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Ruling out light axions: The writing is on the wall
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Abstract

We revisit the domain wall problem for QCD axion models with more than one quark
charged under the Peccei-Quinn symmetry. Symmetry breaking during or after inflation
results in the formation of a domain wall network which would cause cosmic catastrophe
if it comes to dominate the Universe. The network may be made unstable by invoking a
‘tilt’ in the axion potential due to Planck scale suppressed non-renormalisable operators.
Alternatively the random walk of the axion field during inflation can generate a ‘bias’
favouring one of the degenerate vacua, but we find that this mechanism is in practice
irrelevant. Consideration of the axion abundance generated by the decay of the wall
network then requires the Peccei-Quinn scale to be rather low — thus e.g. ruling out the
DFSZ axion with mass below ∼ 11 meV, where most experimental searches are in fact
focused.
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1 Introduction

Despite the many successes of the Standard Model (SM) of particle physics a number of im-
portant questions remain unanswered. For example stable SM matter (i.e. nucleons) accounts
for only ∼ 5% of the total energy density of the universe, while ∼ 26% is in the form of dark
matter (DM) [1]. While DM is likely constituted of new relic, weakly interacting particles, no
experiment has yet detected its non-gravitational interactions hence its fundamental nature
remains elusive.

An attractive candidate particle for DM motivated within the SM is the axion. This is the
pseudo Nambu-Goldstone boson arising from the spontaneous symmetry breaking of a chiral
U(1)PQ introduced by Peccei & Quinn (PQ) [2,3] to solve the ‘strong-C P ’ problem, viz. why do
strong interactions not violate charge-parity symmetry, thereby generating an electric dipole
moment (EDM) of the neutron which is not observed [4]. When the ‘Weinberg-Wilczek’ axion
corresponding to such symmetry breaking at the electroweak scale [5,6] was not found, it was
realised that the Peccei-Quinn scale fPQ can be much higher, implying an ‘invisible axion’ with
very suppressed couplings to SM fields. Nevertheless such relic axions can account for the cold
dark matter of the universe for fPQ ∼ 109−11 GeV [7–9] as coherent oscillations of the axion
field have the same equation of state as non-relativistic particles.

The cosmological evolution is even more interesting because of a sequence of symmetry
breaking which produces potentially stable topological defects. Below fPQ the vacuum man-
ifold is not simply connected. This implies the existence of closed paths in physical space
which get mapped onto non-trivial paths in field space winding around the origin. Such field
configurations correspond to cosmic strings [10–12]. When the temperature drops to be of
O(ΛQCD)∼ 300 MeV, QCD instantons generate a mass for the axion [13,14]:

m2
a (T (t)) = 1.7× 10−7

Λ4
QCD

f 2
PQ

�

ΛQCD

T

�6.7

⇒ ma(T = 0)≃ 5.7µeV

�

1012 GeV
fPQ

�

. (1)

This breaks the symmetry to Z(NDW), where NDW is the number of quarks charged under
U(1)PQ [15,16]. The vacuum manifold of Z(NDW) is however disconnected which implies the
existence of paths in physical space which map onto paths interpolating between two vacuum
states in field space. Such paths necessarily leave the vacuum manifold and the resulting
structure is a domain wall (DW).

Topologically each string must be connected by NDW domain walls once the axion gets
a mass. It has been argued that due to the surface energy of domain walls, a network of
strings and domain walls with NDW = 1 would be unstable and collapse [17]. Hadronic axion
models like KSVZ [18, 19] have NDW = 1, however, most models have NDW > 1, e.g. the
DFSZ axion [20, 21] has NDW = 6. Wall networks with NDW > 1 are stable and can lead to
cosmological catastrophe if they come to dominate the energy density of the universe after
they form [15], which is inevitable because of the slower scaling of their energy density than
that of radiation or matter. This happens at a time [13]:

tdom ≲
3

32πGNσDW
≃ 53 s

�

1012 GeV
fPQ

�

, (2)

where the wall tension is σDW ≃ 9ma f 2
PQ ≃ 5.1 × 1010 GeV3( fPQ/1012 GeV). This marks the

latest time by which the walls must have decayed, else the universe becomes dominated by
them and enters a stage of accelerated (power-law) expansion with no end [22]. In fact a
much stronger bound is obtained by considering the effects of the wall decay products.

Axions emitted by the decaying string-domain wall network must be accounted for in cal-
culating the total relic abundance of axions, along with those from the standard misalignment
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mechanism. This provides a prediction of the mass for axions to constitute the dark matter,
thereby sharpening the relevant target space for experimental searches. Most investigations
of the post-inflation PQ scenario, including the contributions from axion strings, indicate the
range ma ∼ 10−5 − 10−3 eV [23,24]— the ‘light axion’ window. This is therefore where most
experimental searches are focussed, especially those using tunable microwave cavities [25,26].
This does not however take into account the potential contribution from domain walls. More-
over such axions are born relativistic with a non-thermal spectrum, and turn non-relativistic
subsequently. This is quite different from both the ‘cold’ axions from the misalignment mech-
anism which have the equation of state of a non-relativistic gas, and any ‘hot’ axions created
in thermal equilibrium in the early universe with a relativistic Bose-Einstein spectrum. The
effect of the latter two populations on the formation of structure in the universe has been in-
vestigated in detail (for a review, see [27]). However the effect of the initially relativistic but
non-thermally produced axions from domain wall decay warrants further investigation.

Lattice simulations of the axion field evolution taking into account the temperature de-
pendence of the mass and the domain wall contribution for NDW = 1 models have recently
been performed [28]. However because of the large separation of scales between the thick-
ness (∼ m−1

a ) and the separation (∼ H−1) of the walls, such simulations of meta-stable DW
networks are challenging. (Here H ≡ Ṙ/R is the Hubble expansion rate, where R(t) is the
scale-factor of the universe.) We show below that axion models with NDW > 1 are severely
constrained without need for such studies. Henceforth we assume for simplicity NDW = 2
which yields a ‘frustrated’ stable wall network; our conclusions hold also for NDW > 2 in par-
ticular the DFSZ axion which has NDW = 6.

The usual argument for evading the domain wall problem is to invoke non-renormalisable
Plank-scale suppressed operators reflecting the effects of quantum gravity on global symme-
tries. These explicitly break the U(1)PQ [29–31] and lift the degeneracy of the vacuum states,
resulting in a pressure term which causes the true vacuum domain to grow [15] and the DW
network to collapse. The co-moving domain wall energy density decays as [32]

ρDW∝
σDW

η
exp

�

−µ3
�

η

ηDW

�3
�

, (3)

where µ is the fractional energy difference between the potential minima, η =
∫

dt/R(t)
is the conformal time and ηDW is its value when the walls form. Such explicit breaking of
U(1)PQ is experimentally constrained as it reintroduces the C P violation which is required by
the upper limit on the neutron EDM [33, 34] to be negligibly small. Requiring axion domain
walls to disappear in time to avoid cosmological catastrophe thus implies a lower bound on
the neutron EDM. Consequently the tilt solution to the domain wall problem is falsifiable by
improved experiments.

We also consider an alternative mechanism to render domain walls unstable by introducing
a statistical bias in the population of the vacuum states. Such a bias leads, for Z(2) models, to
exponential decay of the co-moving domain wall energy density [32,35–37]:

ρDW∝
σDW

η
exp

�

−ϵ2
�

η

ηDW

�3
�

, (4)

with ϵ the bias and ηDW the conformal time when the walls form. This mechanism was pro-
posed as a generic solution to the domain wall problem for weakly coupled fields [38]. Such
bias may be generated by the dynamics of the axion field during inflation (although this has
been recently disputed taking super-horizon correlations into account [39]). The random walk
of the axion field during an extended inflationary epoch has been exploited to open up previ-
ously excluded axion parameter space [40,41].
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This paper is organised as follows. We begin by reviewing (§ 2) the two solutions above to
the domain wall problem and highlight the challenges. In particular the bias solution turns out
to be irrelevant. Although the tilt solution does work, in § 3 we show that the overproduction of
axions from the collapsing string-wall network effectively excludes it for most of the parameter
space that axion dark matter searches are presently focussed on.1 Experiments looking for
heavier QCD axions [43–46] thus receive further motivation from this work. However the
relevant parameter space for hadronic axion models e.g. KSVZ [47] is unaffected as no domain
walls then survive from the early universe. Our arguments do not apply when Peccei-Quinn
symmetry breaking occurs before the onset of inflation.

2 Solutions to the domain wall problem

2.1 Tilt

Proposed by Sikivie [15], the standard solution to the domain wall problem lifts the topological
protection of the domain walls by introducing a tilt in the potential. Therefore only one true
vacuum state remains and bubbles of false vacuum eventually collapse under the pressure
stemming from the increased volume energy density within the bubbles of false vacuum. The
explicit breaking of the global symmetry is due to quantum gravity effects at the scale MQG
parameterised by non-renormalisable operators [29–31]:

δVMQG
=
|g| eiδ

M2m+n−4
QG

|φ|2mφn + h.c.+ c , (5)

where the constant c is chosen to have min V = 0. The coupling can in general be complex
introducing a phase δ with coupling strength |g|. The above term stems from a 2m+ n-dim
operator with a U(1)PQ charge n; under U(1)PQ the |φ|2m stays invariant and φn changes by n.
The operator is suppressed by M2m+n−4

QG and we make the most conservative choice that MQG

is the Planck Scale MPl ≡ G−1/2
N ≃ 1.2×1019 GeV. If it were lower, e.g. at the string scale, this

would only strengthen the bounds quoted in this paper.
After U(1)PQ spontaneously breaks and the complex PQ field acquires a vev va = NDW fPQ,

the potential (5) can be written as

δVMPl
= |g|M2

Pl

�

fPQp
2MPl

�2m+n−2

f 2
PQ (1− cos (na+δ)) , (6)

yielding a potential for the axion field below the QCD scale:

V (a) = m2
a f 2

PQ [(1− cos(NDWa)) +µ (1− cos (na+δ))] , (7)

with

µ≡ |g|
�

MPl

ma

�2
�

fPQp
2MPl

�2m+n−2

. (8)

If δ, |g|, n and NDW are not fine-tuned such that the potentials align perfectly, there will be
only one true vacuum state.

Such additional operators are however constrained since explicit breaking of U(1)PQ rein-
troduces the original strong-C P problem [15]. This ‘axion quality problem’ is quantified as

1A similar argument has been made earlier [42] but the constraint we quote is significantly stronger.
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below. The vev of the new potential (which corresponds to the QCD ‘theta parameter’) is:

〈θ 〉=
|g|M2

Pl

�

fPQp
2MPl

�2m+n−2
n

NDW
sinδ

m2
a + |g|M

2
Pl

�

fPQp
2MPl

�2m+n−2
n2 cosδ

≃ |g|
�

MPl

ma

�2
�

fPQp
2MPl

�2m+n−2
n

NDW
sinδ , (9)

where we have used the fact that the potential generated by the non-renormalisable operators
is much smaller than the QCD potential. It is also natural to assume δ ∼O(1). Requiring that
the above vev respect the conservative bound 〈θ 〉< 10−10 set by the experimental upper limit
on the neutron EDM, we get:

|g|
�

fPQp
2MPl

�2m+n
n

NDW
< 1.6× 10−91 , (10)

taking |g| too be of O(1) and using relation(1) between ma and fPQ for the QCD axion.
A lower bound on the tilt comes from requiring it to solve the domain wall problem. After

the appearance of the domain wall network, it takes only a short while before its energy density
comes to dominate the universe. The explicit breaking from the potential (6) must be large
enough for the network to collapse before this happens. A conservative upper bound on the
collapse time is the epoch of Big Bang nucleosynthesis (BBN) at tBBN ∼ 1 s [48]. Having a
small explicit breaking lifts the degeneracy of the NDW vacuum states leaving only one true
vacuum and NDW − 1 false ones. A bubble of false vacuum surrounded by the true vacuum
experiences a pressure due to the difference in energy density, causing the bubble to shrink.
The domain wall contributes

EDW = σDWR2 , (11)

for a bubble of size R, while the energy density of the contained volume is

Evol = δVR3 . (12)

The work done by the energy difference between the volume of false vacuum and the true
vacuum at V = 0 is∆E ∼ δVR3. Then we may find the force acting on the wall, FDW = δVR2

and hence its acceleration:

|a⃗|=
δV
σDW
≃ 2.8× 1058 GeV |g|

�

fPQp
2MPl

�2m+n−1

, (13)

where we estimated the potential difference δV to be the maximum of the potential generated
by non-renormalisable operators. The true difference will be slightly smaller but this does not
greatly affect our argument. We can estimate the time of collapse to be roughly when the
acceleration is high enough for the wall to have a velocity close to the speed of light, thereby
overcoming the expansion of space and leading to collapse. This leads to the requirement:

|g|
�

fPQp
2MPl

�2m+n−1

> 1.2× 10−83 . (14)

The two inequalities (10) and (14) result in a constraint on the Planck scale suppressed,
non-renormalisable operators required to solve the axion DW problem, while leaving the PQ
solution to the strong-C P problem unspoilt. Such a theory must obey

8.5× 10−91

�

fPQ

1012 GeV

�

< |g|
�

fPQp
2MPl

�2m+n

< 1.6× 10−91 NDW

n
, (15)
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Figure 1: The dimension 2m+ n of Planck scale suppressed non-renormalisable op-
erators required to solve the axion domain wall problem, versus the Peccei-Quinn
scale fPQ. The orange shaded region is allowed by the inequalities (17) derived in
the text. The plot ends at fPQ ∼ 1011 (NDW/n) GeV above which there is no solution.
Moreover 2m+ n must be an integer — which further restricts fPQ to the green ver-
tical bands. The grey shaded region (bounded by dashed lines) illustrates the mild
relaxation of the constraint when the coupling |g| and phase δ of the tilt operator
are both fine-tuned to be 10−2.

which implies:

fPQ < 1.9× 1011 GeV
NDW

n
. (16)

The operator dimension must thus be bounded as:

log
�

1.6× 10−91NDW/n
�

− log (|g|)

log
�

fPQ/
p

2MPl

� < 2m+ n< 1+
log

�

1.2× 10−83
�

− log (|g|)

log
�

fPQ/
p

2MPl

� . (17)

Figure 1 shows that whereas there do exist operators for which both the aforementioned prob-
lems are solved, the solution is very unnatural. To leave the PQ solution to the strong-C P
problem unspoiled we must suppress lower order operators. However, in order to have fast
enough domain wall decay we must guarantee that the lowest dimensional operator which
is allowed within the PQ solution does exist. We are therefore tasked with having to explain
how to suppress all Planck scale suppressed operators up to the specific one we require. We
conclude that explicitly breaking U(1)PQ to get around the DW problem is inherently unsat-
isfactory; improvement in neutron EDM measurements will tighten the constraints further,
eventually closing off this possibility altogether.

It should also be noted that 2m+n is an integer number which reduces the available range
for fPQ even further, e.g. 2m+ n = 9 requires fPQ ∼ 109 GeV for tilt to solve the DW problem
while not spoiling the solution to the strong-C P problem.

2.2 Bias

Another possibility to solve the DW problem is to introduce a statistical bias in the distribution
of the axion field. Generating an overpopulation in one of the NDW vacuum states eventually
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leads to domination by it. When the patches of the other vacua become causally connected, the
tension of the domain walls makes them collapse. This was demonstrated for a Z(2) symmetric
potential [32,35–37].2

Any field lighter than the Hubble parameter in an inflationary deSitter background, i.e.
with ma ≪ Hinfl, experiences quantum fluctuations of O(Hinfl). These fluctuations are caused
by the exit of modes from the inflationary event horizon [49, 50]; each mode gives the field
averaged over super-horizon scales a kick of order Hinfl, while the potential causes the field to
settle into the vacuum states. The interplay between these two effects is critical for a bias to
appear and therefore this mechanism works only for fields which experience a potential during
inflation. For details on the generation of a bias, see Appendix A.

The issue with this solution to the axion DW problem lies in the huge separation of the two
relevant scales. The size of the field space of the axion is set by its vev fPQ, while the step-size
of the random walk the field undergoes during inflation is ∼ Hinfl. This leads to three distinct
possibilities:

• Hinfl ≫ fPQ: In this case, the deSitter temperature TdeS∝ Hinfl is higher than the sym-
metry breaking scale of the U(1)PQ and quantum fluctuations move the field back to
the origin of the potential. Thus the quantum fluctuations prevent the axion field from
becoming classical and no bias is generated.

• Hinfl ∼ fPQ: As long as Hinfl is smaller than fPQ, the PQ symmetry is broken during
inflation. However, this is supposedly excluded by constraints on isocurvature pertur-
bations [13, 51]. Additionally, the PQ scale is much higher than the QCD scale, which
means that the axion does not acquire a potential from QCD instantons. Since a poten-
tial is necessary for the generation of a statistical bias, this parameter space is unsuitable
for solving the domain wall problem via bias.

• Hinfl ≪ fPQ: The hierarchy between the scales allows the PQ symmetry to be broken
and the axion to develop a potential during inflation. The random walk step-size is
however small and the steady state of the distribution is reached after ∼ ( fPQ/Hinfl)2

e-folds, however the mean value of the axion field has still not changed much from
its initial value. To generate a bias we must wait until the mean value accumulates
around the vacuum states; this can take a long time during which the causally connected
patches at the time of PQ symmetry breaking inflate and any domain walls that form
are exponentially large [52]. Hence this is the same as pre-inflationary PQ symmetry
breaking.

To circumvent the problem with an inflationary Hubble parameter which is too high to
allow quark confinement and the generation of an axion potential, one may consider a poten-
tial for the axion stemming from another source. Such a possibility involving a dark gauge
sector which also breaks the U(1)PQ has been proposed [53, 54]. The bias mechanism would
still result in the accumulation of the axion field at the minima of this potential which would
carry over to the time of QCD confinement because the axion field is weakly coupled. This
would solve the domain wall problem unless the two potentials are correlated and overlap.
If such a potential is generated early on in the deSitter universe, the axion field is correlated
on super-horizon scales after reheating and the subsequent PQ breaking does not result in the
generation of domain walls within our particle horizon. In this sense the scenario mimics the

2However, if the walls are connected by strings, the biased initial conditions mean that the initial string con-
figuration is energetically disfavoured and would likely relax to an unbiased state by emitting axions before the
formation of DWs. Moreover recent lattice simulations show that taking superhorizon inflationary correlations
into account can undermine the bias mechanism [39]. In any case we find here that bias does not solve the axion
DW problem.
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pre-inflationary PQ breaking scenario. Should the potential be generated at the end of infla-
tion with a Hubble parameter large enough to result in a steady state distribution, then the
subsequent domain walls are biased and decay, unless more than one minimum of the two
potentials overlaps. Note however, that the two scales fPQ and Hinfl must be closely aligned to
achieve this goal.

3 Domain wall decay

When the string-wall network decays, its energy density is released as gravitational radiation
and axions. However there are cosmological constraints on dumping a large amount of energy
via either of these decay channels.

We define the density parameter in any component as the ratio of its energy density to the
critical energy density of the universe expanding at a rate H0 ∼ 70 km s−1Mpc−1 today [1]:

ΩX (t)≡
ρX (t)
ρcrit

, ρcrit =
3H2

0 M2
Pl

8π
≃ 3.8× 10−47 GeV4 . (18)

Strings appear at the PQ breaking scale T ≃ va with energy density (in the scaling regime),

ρstr(t) =Astr(t)
µstr

t2
=Astr(t)

πv2
a ln(va t)

t2
, (19)

where Astr(t) is the number of strings per Hubble patch and µstr is the string tension. Efficient
cutting of the strings suggests Astr(t) ∼ 1 [55]. Domain walls form when the axion mass
becomes dynamically important, overcoming the Hubble drag, at tDW ∼ m−1

a . They connect
each string to NDW walls which have energy density (in the scaling regime):

ρDW(t) =ADW(t)
σDW

t
≃ADW(t)

9ma f 2
PQ

t
. (20)

The ratio of the energy density in domain walls and strings is thus

ΩDW(tDW)
Ωstr(tDW)

=
ρDW(tDW)
ρstr(tDW)

≃
9

NDWπ ln(va t)
≃ 4.7× 10−2N−1

DW . (21)

Soon after the formation of domain walls, the string-wall network is dominated by the dynam-
ics of the walls which freely drag the strings around after a time

tDWdom =
Astr(t)
ADW(t)

µstr

σDW
≃
π

9
NDW tDW ln(va t)≃ 21NDW tDW

�

log (va tDWdom)
60

�

. (22)

Once the walls dominate, the string contribution to the energy density is negligible and may
be ignored.

3.1 Decay into relativistic particles

Since the wall network decays exponentially fast, treating the decay as instantaneous is a
justified simplification. If the decay is mainly into gravitational waves or if the axions are light
enough to remain relativistic till today, the energy density of domain walls is converted into,
and remains, radiation. The usual radiation energy density at T ≪ me is

ρrad = ργ

�

1+
7
8

�

4
11

�4/3

Neff

�

, (23)
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where ργ = π2T4/15 is the energy density in photons and Neff = 3.046 is the effective number
of neutrino species. Any additional relativistic energy density ρ contributes an equivalent
number of effective neutrino species:

∆Neff ≡ Neff − 3.046=
8
7

�

11
4

�4/3 ρ

ργ
. (24)

This is bounded by the Planck limit on ‘dark radiation’ from observations of CMB anisotropies:
∆Neff ≲ 0.3 [56], hence we have ρ/ργ < 0.07. Because the ratio of the energy density of
domain walls and radiation scales∝ R(t)2, this requires the walls to decay long before they
come to dominate.

With the usual time-temperature relationship, t(T ) = 0.77 s (g∗(T )/10)−1/2 (T/MeV)−2

in terms of g∗(T ) the effective relativistic degrees of freedom [48], we find

ΩDW(t)
Ωrad(t)

= 0.01
� t

s

�−1� g∗(T (t))
10

�−1� T (t)
MeV

�−4� fPQ

1012 GeV

�

≲ 0.04 , (25)

implying that the domain walls decaying into radiation must do so before

tdec ≲ 2.4 s

�

fPQ

1012 GeV

�−1

. (26)

This reproduces our constraint (16) obtained by assuming a decay time around tBBN ∼ 1 s.

3.2 Decay into particles that become non-relativistic

Again we will assume the wall decay to be instantaneous but all the energy density to be
converted into axions which subsequently become non-relativistic. Now

ΩDW
a (t) =

ωa

ρcrit
nDW

a =
ωa

〈ωa〉
ΩDW(tdec)

�

R(tdec)
R(t)

�3

, (27)

with
ωa

〈ωa〉
=

1+ (K − 1)R(ta)/R(t)
K

=
1+ (K − 1)

p

ta/t
K

, (28)

where ωa is the axion energy and 〈ωa〉 its average for the radiated axions, K is the axion
kinetic energy (in units of ma) and ta the time at which the axion in question was radiated.
Numerical studies find K ∼ 100 [17]3 i.e. the axions are initially highly relativistic and scale
like radiation, but after the universe expands sufficiently they turn non-relativistic and behave
like matter which is decoupled from the thermal bath. To ensure that their present energy
density does not exceed that of dark matter, the wall network must decay early enough. We
know that the universe is radiation dominated during BBN and we assume this to be so during
the entire period when domain walls are present. The axions from wall decay become non-
relativistic at

tnr ≳ tdec (K − 1)2 . (29)

Subsequently their energy density scales as matter which is limited by the dark matter abun-
dance today [1]:

ΩDW
a (t0)≃

1
K
ΩDW(tdec)

�

R(tdec)
R(teq)

�3�R(teq)

R(t0)

�3

≤ xaΩDM ≃ 0.26xa , (30)

3Recent studies [57,58] find K to be of O(1) in which case the decay axions turn non-relativistic earlier, leading
to a stronger constraint (see Figure 3), so we are being conservative here.
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with teq ≃ 3.3× 1036 GeV−1 the time of matter-radiation equality and xa the fraction of dark
matter in the non-thermal axions from wall decay. The most conservative estimate is xa = 1,
i.e. all the dark matter is contributed by axions from wall decay. Considerations of structure
formation probably impose a much stronger limit.4 This requires

tdec < 1.0× 1018 GeV−1
�

K
100

�2
�

fPQ

1012 GeV

�−2

≃ 0.66 µs , (31)

which is significantly earlier than the constraint of t ≲ 50 s from wall domination. The cor-
responding temperature is ∼ 2ΛQCD when the walls have just about formed, so this bound
cannot in fact be improved any further.

Hence the range (15) of the symmetry-breaking scale for which a tilt in the potential can
solve the domain wall problem without spoiling the PQ solution to the strong-C P problem
reduces to

fPQ ≲ 2.2× 109 GeV . (32)

This rules out the tilt solution to the domain wall problem for a QCD axion which is lighter
than a few meV.

Should the decay be induced by a tilt from a higher dimensional operator (§ 2.1), then the
decay time is given by tdec ≃ tDWµ

−1. The above constraint then tightens to

fPQ ≲ 1.8× 108 GeV . (33)

Since the dimensionality of the operator must be integer, the constraint is even tighter:

fPQ ≲ 7.6× 107 GeV . (34)

To be more precise we now drop the assumption of instantaneous decay and consider decay
into both axions and gravitational waves in order to obtain a robust constraint.

3.3 Generalised decay

The coupled equations governing the decay of the string-wall network are [58,59]:

∂ΩDW

∂ t
= −H(t)ΩDW −

∂ΩDW→a(t)
∂ t

−
∂ΩDW→GW

∂ t
, (35)

∂ nDW
a (t)

∂ t
= −3H(t)nDW

a (t) +
ρcrit

〈ωa〉
∂ΩDW→a(t)

∂ t
, (36)

∂ΩGW

∂ t
= −4H(t)ΩGW +

∂ΩDW→GW

∂ t
, (37)

with ΩDW→a and ΩDW→GW the instantaneous energy density converted from walls to axions
or gravitational waves, nDW

a (t) the number density of radiated axions and 〈ωa〉 their average
energy, and ΩGW the density parameter of gravitational waves.

We begin by estimating the gravitational wave radiation from domain walls oscillating at a
typical frequency dictated by their size. By the quadruple formula, the power in gravitational
waves radiated by a domain wall of size ℓ oscillating at the typical frequency ℓ−1 is [16,17]

PGW ≃
σ2

DW

M2
Pl

ℓ2 . (38)

4If K is small the decay axions have a short free streaming length and may thermalise [27]; there are then no
constraints from observations of the Lyman-α forest, however this requires further investigation.
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A wall bubble has energy ρ ∼ σDWℓ
2H3 and if the number of bubbles stays constant then the

typical size of the bubbles is ℓ2 ∼ ρDWNDW/σDWH3, which then suggests

∂ΩDW→GW

∂ t
≃

H3

ρcrit
PGW ≃

σDW

M2
Pl

NDWΩDW . (39)

The scaling of the DW energy density (3), which in physical coordinates reads:

ρDW∝
σDW

ηR(t)
exp

�

−µ3
�

ηR(t)
ηDWR(tDW)

�3�

=
σDW

t
exp

�

−µ3
�

t
tDW

�3
�

. (40)

Note that accounting for collapsing DW bubbles does not change this scaling significantly
[32,57–59]. Now we can solve the differential equation (37) to find:

ΩGW ≃
σ2

DWNDW

3M2
Plρcrit

� tDW

t

�2
�

E1/3(µ
3)−

�

t
tDW

�2

E1/3

�

µ3
�

t
tDW

�3
��

, (41)

where En(x) =
∫∞

1 e−x t/tndt is the exponential integral function. A detailed numerical sim-
ulation [57] finds a value that is higher by a factor of 5 or so.

We can also solve eq.(36) by substitution of eq.(35) to find:

ΩDW
a ≃

σDW

tDWρcrit

ωa

〈ωa〉

� tDW

t

�
3
2
�

e−µ
3
−
√

√ t
tDW

e−µ
3
�

t
tDW

�3
�

+
σDW

tDWρcrit

ωa

〈ωa〉

� tDW

t

�
3
2
�

1
3

E5/6(µ
3)−

1
3

√

√ t
tDW

E5/6

�

µ3
�

t
tDW

�3
��

+

p
πσ2

DWNDW

3M2
Plµ

3/2ρcrit

ωa

〈ωa〉

� tDW

t

�
3
2
�

erf
�

µ3/2
�

− erf

�

µ3/2
�

t
tDW

�3/2
��

. (42)

In the following we will assume that most axions are produced at wall decay, so we can replace
ta with tdec ∼ tDW/µ in eq. (28). This is a good approximation given the exponentially fast
decay of the domain wall network.

The gravitational radiation (41) produced by the decay of the DW is subject to the same
Neff bound as before:

lim
t→≫tdec

ΩGW

Ωγ
≃

5
π

σ2
DWNDW

M2
PlMeV4

� tDW

0.77 s

�2�10
g∗

�

E1/3

�

µ3
�

≲ 0.07 . (43)

We conclude that this is true iff

fPQ ≲ 7× 1010 GeV

�

E1/3

�

〈θ 〉3
�

E1/3 (µ3)

�3/8

, (44)

where we have used eq.(9) to estimate

µ= |g|
�

MPl

ma

�2
�

fPQp
2MPl

�2m+n−2

≃
〈θ 〉

sinδ
NDW

n
< 10−10

�

〈θ 〉
10−10

�

NDW

n
1

sinδ
. (45)

There is some theoretical uncertainty in interpreting the experimental bound on the neutron
EDM; we have used a more conservative constraint on 〈θ 〉 than in refs. [42,57,58].
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Figure 2: Evolution of various components of the energy density with time (in units
of tDW = m−1

a ), for a tilt parameter µ = 10−11 and fPQ = 5× 107 GeV. The dashed
blue (orange) line indicates the usual radiation (dark matter) content. The orange
line indicates the axion domain walls which decay at tdec ∼ tDW/µ, and the blue
and green lines correspond to their decay products, respectively gravitational waves
and axions (taking K = 100). The latter turn non-relativistic at tnr ∼ tdecK2 and are
conservatively assumed to contribute the present dark matter abundance.

Assuming instantaneous decay of the domain walls, the peak frequency of gravitational
waves can be estimated from the Hubble scale at the decay epoch [60]

fGW ≃ H(tdec)

�

R(tdec)
R(teq)

��

R(teq)

R(t0)

�

≃ 1.4× 10−11 Hz
�

g∗(Tdec)
10

�1/2� g∗s(Tdec)
10

�−1/3� Tdec

MeV

�

, (46)

while the amplitude is from eq.(41),

lim
t→t0
ΩGW ≃ 1.2× 10−9

�

fPQ

1012 GeV

�8/3� E1/3

�

µ3
�

E1/3 (〈θ 〉3)

�

. (47)

A far more substantial contribution is made however by the radiated axions which con-
tribute to the dark matter abundance today. Requiring that the total axion abundance not
exceed the latter, we obtain the severe constraint:

lim
t→t0
ΩDW

a < 0.26xa ⇒ fPQ ≲ 3.3× 108 x6/7
a GeV i.e. ma ≳ 17 x−6/7

a meV . (48)

Our bound is consistent with previous numerical work [42, 58]. Figure 3 shows how this
constraint scales with the tilt parameter µ ≈ 〈θ 〉 (see eq.45). As the experimental limit on
the neutron EDM improves, the smaller the tilt allowed, so the above constraint on the QCD
axion will tighten even further with forthcoming measurements. We also show the scaling of
the bound with NDW in Figure 4. For the DFSZ model in particular NDW = 6 so the bound is
ma ≳ 11 x−6/7

a meV i.e. fPQ ≲ 5.4× 108 x6/7
a GeV.

The above constraint used the conservative value xa = 1, i.e. the dark matter is taken
to be entirely constituted of non-relativistic axions which were born relativistic but out of
thermal equilibrium. Considerations of structure formation place constraints on axion ‘hot
dark matter’ assuming the axions initially have a Bose-Einstein distribution [61,62]. Solution
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Figure 3: Scaling of the upper bound on fPQ (and corresponding lower bound on ma)
with the tilt parameter µ (eq.45) assuming QCD axions from the decay of domain
walls make up all the dark matter; the region above the green curve is excluded.
The experimental limit on the neutron EDM requires µ < 10−10NDW (vertical dotted
line, taking NDW = 6), i.e. ma ≳ 11 meV. If δ is fine-tuned to be 10−2, then µ in-
creases to 10−8NDW thus allowing the grey shaded region, i.e. lighter axions down
to ma ∼ 1.5 meV. However if the decay axions are only mildly relativistic (see eq. 28)
with K ∼ 5 [58] rather than K = 100 as assumed above, this yields a stronger con-
straint (dashed green curve) which implies ma ≳ 139 meV for δ = 1, so the previous
bound is quite robust.

of the relevant Boltzmann equations governing decoupling yields the actual distribution; this
imposes a restrictive upper bound ma < 0.24 eV [63]. The relevant QCD (DFSZ) axion window
is then ∼ 11−240 meV although this will narrow further if xa can be constrained to be below
unity from considerations of structure formation. Whereas axions of such mass are subject
to constraints on stellar energy loss [64], the most stringent such bound from SN 1987a is
significantly weakened taking astrophysical uncertainties into account [65]. In fact there are
indications of anomalous stellar cooling which would indicate a mass of O(10) meV for the
QCD axion [66].

4 Conclusion

We have revisited the cosmological domain wall problem which poses a serious threat to the
QCD axion. If the Peccei-Quinn symmetry breaks after inflation, then in any model with
NDW > 1 quarks charged under U(1)PQ, a network of domain walls is created and comes
to dominate over both radiation and matter. Such an universe undergoes power-law inflation
without end, incompatible with the universe we observe today.

Finding a mechanism which can make the walls collapse is challenging. A statistical bias
induced by inflation in the population of the vacuum states results in exponential decay of the
wall network, however, the vast separation of the relevant scales in the field space — fPQ, Hinfl,
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Figure 4: Scaling of the upper bound on fPQ (and corresponding lower bound on ma)
with NDW for the QCD axion in the post-inflationary scenario.

and ΛQCD — means that the necessary bias cannot be generated.
The other known way to make the wall network decay is to introduce a small tilt in the

potential. However thus explicitly breaking the symmetry leads to the reappearance of the
strong-C P problem, hence the tilt is limited by the experimental upper limit on the neutron
EDM. If the tilt results, as is usually assumed, from a non-renormalisable, Planck scale sup-
pressed operator reflecting violation of the global U(1)PQ symmetry by quantum gravity ef-
fects, then its dimension is tightly constrained. As measurements of the neutron EDM improve
further, this window will eventually close altogether.

Independent of the mechanism, the energy density in the domain walls is released as grav-
itational waves and relativistic axions which subsequently turn non-relativistic, both of which
are constrained by observations. We find that QCD axion models with NDW > 1 and post-
inflationary Peccei-Quinn breaking are severely constrained, e.g. for the DFSZ axion with
NDW = 6, we require fPQ ≲ 5.4×108 GeV, i.e. ma ≳ 11 meV. Experimental searches must thus
focus on higher mass axions which are cosmologically still viable, and can have noticeable
effects on stellar energy loss.
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A Axion field evolution

A.1 Inflationary universe

During cosmic inflation the universe undergoes rapid expansion characterised by an approxi-
mately constant Hubble parameter Hinfl. This implies an exponential growth of the scale factor
R(t)∝ exp (Hinfl t) and the metric is approximately of the deSitter form

ds2 = R(t)ηi, jdx idx j , (A.1)

with η the flat Minkowski metric
The dynamics of the axion field φ(x) ∈

�

0,2π fPQ

�

is governed by the semi-classical equa-
tion of motion (EOM)

�

�

∂

∂ t

�2

+ 3Hinfl
∂

∂ t
−

1
a(t)2
∇2

�

φ(x) + V ′(φ(x)) = 0 , (A.2)

with potential

V (φ(x)) = m2
a f 2

PQ

�

1− cos

�

N
φ(x)
fPQ

��

. (A.3)

The mass term in the potential is time-dependent and has been calculated on the lattice [13]
— see Eq.(1).

During deSitter expansion, fields have two naturally separated scales, sub- and super-
horizon, with physical momentum k > H−1

infl and k < H−1
infl respectively. While the field is frozen

on super-horizon scales, on sub-horizon scales it evolves according to eq. (A.2). Sub-horizon
scales are said to ‘exit the horizon’ when their physical momenta k = p/R(t) are sufficiently
redshifted by the expansion. Following Refs. [49,50]we write the axion field as a mode expan-
sion for sub-horizon modes, and for super-horizon modes a coarse-grained fluctuation field χ,
averaged over many horizon sizes χ̄:

φ(x) =

∫

Θ
�

p− ϵHinfleHinfl t
� �

âpφp(t)e
ip·x + h.c.

�

+χ(x)− χ̄ . (A.4)

The fluctuation field obeys a Langevin-type equation

∂ φ

∂ t
=

1
3Hinfl

�

∇2φ

e2Hinfl t
−
∂ V
∂ φ

�

+η(x) , (A.5)

with η(x, t) acting as white noise sourced by the modes leaving the horizon, which causes the
averaged field to random walk. The Langevin equation can be translated into a Fokker-Planck
equation for the normalised probability distribution of the field P(χ, χ̄, t):

∂ P(χ, χ̄, t)
∂ t

=
∂

∂ χ

�

1
3Hinfl

∂ V
∂ χ

P(χ, χ̄, t)
�

+
H3

infl

8π2

∂ 2P(χ, χ̄, t)
∂ χ2

. (A.6)

The solution is given by [67]

P(χ, χ̄, t) = exp

�

−
4π2

3H4
infl

V (χ)

� ∞
∑

n=0

anΦn(χ)exp (−Λn(t − t i)) , (A.7)

with Φn(χ) the eigenfunctions of

−
1
2
∂ 2Φn

∂ χ2
+

1
2

 

�

4π2

3H4
infl

∂ V
∂ χ

�2

−
4π2

3H4
infl

∂ 2V
∂ χ2

!

Φn =
4π2Λn

H3
infl

Φn , (A.8)
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while the coefficients an are given by the initial condition at t = t i as

an =

∫

P(χ, χ̄, t)Φn(χ)exp

�

4π2

3H4
infl

∂ V
∂ χ

�

dχ . (A.9)

The distribution (A.7) evolves towards the stationary solution for late times and thus for the
average field

Pstationary(χ̄) = exp

�

−
4π2

3H4
infl

V (χ̄)

�

/

∫

exp

�

−
4π2

3H4
infl

V (χ)

�

dχ . (A.10)

For the axion potential (A.3), Eq.(A.8) reduces to a Schrödinger type equation after neglecting
terms of O(ma/Hinfl)4:

∂ 2Φn

∂ χ2
+

�

4π2

3

N2m2
a

H4
infl

cos

�

N
χ

fPQ

�

+
8π2Λn

H3
infl

�

Φn . (A.11)

The solution is a Mathieu function:

MC

�

32π2 f 2
PQ

N2H3
infl

Λn,
8π2 f 2

PQm2
a

3H4
infl

, N
χ

2 fPQ

�

≈ cos





√

√

√

8π2 f 2
PQ

H3
infl

Λn
χ

fPQ



 , (A.12)

where we have used ma≪ fPQ, Hinfl in the last step. The eigenvalues are then given by

Λn ≈
n2

8π2

�

Hinfl

fPQ

�2

Hinfl , (A.13)

and the first correction to the stationary solution (A.10) is exponentially suppressed when the
number of e-folds exceeds 8π2( fPQ/Hinfl)2. Thus, the smaller the inflationary scale, the longer
it takes to reach the stationary state.

Assuming the potential admits slow-roll, the solution for the fluctuation field can be written
as a Gaussian wrapped around the compact field region:

P(χ, χ̄, t) =
∞
∑

k=−∞

√

√

√

2π

H3
infl t

exp

�

−
2π2

H3
infl t

�

χ − χ̄ + 2π fPQk
�2
�

=
1

2π
ϑ

�

θ − θ̄
2

, exp

�

−
H3

infl t

16π3 f 2
PQ

��

, (A.14)

with ϑ the Jacobi theta function and θ = χ/ fPQ. Physically, two effects are competing here. On
the one hand, each mode leaving the horizon gives the distribution a kick of O(Hinfl/2π), thus
widening the distribution. On the other hand, the potential causes the average to concentrate
around the vacuum states V (χ) = 0. This concentration near the potential minima will lead
to the appearance of a statistical bias in the population of the states, hence it is clear that our
scenario only works when the axion develops a potential during inflation.

A.2 FLRW universe and bias generation

After cosmic inflation and reheating the universe enters a period of radiation-dominated
Friedman-Lemaître-Robertson-Walker (FLRW) expansion with a metric similar to eq.(A.1) but
with H(t) = 1/2t no longer constant and R(t) ∝

p
t. Accelerated expansion has stopped
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so the causal horizon starts growing which leads to the re-entry of scales which had left the
horizon in the deSitter phase. The equation of motion changes to

�

�

∂

∂ t

�2

+ 3H(t)
∂

∂ t

�

φ(x) + V ′(φ(x)) = 0 , (A.15)

where we have neglected the spatial derivatives (smoothed out during the inflationary epoch).
The initial conditions are given by the inflationary Hubble parameter 1/2t i = Hinfl and the field
at the end of inflation φi = χ(t i); note that ∂tφi = 0 because of inflation. The Hubble drag
term decreases until the potential dominates the field evolution. At this point φ(x) settles into
one of the potential minima.

The bias ϵ is defined as the difference in the probability of populating the degenerate min-
ima. Qualitatively the bias arises because the averaged distribution during inflation (eq.A.10)
is concentrated around the potential minima and the fluctuation field distribution (eq.A.14)
has a finite width, making it less probable to populate vacuum states further away from the
average field value. For the simplest case NDW = 2 we follow the definition [38]:

b(χ̄) =

∫

f (φi)P(φi , χ̄, t i)dφi , (A.16)

with f (φ) a function taking the values −1,1 when the evolution of φ ends in one or the other
vacuum state respectively. Inflation gives access only to the probability distribution of χ̄, hence
this translates into a probability of finding a bias [38]:

P(|b|< x) =
∑

χ̄; b=b(χ̄)

∫ b(χ̄)=x

b(χ̄)=−x
Pstationary(χ̄)dχ̄ . (A.17)

Once the bias is established the domain wall network becomes unstable and its energy den-
sity exponentially drops according to eq.(4). The energy density from the collapsing network
is radiated as axions and gravitational waves.

The width of the distribution (A.14),σ =
q

H3
infl t/4π2 f 2

PQ, is dictated by the ratio Hinfl/ fPQ.
For Hinfl ≫ fPQ the distribution is flat over the field range θ ∈ [−π,π] but when Hinfl ≪ fPQ,
the wrapped normal distribution can be approximated by a Gaussian.

A.3 Narrow Gaussian (Hinfl≪ fPQ)

When Hinfl ≪ fPQ, the distribution is well approximated by a narrow Gaussian as long as the
central value θ̄ is far from−π,π. Due to the symmetries of the potential (A.3) the bias function
(A.16) is symmetric around the origin and anti-symmetric around the points θ = ±π/2. It is
thus sufficient to concentrate on a subset of the field range given by [0,π/2] and the entire
function can be reconstructed as

b(χ̄) = δk,0











∫ π
π
2

P
�

θ , θ̄ , t
�

dθ −
∫
π
2

−π2
P
�

θ , θ̄ , t
�

dθ , θ̄ ∈
�

0, π2
�

,

−b
�

π− θ̄
�

, θ̄ ∈
�

π
2 ,π

�

,

b
�

−θ̄
�

, θ̄ ∈ [−π, 0) .

(A.18)

Here we have used the fact that for a finite potential like eq.(A.3) which allows free states,
the fact that inflation dilutes the derivatives implies that after inflation the field simply settles
into the vacuum state it started above. Thus, the function f (φ) is −1 when φ ∈ [−π/2,π/2)
and +1 otherwise.
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Because of the symmetries, the sum in Eq.(A.17) yields 2 so the probability is:

P(|b|< ϵ) = 4

∫ b(θ̄ )=ϵ

π/2

Pstationary(θ̄ )dθ̄ , (A.19)

where the upper integration limit requires inverting Eq.(A.18).
By definition, P(|b| < 1) = 1 hence the probability rises at high values of b. Also by

definition P(|b|< 0) = 0. The behaviour in between interpolates between these two extremes.
Increasing Hinfl increases the width of the Gaussian distribution (A.14) and yields smaller
values of the bias. This is easily understood since the bias comes from counting the positions
of the central value θ̄ , weighted with the distribution (A.10). The narrower the Gaussian, the
more likely it is to fall into just one or the other vacuum.

The width increases with time hence after a sufficient number of e-folds of inflation the
distribution spreads to cover multiple vacuum states. However, since the step-size of the ran-
dom walk is set by Hinfl while the field range is set by fPQ, the required number of e-folds is
enormous, ∝ ( fPQ/Hinfl)2 ≫ 1. The causally connected regions of the universe are inflated
to much larger scales than the observable universe today and no domain wall problem arises.
The situation is thus equivalent to pre-inflationary PQ breaking.

A.4 Wide Gaussian (Hinfl≫ fPQ)

In the opposite limit, the distribution is well approximated as flat over the field range, with
only small perturbations:

P(θ , θ̄ , t)≃
1

2π

�

1+ 2 cos
�

θ − θ̄
�

exp

�

−
σ2

2

��

. (A.20)

With the same definition of the function f (φ), the bias can be found analytically:

b(θ̄ )≃ −
4
π

exp

�

−
σ2

2

�

cos
�

θ̄
�

. (A.21)

Inverting this equation gives the central frequency as a function of the bias θ̄ (b) and hence
the upper integration limit for the bias probability (A.19):

P(|b|< ϵ) = 4

∫ cos−1(−(π/4)ϵ exp[σ2/2])

π/2

Pstationary(θ̄ )dθ̄ . (A.22)

The general behaviour is similar to the narrow Gaussian case, however the probability for a
smaller bias is significantly larger for a flat distribution, as might be expected.

The above argument assumes that the axion field is classical and has a potential such that
the mean value can accumulate around the vacuum states. However when Hinfl≪ fPQ this is
not the case. Quantum fluctuations in the deSitter background are of O(Hi) and drive the PQ
field back to the origin, restoring U(1)PQ. In this sense, the Peccei-Quinn symmetry is never
broken during inflation, there is no axion potential, and therefore, no bias is generated.
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