

⋆J̃ = ⋆ j +
1

8π2
Dφ ∧ da . (13)

Ũα is topological since the current is conserved,

d
�

⋆ j −
1

8π2
a ∧ da+

1
8π2

dφ ∧ da
�

= 0 . (14)
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This equation requires some clarification. In particular, φ is defined as a 3d field living only
on M3, so what does it mean to take its derivative in the direction orthogonal to M3? In
general, it will not be possible to extend φ to th entire 4d spacetime without singularities.
However, this is not needed. When we continuously deform the manifold M3 to M′3 we cover
a 4d manifold with the topology of M3 × I , where I is an interval. All we need is to be able
to extend φ from M3 to M3 × I and this is always possible. Therefore, (14) is well defined,
Stokes theorem can be used safely and Ũα(M3) is indeed topological.

However, Ũα is not unitary. This is due to the path-integration over φ. What is the effect
of this φ and the additional term dφ ∧ da?

This term is a total derivative. It is completely trivial on compact M3 with no non-trivial
holonomies. On S2×S1 for example, we can replace the path integration overφ with a discrete
sum over the holonomies1

Ũα(M3)∼
∑

k

ex p

�

iα

∫

M3

�

⋆ j −
1

8π2
a ∧ da
�

+
iαk
2π

∫

S2

da

�

. (15)

For irrational α, the sum over k results in the no-flux condition,
∫

S2 da = 0 since

∑

k

exp

�

iαk
2π

∫

S2

da

�

∼ δ∫
S2 da,0 . (16)

If α is rational, we can write it as α = p
N where p, N are coprime integers. The sum over k in

this case gives a weaker constraint:
∫

da ∈ 2πNZ. At the end of the day, we can write our
operator as

Ũα = exp

�

iα

∫

�

⋆ j −
1

8π2
a ∧ da
�

�

Pα , (17)

where Pα is a projection operator on the subspace of allowed fluxes. However, the presentation
of the operator using the scalar φ turns out to be useful when coupling this symmetry to gauge
fields as we will see in the next sections.

The projection operator is a sign for non-invertibility: The operator Ũ acts as 0 on certain
configurations.

How does Ũα act on operators of the theory? On the fermions it acts as axial rotation by
α. No surprises here. On line operators the story is more subtle. Consider as an example M3
to be defined by t = −ε and a Wilson line on t = y = z = 0. As we take M3 to t = +ε,
the commutation relations of the two objects will give us the action of D on the Wilson line.
Since there is no time component involved in any of them, the commutator is trivially zero
and the operator doesn’t act on Wilson lines. Now, replace the Wilson line with a ’t-Hooft line.
This is done by replacing the gauge field a with the dual gauge field aD. While ax has non-
trivial commutation relations with ∂t ax , the dual gauge field aD

x has non-trivial commutation
relations with f yz . We find that the action of this operator on a ’t-Hooft line is

ei
∫

aD
→
∫

Dφei
∫

(aD−αa/(2π)+αdφ/(2π)) . (18)

If α ∈ 2πZ, the operator just takes a magnetic line to a dyonic line with integer electric charge
of qE =

1
2πα as expected from the Witten effect [21, 22]. The (appropriately normalized)

integration over φ in this case is trivial,
∫

DφeiqE
∫

dφ = 1 . (19)

1There is a tricky factor of 2 involved in this computation. The origin of this factor of 2 is explained in ap-
pendix A.
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For general α, the electric charge of the dyonic line is fractional which is not allowed. Any
way, the integration over φ for α ̸= 2πZ gives zero so we are saved from getting the fractional
dyon. We see that the operator Ũα annihilates ’t-Hooft line operators. This is another sign for
its non-invertibility. This behaviour is equivalent to that of the topological operator introduced
in [13,14]. In fact, the two definitions of the topological operators give the same result when
acting on all the physical states and operators of the theory. We will show explicitly equivalence
for the case where α= 2π

N . From (17), we can write our operator as

Ũ2π/N (M3) = exp

�

2πi
N

∫

M3

�

⋆ j −
1

8π2
a ∧ da
�

�

P2π/N , (20)

where P2π/N is zero when
∫

da ̸= 0 mod 2πN on any closed two dimensional submanifold of
M3. The operator of [13,14] can be written as

D2π/N (M3) =

∫

DAexp

�

i

∫

M3

�

2π
N
⋆ j +

N
4π

A∧ dA+
1

2π
A∧ da
�

�

. (21)

Here A is the gauge field living only on M3. The generalization to D2πp/N with gcd(p, N) = 1
is somewhat subtle. For our purpose, what we need to know is that D2πp/N has a ZN 1-form
symmetry with anomaly p, and that da/N plays the role of a background ZN 2-form gauge
field coupled to the ZN 1-form symmetry. A consequence of the anomaly is that,

D2πp/N (M3) = exp

�

ip
2πN

∫

M3

dω∧ da

�

D2πp/N . (22)

This equation must hold for any scalar ω satisfying
∮

dω ∈ 2πZ. If there is ω such that the
phase is non-trivial, D2πp/N = 0. It is non-zero only when

∫

da ∈ 2πNZ on any closed two
dimensional submanifold of M3. In this case, the defect field A can be safely integrated out
resulting in

D2π/N (M3)→ exp

�

2πi
N

∫

M3

�

⋆ j −
1

8π2
a ∧ da
�

�

. (23)

This is identical to (20). We conclude that for every rational α, the two definitions are
identical. The operator (21) doesn’t have a generalization to irrational α. On the other hand,
(12) is defined for every real α.

Next we will discuss some of the applications of the symmetry. In particular, how to gauge
the non-invertible symmetry in section 3 and how to derive anomaly matching conditions in
section 4.

3 Non-invertible gauge theories

We will start this section by explaining how to couple Ũ(1) to a gauge field. In the case
of ordinary continuous symmetries, we have a current J and the minimal coupling of the
symmetry to a gauge field b simply involves adding bµJµ to the Lagrangian. We can re-derive
this result using topological operators. Coupling to a gauge field b(x) is equivalent to inserting

into the path integral many copies of the topological operator Uα(M3) = eiα
∫

M3
⋆J on various

choices of 3-manifolds M3. Every set of insertions {Uα(M3)} corresponds to a choice of vector
field b(x) as can be seen in figure 1. The result is that the insertion of topological operators is
equivalent to adding the minimal coupling term bµJµ to the Lagrangian. This procedure can
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Figure 1: The set of insertions of topological operators Ũ can be described by a vector field b̃µ
orthogonal to the manifolds on which Ũ are defined. Effectively, inserting into the path integral



Ũα(M3)Ũα′(M′
3)...
�

is equivalent to inserting
¬

∫

Dφei
∫

b̃µ J̃µ
¶

whereφ now lives in the entire 4d space-
time.

be easily generalized to the non-invertible symmetry we’re talking about. From the point of
view of topological operators, the procedure is exactly the same. This procedure tells us how
to couple this non-invertible symmetry to a gauge field b̃, and the way to do it is to add to the
Lagrangain the minimal coupling term b̃µ J̃µ and integrate over φ as a 4d field. See figure 1
for more details.

This differs in two ways from the naive and inconsistent attempt of coupling the anomalous
axial symmetry to a gauge field. First, b̃µJµ contains a cubic interaction term between the
gauge fields, δLint = −

1
8π2 b̃ ∧ a ∧ da. Second, b̃µJµ contains the term dφ ∧ b̃ ∧ da. This is

the only place where φ appears. We can integrate φ out which results in the local constraint

d b̃ ∧ da = 0 . (24)

The constraint and the interaction together make sure that the theory is well-defined without
gauge anomalies. We will go over several examples.

3.1 Non-invertible U(1)a × Ũ(1)b gauge theory

Consider as a first example a theory with 4 Weyl fermions ψi and the two symmetries U(1)a,b
with the charges2

q1 = (1,1) , q2 = (−1, 1) , q3 = (0,−1) , q4 = (0,−1) . (25)

Notice that the anomalies U(1)3a,b, U(1)a,b×gravi t y, U(1)a×U(1)2b vanish. The only anomaly

that doesn’t vanish is U(1)2a×U(1)b. Due to this anomaly we cannot gauge the two U(1) sym-
metries simultaneously. Instead, we can gauge U(1)a first, and then promote the anomalous
U(1)b to the non-invertible symmetry Ũ(1)b and gauge it. Denote the two gauge fields for
U(1)a × Ũ(1)b by a, b̃ respectively. After gauging U(1)a, the non-invertible Ũ(1)b current
becomes

⋆J̃b = ⋆ jb −
1

8π2
a ∧ da+

1
8π2

dφ ∧ da , (26)

2We ignore the other symmetries of the theory and treat them as accidental as they won’t play any role in our
construction.
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where jb is the classical anomalous current. As explained above, when we gauge Ũ(1)b we
add the term b̃µJµ ⊃ 1

8π2 b̃ ∧ dφ ∧ da. φ acts as a Lagrange multiplier. Integrating over φ we
get the constraint d b̃ ∧ da = 0. We see that we can gauge two U(1) symmetries with a mixed
anomaly. The price that we pay is the constraint da ∧ d b̃ = 0 which saves us from the gauge
anomaly. This theory is well defined, but we don’t integrate over the entire U(1)a × Ũ(1)b
configuration space but only over a subspace. The Lagrangian for this U(1)a × Ũ(1)b gauge
theory is

L= 1
4g2

a
(da)2 +

1

4g2
b

(d b̃)2 + i
4
∑

j=1

ψ†
jσ
µDµψ j −

1
8π2

b̃ ∧ a ∧ da . (27)

This theory is different from a naive U(1) × U(1) gauge theory in two ways. First, the term
b̃∧a∧da appears to make the theory gauge invariant under Ũ(1)b gauge transformations as it
compensates the contribution from the ABJ anomaly. Second, the constraint da∧d b̃ = 0 makes
the theory invariant under U(1)a gauge transformations. This is a new type of gauge theory
we call non-invertible gauge theory, since it arises from gauging a non-invertible symmetry.

3.2 Non-invertible Ũ(1) gauge theory: E · B = 0 QED

Consider a theory with one Weyl fermion. The U(1) transformation acting asψ→ eiαψ suffers
from a triangle anomaly and a gravitational anomaly and cannot be gauged. Can we gauge a
non-invertible version of it? For the purpose of the exercise we will ignore the gravitational
anomaly. It is also possible to cancel it by adding extra fermions but it won’t be important
for this discussion. This is almost equivalent to the previous example, just that we have only
one U(1) and one gauge field instead of two. This symmetry can be gauged using the same
prescription. The scalarφ is inserted into the Lagrangian without any kinetic term or potential.
It only appears as a Lagrange multiplier enforcing dã∧ dã = 0. The difference now is that the
constraint involves only the gauge field ã. This is because the constraint is needed to cancel
the triangle U(1)3 anomaly. The Ũ(1) non-invertible gauge theory can be written as

L= 1
4g2
(dã)2 + iψ†σµDµψ (28)

together with the dã ∧ dã = 0 constraint. Notice that the extra term ã ∧ ã ∧ dã is identically
zero due to antisymmetry of the indices. We see that a non-invertible Ũ(1) gauge theory is
equivalent to an ordinary U(1) with the constraint E · B = 0.

4 ’t-Hooft anomalies for non-invertible symmetries

To study ’t-Hooft anomalies we need to couple the non-invertible symmetry to a background
gauge field. The procedure is very similar to the gauging studied above, just that we don’t
integrate over the value of the gauge field. The same constraints however still apply. As an
example consider a theory of 2 Weyl fermions with the U(1)a × U(1)b charges,

q1 = (1, 1) , q2 = (−1,1) . (29)

U(1)a is anomaly free and can be gauged dynamically. Before the U(1)a gauging, U(1)b was
an exact symmetry with certain ’t-Hooft anomalies. In particular, there is a triangle U(1)3b
anomaly, and a U(1)b× gravi t y anomaly, both with coefficients 13+13 = 1+1= 2. However,
there is also a mixed anomaly of the form U(1)2a × U(1)b. Due to this anomaly, the U(1)a
gauging breaks U(1)b explicitly. U(1)b is not a symmetry of the theory and therefore doesn’t
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give rise to rigorous anomaly matching conditions. However, this observation raises a question.
U(1)b is not a symmetry, but its non-invertible version Ũ(1)b is an exact symmetry which
(at least naively) possesses the same anomalies. But it seems like the anomalies for Ũ(1)b
are not matched, on the same way anomalies for U(1)b are not matched. Not surprisingly,
the resolution comes from the differences between U(1)b and Ũ(1)b and in particular the
constraint d b̃ ∧ da = 0. We will start by showing explicitly the lack of U(1)3b “anomaly”
matchings by adding and condensing a scalar. Later, we will show how the constraint leads to
matching of the Ũ(1)3b anomaly.

We can see the lack of U(1)3b “anomaly” matching conditions in the following way. Deform
the theory by adding a scalar χ with U(1)a × U(1)b charges of qχ = (2,−2), and the Yukawa
interaction χψ2ψ2 + c.c.. We can give it a vev of the form 〈χ〉 = v. As a result U(1)a is
Higgsed, and U(1)b is locked with U(1)a gauge transformations. The fermion ψ2 gets a mass
from the Yukawa term, and the low energy theory consists of only ψ1 with charge qb = 2 due
to the color-flavor locking pattern.3 This low energy theory does match the U(1)b × gravi t y
anomaly of the uv theory, but it doesn’t match the U(1)3b anomaly. This is fine because U(1)b
is not a symmetry of the theory. What happens if instead of considering the anomalous U(1)b,
we consider its non-invertible version Ũ(1)b? Now this is an exact symmetry of the theory and
is expected to give rise to anomaly matching conditions. In particular, the same Ũ(1)3b anomaly
still exists. When coupled to a Ũ(1)b background gauge field, under Ũ(1)b transformations
the action is shifted by

δS ∼
∫

d b̃ ∧ d b̃ . (30)

How is it matched in the infrared? To study the Ũ(1)3b anomaly, we should couple the symmetry
to a background gauge field b̃, with non-trivial value for

∫

d b̃∧d b̃. As explained above, when
coupling to a non-invertible gauge field, we must impose the constraint da ∧ d b̃ = 0. This
is true even when b̃ is a background gauge field, because φ is dynamical. Consider again
deforming the theory by adding the same Higgs field χ as before. U(1)a is again Higgsed, and
ψ2 gets a mass from the Yukawa term. Naively, we get at low energies only the fermion ψ1
but this fermion is not enough to match the Ũ(1)3b anomaly. The resolution is that the vev of
χ in this case cannot be simply a constant 〈χ〉 = v. To see it we can look at the kinetic term
for χ:

|∂µχ − 2iaµχ + 2i b̃µχ|2 . (31)

We can try and plug in χ = v and take a = b̃ to minimize the kinetic term. However, this
is forbidden. The reason is that plugging a = b̃ into the constraint da ∧ d b̃ = 0, implies
d b̃ ∧ d b̃ = 0 which is inconsistent with our choice of background. To minimize the kinetic
term, the vacuum configuration for χ in this background must support a vortex on each one
of the 2d manifolds on which

∫

d b̃ ̸= 0. Therefore, the low energy theory is not just ψ1, but
ψ1 together with two orthogonal vortices. These vortices support fermion zero modes and the
whole system together matches the Ũ(1)3b anomaly. We would like to make several comments
on the non-invertible anomaly matching:

• The philosophy behind anomaly matching is that given a flow from a uv theory Tuv
to an IR theory TIR, the two theories must have the same anomalies. Importantly, we
can first flow to TIR and then couple it to background gauge fields and we will get the
same result as if we would first couple to gauge fields and then flow to the IR. The
reason is that we can always choose the background to be very weak such that it doesn’t
affect the local dynamics until the end of the flow. For the non-invertible Ũ(1)3b anomaly
studied here this doesn’t work. We must first couple to background gauge fields and

3There is also a residual Z2 gauge symmetry but it won’t be relevant for our discussion.
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Figure 2: Formally, anomalies are matched along the green line. Only after we couple to gauge fields
we can probe the anomaly and derive rigorous consistency conditions. If [ f low, background] = 0 as
for ordinary symmetries, we can pull back the matching to the blue line that connects the uv and the
IR without coupling to gauge fields. When [ f low, background] ̸= 0 as was the case for the Ũ(1)3b
anomaly, the matching occurs only along the green line and cannot be pulled back to the blue line.

then flow. The reason is that background gauge fields for the non-invertible symmetry
impose constraints and can change the dynamics of the theory drastically, even if the
background it self is very weak. We can summarize this by saying that RG flow and
background gauging don’t commute:

[flow, background] ̸= 0 . (32)

See figure 2 for more details.

• We saw that the Ũ(1)b× gravi t y anomaly is matched by the effective theory consisting
only ψ1. The reason is that the background gauging needed to study this anomaly
involves the metric. This background gauging does commute with RG flow and therefore
this anomaly must be matched as in the ordinary case. This anomaly matching is not
accidental as one might think by looking only at the anomalous axial transformation,
but is a consequence of the exact non-invertible symmetry.

• The importance of the constraint da∧ d b̃ = 0 is manifest in this procedure. Without the
constraint, we could have simply solve the vacuum equations by setting a = b̃ without
having a vortex and violating anomaly matching conditions.

• Getting a vortex at low energies due to some non-trivial background U(1) gauge field
is very common when the U(1) symmetry is spontaneously broken. If a U(1) is spon-
taneously broken, the vacuum equations for the condensate are solved by a vortex con-
figuration exactly as in our case. The main difference is that in our case there is no
Goldstone boson. There is a condensate χ but this condensate doesn’t break the Ũ(1)b
global symmetry thanks to the color-flavour locking pattern. Once we turn on a non-
trivial background for b̃, the color-flavour locking pattern is not allowed due to the
constraint da∧d b̃ = 0 and we get a vortex configuration as if the symmetry was broken.

• Concretely, the mentioned non-invertible anomaly matching condition doesn’t constrain
the low energy theory with b̃ = 0. It does constrain the effective theory in this back-
ground which happens to involve a soliton configuration. Therefore, we can say that
the anomaly matching conditions constrain the effective theory on the soliton. These
conditions are satisfied thanks to the fermionic zero modes living on the vortex [23].
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5 2d U(1) and 4d SU(N) examples

So far we focused on U(1) gauge theories in 4d. Can this procedure be generalized to other
cases? In particular, we will comment on two important cases where an anomalous U(1)
symmetry famously exists, and discuss the obstruction of lifting it to a non-invertible symmetry.

5.1 2d U(1) gauge theory

Consider a 2d U(1)a gauge theory with one Dirac fermion of charge q = 1. Similarly to the
4d case, we have the axial U(1)b with the anomalous current d ⋆ jb =

1
2πda. Can we promote

this symmetry to a non-invertible symmetry? naively all we need to do is redefine the current
to be

⋆J̃b = ⋆ jb −
1

2π
a+

1
2π

dφ . (33)

The current is conserved, and the operator
∫

Dφ exp

�

iα

∫

M1

⋆J̃b

�

= exp

�

iα

∫

M1

�

⋆ jb −
1

2π
a
�

�

∫

Dφ exp

�

iα

∫

M1

1
2π

dφ

�

(34)

is gauge invariant and topological. However, the integration over φ can be replaced by a sum
over its holonomies around M1 which results in

∫

Dφ exp

�

iα

∫

M1

1
2π

dφ

�

=
∑

k

exp (iαk) . (35)

This is identically zero unless α ∈ 2πZ. We see that the operator is equivalent to the 0 operator.
0 is of course gauge invariant, topological and non-invertible but it is not good for anything.
We see unfortunately that the generalization to 2d gauge theories fails.

5.2 4d SU(N) gauge theory

Similar thing happens for the case of 4d SU(N) gauge theories. Consider an SU(N) gauge
theory with fermions and an anomalous U(1)b current satisfying

d ⋆ jb =
1

8π2
t r( f ∧ f ) . (36)

Here f = da− ia ∧ a is the SU(N) field strength. When we had a U(1) gauge theory, we had
to introduce a U(1) sigma model (i.e. the compact scalar φ) to compensate over the lack of
gauge invariance. When dealing with an SU(N) gauge theory, we need to introduce an SU(N)
non-linear sigma model parametrized by W ∈ SU(N). We can define the covariant derivative
DWW † = dWW † − ia. Then, we can write a gauge invariant conserved current of the form

⋆J̃b = ⋆ jb −
1

24π2
[(DWW †)3 + 3iDWW † ∧ f ]

= ⋆ jb −
1

8π2
(a ∧ da− 2i/3a3)−

1
24π2

(dWW †)3 −
i

8π2
d(a ∧ dWW †) .

(37)

It is gauge invariant by construction, and conserved since

d ⋆ J̃b = d ⋆ jb −
1

8π2
t r( f 2) = 0 . (38)

Using this current, we can define the operator Ũα(M3) =DWeiα
∫

⋆J̃b as before which is topo-
logical and gauge invariant. However, we get the same problem as in the 2d case. As part of
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the definition of the operator, we must integrate over all values of W ∈ SU(N). In particu-
lar, the contribution from 1

24π2

∫

(dWW †)3 can be replaced by a sum over integers. Again we
find that this operator is proportional to

∑

k eiαk which vanishes unless α ∈ 2πZ.4 Also this
operator seems to simply act as 0 and the procedure again fails.

6 Non-invertible symmetries Vs anomalies for anomalous symme-
tries

In this last section we want to make several comments on some of the similarities between
two seemingly different approaches to the anomalous U(1) symmetry and promoting it into
an exact symmetry. One approach is the one introduced here, and was also studied in [13,
14]. In this approach we promote the anomalous symmetry to a non-invertible symmetry
by adding new degrees of freedom on the topological operator. The second approach is the
one taken in [20]. In that approach we promote a discrete ZN subgroup of the anomalous
symmetry to an exact ordinary symmetry by adding new degrees of freedom to the theory. The
dynamics triggered by the new degrees of freedom is such that the symmetry is spontaneously
broken. In every vacuum, the effective theory is the original theory of interest. The ABJ
anomaly in this setup is a consequence of the spontaneous breaking of the symmetry by the
extra degrees of freedom. In this setup, instead of the topological operator Ũ , we have a
domain wall connecting two ZN vacua. The domain wall lives on some 3-manifold M3. Since
it takes us from one ZN vacuum to the other, it acts exactly as the anomalous symmetry. The
anomaly is compensated by the new degrees of freedom that come back to life on the domain
wall. These degrees of freedom contain an emergent Chern-Simons gauge field, similar to the
one that was introduced in [13, 14]. In the two approaches, we have a 3d operator acting as
axial rotations with new degrees of freedom living on it. The domain wall is not topological
due to its tension (it costs energy to deform it), but it is possible to formally define an operator
which is the domain wall divided by its tension×volume. This operator is topological and gives
an alternative promotion of the anomalous symmetry to an exact one. Effectively, in the two
approaches we add new degrees of freedom that live only on the 3d operator. These degrees
of freedom are there to cancel the ABJ anomaly. No matter what exactly the details of the
new degrees of freedom are, the 3d operator acts the same on the physical bulk degrees of
freedom.

There are more similarities between the two approaches that we want to point out. In
[20], it was shown that by adding the degrees of freedom as described above, one can get an
effective Yang-Mills theory with 2π/N periodicity for the theta angle. As a result, there is a time
reversal symmetry at θ = π/N . Microscopically, this is because the heavy fields jump from one
vacuum to the other as we cross θ = π/N . At θ = π/N there is a 2-fold vacuum degeneracy
due to the spontaneous breaking of time reversal. See section (2) of [20] for more details.
Similarly, in [24] it was argued that for pure Maxwell theory, there is a non-invertible time
reversal symmetry for θ = π/N . Another similarity between the two approaches is that the
anomalies for the anomalous symmetry cannot be used to constrain the vacuum of the theory
but can be used to constrain the effective theory on dynamical solitons. This is explained in
section 4 here and in section (4) of [20] for the two approaches respectively. There are also
some differences. For example, the non-invertible approach seems to work only for abelian
gauge theories, while the second approach works very well also for non-abelian ones. On the

4This case is a more subtle because W appears also inside the term d(a∧dWW †). This term is a total derivative
and on simple enough spaces, doesn’t contribute. Hence, we get Ũα = 0. There might be scenarios where the term
d(a∧ dWW †) saves us from getting Ũα = 0. It will be very interesting to explore this and see if the restrictions are
not too strong and one can use Ũα to learn something interesting.
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other hand, using the non-invertible approach we can save the entire U(1), while using the
second approach only a discrete ZN subgroup can be saved. Even though the two methods
seem to have a very different origin, it looks like the physical consequences of having them
is similar. Understanding better the relation between promoting the anomalous symmetry to
a non-invertible symmetry and promoting it to a spontaneously broken symmetry, can shed
new light on non-invertible symmetries and help find new ones. We hope to pursue in this the
direction in the future.

Acknowledgements

We would like to thank Masazumi Honda, Rishi Mouland, Kaan Onder, Shu-Heng Shao, Tin
Sulejmanpasic, and David Tong for fruitful discussions.

Funding information We are supported by the STFC consolidated grant ST/P000681/1 and
the EPSRC grant EP/V047655/1 “Chiral Gauge Theories: From Strong Coupling to the Stan-
dard Model”.

A The factor of 2

In this appendix we will explain in detail the factor of 2 that appears in equation (15). Consider
the following action,

S =
α

8π2

∫

S1×S2

(a− dφ)∧ da , (A.1)

where a is a U(1) gauge field and φ is a compact scalar subject to the gauge transformations,

a→ a+ dω , φ→ φ +ω . (A.2)

If we plug in φ such that
∫

S1 dφ = 2πn, and a such that
∫

S2 da = 2πm naively we get

S→
α

8π2

∫

S1×S2

a−
αkm

2
. (A.3)

Our claim that leads to the result in (15) is that the correct result is actually

S→
α

8π2

∫

S1×S2

a−αkm . (A.4)

One consistency condition is that when α ∈ 2πZ, the CS part of the action is gauge invariant
by itself and it is expected that the scalar term will be trivial. This is true only when the factor
of two is included. Below, we will give a more direct derivation of this mysterious factor of
two. To understand this, we will first review a related factor of two that appears in the pure
Chern-Simons action,

SCS =
k

4π

∫

a ∧ da . (A.5)

Naively, the gauge variation of the CS action is

δSCS =
k

4π

∫

dω∧ da ∈ πkZ , (A.6)
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since
∫

dω ∈ 2πZ and
∫

da ∈ 2πZ. This implies that the action is gauge invariant only if k
is even. This naive derivation is wrong. The first thing we need to do is to define the action
in a non-ambiguous way. On topologically non-trivial manifolds, a cannot be globally well
defined and a way to continue is to define the integral on patches. To simplify things, we will
consider a concrete example where we take the manifold to be S1 × S2. For a configuration
with non-zero monopole flux, a cannot be defined smoothly on the entire sphere, but we can
divide the sphere to two patches denoted by HN and HS with aN ,S defined globally on each
patch. We will denote the intersection between the two patches by E. On the intersection,
aN − aS = dλ where λ is some periodic scalar. The first attempt to define the action is to write
it as

Snaive =
k

4π

∫

S1

∫

HN

aN ∧ da+
k

4π

∫

S1

∫

HS

aS ∧ da . (A.7)

However, this action depends on the arbitrary choice of patches. The way to correct it is to
add a boundary term on the intersection such that

S =
k

4π

∫

S1

∫

HN

aN ∧ da+
k

4π

∫

S1

∫

HS

aS ∧ da+
k

4π

∫

S1

∫

E
dλ∧ a . (A.8)

To see the problem with (A.7 ) explicitly, denote the coordinates on the S1 by τ ∈ [0,2π]
and the coordinates on the sphere by the usual [θ ,ϕ], and take the following configuration

aN
τ = p , aS

τ = 0 , aθ = 0 , aN
ϕ =

m(1− cos(θ ))
2sin(θ )

, aS
ϕ =

m(−1− cos(θ ))
2sin(θ )

, λ= pτ+mϕ .

(A.9)
We can choose the intersection E to lie on some θ = θ0 circle. An explicit computation shows
that (A.7 ) is equal to

Snaive =
kpm
8π

∫ 2π

0

dτ

∫ θ0

0

dθ sin(θ )

∫ 2π

0

dϕ =
πkpm

2
(1− cos(θ0)) . (A.10)

The result depends on the arbitrary choice of θ0 which doesn’t make any sense. Therefore,
(A.7 ) is not a good definition of the action. On the other hand, the contribution from the
boundary integral is

k
4π

∫

S1

∫

E
dλ∧ a ≡

k
4π

∫ 2π

0

dτ

∫ 2π

0

dϕsin(θ0)
�

1
sin(θ0)

∂φλaτ − ∂τλaϕ

�

=
πkpm

2
(1+ cos(θ0)) .

(A.11)

Together, we get S = πkpm which is independent of θ0 as required. As another example,
consider the configuration,

aN
τ = aS

τ = c , aθ = 0 , aN
ϕ =

m(1− cos(θ ))
2sin(θ )

, aS
ϕ =

m(−1− cos(θ ))
2sin(θ )

, λ= mϕ . (A.12)

The action is
S = πkcm+πkcm= 2πkcm . (A.13)

Importantly, we get two equal contributions. One from the bulk integral and one from the
boundary integral. The full action is invariant mod 2π under the gauge transformation
c → c + 1, given that k ∈ Z. As we see, the boundary term is crucial to get the correct
normalization of the level.
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Our next step is to write explicitly the 3d CS action coupled to a compact scalar as in
(12). We add the compact scalar φ to the theory that transforms under gauge transformations
a → a + dω as φ → φ +ω. We claim that the correct way to write

∫

(a − dφ) ∧ da is5 (on
S1 × S2 as a concrete example)

α

8π2

∫

S1×S2

(a− dφ)∧ da ≡
α

8π2

∫

S1

∫

HN

(aN − dφN )∧ da+
α

8π2

∫

S1

∫

HS

(aS − dφS)∧ da

+
α

8π2

∫

S1

∫

E
dλ∧ (a− dφ) .

(A.14)
As in (15) we will take a configuration where φ winds around the S1,

∫

S1 dφ = 2πk, and get

α

8π2

∫

S1×S2

dφ ∧ da ≡
α

8π2

∫

S1

∫

S2

dφ ∧ da+
α

8π2

∫

S1

∫

E
dλ∧ dφ

=
αk
4π

∫

S2

da+
αk
4π

∫

E
dλ= αkm ,

(A.15)

where m is again the magnetic flux. We see that also here we get two equal contributions,
one from the bulk integral and one from the boundary integral, resulting in the factor of 2
mentioned in (15).

A.1 The BF theory

While it is not directly related to the main body of the text, it might be useful to write the
analogue of (A.8 ) for the coupling between two gauge fields, a, b, also known as the BF
theory. The action is

S =
k

2π

∫

S1×S2

a ∧ d b ≡
k

2π

∫

S1

∫

HN

aN ∧ d b+
k

2π

∫

S1

∫

HS

aS ∧ d b+
k

2π

∫

S1

∫

E
dλa ∧ bN .

(A.16)
Notice that in the last term we wrote bN for concreteness but equivalently we can use
bS = bN − dλb instead. The difference between the two choices is trivial,

∆S =
k

2π

∫

S1

∫

E
dλa ∧ dλb ∈ 2πZ . (A.17)

5In fact, this is not the end of the story. The integrals over S1 and E requires some refinement in the spirit of
equation (2.6) of [25]. This will lead to extra 2d, 1d and 0d integrals on the intersections of the various patches.
However, for simplicity we ignore these extra terms as they are not needed for the specific result derived here.
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This form of the action has several nice properties. First, it is symmetric under the exchange
of a↔ b, since

k
2π

∫

S1×S2

a ∧ d b ≡
k

2π

∫

S1

∫

HN

aN ∧ d b+
k

2π

∫

S1

∫

HS

aS ∧ d b+
k

2π

∫

S1

∫

E
dλa ∧ bN

=
k

2π

∫

S1

∫

HN

[daN ∧ bN − d(aN ∧ bN )]

+
k

2π

∫

S1

∫

HS

[daS ∧ bS − d(aS ∧ bS)] +
k

2π

∫

S1

∫

E
dλa ∧ bN

=
k

2π

∫

S1

∫

HN

bN ∧ da+
k

2π

∫

S1

∫

HS

bS ∧ da+
k

2π

∫

S1

∫

E
[dλa ∧ bN − aN ∧ bN + aS ∧ bS]

=
k

2π

∫

S1

∫

HN

bN ∧ da+
k

2π

∫

S1

∫

HS

bS ∧ da+
k

2π

∫

S1

∫

E
dλb ∧ aS ≡

k
2π

∫

b ∧ da .

(A.18)
A second property is the manifestation of the (Zk)a × (Zk)b global 1-form symmetries, acting
as a→ a+ 1

k dωa , b→ b+ 1
k dωb.
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