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Abstract

We consider a gas of repulsive N-component fermions confined in a ring-shaped poten-
tial, subjected to an effective magnetic field. For large repulsion strengths, we work
out a Bethe ansatz scheme to compute the two-point correlation matrix and then the
one-particle density matrix. Our results hold in the mesoscopic regime of finite but suf-
ficiently large number of particles and system size that are not accessible by numerics.
We access the momentum distribution of the system and analyse its specific dependence
of interaction, magnetic field and number of components N. In the context of cold atoms,
the exact computation of the correlation matrix to determine the interference patterns
that are produced by releasing cold atoms from ring traps is carried out.
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1 Introduction

In low-dimensional many-body systems, quantum fluctuations are particularly pronounced,
and therefore even a weak interaction can lead to dramatic correlations. Such a simple fact
makes the physics of 1d many-body systems exotic and distinct from the physics of higher
dimensional systems [1]. The breakdown of the Fermi liquid paradigm and Luttinger liquid
behaviour, the spin-charge separation in fermionic systems, elementary excitations with frac-
tional statistics and Haldane order are just some of the characteristic traits addressed in the
last few decades of research on the subject [2–5]. One dimensional systems can be realized
by confining the spatial degrees of freedom, as in quantum wires [6], in chains of Josephson
junctions [7] or in certain classes of polymers [8]; in other instances, the dimensionality is con-
strained dynamically, as in carbon nano-tubes [9], edge states in quantum Hall effect [10] or in
metals with dilute magnetic impurities [11]. With the advent of quantum technology, seeking
quantum correlations as a resource, the impact of 1d physics has been considerably widened.
In this paper, we will be dealing with strongly correlated N -component fermions confined in
one spatial dimension. The two-component electronic case is ubiquitous in physical science
from condensed matter to high energy physics and clearly relevant for a large number of tech-
nological applications. Systems with N > 2 have emerged as effective descriptions in specific
condensed matter or mesoscopic physics contexts [12–15].

Recently, the relevance of N-component fermions has been significantly boosted through
the experimental realizations of alkaline earth-like fermionic atomic gases [16–19]; in there,
the two-body interactions resulted to be SU(N)-symmetric, reflecting the absence of hyper-
fine coupling between the atoms’ electronic and nuclear degrees of freedom [20–22]. Such
artificial matter is relevant for high precision measurements [23,24] and has the potential of
considerably expanding the scope of cold atoms quantum simulators [16, 25–28]. Here, we
focus on SU(N) fermions described by a Hubbard type model [20, 22]. In the dilute regime
of less than one particle per site, the lattice model captures the physics of continuous systems
with delta-interaction [29], which is exactly solvable by Bethe Ansatz [30,31]. Exact solutions
of 1d interacting quantum many-body systems play a particularly important role since their
physics is often non-perturbative, with properties that are beyond the results obtained with
approximations [1]. As such, exact results, though rare and technically difficult to achieve,
form a precious compass to get oriented in the 1d physics.

Here, we provide the exact expression of the two-point correlation matrix of fermions with
N components, determining the one-body density matrix, in the limit of strong particle-particle
interactions. We consider particles confined in a ring-shaped potential subjected to an external
magnetic flux in the limit of large repulsive interactions. We work in the mesoscopic regime in
which such a magnetic field is able to start an N -component fermionic matter-wave persistent
current. We analyze the distribution of the momentum of particles, which, despite being one
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Figure 1: Schematic representation of the decoupling of the SU(N) Fermi-Hubbard
into the spinless and Heisenberg-X X X Hamiltonians at infinite repulsive interactions
U . On the left, the figure depicts the SU(4) Hamiltonian with one-particle per colour
and 4 empty sites (white). On the right, we have the spinless Hamiltonian with
4 fermions (black) and 4 empty sites. In addition, there is the SU(4) Heisenberg
Hamiltonian with one spin in each orientation. Note that after the decoupling, the
index corresponding to a given colour in the Heisenberg Hamiltonian changes in
order to accommodate the new framework, but the arrangement of the colours in
the original chain is maintained. The circle indicates a function composition in a
mathematical sense: f ◦ g = f (g).

of the simplest correlations, is able to reflect certain effects of the interaction [32]. On the
technical side, we point out that, despite its simple expression, the momentum distribution can
only be calculated numerically for a small number of particles and is even less accessible when
considering the strongly correlated regimes. Even for integrable models, it is not manageable,
especially in the mesoscopic regime of finite but sufficiently large particle systems. The case
N = 2 in the absence of magnetic flux was discussed by Ogata and Shiba [33].

The one-body density matrix plays a crucial role in different schemes of time-of-flight ex-
pansions in cold atoms settings [28,34–38]. The effect of an artificial magnetic field in neutral
two-component fermions confined in tight toroidal-shaped potentials was explored in recent
experiments [39,40]. The arising persistent current pattern is produced as a result of specific
transitions between suitable current states characterized by different particles’ spin configu-
ration [41, 42]. We will show how to handle the extra-complications coming from the above
ground-states transitions in computing the correlation matrix of the system for different mag-
netic fluxes.

The paper is structured as follows. In Sec. 2 we discuss the model describing our system
and introduce the spin-charge decoupling mechanism. In Sec. 3 and Sec. 4 we present the
results achieved for the momentum distribution and interference dynamics of SU(N) fermions.
Conclusion and outlooks are given in Sec. 5.

2 Model and methods

The one-dimensional Hubbard model for N -component fermions residing on a ring-shaped
lattice comprised of L sites, threaded by an effective magnetic flux φ reads

H = −t
L
∑

j

N
∑

α=1

(ei 2πφ
L c†

j,αc j+1,α + h.c.) + U
L
∑

j

∑

α<β

n j,αn j,β , (1)

where c†
j,α creates a particle with colour α on site j and n j = c†

j c j is the local particle number
operator. U and t denote the interaction and hopping strengths respectively. In this paper, we

consider only the repulsive case such that U > 0. The Peierls substitution t → tei 2πφ
L accounts

for the gauge field. In standard implementations such a field can be an actual magnetic field,
while it can be artificially created in cold atom settings [43].

For N = 2, the model in Eq. (1) is Bethe ansatz solvable for all system parameters and
filling fractions ν = Np/L [44]. For N > 2, Bethe ansatz solvability holds for the continuous
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limit of vanishing lattice spacing, with the model turning into the Gaudin-Yang-Sutherland
model, that describes SU(N) symmetric fermions with delta interactions [22, 30, 31]. This
limit is achieved when considering the dilute regime, such that ν≪ 1 [29]. In the following,
we will refer to the Bethe ansatz solution of the SU(N) Hubbard model in this limit.

Accordingly, within a given particle ordering xQ1
≤ . . . ≤ xQNp

, the eigenstates of the
model (1) can be expressed as

f (x1, ..., xNp
;α1, ...,αNp

) =
∑

P

A(Q|P)ϕP(αQ1, ...,αQNp
)exp

 

i
Np
∑

j=1

kP j xQ j

!

, (2)

where A(Q|P) = sign(P)sign(Q) with P and Q being permutations introduced to account for
the eigenstates’ dependence on the relative ordering of the particle coordinates x j and quasi-
momenta k j , with ϕ being the spin wavefunction. The latter accounts for all different compo-
nents of the system, which can be obtained by nesting the Bethe ansatz [31]. As a result, the
spin-like rapidities for each additional colour Λα, which are the conserved quantities for the
SU(N) degrees of freedom (see Appendix A.1), are all housed in ϕ [31,45]. In particular, we
note that the ground-state of the system correspond to real k j , Λα.

Despite the access to the energy spectrum is greatly simplified due to integrability, the cal-
culation of the exact correlation functions remains a very challenging problem [46], especially
in the mesoscopic regime of large but finite Np and L [47].

Here, we will be focusing on the large U limit where the correlation functions become
addressable as we shall see. The simplification arises because the charge and spin degrees
of freedom decouple (such a decoupling occurs only for states with real k j) [33, 41, 42]. The
decoupling is manifested in the Bethe equations of the system. In the limit U →∞, the charge
degrees of freedom are specified as (see Appendix A.1.1 for a sketch of the derivation):

k j =
2π
L

�

I j +
X
Np
+φ

�

, (3)

where I j are the charge quantum numbers of the spinless fermionic model and X =
N−1
∑

ℓ

Mℓ
∑

βℓ

Jβℓ

denotes the sum of the spin quantum numbers. As an effect of the spin-charge decoupling,
each wavefunction amplitude can be written as a product between a Slater determinant of
spinless fermions det[exp(ik j xQ j)] and a spin wavefunction ϕ(y1, . . . , yM ) [33]

f (x1, ..., xNp
;α1, ...,αNp

) = sign(Q)det[exp(ik j x l)] jlϕ(y1, . . . , yM ) . (4)

Consequently, in the limit of U → +∞ these states of the Hubbard model can be written as

|ψ[U]〉Fermi−Hubbard
U→+∞
−→ |ψ [ψX X X ]〉spinless . (5)

The logic of the decoupling occurring in the wavefunction is depicted in Fig. (1). It is important
to emphasize that this is not a tensor product but corresponds to a composition of functions.

The XXX Heisenberg model in Eq. (5) is also integrable for SU(N) and all 1< N ∈ N. The
corresponding Hamiltonian can be constructed as a sum of permutation operators
HX X X =

∑

i Pi,i+1 [22, 48], where Pi,i+1 can be expressed in terms of SU(N)-generators. The
Hamiltonian Pi,i+1 permutes SU(N) states on sites i and i + 1 (see also Appendix (A.2) and
Eq. (A.22)). Even though Bethe ansatz integrable, the exact access of explicit expression of the
eigenstates of the antiferromagnet Heisenberg model is very challenging. In our paper, there-
fore, the quantum state is obtained by combining the Bethe ansatz analysis with the Lanczos
numerical method. The procedure is described below.
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Figure 2: Schematic representation of the effect of c†
l,αc j,α on an SU(2) wavefunction.

The upper part depicts the initial state in a given configuration with the correspond-
ing decoupled wavefunction shown on the right. The bottom figure illustrates the
final state and its corresponding wavefunction after performing the hopping action
on the initial state. This figure is adapted from [33].

Finding the ground-state. Firstly, we note that for each non-degenerate ground-state of
the Hubbard model, there exists a corresponding single eigenstate of the Heisenberg model.
In principle, such a state-to-state correspondence could be obtained by identifying the spin
quantum numbers labeling the states of the Hubbard model (through the Bethe ansatz equa-
tions) with the quantum numbers for the Heisenberg model. However, as mentioned above
such a procedure is quite involved when trying to access to the quantum states. Therefore,
we use a combination of Bethe ansatz and numerical methods: i) inserting the spin quan-
tum numbers characterizing a given state in the Hubbard model into the Heisenberg Bethe
ansatz, enables us to calculate the correct energy, which is then matched with the numerically
obtained spectrum of the anti-ferromagnet; then ii) the SU(N) quadratic Casimir operators
(see the Appendix A.2.2) are used to characterize the total SU(N)-spin of the states. The
Casimir operators are commuting with the whole SU(N) group and hence are constants of
the motion of both the Heisenberg Hamiltonian and the SU(N) Hubbard model. In particular,
we note that the Casimir operator for N = 2 corresponds to the total spin operator squared
S⃗2. For φ = 0, the state of the Hubbard model is non-degenerate. Therefore, this approach
can uniquely characterize the states. For φ ̸= 0 however, it results that the energy of the
Heisenberg model is degenerate as is the Casimir value. This degeneracy can be resolved for
the SU(2) case by looking at the permutation operators Pj, j−1 (such operators do not com-
mute with the Heisenberg Hamiltonian by construction). For larger N and φ ̸= 0 we do not
have a general method. However, we note that degenerate states with the same Casimir value
consist of different projections into the Heisenberg basis, which allow us to uniquely identify
the correct ground-states to be taken at increasing flux [42] (see the Appendix for a detailed
explanation).

We found that non-degenerate ground-states with odd and even number of particles per
species correspond to different values of the Casimir operators, and therefore to different rep-
resentations of the SU(N) algebra.1 The corresponding states are hence chosen based on the
parity of the species occupation number.

We comment that, for Np = (2m)N fermions with integer m at zero flux, the ground-
state wavefunction of the Hubbard model is not a singlet in contrast with that of the anti-
ferromagnetic Heisenberg model. In the case of SU(2), this issue was circumvented by consid-
ering anti-periodic boundary conditions for the Hubbard model, which results to be a singlet
ground-state [33]. In contrast with the method presented in [33], we do not modify the bound-
ary conditions for model (1) but instead we modify the spin quantum numbers in Eq. (3) such
that the non-degenerate triplet eigenstate of the Heisenberg model is selected.

Our proposed scheme is reliant on model (1) being integrable. As stated beforehand, one
instance of integrability occurs for dilute filling fractions, such that the model turns into the

1It is worth noticing that this eigenvalue may be accidentally degenerate in the Heisenberg model.
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Gaudin-Yang-Sutherland model. In what follows, the system sizes considered are far from be-
ing in the dilute limit. Nonetheless, we find that our method is still applicable in this regime
(see section A.4 in the appendix), since in the limit of infinite repulsion, the probability of
having more than two particles interacting is vanishing, thereby satisfying the Yang-Baxter
condition for integrability [49]. Indeed, for the low-lying spectrum and the corresponding
correlations, such a statement was verified by comparing with exact diagonalization (see Ta-
ble 1 in the Appendix). It is worth remarking that the numbers of Np and L considered in
this paper would correspond to a Hilbert space size, that is intractable with exact diagonaliza-
tion. On account of the spin-charge decoupling, we are able to separate the problem into the
spinless and Heisenberg parts, resulting in smaller Hilbert spaces, making systems with large
values of the parameters accessible (see Appendix A.4).

The one-body density matrix. In the present work, we apply the factorization (5) to de-
termine the one-particle density operator through the calculation of the two-point correlation
matrix of the SU(N) Hubbard model (1), together with its dependence with the flux φ:

〈Ψα(x)†Ψα(x)〉=
∑

l, j

w∗(x − x l)w(x − x j)〈c
†
l,αc j,α〉 , (6)

where Ψ†
α(x) and Ψα(x) are fermionic field operators satisfying {Ψ†

α(x),Ψα′(y)}= δ(x − y)δα,α′ .
The above equation is obtained by expanding the field operators into the basis set of single
band Wannier functions w(x) (that we take to be independent of the specific N component)
such that Ψ(x) =

∑L
j w(x − x j)c j .

The spin-charge decoupling is attained through the Bethe equations. Subsequently, the
spectrum of the Heisenberg model is obtained through exact diagonalization. In line with
methodology outlined in the previous section, we point out that one can make use of
DMRG [50,51] to certify that the chosen state from the Heisenberg spectrum has the same to-
tal spin as its Hubbard counterpart. Even though DMRG is known to have issues in the limit of
large interaction and large degree of state degeneracies, it can still be utilized for intermediate
interactions.

The energy scale is fixed by t = 1 and only systems with an equal number of particles per
component are considered.

3 Momentum distribution

The momentum distribution is defined as

nα(k) =
1
L

L
∑

j,l

eik(rl−r j)〈c†
l,αc j,α〉 , (7)

with r j denoting the position of the lattice sites in the ring’s plane and is normalized to the
occupation number of each species. In the aforementioned limit of infinite repulsion, the
correlation matrix can be recast as

〈c†
l,αc j,α〉=

∑

{config.}

sign(Q)sign(Q′)(S)∗(S)′ω( j→ l,α) , (8)

where S denotes the Slater determinant of the charge degrees of freedom, and Q refers to the
sign of the corresponding permutation. S ’ and Q’ are the same quantities but evaluated for the
wavefunction of a fermion that moved from the j-th to the l-th site (see Fig. 2). We note that
one has to account for the shift in the quasi-momenta k j induced by the spin quantum numbers
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Figure 3: The momentum distribution for different SU(N) and ratios Np/N . Main
panel shows the momentum distribution, normalized to the occupation number of
each species, for a fixed number of particles Np = 6, while the insets displays the
momentum distribution for a fixed N = 3 but different number of particles. In both
panels we showcase the interplay between occupation and SU(N) character of the
system. The system size is fixed to L = 27, with the integers m corresponding to the
momenta 2πm/L.

through Eq. (3). These quasimomenta are different from the momenta k of the lattice in the
momentum distribution discussed here. Furthermore, we would like to emphasize that instead
of calculating the Slater determinant for the continuous Gaudin-Yang-Sutherland model, we
discretize it. Such an approach is necessary in order to keep track of the mapping between the
spin wavefunctions of the Hubbard and Heisenberg models. This justification is numerically
supported in Table 1 in the Appendix. The term ω( j → l,α) corresponds to the spin part
of the wavefunction of the Hubbard model, taking into account the sum over all the spin
configurations and any changes in ϕ(y1, . . . , yM ).

Before proceeding to evaluate Eq. (8), we note that ω( j → l,α) is independent of α:
ω( j → l,α) = ω( j → l). Moreover, in the limit of infinite repulsion, the spin wavefunction
of the Hubbard model corresponds and can be mapped to that of the Heisenberg such that
ω( j → l) = ω̃( j′ → l ′), where the tilde indicates the spin correlation function of the Heisen-
berg model. In this mapping, we associate the j′th spin of the Heisenberg model to the fermion
on the jth site of the Hubbard model, that after the hopping operation c†

l c j becomes the l ′th
spin corresponding to an electron of the lth site – see Fig. (2). We emphasize that the ex-
pression in Eq. (8) is of the same form as for the SU(2) case [33]. The difference lies in the
definition of ω̃( j, l), which encodes the SU(N) character of the system:

ω̃( j′→ l ′)≡ 〈Pl ′,l ′−1Pl ′−1,l ′−2 · · · Pj′+1, j′〉H . (9)

This corresponds to the expectation value in the Heisenberg state of the SU(N) permutation
operator Pj′, j′−1 that exchanges the j′th and ( j′ − 1)th sites.

With the states obtained as summarized above, we evaluate the momentum distribution
n(k) in Eq. (7). In Fig. 3, the momentum distribution in the absence of magnetic flux is
presented for different SU(N). For a fixed Np and increasing N , the momentum distribution
is observed to be less broad and to be more centralized around k = 0. This is to be expected
since as N → ∞, SU(N) fermions emulate bosons in terms of level occupations [38, 52].
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Figure 4: Above: The momentum distribution function n(k) for 10 particles and
various sites for SU(2) fermions. One can see that the flux essentially shifts
the momentum distribution as expected. Below: We plot the symmetric (left)
and anti-symmetric (right) components of the momentum distribution denoted as
n+(k) = [n(k) + n(−k −∆k)]/2 and n−(k) = n(k) − n(−k −∆k) respectively as a
function of the effective magnetic flux φ. We note that these intermediate values of
the flux produces a momentum distribution that is non-symmetric. The integers m
correspond to the momenta 2πm/L.

Conversely, for fixed N and increasing Np, the momentum distribution reflects the fermionic
statistics of the system, as it becomes broader due to the occupation of different momenta (see
inset of Fig. 3).

Fig. 4 depicts the momentum distribution for an SU(2) symmetric system in the presence
of an effective flux. In this case, the ground-state of the Hubbard model is characterized by
level crossings to counteract the flux imparted to the system [41,42]. Such level crossings cor-
respond to different Heisenberg states, which can be obtained with the previously mentioned
procedure in Sec. 2 by an appropriate change in spin quantum numbers (see Appendix A.3.1).
From the top row of Fig. 4, it is clear that the effect of the magnetic flux manifests itself as
a shift in the momentum distribution: shift gets progressively larger with increasing flux. To
capture how this happens precisely in the momentum distribution, we plot the symmetric and
anti-symmetric components of the momentum distribution denoted as n+ and n− respectively
in the bottom panel of Fig. 4.

3.1 The Fermi gap for U =∞

In the thermodynamic limit at temperature T = 0 and U = 0, the Fermi function drops from a
finite value to zero at the Fermi momentum k f . At finite U , states with k > k f can be occupied
and, compared with the U = 0 case, the gap at k f is reduced accordingly. The Fermi gap is
known as the quasi-particle weight in higher dimensions and is related to the poles of the Green
function with positive imaginary parts [53–55]. For SU(N) symmetric particles the maximum
occupation of a single k-level is N . Consequently, the Fermi-distribution for N →∞ should
become a Bose-distribution (which has no gap). Therefore, this Fermi gap∆must tend to zero
in this limit.

Since we consider finite number of particles and system size, our system is far from the
thermodynamic limit. We note that parity effects appear in Np/N for SU(N) fermions [42].
Therefore we distinguish the two cases: odd occupations (Np/N odd) and even occupations
(Np/N even). Defining the gap for the odd occupations is straight forward: every single k-level
up to |k f | is occupied for U = 0. For example, in the case of SU(2), Np = 6, all k ∈ {0, 1,−1}
are fully occupied. Therefore, the gap is defined as f (k f ) − f (k f +∆k), with ∆k = 2π/L,
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Figure 5: Gap in the Fermi-distribution ∆ as function of Np in the limit of infinite
repulsion. It is shown for different cases for dependencies of N in SU(N) (left) and
for different values of Np/N from 1 to 4 for L = 27. It can be seen that the gap
decreases with growing N . The single exception is the case of SU(3) (see left panel).
The particularities concerning definition of the gap for finite number of particles is
described are the main text.

where f (k) corresponds to the Fermi-distribution function. The situation is different for an
even occupation per species. In this case, the levels |k f | are only partially filled and this is
visible even for U = 0 and finite number of particles, where a single level appears within
the gap. However, this single momentum state does not enter the definition of the Fermi gap.
Therefore, we define the gap in this case as f (k f −∆k)− f (k f +∆k). Note that in one dimension
the Fermi-distribution function in the thermodynamic limit becomes a weak singularity for the
Luttinger liquid [32]. In our case, we cannot distinguish a gap from a weak singularity as we
are far away from the thermodynamic limit.

In agreement with the above argument, we find that the gap is generically going down
with N , but with a non-trivial dependence on Np and with parity effects for SU(2) and more
pronounced for SU(3) - see Fig. 5. Specifically, we note that the two particles per species in the
SU(3) symmetric case has a non-monotonous behavior with respect to the trend of decreasing
gap with growing Np, that is present for the other curves. This behavior might be attributed to
parity effects but larger systems, not attainable with current techniques, would be needed to
investigate such behavior. Additionally, grouping the different gaps as a function of Np/N does
not lead to strictly decreasing behavior (see inset of Fig. 5). However, we note that expecting
the gap to decrease for Np fixed with growing N , would give a hint towards a parity effect of
the number of components N , at least in the case Np = 6. In principle, the Fermi gap need not
follow a monotonic behavior. The expectation is that for each Np it has to eventually converge
to zero as N → ∞, corresponding to bosonic behaviour as mentioned previously. Lastly, it
is important to notice that in the systems considered in this paper, we never come below the
ratio of Np/N = 1 because we fixed the occupation of each component being the same.
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4 Interference dynamics in ultracold atoms

In this section, we present a particular scenario in which the exact one-body density matrix
can be tested in current state-of-the-art experimental observables in ultracold atom settings.
Specifically, we consider homodyne [39] and self-heterodyne [40] protocols following the re-
cent experiments carried out in fermionic rings.

The homodyne protocol consists in performing time-of-flight (TOF) imaging of the spatial
density distribution of the atomic cloud: upon sudden release from its confinement potential,
the atomic cloud expands freely, with the initially trapped atoms interfering with each other
creating specific interference patterns. The resulting inteference pattern depends on the cor-
relations that the particles have at the moment in which atomes are released. The TOF image
can be calculated as

n(TOF)
α (k) = |w(k)|2

L
∑

j,l

eik(rl−r j)〈c†
l,αc j,α〉 , (10)

where w(k) is the Fourier transform of the Wannier function, r j denotes the position of the
lattice sites in the ring in the plane and k= (kx , ky) are their corresponding Fourier momenta.
Note that we have taken the zeroth order of w(x) through the harmonic approximation.

The self-heterodyne protocol follows the same procedure as the homodyne one, albeit
with an additional condensate placed in the center of the system of interest, to act as a
phase reference. Accordingly, as the center and the ring undergo free co-expansion in TOF,
characteristic spirals emerge as the two systems interfere with each other and current is
present in the system. In order to observe the phase patterns in a second quantized setting,
one needs to consider density-density correlators between the center and the ring [37, 56]:
GR,C =

∑

α

∑

j,l I jl(r, r′, t)〈c†
l,αc j,α〉, where I jl(r, r′, t) = wc(r′, t)w∗c(r, t)w∗l (r

′−r′l , t)w j(r−r j , t).
By exploiting the correlation matrix we calculated in the previous sections, we obtain the in-
terference images that are obtained through the two above sketched expansion protocols for
two-component fermions exactly - see Fig. 6. The left panel displays a cut on the TOF momen-
tum distribution (at ky = 0), with the inset depicting the same quantity in the kx -ky plane. The
right panels of Fig. 6 show the self-heterodyne interference pattern at zero and half flux quan-
tum. These display the characteristic dislocations (radially segmenting lines) that at strong
interactions were shown to depend on particle number, number of components and flux [37].
On going to the limit of infinite repulsion, the energy and consequently the persistent cur-
rent landscape, changes from being periodic with the bare flux quantum φ0 to displaying a
reduced periodicity of φ0/Np irrespective of the SU(N) symmetry of the system (see Fig. 7 in
the Appendix). As such, the ground-state energy goes from being a single parabola at zero
interaction, to having Np parabolic segments, that in the Bethe ansatz language are character-
ized by different spin quantum numbers. Remarkably, these different parabolas manifest as a
result of different energy level crossings to counteract the flux threading the system, resulting
in an effective fractionalization of the current. In [37] it was discussed how this fractionaliza-
tion can not only be monitored but also visualized in self-heterodyne interferograms, which
exhibits a different number and orientation of the dislocations for the different parabolas. In
the left panel of Fig. 6, we see that such dislocations are captured by our proposed scheme
giving us access to the infinite repulsive limit in an exact way.
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Figure 6: Interference patterns for SU(2) Np = 10 particles residing in L = 15 sites.
Left panel shows a cut of the TOF momentum distribution for different fluxes, the
last one (at half flux quantization) displaying a reduction in its maximum value.
Inset displays the full TOF for at zero flux quantum. Right panels display the self-
heterodyne interference at zero and half flux quantum. Both show the characteristic
interference pattern and dislocations found in strongly interacting SU(N) symmetric
fermions. All correlators are evaluated using the exact one-particle density matrix
for L = 15 by setting r′ = (0, R) and radius R= 1 at time t = 0.022. The color bar is
non-linear by setting sgn(GR,C)|GR,C|1/4.

5 Conclusions and outlook

In this paper, we develop a theoretical framework to calculate the exact one-particle density
matrix of N -component fermions in the limit of strong repulsion using a Bethe ansatz analysis
working in the integrable regime of the SU(N) Hubbard model. By splitting the problem into
the spinless fermionic and SU(N) Heisenberg models, we manage to compute these observ-
ables for a number of particles Np, system size L and number of components N well beyond
the current state-of-the-art tractable by numerical methods: on one hand, the numbers of par-
ticles and system size are well beyond exact diagonalization schemes; on the other hand, we
remark that by Bethe ansatz we could access the limit of infinite repulsion that is a notoriously
challenging limit for DMRG. On the technical side, we note that our Bethe ansatz scheme
agrees well with the numerics (at least in the numbers which can be worked out) of the lattice
model, also slightly beyond the dilute regime of Eq. (1). Specifically, we are able to calculate
the correlations of systems composed of 38 sites and 12 particles for N = 2 and N = 3, with a
total configuration space of 2 billion in the spinless configuration. Depending on N , this would
correspond to a larger Hilbert space in the Hubbard model, such as 7.62 × 1012 for N = 2.
Exact diagonalization/Lanczos can only handle around 7 million. Therefore, there is no direct
comparison between the two methods possible in this respect.

The Fourier transform of the correlation matrix is the momentum distribution n(k) of the
system. Despite being one of the simplest interesting correlation function, n(k) reflects the
many-body character of the quantum state. In particular, we quantify exactly the dependence
of the gap at the Fermi point on different particle numbers and number of fermion components.
We confirm the general expectation that for large number of components the Pauli exclusion
principle relaxes. However, we find that the suppression of the gap for finite systems is non-
monotonous.

We apply this scheme to the case in which SU(N) matter can flow in ring-shaped potentials
pierced by an effective magnetic flux φ. As such, an additional complication in the calcula-
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tion arises since the matter-wave states obey a complex dependence on φ, ultimately leading
to persistent currents with fractional quantization [41, 42]. In particular, we read-out such
phenomenon in terms of spin-states of the Heisenberg SU(N) model.

In this context, we give an example where the developed theory allows us to calculate read-
ily available experimental observables such as time-of-flight measurements, both homodyne
and self-heterodyne [39,40].

We believe that our exact results can be exploited to benchmark the observables related
to the one-body density matrix of SU(N) fermions in the strongly interacting limiting. Finally,
the theoretical framework we developed opens the possibility to study more complicated cor-
relation functions.

A Appendix

In the following sections, we provide supporting details of the theory discussed in the
manuscript.

A.1 Separation of the spin and charge degrees of freedom

The one-dimensional SU(2) Hubbard Hamiltonian describing Np particles with M flipped spins
residing on a ring-shaped lattice with L sites,

H = −t
∑

j,α

�

c†
j,αc j+1,α + h.c.

�

+ U
∑

j

n j,↑n j↓ , (A.1)

which is Bethe ansatz integrable. It was found that the eigenfunctions of the Hubbard model
within a given sector xQ1 ≤ . . .≤ xQNp

are of the form

f (x1, . . . , xNp
;α1, . . . ,αNp

) =
∑

P

sign(PQ)ϕP(αQ1, . . . ,αQNp
)exp

 

i
Np
∑

j=1

kP j xQ j

!

, (A.2)

where P and Q are permutations introduced to account for the eigenstates’ dependence on
the respective ordering of the electron coordinates x j and quasimomenta k j , with ϕ being the
spin-dependent amplitude. The spin wavefunction contains all the spin configurations of the
down spins can be expressed as

ϕP(αQ1, . . . ,αQNp
) =

∑

v

Aλv1,...λvM

M
∏

l=1

FP(λvl , yl) , (A.3)

whereby we define

FP(λvl , y) =
y−1
∏

j=1

sin kP j −λvl + i U
4t

sin kP( j+1) −λvl − i U
4t

, A(λv1, . . . ,λvM ) = (−1)v
M
∏

i< j

�

Λvi −Λv j − ı
U
2

�

,

(A.4)
with y corresponding to the coordinate of the electrons with spin-down in a given sector Q.

As U → +∞, we can neglect the
sin k j

U terms such that

F(λvl , y) =
y−1
∏

j=1

λvl − i U
4t

λvl + i U
4t

. (A.5)
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After this treatment, the spin wavefunction is no longer dependent on the charge degrees of
freedom through F(λ, y). Consequently, the Bethe ansatz wavefunction as U → +∞ can be
recast into the following form

f (x1, . . . , xNp
;α1, . . . ,αNp

) = sign(P)sign(Q)ϕ(y1, . . . , yM )exp(ik j xQ j
) . (A.6)

Additionally, we can go a step forward and show that in this limit the spin wavefunction cor-
responds to that of the one-dimensional anti-ferromagnetic SU(2) XXX Heisenberg chain. In-
deed, it can be shown that

F(λvl , y) = exp [iqvl(y − 1)] , A(λv1, . . . ,λvM ) = exp





ı
2

∑

j<l

(Ψv j,vl −π)



 , (A.7)

by defining qα = π+ 2arctan
�

4ΛαU
�

and Ψα,β = π+ 2arctan
�

2
Λα−Λβ

U

�

. Consequently, the spin
wavefunction becomes

ϕ(y1, . . . , yM ) =
∑

v

exp

 

ı
M
∑

l=1

qvl yl +
ı
2

∑

j<k

Ψv j,vk

!

, (A.8)

which except for a phase factor corresponds to the Bethe ansatz wavefunction of the Heisen-
berg model. Therefore, we have that

|ψ[U]〉Fermi−Hubbard
U→+∞
−→ |ψ [ψX X X ]〉spinless . (A.9)

The same treatment can be applied for the SU(N) Hubbard model, which results to be inte-
grable in two limits: (i) large repulsive interactions U >> t and filling fractions of one particle
per site [48]; (ii) in the continuum limit of vanishing lattice spacing achievable by dilute filling
fractions [22,31]. The Bethe ansatz wavefunction for the model is of the same form as the one
outlined in Equation (A.2) with the added difference that the ϕ houses the extra spin degrees
of freedom. In the following, we will focus on the second integrable regime and illustrate the
decoupling of the spin and charge degrees of freedom for SU(N) fermions through the Bethe
ansatz equations.

A.1.1 Extension to SU(N) fermions

In the continuous limit, the SU(N) Hubbard model tends to the Gaudin-Yang-Sutherland
Hamiltonian describing N -component fermions with a delta potential interaction [31, 38],
which reads

HGYS =
N
∑

m=1

Nm
∑

i=1

�

− i
∂

∂ x i,m
−

2π
LR
φ

�2

+ 4U
N
∑

m<n

∑

i, j

δ(x i,m − x j,n) , (A.10)

where Nm is the number of electrons with colour α of with m = 1, . . . N , LR being the size of
the ring and φ denoting the effective magnetic flux threading the system.
The Bethe ansatz equations for the model are as follows,

ei(k j L−φ) =
M1
∏

α=1

4
�

k j −λ(1)α
�

+ iU

4
�

k j −λ
(1)
α

�

− iU
, j = 1, . . . , Np , (A.11)
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Mr
∏

β ̸=α

2
�

λ(r)α −λ
(r)
β

�

+ iU

2
�

λ
(r)
α −λ

(r)
β

�

− iU
=

Mr−1
∏

β=1

4
�

λ(r)α −λ
(r−1)
β

�

+ iU

4
�

λ
(r)
α −λ

(r−1)
β

�

− iU
·

Mr+1
∏

β=1

4
�

λ(r)α −λ
(r+1)
β

�

+ iU

4
�

λ
(r)
α −λ

(r+1)
β

�

− iU
, α= 1 , . . . , Mr ,

(A.12)
for r = 1, . . . , N − 1 where M0 = Np, MN = 0 and λ(0)

β
= kβ . Np denotes the number of

particles, Mr corresponds to the colour with k j and λ(r)α being the charge and spin momenta
respectively. The energy corresponding to the state for every solution of these equations is

E =
Np
∑

j
k2

j .

For SU(3) fermions, one obtains the three nested non-linear equations

ei(k j L−φ) =
M1
∏

α=1

4(k j − qα) + iU

4(k j − qα)− iU
, (A.13)

M1
∏

β ̸=α

2(qα − qβ) + iU

2(qα − qβ)− iU
=

Np
∏

j=1

4(qα − k j) + iU

4(qα − k j)− iU

M2
∏

a=1

4(qα − pa) + iU
4(qα − pa)− iU

, (A.14)

M2
∏

b ̸=a

2(pα − pβ) + iU

2(pα − pβ)− iU
=

M1
∏

β=1

4(pα − qβ) + iU

4(pα − qβ)− iU
, (A.15)

where λ(1)
β

and λ(2)
β

were changed to qβ and pa for the sake of convenience. In the limit
U →∞ [33,41,42] we observe that k j/U will tend to zero, since all k of the ground-state are
real here for repulsive U . Consequently, the Bethe equations read

ei(k j L−φ) =
M1
∏

α=1

2Qα − i
2Qα + i

, (A.16)

M1
∏

β ̸=α

(Qα −Qβ) + i

(Qα −Qβ)− i
=
�

2Qα + i
2Qα − i

�Np
M2
∏

a=1

2(Qα − Pa) + i
2(Qα − Pa)− i

, (A.17)

M2
∏

b ̸=a

Pa − Pa + i
Pa − Pb − i

=
M1
∏

β=1

2(Pa −Qβ) + i

2(Pa −Qβ)− i
, (A.18)

defining Qα = 2 qα
U and Pa = 2 pa

U respectively. The Bethe equations decouple into that
of a model of spinless fermions (A.16) and those of an SU(3) Heisenberg magnet (A.17)
and (A.18).

Subsequently, by taking the logarithm of Equations (A.16) through (A.18) and using

2i arctan x = ±π+ ln
x − i
x + i

, (A.19)

it can be shown that the quasimomenta k j can be expressed as [42]

k j =
2π
L

�

I j +
1

Np

� M1
∑

α=1

Jα +
M2
∑

a=1

La

�

+φ

�

, (A.20)

in terms of the charge I j and two sets of spin Jα, La quantum numbers. By exploiting different
configurations of these quantum numbers, we can construct all the excitations and the corre-
sponding Bethe ansatz wavefunction. The procedure outlined here holds for any N -component
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fermionic systems, with the added difference that there will be N−1 sets of spin quantum num-
bers (2 for the considered SU(3) case).

For strong repulsive couplings, the ground-state energy of the Hubbard model fractionalizes
with a reduced period of 1

Np
as a combined effect of the effective magnetic flux, interaction

strength and spin correlations [41, 42], which is in turn reflected in the momentum distribu-
tion [37]. In the Bethe ansatz language, this phenomenon is accounted for through various
configurations of the spin quantum numbers X that correspond to different spin excitations
that are generated in the ground-state to counteract the increase in the flux.

A.2 SU(N) Heisenberg model

The SU(2) Heisenberg model is a sum of permutation operators

HX X X =
Np
∑

i

Pi,i+1 =
Np
∑

i

(1l+ σ⃗i+1 · σ⃗i)/2 , (A.21)

with σ⃗i corresponding to the Pauli matrices, the three generators of the SU(2) Lie algebra.
In the case of the SU(N) Heisenberg model, the Hamiltonian can be constructed in a similar
fashion [22,48]. In general we obtain for the generators λi of the SU(N)

Pi,i+1 =
1
N

1l+
1
2
λ⃗i · λ⃗i+1 , (A.22)

which acts on sites i and i + 1 permuting the SU(N) states.

A.2.1 Details about the SU(N) generators

The generators in the Lie algebra of SU(N) are analogues of the Pauli matrices in SU(2). Taking
SU(3) as an example, we have six non-diagonal generators

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





0 0 1
0 0 0
1 0 0



 ,

λ4 =





0 0 −i
0 0 0
i 0 0



 , λ5 =





0 0 0
0 0 1
0 1 0



 , λ6 =





0 0 0
0 0 −i
0 i 0



 ,

(A.23)

that together with two diagonal generators

λ7 =





1 0 0
0 −1 0
0 0 0



 , λ8 =
1
p

3





1 0 0
0 1 0
0 0 −2



 , (A.24)

comprise the Gell-Mann matrices that are the matrix representation of the SU(3) Lie al-
gebra. For generalization purposes, the generators were grouped by defining λ2p−1/2p,

p = 1, . . . , N(N−1)
2 which are analogues to the σx/y that operate between the different sub-

spaces of SU(3) which are (i, j), i < j. Here, both run from 1 to 3. We decided to group the
elements of the diagonal Cartan basis at the end as λ7 and λ8, which differs from the standard
Gell-Mann matrices, but is eases the generalisation. For the extension to SU(N), one has to
consider the N(N − 1)/2 elements λi , which would correspond to σx/y in some space (i, j),
where i < j ∈ {1, . . . , N}. Additionally, the corresponding diagonal Cartan elements need to be
taken into account. There are N −1 Cartan elements that can be constructed via the following
formula λN2−(N+1)+m = diag {1, . . . , 1,−(m− 1), 0, . . . , 0}/

p

m(m− 1)/2 where m= 2, · · · , N ;
the 1/0 occurs (m− 1)/(N −m) times, respectively.
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A.2.2 Casimirs of SU(N) fermions

Whereas in SU(2) we have a single Casimir operator, for SU(N) we are faced with N − 1
Casimirs. Out of these Casimirs, we are only interested in the quadratic Casimir, which for the
fundamental representation reads

C1 =
1
4

N2−1
∑

i=1

λ2
i , (A.25)

as it relates to the total spin quantum number S⃗2, which is necessary for us to classify the
Heisenberg eigenstates. To this end we have to evaluate the Casimir in various SU(N) repre-
sentations. In the following, we sketch the procedure to write the quadratic Casimir operator
for SU(3) and SU(4).

We start by looking at the SU(3) case, where its representationsΛ(n1, n2) are labeled by integer
numbers which correspond to the simple Cartan elements (h1, h2): Λ(n1, n2) = n⃗ · h⃗. The
elements are given by

h1 = (λ3,λ8) · (1, 0)T =⇒ h1 = (σz)1,2 ; h⃗1 := (1,0) , (A.26)

h2 = (λ3,λ8) ·
�

−
1
2

,

p
3

2

�T

=⇒ h2 = (σz)2,3 ; h⃗2 := (−1,
p

3)/2 . (A.27)

To calculate the quadratic Casimir values for these representations Λ, we need the Cartan
matrix

Ch = 2

�

h⃗i · h⃗ j

||hi||2

�

i j

=

�

2 −1
−1 2

�

, (A.28)

defined using the Killing form (λ j ,λk) := K(λ j ,λk) =
1
8 tr λ jλk =

1
4δ jk (see [57], chapter 12

for the evaluation of the Casimir). We obtain

3C1 = (Λ,Λ+δ) =
�

n⃗C−1
h + δ⃗

�

n⃗T =
2
∑

i=1

ni(ni + 3) + n1n2 , (A.29)

giving the value of 4/3 for the fundamental representations (1, 0) and (0,1). Here,
δ⃗ = 1

2

∑

h∈∆+ h⃗ = (2,2) (see [57–59]) for the positive roots ∆+. These are the two simple
roots together with their sum, h1 + h2. If one introduces half-integer values as in the SU(2)
representation for each ni such that (ni = 2Ji), we obtain

C1(Λ) =
4
3

�

∑

i

Ji

�

Ji +
3
2

�

+ J1J2

�

. (A.30)

Likewise for SU(4), the representations Λ(n1, n2, n3) of SU(4) are labeled by the Cartan ele-
ments (h1, h2, h3): Λ(n1, n2, n3) = n⃗ · h⃗, which are given by

h1 = (λ13,λ14,λ15) · (1,0, 0)T =⇒ h1 = (σz)1,2 ; h⃗1 := (1,0, 0) , (A.31)

h2 = (λ13,λ14,λ15) ·
�

−
1
2

,

p
3

2
,0

�T

=⇒ h2 = (σz)2,3 ; h⃗2 := (−1,
p

3, 0)/2 , (A.32)

h3 = (λ13,λ14,λ15) ·

�

0,−
1
p

3
,

√

√2
3

�T

=⇒ h3 = (σz)3,4 ; h⃗3 := (0,−1,
p

2)/
p

3 . (A.33)
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The corresponding Cartan matrix reads

Ch =





2 −1 0
−1 2 −1
0 −1 2



 . (A.34)

Upon evaluating the quadratic Casimir as in Equation (A.30), we have that

2C1(Λ) = (n1 + 2n2 + n3)
2 + n1

�

2n1 +
3
4

�

+ n3

�

2n3 +
3
4

�

+ n2 , (A.35)

with δ⃗ = 1
2

∑

h∈∆+ h⃗ = (3,4, 3). Here, the positive roots are the three simple roots together
with h1+h2, h2+h3, and h1+h2+h3. Introducing half-integer values as for SU(2), we obtain

C1(Λ) = 2J2

�

J2 +
1
4

�

+
∑

i=1,3

3Ji

�

2Ji +
1
4

�

+ 4
∑

i< j

JiJ j , (A.36)

leading to the value of 15/8 for the fundamental representations (1,0, 0) and (0, 0,1), and
5/4 for the representation (0,1, 0).

A.3 Evaluating correlation functions

In the previous sections, we outlined how the spin and charge degrees of freedom decouple
yielding a simplified form of the Bethe ansatz wavefunction (A.37), that at infinite repulsion
reads

f (x1, . . . , xNp
;α1, . . . ,αNp

) = sign(Q)det[exp(ik j x l)] jlϕ(y1, . . . , yM ) . (A.37)

Here, we are going to show how to evaluate the Slater determinant of the charge degrees of
freedom and the corresponding spin wavefunction in the presence of an effective magnetic
flux.

A.3.1 Slater determinant

To calculate the Slater determinant of spinless fermions, we need to start by noting that

k j = −(Np − 1+ ℓ)
π

L
+ ( j − 1)∆k+ k0 +

X
Np

, j = 1 , . . . , Np , (A.38)

where ∆k = 2π
L , X denotes the sum over the spin quantum numbers and ℓ is the angular mo-

mentum. k0 is a constant shift can be 0 or −πL for systems with (2m)N and (2m+1)N fermions
respectively, that will henceforth be termed as paramagnetic and diamagnetic. Through Equa-
tion (A.38), we can re-write the Slater determinant in the following form

det[exp(ik j x l)] jl = exp(ik1rcmNp)det

















1 y1 y2
1 · · · y

Np−1
1

1 y2 y2
2 · · · y

Np−1
2

1 y3 y2
3 · · · y

Np−1
3

...
...

...
. . .

...

1 yNp
y2

Np
· · · y

Np−1
Np

















, (A.39)

with rcm denoting
∑

i x i/Np which we refer to as the center of mass. The matrix elements of

the determinant are of the form y j−l
m = exp(i(k j − kl)rm), whereby we made use of the fact
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that all the quasimomenta are equidistant. By noting that the matrix in Equation (A.39) has
the same structure of the Vandermonde matrix [33], we can express the Slater determinant as

det[exp(ik j xQ j)] = exp(ik1rcmNp)
∏

1≤i< j≤n

(exp(i∆kr j)− exp(i∆kri)) , (A.40)

which upon simplification reads

det
�

exp(ik j xQ j)
�

= exp(ik1rcmNp)
∏

1≤i< j≤n

exp
�

i∆k
r j + ri

2

�

∏

1≤i< j≤n

�

2i sin
∆k(r j − ri)

2

�

. (A.41)

This expression can be further simplified by noticing that

∏

1≤i< j≤n

exp
�

i∆k
r j + ri

2

�

= exp
�

i∆k
2

�

rcmN2
p − rcmNp

�

�

, (A.42)

that in conjunction with Equation (A.38) reduces Equation (A.40) into

det
�

exp(ik j xQ j)
�

= exp

�

i

�

k0 +
X
Np
− ℓ∆k

�

rcmNp

�

∏

1≤i< j≤n

�

2i sin
∆k(r j − ri)

2

�

. (A.43)

In the presence of an effective magnetic flux, the variables X and ℓ need to be changed in order
to counteract the increase in flux. For the spin quantum numbers, the shift needs to satisfy the
degeneracy point equation [41,42]

2w− 1
2Np

≤ φ + D ≤
2w+ 1

2Np
, where X = −w , (A.44)

with φ ranging from 0.0 to 1.0 and D being 0
�

−1
2

�

for diamagnetic [paramagnetic] systems.
Upon increasing φ, the angular momentum of the system increases at φ =

�

s± 1
2Np
+δ

�

with

s being (half-odd) integer in the case of (diamagnetic) paramagnetic systems, with δ = ∓ 1
2Np

for an odd number of particles.

A.3.2 Resolving degeneracies of the spin wavefunction

As U → +∞, all the spin configurations of the model are degenerate. The reason is that the en-
ergy contribution from the spin part of the wavefunction Espin is of the order t

U . However, there
is no spin degeneracy observed in the Hubbard model; the ground-state is non-degenerate for
SU(2), except for special points in flux with an eigenenergy crossing. Hence, a single state has
to be chosen properly for matching with the Hubbard model. Due to the symmetry of both
models, we choose the square of the total spin, S⃗2

tot, or quadratic Casimir operator C1 to label
the eigenstates. The selected eigenstates of both models need to have the same value for this
operator. We used this benchmarking with the Hubbard model only for small system sizes in
order to understand what are the representations of the Heisenberg model we have to choose.

We observe that the resulting composition from spinless Fermions and Heisenberg Hamilto-
nian results in a translationally invariant model only in cases where these states match. We
use this as a control mechanism. As already explained in the main text, the spin wavefunction
ϕ(y1, . . . , yM ) is obtained by performing exact diagonalization resp. Lanczos methods of the
one-dimensional anti-ferromagnetic Heisenberg model.

a) Zero flux – The ground-state with odd and even number of particles per species for the Hub-
bard model corresponds to different values of the Casimir operator, and therefore to different
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Figure 7: Schematic figure of the energy E(φ) against effective magnetic flux φ for
Np = 6 particles. Left panel displays the energy landscape at U = 0 while right panel
shows the U → +∞ case where the parabolas are fractionalized [37].

representations of the SU(N) algebra. For odd number of particles per species Np/N , it corre-
sponds to a singlet state for all SU(N). The ground-state of the anti-ferromagnetic Heisenberg
model instead is always a singlet and non-degenerate for all SU(N). Therefore, we choose this
state as the lowest energy eigenstate of the Heisenberg model with this property for U →∞
for an odd occupation number per species.

For an even number of particles per species, we have to choose a different state. For the SU(2)
this is the lowest non-degenerate excited triplet-state (of total spin J = 1, J⃗2 = J(J + 1))
in the spectrum of the Heisenberg model. It corresponds to an n = 2J -representation (see
section A.2.2 of the Appendix). For SU(N > 2), i.e. N = 3 and N = 4, it is the first non-
degenerate state with Casimir eigenvalue C1 = 6. Examples are the 10-dimensional represen-
tations (n1, n2) = (3, 0) for SU(3) and correspondingly (n1, n2, n3) = (4,0, 0) for SU(4). The
numbers ni in the SU(3) representations correspond to the numbers p and q frequently used
in SU(3) representations in the mathematical literature or high energy physics; there they
represent the number of (anti-)quarks. The dimension of a representation (n1, n2) of SU(3) is
d(n1, n2) = (n1 + 1)(n2 + 1)(n1 + n2 + 2)/2. Both representations for SU(3) and SU(4) have
a Casimir value of C1 = 6. We assume that this representation will be (N , 0, . . . , 0) for SU(N).
This state takes the role of the non-degenerate triplet state of SU(2) in the zero field ground-
state for an even species number occupation.

b) Non-zero flux– The analysis of non-zero magnetic flux is motivated from an atomtronics
context [28,37]. As mentioned previously, for strong repulsive interactions a fractionalization
of the persistent currents in the model is observed [41, 42]. Figure 7 shows an example of
the change of the energy landscape when going from non-interacting to strongly interacting
particles in presence of an effective magnetic flux. This fractionalization appears since formerly
higher excited states are bent by the field to be the ground-state. A unique method to identify
these states would be to utilize the SU(N) Heisenberg Bethe equations, which need to have
the same spin quantum number configurations as their Hubbard counterparts. In this manner,
we are guaranteed that the corresponding eigenstates obtained from the Heisenberg model
correspond to the ground-state of the Hubbard model. However, it is rather tedious to achieve
the whole state using this method. This is particularly true because the Bethe ansatz gives
direct solutions only for the highest weight states and we work at an equal occupation of each
species: the resulting state is then obtained by applying sufficiently often the proper lowering
operators of SU(N).
In the case of paramagnetic systems, i.e. an even number of particles per species, the cen-
tral fractionalized parabola (centered around φ = 0.5), corresponds to a singlet state. This
parabola results to be non-degenerate for the Heisenberg model and is therefore easily distin-
guished. As such, one obtains the corresponding states for the outer and central fractionalized
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parabolas in a straight forward manner for arbitrary SU(N). We mention though that in order
to find the corresponding state for the outer parabola and the paramagnetic case (even oc-
cupation of each species), we have to single out a non-degenerate excited state with Casimir
value C1 = 6.

For finite field and degenerate ground-states of the Hubbard model, we do not have a general
procedure to choose the states for SU(N>2). Therefore, we explain our approach in consid-
ering SU(2) first and then apply it to SU(3) symmetric fermions.

In the case of SU(2), the remaining fractionalized parabolas (i.e. excluding the two outer
parabolas and the central one) have a common spin value of J = 1. This in turn results
in a two-fold degeneracy in the spin-1

2 Heisenberg model for a given collective spin quantum
number |X |. Hence, the relevant states for two of the parabolas of a given |X | are superpositions
of these degenerate eigenstates of the Heisenberg Hamiltonian. These states can be separated
by different eigenvalues for Pj, j−1, part of the Heisenberg model but not commuting with it.
We call both eigenstates of this permutation operator |ψ1/2〉. The states |ψl/r〉 corresponding
to the inner branches of the fractionalization are obtained from the two spin- and energy-
degenerate states |ψ1/2〉 as

|ψl/r〉 :=
1
p

2
(|ψ1〉 ± i|ψ2〉) . (A.45)

It is worth mentioning that these states correspond to fractionalized parabolas that emerge
from a singlet state in the absence of flux to a non-degenerate triplet state with each of the
basis elements being non-zero. This happens here gradually via intermediate triplet states
where certain basis states are excluded. As an example, we take an SU(2) state with 6 parti-
cles to explain this better. Since this state has 3 particles of each species (↑ or ↓) the parabolas
start from a singlet and persist as a triplet state during their fractionalization up to the center
parabola.

The singlet state is made of three distinct configurations: a) |111000〉 ± cyclic permutations,
b) |101010〉 − |010101〉, and c) the possible remaining configurations with alternating sign
(singlet state). This is mediated via fractionalized states where the component a) is missing in
the first inner parabola and additionally the component b) vanishes for the second parabola.
The triplet of the central parabola has the same components as the singlet state but without
alternating signs.

For SU(2) the corresponding states that belong to the fractionalized parabolas have been triplet
states, as was the non-degenerate state corresponding to either the central (diamagnetic, odd
species number) or the outer parabola (paramagnetic, even species number). However, the
representations are modified for N > 2 in the intermediate parabolas. In the case of SU(3)
we obtain (n1, n2) = (1, 1) as the 8-dimensional representation (instead of (n1, n2) = (3, 0))
which governs the intermediate parabola. For SU(4) it is (1,2, 0) instead of (4,0, 0) (see Ap-
pendix A.2.2). The Casimir C1 has values 3 and 4 respectively. These representations take the
role of the degenerate triplet state of SU(2).

In the case non-vanishing flux threading a ring of SU(N>2) symmetric fermions, the ground-
states of the Hubbard Hamiltonian (1) belonging to a given |X |, is N−1-fold degenerate coming
from the N−1 sets of spin quantum numbers. This degeneracy holds for the inner fractional-
ized parabolas. As a consequence of its one-to-one correspondence with the Hubbard model,
these degeneracies are manifested in the Heisenberg model, in addition to the two-fold degen-
eracy mentioned previously for both parabolas with equal values for |X |. In order for this extra
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degeneracy to be resolved, we make certain coefficients of the wavefunction in the Heisenberg
basis vanish by according superpositions of the degenerate states. This has been motivated by
former observations in SU(2) (see discussion above).

To get a better idea of how this is done explicitly, here we exemplify on the case of 3 particles
in SU(3). There are only two possible values for |X | in this case and each parabola is two-fold
degenerate in the Hubbard model. The degeneracy of the Heisenberg model is hence 4-fold.
So, the distinct states have to be selected from a remaining two-fold degeneracy of the operator
Pi,i+1. The zeroth parabola is in the singlet state of SU(3) that belongs to C1 = 0 for which
every component of the wavefunction is non-zero. Both two-fold degenerate inner parabolas
have C1 = 3 and correspond in one case to the positive or negative permutation of the species
number only; in the second degenerate case they correspond to configurations {|021〉, |102〉}
and {|120〉, |201〉} as the only non-zero component. These are the states {|ψ1〉, |ψ2〉} that are
to be superposed by formula (A.45). The direct way to obtain the corresponding state of the
Heisenberg model is via the Bethe ansatz wavefunction for the same spin quantum numbers
of the Hubbard model. The degeneracies amount to 2(N − 1)-fold for the SU(N) Heisenberg
model. These are distinguished by the eigenstates of the permutation operator Pj, j+1 up to a
remaining (N − 1)-fold degeneracy.

A.4 Comparison with numerics

In this section, we compare the correlations obtained via the method presented in this paper to
those obtained through exact diagonalization using the Lanczos algorithm. The error between
the two methods is estimated by calculating the relative correlation distance D for the ground
state, which is defined as

D = 1
L

√

√

√

∑

i

�

c(ED)
1,i − c1,i

�2
, (A.46)

where c(ED) correspond to the correlations obtained through exact diagonalization. We note
that because of the periodicity of the system all ci, j are a circular shift of c1, j , such that we only
need to sum once. Some of the comparisons that were carried out are tabulated in Table 1.
Naturally, we find that as one goes to large interactions, the agreement of the correlations
between the two methods increases. Such a result is to be expected as our proposed scheme is
viable in the limit of infinite repulsion. Furthermore, we highlight that our system is far from
being in the dilute limit, which is one of the integrable regimes of the Hubbard model. In spite
of this, there is an excellent agreement between exact diagonalization and our scheme that
is intrisically reliant on the system being Bethe ansatz integrable. Bethe ansatz integrability
hinges on the fact that the scattering of more than two particles does not occur (Yang-Baxter
factorization of the scattering matrix). In the infinite repulsive regime, the multiparticle scat-
tering is suppressed since the probability of two particles interacting is vanishing. Therefore,
despite the fact that we are far from the dilute limit condition, the system is indeed very close
to be integrable for low lying states, and our method is able to accurately tackle the infinite
repulsive limit of the SU(N) Hubbard model.

The Hilbert space of the Hubbard model for an equal number of particles per colour is

given by
� L

Nc

�N
, where L corresponds to the system size, Nc to the number of particles in a

given colour, and N is the number of components. It is straightforward to see that the size of
the Hilbert space increases at least exponentially on going to a larger value of any of these three
variables. When it comes to exact diagonalization, the size of the Hilbert space is one of the
limitations as it exceeds the memory of the computer defined as Msize. This can be estimated

in the following manner Msize[GByte] =
( L

Nc)
N
×Np×64

1024×1024×1024×8 , where we count the number of
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Table 1: The relative correlation distance D, defined in Equation (A.46), is presented
as a function of the number of sites L, particles Np, components N , and interaction
U (ED). This interaction corresponds to that used in exact diagonalization simulations,
whilst that of our scheme is always infinite.

L Np N U (ED) D
15 4 2 750 2.68× 10−5

15 4 2 10,000 2.01× 10−6

15 6 2 750 6.65× 10−5

15 6 2 5000 9.99× 10−6

15 3 3 1000 1.60× 10−5

15 3 3 5000 3.19× 10−6

10 6 3 1000 8.34× 10−5

10 6 3 5000 1.67× 10−5

configurations, the number of particles (that gives the numbers we need to store) and the bits
occupy by Int64, then we convert this into GigaBytes. Specifically, through our scheme we are
able to consider systems with Np = 12, L = 38 and N = 3, which correspond to a Msize= 242
GB for the spinless, and 3500 TB for the corresponding Hubbard model, which is clearly not
attainable in current High Performance Computing systems. However, in our case we can per-
form calculations without storing the configurations. Similar approaches can also be followed
in exact diagonalization, but not with these parameters. In the current state-of-the-art, one
can diagonalize a Hilbert space of around 7 million (corresponding to Msize=0.31GB) using
the Lanczos algorithm when taking into account the large matrices and values of the inter-
actions used in the numerical operations, such as for example the calculation of correlations.
Our proposed scheme is able to go to larger system parameters on account of the spin-charge
decoupling.

By separating the problem into the spinless and Heisenberg parts, we deal with small Hilbert
space dimensions that are given by

� L
Np

�

and
Np!
(Nc !)N

respectively. In doing so, the size of the
system that we can consider, i.e. the number of sites, comes down to calculating the Slater
determinant (A.43). Such a calculation is limited not by the memory size but by its runtime.
However, in this manner one can calculate large system sizes, such as for example 38 sites
that corresponds to a Hilbert space of around 2 billion for the spinless part. The other part of
the problem lies in diagonalizing the Heisenberg matrix, whose dimensions are significantly
smaller than its Hubbard counterpart, enabling us to calculate the system parameters displayed
in this manuscript. It should be stressed that even through this scheme one is not able to cal-
culate systems with very large particle numbers, as this part of the calculation is still affected
by the dimensions of the matrix under consideration. Additionally, for Np = (2m)N we need
to consider the excited states of the Heisenberg model in order to get the actual ground-state
of the Hubbard system, which means that we need to perform the full diagonalization of the
former instead of employing the lanczos algorithm.

Lastly, we close this section by drawing comparisons with DMRG. The system under consid-
eration is infinitely repulsive SU(N) fermions residing on a ring. In this context, DMRG has
problems with convergence due to the large repulsive interactions and the high number of
degeneracies present in the system. It is also limited by the periodic boundary conditions.
Nonetheless, as we remarked in the manuscript, in the regime of intermediate interactions,
DMRG can still be employed giving a good agreement with exact diagonalization and the pro-
posed scheme.
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