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Abstract

The full state vector of boson sampling is generated by passing S single photons through
beam splitters of M modes. We express the initial Fock state in terms of 2S−1 generalized
coherent states, making possible the exact application of the unitary evolution. Due to
the favorable polynomial scaling of numerical effort in M , we can investigate Rényi en-
tanglement entropies for moderate particle and huge mode numbers. We find symmetric
Page curves with a maximum entropy at equal partition, which is almost independent on
Rényi index. Furthermore, the maximum entropy as a function of mode index saturates
for M ≥ S2 in the collision-free subspace case. The asymptotic value of the entropy in-
creases linearly with S. In addition, we show that the build-up of the entanglement leads
to a cusp in the asymmetric entanglement curve. Maximum entanglement is reached well
before the mode population is distributed over the whole system.
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1 Introduction

As a nonuniversal model of quantum computation based on a linear optical setup, boson sam-
pling has come to the limelight recently [1,2]. In its standard (Fock state) version, a relatively
small number S of identical photons is prepared in M (usually on the order of S2) optical
modes and is scattered by an interferometer consisting of beam splitters and phase shifters.
These passive linear optical elements determine the Hamiltonian, under which the input state
evolves. A uniformly (‘Haar’) random unitary matrix describes the transformation from the
input to the output ports [3,4]. As an output it generates single photon states to be measured
with simple bucket detectors [2,5], because the probability that two photons arrive at the same
detector is considerably small under the so-called collision-free subspace condition. Recently,
Gaussian boson sampling has matured into a prime candidate to prove the principle of the
advantage (also referred to as “supremacy”) of quantum computation over classical computa-
tion [6]. A review of the many different variants of boson sampling and their experimental
realization as well as its validation, including references to pioneering studies, is given in [5].

Entanglement, as first formulated by Schrödinger in 1935 [7], is one of the most strik-
ing properties of quantum systems that it is at the heart of quantum information, quantum
computation, and quantum cryptography [8]. Entanglement is a fundamental resource for
performing tasks such as teleportation, key distribution, quantum search, and many others;
therefore, the calculation of entanglement and related measures [9] in lattice Hamiltonians
has gained considerable interest [10–14]. Buonsante and Vezzani, e.g., have performed en-
tanglement studies to investigate quantum phase transitions in the Bose-Hubbard model [10].
In [15], it has been pointed out that even for noninteracting particles, bosonic entanglement
creation outmatches the fermionic case due to the larger Hilbert space in the former case, see
also [16]. A commonly used measure for estimating the entanglement is given by the Rényi
entropy in a bipartite many-body setup [17]. Understanding the build-up of entanglement,
e.g., after a quench (a sudden change of the underlying Hamiltonian) is a central focus of the
field [18], and an efficient simulation of quench dynamics on a classical computer would be
a valuable resource [19]. The exact numerical application of the unitary evolution for lattice
systems with more than a handful of particles as well as modes seems elusive, however, due
to the growth of the entanglement. In lattice systems relevant for solid-state physics, e.g.,
matrix product state (MPS) calculations are mainly favorable for area law scaling of the en-
tanglement growth [20]. Although the output state of boson sampling does not follow an area
law [13], in [11], the usage of MPS has been advocated for boson sampling (as well as for a
fermionic circuit). Therein, results for moderate particle and small mode numbers have been
presented. The efficiency of these numerical calculations relies on the restriction to a small
bond dimension, which, however, is conflicting with the rapid growth of entanglement.
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In the present contribution, we will focus on the entanglement creation in a boson sam-
pling setup and will use generalized coherent states (GCS), also known as SU(M) coherent
states, as basis functions, in order to cope with the implementation of the (time) evolution.
In [21], it has been shown that these non-orthogonal basis sets can deal with unitary evolution
for exceedingly large Hilbert space dimensions of the Bose-Hubbard model Hamiltonian with
onsite interaction and nearest neighbor tunneling. Herein, the case of a unitarily rotated initial
state in a boson sampling setup, which is not restricted to nearest neighbor coupling only (but
without onsite interaction), will be shown to be another favorable case for the application of
GCS. Along the way, we rederive Glynn’s formula [22] for the permanent of a square matrix
(see Appendix A) by focussing on singly occupied modes with filling factor one. Expanding
this state as well as more general states, with a filling factor smaller than one, in terms of
GCS is performed exactly analytically, by applying Kan’s monomial expansion formula [23] to
the product of creation operators that appears in the Fock state. After establishing a formula
for the trace of powers of the reduced density operator in terms of GCS overlaps only, we
study the Rényi entropy for different Rényi index as a function of the subsystem size up to the
collision-free subspace limit, where for the total number of modes, it should be sufficient that
M ≥ S2 [24]. All the results to be presented below are exact and analytical and just require
the numerical evaluation of (multiple) finite sums.

The manuscript is structured as follows. In Sec. 2, we briefly review the formalism of
boson sampling. Then, in Sec. 3, we lay the foundation for applying the unitary beam splitting
operation by using the generalized coherent states as basis functions. To this end, we focus
on the exact analytical expansion of the initial Fock state in terms of a finite sum of GCS. We
then establish a way to calculate the purity and traces of higher powers of the reduced density
operator for computing the Rényi entropy. In Sec. 4, we focus on the creation of entanglement
of subsystems due to the random unitary evolution. Though the main focus of our presentation
is on the application of the full unitary matrix, we also consider the build-up of entanglement.
Sec. 5 concludes the presentation and gives an outlook on future developments. Technical
details are given in the appendix.

2 Boson Sampling as a unitary evolution

The quantity of interest in theoretical approaches to boson sampling (BS) is the probability
P for a given configuration C of S photons distributed over M detectors in the collision-free
subspace case, where M ≫ S and every mode is maximally singly occupied. This probability
is related to the permanent of a submatrix of a (Haar random) unitary matrix with entries
Ui j [25]. To see this, we briefly review the BS formalism by looking at the full state vector
expressed in the Fock state basis {|m〉}. It is given by [2],

|Ψ〉= R̂
�

UT
�

|n〉=
∑

C

γC|m〉 , (1)

where the evolved initial state |n〉 = |n1, n2, . . . , nM 〉 is expanded in terms of different
|m〉 = |m1, m2, . . . , mM 〉. In the collision-free subspace case, the expansion coefficients are
given as permanents (per)

γC = 〈m|R̂
�

UT
�

|n〉= per(Unm) , (2)

where Unm is prepared by taking nk copies of the k-th column and mk copies of the k-th
row of the full matrix U. Thus, the probability is identified as P(C) = |γC|2 = |per(Unm)|2.
For an instance of three photons, initially in the Fock state |1,1, 1,0, 0, . . . 〉 and finally in
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|1, 0,1, 0, . . . , 0, 1〉, the submatrix is constructed as follows:

Unm =





U11 U12 U13
U31 U32 U33
UM1 UM2 UM3



 . (3)

Furthermore, per(A) =
∑

σ∈SΠ
S
k=1Akσk

, with σ the vector of permutations of (1,2,. . . .S), de-
notes the permanent of the matrix A, which is defined analogously to the determinant but
does not have the alternating sign in its definition and therefore is much harder to calculate
because, generally, per(AB) ̸= per(A)per(B). Permanent calculation is one of the prime exam-
ples of #P-hard problems in the field of computational complexity [26]. For an n× n matrix,
the scaling of the numerical effort for its calculation via Ryser’s formula [27] is of O(n22n),
or O(n2n) using Gray code [28], as compared to O(n2.373) for the determinant. We note that
all these scalings are much better than that of Laplace expansion, which is O(nn!), but they
are still exponentially expensive. The world record for permanent calculation has just been
pushed to matrices of sizes as small as 54x54 [29].

To make an analogy with unitary time evolution, we write the rotation operator appearing
in (1) as

R̂
�

UT
�

= exp
�

−iĤ
�

, (4)

with the help of the beam splitting Hamiltonian

Ĥ = â†TΦâ , Φ= i lnUT , (5)

where â denotes the column vector of annihilation operators on the M modes andΦ, in general,
is a full M ×M Hermitian matrix with entries Φi j [30]. The action of the rotation operator on
elements of the vector of creation operators is then given by

R̂
�

UT
�

â†
i R̂
�

UT
�†
=
∑

j

Ui j â
†
j , (6)

which can be proven using the Baker-Haussdorff (or Hadamard) lemma [31] and which will
be employed below. To generate the numerical results presented in Sec.4, we used the Matlab
code for the creation of Haar random unitary (HRU) matrices provided by Cubitt [32].

3 Application of the HRU in the GCS Basis

Glauber (or standard) coherent state basis functions, which consist of a superposition of num-
ber states, are well suited for the dynamics of continuous variable systems that are close to
harmonic [33], but are not ideal for the treatment of the quantum dynamics governed by
lattice Hamiltonians (like in boson sampling) for systems with a fixed number S of particles
distributed among M modes (sites). It has been realized recently, however, that generalized
coherent states (GCS) [34], most favorably defined via

|S, ξ⃗〉=
1
p

S!

� M
∑

i=1

ξi â
†
i

�S

|0, 0, . . . 〉 , (7)

where
∑M

i=1 |ξi|2 = 1 and with the many-particle vacuum state |0,0, . . . 〉 and bosonic creation
operators â†

i acting at the i-th site, are well-suited as basis function for the description of
the particle conserving dynamics of systems like the Bose-Hubbard Hamiltonian [35–37]. A
variational mean-field approach based on a single GCS has been proposed in [35] and a fully
variational approach using a multi-configuration GCS-Ansatz has been formulated in [21].
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3.1 Exact representation of the initial state: Kan summation formula

In the present manuscript, we take a direct approach to the unitary evolution in the boson
sampling problem without invoking the variational principle. We do so by using the multi-
configurational expansion of the wavefunction in terms of the GCS defined above, according
to

|Ψ(t)〉=
N
∑

k=1

Ak(t)|S, ξ⃗k(t)〉 , (8)

where ξ⃗k = (ξk1,ξk2, . . . ,ξkM ) denotes a time-dependent vector of complex-valued GCS pa-
rameters and with multiplicity index k ranging from 1 to N . In this general form of the wave-
function, both the expansion coefficients {Ak} as well as the GCS parameters are in princi-
ple time-dependent and complex valued. We can, however, refrain from the explicit time-
dependence of the coefficients, if the exact expansion of the initial state in terms of GCS is
used, as will be shown below. Applying the HRU of boson sampling from Eq. (4) amounts
to evolution over the complete unit time interval (t = 1), but below, we will also consider fi-
nite time evolution, which is characterized by an exponent of the unitary operator exp(−iĤ t),
where t ∈ [0, 1]. This will allow us to study the build-up of entanglement, similar to the case
of dynamics after a quench [38].

For the applicability of the proposed approach, it is decisive that the initial Fock state can
be represented in terms of GCS. This puzzle can be solved exactly analytically by the use of
Kan’s formula for monomials (a single product of powers) [23]

x s1
1 x s2

2 · · · x
sn
n =

1
S!

s1
∑

ν1=0

· · ·
sn
∑

νn=0

(−1)
∑n

i=1 νi ·
� s1
ν1

�

· · ·
� sn
νn

�

� n
∑

i=1

hi x i

�S

, (9)

where S = s1 + s2 + ...sn, with integers si ≥ 0 and hi = si/2 − νi . We observe that the term
�

∑n
i=1 hi x i

�S
on the right hand side has a structure appearing also in the definition of the

SU(M) coherent states given in Eq. (7). By replacing the formal variables x i by creation
operators a†

i , we are thus able to build the (exact) relationship between Fock states and SU(M)
coherent states according to

|s1, s2, · · · , sM 〉=
1

p

s1!s2! · · · sM !
(a†

1)
s1(a†

2)
s2 · · · (a†

M )
sM |00 · · ·0〉

=
1

p

s1!s2! · · · sM !
p

S!

s1
∑

ν1=0

· · ·
sM
∑

νM=0

(−1)
∑M

i=1 νi

� s1
ν1

�

· · ·
� sM
νM

�

� M
∑

i=1

|hi|2
�S/2

1
p

S!

� M
∑

i=1

ξia
†
i

�S

|00 · · ·0〉

=
1

p

s1!s2! · · · sM !

(s1+1)(s2+1)···(sM+1)
∑

k=1

Ak|S, ξ⃗k〉 . (10)

The initial coefficients and parameters of the SU(M) coherent states thus are

Ak = (−1)
∑M

i=1 νki
� s1
νk1

�

· · ·
� sM
νkM

�

�

∑M
i=1 |hki|2

�S/2

p
S!

, (11)

ξ⃗k =
1

Ç

∑M
i=1 |hki|2

(hk1, hk2, · · · , hkM ) , (12)
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where {hki} = {
si
2 − νki} and the set of {νk1,νk2, · · · ,νkM} represents the kth possible

combination of ν1 = {0,1, · · · , s1},ν2 = {0,1, · · · , s2}, · · · ,νM = {0,1, · · · , sM}. The factor
�

∑M
i=1 |hki|2

�S/2
has been introduced in the definition of the coefficients in order to normalize

the GCS parameter vectors.
For the special case s1 = s2 = · · ·= sS = 1, we have (S ≤ M , N = 2S−1)

|11 · · ·100 · · ·0〉=
N
∑

k=1

Ak|S, ξ⃗k〉 , (13)

where Ak/2 = (−1)
∑S

i=1 νki
� 1
νk1

�

· · ·
� 1
νkS

�

�

∑S
i=1 |hki |2

�S/2

p
S!

, {hki} = {12 − νki},
ν1 = {0},ν2 = {0,1}, · · · ,νS = {0,1} and ξk,S+1 = · · · = ξk,M = 0. Here, we have used
that there is a redundancy in Kan’s original formula (9), already noticed by Kan himself. This
results in the fact that we can reduce the multiplicity summation from N = 2S to N = 2S−1

terms by fixing the first index ν1 to be zero. In passing, we note that the Kan formula under-
lying the present procedure thus involves an exponential scaling in the particle number of the
required number of GCS basis functions. The numerical overhead in terms of mode number
scales polynomially for a given number of particles, and thus we can handle a large number
of modes efficiently. Overall, this is in clear contrast to the typically much more demanding
factorial scaling, according to (M + S − 1)!/[S!(M − 1)!], of the number of basis functions that
would be required in a Fock space calculation.

3.2 Unitary evolution

With the boson sampling setup in mind, we now assume that the input state is the Fock state
|11 · · ·100 · · ·0〉, which we just discussed, and that the linear optical circuit is described by the
rotation operator R̂ from Eq. (4). Using Eqs. (6,7) and (10), the output state (at t = 1) can
then be written as

|Ψ〉out = R̂|11 · · ·100 · · ·0〉

=
N
∑

k=1

Akp
S!

R̂

� M
∑

i=1

ξkia
†
i

�S

R̂−1R̂|00 · · ·0〉

=
N
∑

k=1

Akp
S!

 

M
∑

i=1

ξki

M
∑

j=1

Ui ja
†
j

!S

|00 · · ·0〉

=
N
∑

k=1

Ak|S,
M
∑

i=1

ξkiUi1,
M
∑

i=1

ξkiUi2, · · · ,
M
∑

i=1

ξkiUiM 〉

=
N
∑

k=1

Ak|S, ξ⃗k〉out . (14)

In contrast to an expansion in terms of Fock states, the GCS expansion coefficients (amplitudes)
stay constant at all times and the GCS parameters {(ξki)out} characterizing the output state
can be obtained by the matrix product











ξ⃗1

ξ⃗2
...
ξ⃗N











out

=











ξ⃗1

ξ⃗2
...
ξ⃗N











in









U11 U12 · · · U1M
U21 U22 · · · U2M

...
...

...
...

UM1 UM2 · · · UM M









. (15)

6

https://scipost.org
https://scipost.org/SciPostPhys.15.1.007


SciPost Phys. 15, 007 (2023)

In Appendix A, we show that the above output state allows for a rederivation of Glynn’s formula
for the permanent [22], given by

per(U) = 〈11 · · ·1|Ψ〉out

=
1

2M−1

2M−1
∑

k=1

�

�

M
∏

i=1

xki

�

M
∏

m=1

x⃗k · U⃗m

�

, (16)

where M = S and U⃗m is the m-th column vector of the matrix U. The vector x⃗k is defined in
the appendix.

4 The entanglement entropy

In the following, we investigate the creation of entanglement by application of the unitary
operation of boson sampling. The initial Fock state of the unpartitioned system is not entangled
because it can be written as a single product of single particle states. A single SU(M) coherent
state, in general, however, does not have this property, as can be inferred from its definition
(7). Due to the important property of a single GCS being the ground state of the free-boson
model, its entanglement properties have been studied in great depth by Dell’Anna using the
reduced density matrix [14].

4.1 Bipartitioning and Rényi entropies

In contrast to the single GCS case, we now consider the multi-configuration case, with the
state |Ψ〉 being the superposition of multiple SU(M) coherent states, according to Eq. (8).
Partitioning the system into a left and a right part, the (final) density operator of the full
system is

ρ̂ =
N
∑

k, j=1

AkA∗j|S, ξ⃗k〉〈S, ξ⃗ j|

=
1
S!

S
∑

n′ ,n=0

N
∑

k, j=1

AkA∗j

�

S
n

��

S
n′

�

Æ

n!(S − n)!n′!(S − n′)!

|S − n, ξ⃗kL̃〉〈S − n
′
, ξ⃗ j L̃| ⊗ |n, ξ⃗kR̃〉〈n

′
, ξ⃗ jR̃| , (17)

where the sum in the definition of the GCS, Eq. (7), was split in two parts (L and R), a binomial
expansion was used, and where the two non-normalized SU(M) states are defined by

|S − n, ξ⃗ L̃〉=
1

p

(S − n)!

� ML
∑

i=1

ξia
†
i

�S−n

|00 · · ·0〉 , (18)

|n, ξ⃗R̃〉=
1
p

n!

 

M
∑

i=ML+1

ξia
†
i

!n

|00 · · ·0〉 . (19)

The fact that these GCS are not normalized is indicated by the tilde over the symbols L as well
as R.

The reduced density matrix of the left subsystem can then be derived by tracing over the
right one. Using the fact that GCS with different particle numbers are orthogonal to each other,
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this yields

ρ̂L = TrR(ρ̂)

=
S
∑

n=0

�

S
n

� N
∑

k, j=1

AkA∗j〈n, ξ⃗ jR̃|n, ξ⃗kR̃〉|S − n, ξ⃗kL̃〉〈S − n, ξ⃗ j L̃| . (20)

Going into Fock space, the density matrix corresponding to the above density operator, analo-
gous to Eq. (5) in [14], can thus be written in block diagonal form

ρL = diag
�

ρ(0)L ,ρ(1)L , · · · ,ρ(S)L

�

, (21)

where the uncoupled blocks ρ(n)L describe a distribution of n particles on the right side and
S − n particles on the the left side of the cut. The elements of the blocks are given by

ρ(n)L =
�

S
n

� N
∑

k, j=1

C (n)jk W⃗ (n)
k W⃗ (n)†

j , (22)

with the coefficient C (n)jk = AkA∗j〈n, ξ⃗ jR̃|n, ξ⃗kR̃〉 and where the vector W⃗ (n)
k is filled by the entries

〈n1n2 · · ·nML
|S− n, ξ⃗kL̃〉 with

∑ML
i=1 ni = S− n. The product of the column vector with the row

vector is a matrix but in the reverse order (row times column) it is the scalar

W⃗ (n)†
j · W⃗ (n)

k = 〈S − n, ξ⃗ j L̃|S − n, ξ⃗kL̃〉=

� ML
∑

i=1

ξ∗jiξki

�S−n

, (23)

where, for the overlap between GCS, a formula from the appendix of [21] has been used.
Due to ease of computation, as a measure of the entanglement of the left subsystem after the
application of the unitary matrix of boson sampling, the linear entropy SL = 1− Tr(ρ2

L) [25]
as well as the second order Rényi entropy (see below) are frequently used. For computational
purposes, for the purity, it is favorable to use the expression

Tr(ρ2
L) =

S
∑

n=0

�

S
n

�2

Tr
�

N
∑

k, j=1

C (n)jk W⃗ (n)
k W⃗ (n)†

j

N
∑

k′, j′=1

C (n)j′k′W⃗
(n)
k′ W⃗ (n)†

j′

�

=
S
∑

n=0

�

S
n

�2 N
∑

k, j,k′, j′=1

C (n)jk C (n)j′k′Tr
�

W⃗ (n)
k W⃗ (n)†

j W⃗ (n)
k′ W⃗ (n)†

j′

�

=
S
∑

n=0

�

S
n

�2 N
∑

k, j,k′, j′=1

C (n)jk C (n)j′k′

�

W⃗ (n)†
j W⃗ (n)

k′

��

W⃗ (n)†
j′ W⃗ (n)

k

�

=
S
∑

n=0

�

S
n

�2 N
∑

k, j,k′, j′=1

C (n)jk C (n)j′k′

�� ML
∑

i=1

ξ∗jiξk′ i

�� ML
∑

i=1

ξ∗j′ iξki

��S−n

, (24)

where we have used that the trace of the product of two operators amounts to a scalar product
(step from line two to line three). This result can be specified to the case of the boson sampling
problem by expressing the GCS parameters after the application of the HRU in terms of the
Hermitian matrices

ΛL = (U⃗1, U⃗2, · · · , U⃗ML
) · (U⃗1, U⃗2, · · · , U⃗ML

)† , (25)

ΛR = (U⃗ML+1, U⃗ML+2, · · · , U⃗M ) · (U⃗ML+1, U⃗ML+2, · · · , U⃗M )
† , (26)
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derived in Appendix B and where U⃗i is the truncated vector U⃗i with only the first S entries.
There also the purity is reexpressed as

Tr(ρ2
L) =

�1
2

�4(S−1) S
∑

n=0

1

[(S − n)!n!]2

2S−1
∑

k, j,k′, j′=1

S
∏

i=1

�

xki x ji xk′ i x j′ i

�

�

x⃗k′ΛL x⃗ T
j x⃗kΛL x⃗ T

j′

�S−n �
x⃗kΛR x⃗ T

j x⃗k′ΛR x⃗ T
j′

�n
. (27)

This formula allows us to write the purity in terms of particle as well as mode number and the
entries of the unitary matrix U only, not making reference to GCS any longer.

The previous form of the purity, given in Eq. (24), with the output GCS parameters {ξ⃗k}
from Eq. (15), however, is better suited for numerical purposes, as it can be calculated easily
in matrix language. Also, there is no need to calculate the eigenvalues of the reduced density
matrix for typically huge Fock space dimensions, which would be necessary to calculate the
von Neumann entropy

SvN = −Tr (ρL lnρL) = −
S
∑

n=0

Tr
�

ρ(n)L lnρ(n)L

�

. (28)

In the focus of the results section below thus are the so-called Rényi entropies

Sα =
1

1−α
ln Tr(ραL ) . (29)

For α = 2 the purity just discussed is needed for its calculation. In the general case, higher
powers of the density matrix have to be considered, however. This can be done along lines,
similar to those of Eq. (24). The quadruple sum over the multiplicity indices would, e.g., turn
into a sextupel sum for α= 3. We stress that the number of terms in every sum can be reduced
to 2S−1 by using the non-redundant Kan formula mentioned above. A relation between the
Rényi entropy and the von Neuman entropy that we will refer to below is SvN = limα→1 Sα,
and it is well-known that S1 ≥ S2 ≥ S3 . . . [39]; see also [40] for a recent discussion of Rényi
entropy inequalities in the context of Gaussian boson sampling. For the one-dimensional XY
spin chain some useful exact results for Rényi entropies as a function of α are available [41].
Rényi entropies for noninteger values 0 < α < 1 are discussed in [42]. An experimental
approach to measuring Rényi entropies employs the preparation of two copies of the same
system and measuring the expectation value of the so-called swap operator. It has originally
been devised to investigate quench dynamics in Bose-Hubbard type lattice Hamiltonians by
Daley et al. [43].

4.2 Numerical results for the case t = 1

We first focus on the case t = 1 of time evolution with the full unitary matrix. All the entropies
are calculated by averaging over different realizations of the HRU matrix, analogous to the
analytic work by Page [44]. Individual realizations (not shown) do not differ much from the
plots to be shown below, however. Firstly, in Figure 1, the Rényi entropy for index α = 2
as a function of subsystem size, corresponding to the locus of the bipartition, is depicted for
different photon numbers, ranging between 8 and 12 (single realization calculations for 14
photons (not shown) are also possible within a few hours on a standard workstation). The
total number of modes in all cases is 200, and the displayed Page curves are all symmetric
around bipartition mode number 100, in contrast to the asymmetric curves in [11]. For a
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Figure 1: Rényi entropy (averaged over 100 realizations of the HRU) with index
α= 2 as a function of the size of the left system for different photon numbers, ranging
from S = 8 to S = 12, in the case of a fixed number of modes (M = 200).

subsystem size smaller than S, the entropy follows a volume law (see also the discussion in
the following subsection), and the maximum entropy 1 is displayed for splitting the system
into two equal halves. The scaling of this maximum entropy with particle number is linear.
We stress that the Rényi entropy is a lower bound for the von Neumann entropy, and our exact
results can be taken as a benchmark for other, purely numerical calculations. Furthermore, we
stress that we can observe asymmetric curves for the entropy if we consider exponents t < 1,
as will be discussed in the following subsection.

Secondly, the Rényi entropy for different index α as a function of subsystem size in a
system with S = 10 and M = 500 is depicted in Fig. 2. Again, for subsystem size smaller
than S, a volume law is found with the slope depending on the Rényi index. Changing the
number of photons does not qualitatively alter the results. They show that by increasing α,
the entropy is monotonically decreasing (in complete agreement with classical results from
symbolic dynamics [39]), and the functional form turns from concave to (almost) convex (the
second order derivative (assuming the abscissa to be a continuous variable) of the blue curve
in Fig. 2 is negative, whereas the second derivative of the green curve is almost everywhere
positive).

Interestingly, the maximum of the entropy (at M = 250) for S = 10 is only slightly de-
pendent on the Rényi index but we stress that the deviations of the maximum are not finite
size effects, because, for different index the maximum entropy will increase linearly with the
particle number (with an decreasing slope for increasing α) , when the mode number is very
large (not shown). The fact that we can calculate Rényi entropies for many different values of
α would allow us also to study entanglement spectra [45].

Finally, we studied the maximum Rényi entropy (at equal partition) as a function of the
total mode number. All the curves shown are almost saturating with increasing M , so the max-
imum entropy tends to stay constant from a certain size. We checked the case of M > 1000
and still found a slight increase, though. This finding corroborates the assumption that in
order to fully reach the so-called collision-free subspace limit, it might be necessary that
M ≥ S5 log2 S [24]. Thus, in essence, the finding of this last numerical result is that, un-

1Defined as the maximal value of the entanglement entropy as a function of subsystem size (after averaging).
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Figure 2: Rényi entropy (averaged over 100 realizations of the HRU) as a function
of bipartition mode number for different α for fixed S = 10 and M = 500. Only the
left side of the symmetric curve is depicted. The inset shows more clearly that the
curves do not converge to the exact same maximum.

der collision-free subspace conditions, the maximum entropy that the unitary application can
gain is achieved. We also stress that the initial quick increase of the maximum entropy, which
we observe for small mode numbers and which is also seen in a similar setup [46] is broken for
higher mode numbers. The scaling of the maximum entropy with respect to particle number
can be extracted from Figure 1. This scaling is linear, corroborating the finding displayed in
the last entry of Table I in [47], but in contrast to the observation of a logarithmic scaling
in [13] for a nonlinear optical network. It is also worthwhile to note that although there is still
an increase in entanglement for large mode numbers (at fixed particle number), the numerical
effort to produce the results is not growing exponentially with M since the number of basis
functions is not changing.

4.3 Build-up of entanglement

In this last section, we mimic the build-up of entanglement by choosing the power of the
unitary matrix (which in the previous section was given by t = 1) to be somewhere inside the
interval t ∈ [0, 1]. The parameter t then plays a similar role as does time in a study of the
dynamics of a many-body system after a quench (sudden change of the Hamiltonian) [38]. In
panels (a) and (b) of Fig. 4, where we took different roots of the HRU, it is revealed that for
small values of t, the diagonal elements of the resulting matrix (a single matrix is displayed,
we did not take an average) are still dominant, whereas for t closer to unity, the structure
along the diagonal gets washed out. For the case t = 0.8, displayed in panel (b), it is barely
visible any longer, as the matrix elements tend to be fully random. The result of applying the
evolution matrix to the initial state, according to Eq. (15), is represented in panels (c) and
(d) of the same figure. Increasing t leads to a transfer of population to mode numbers that
are further and further away from the initially occupied ones. Thus at t = 0.8 a more even
distribution of the population over all modes is observed.

The corresponding results for the entanglement shown in Fig. 5 are similar to the ones
in [48] as they show a linear increase with particle number of the maximum entropy in the
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Figure 3: Maximum Rényi entropy (α = 2) averaged over 500 realizations of the
HRU as a function of mode number for different particle numbers S.

asymptotic regime. However, our results do not show an almost linear increase with time
[38, 49] before the asymptotic regime is reached. This may be because a local coupling is
employed to generate the results in [38]. In contrast, in our case, for all t < 1, the coupling
is still fully nonlocal (taking the logarithm of the unitary matrices). In our results, a quadratic
increase is followed by a linear one, and the maximum entropy is reached already at t = 0.45
regardless of the particle number. Thus, although the population has not been distributed
evenly across the system (see Fig. 4), the entropy has already reached its maximum.

Finally, in Fig. 6 we show the full entropy curve as a function of subsystem size for different
values of t for S = 10. The graphs display an asymmetric shape with a cusp-like structure
at bipartition mode number equal to the particle number S = 10, due to the choice of the
asymmetric initial state. The cusp gets smoothened out and the curves become more and more
symmetric for larger values of t. At t = 1 there is no “memory” of the unsymmetric initial state
left. For bipartition mode numbers smaller than ten, we always find a linear increase of the
entropy, corresponding to a volume law, as already mentioned in the discussion of Fig. 1. As
also mentioned earlier, the maximum entropy is reached already at t = 0.45. It is, however,
not located at symmetric bipartition if the exponent is not equal to unity. For t ≪ 1, the
correlation between the left (initially populated) and the right (initially unpopulated) part is
not fully developed; thus, the entanglement will decrease for bipartition mode numbers above
10. For t → 0, as expected, the entropy will shrink to an overall constant value of zero without
a cusp.

5 Conclusions and Outlook

Using Kan’s formula to express a Fock initial state in terms of generalized coherent states, we
have derived an exact analytical formula for the output state of a linear optical network for
standard boson sampling, given in terms of a finite sum over basis function multiplicity. The
scaling of the numerical effort to evaluate the sum is exponential in particle number S via 2S−1,
but only polynomial in the number of modes M . In total, the computational complexity thus
increases much less severely than the super-exponential scaling of the size of the Fock state
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Figure 4: Panels (a) and (b): absolute values of the elements of different powers t
of the HRU matrix with M = 50; panels (c) and (d): absolute value squared of the
GCS parameters ξki as a function of mode number (x-axis running from 1 to M) and
multiplicity index (y-axis for S = 6 running to N = 26−1 = 32).

Hilbert space, which is of dimension (M + S − 1)!/[S!(M − 1)!]. The tractable dependence on
the mode number of the numerical effort of sum evaluation has allowed us to investigate the
so-called collision-free subspace case, for which it is believed that M ≈ S2 is sufficient [24].

At the initial investigation stage, the output state wavefunction was derived in terms of
multiple GCS. Along the way, we have also rederived the formula of Glynn for the permanent
of a square matrix. Using the binomial theorem, the reduced density operator was calculated
from the wavefunction. Employing this important intermediate result, the purity and traces
of powers higher than two of the reduced density matrix were calculated exactly analytically
and are given in terms of multiple sums that could probably be simplified further. The results
involve overlaps of GCS and do not need the evaluation of eigenvalues of matrices for huge
Hilbert space dimensions. This allowed us to study the creation of subsystem entanglement by
applying the unitary matrix of boson sampling. In case of applying the full unitary matrix, i.e.,
for t = 1, we have corroborated numerically that the Rényi entropy is a decreasing function of
the Rényi index and that the maximum Rényi entropy is realized at equipartition, regardless
of the asymmetric population of the initial state. In addition, we found that the maximum
entropy is only slightly dependent on the index α. Furthermore, because of the polynomial
dependence on M of our numerical complexity, we could corroborate that under collision-free
subspace conditions, the maximum Rényi entropy saturates as a function of mode number.
Finally, a cusp in the (generally asymmetric) entropy curve at partition mode number equal
to particle number was found by investigating the build-up of entanglement. As an important
insight of the last subsection, it turned out that although the population has not yet fully
equilibrated, the entropy already has reached its maximum value at t ≈ 0.45.

By using an exact analytical expression for the time-evolved wavefunction, without invok-
ing any approximation (like reduced bond dimension in MPS), we have thus been able to
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Figure 5: Maximum Rényi entropy (α = 2) as a function of t (time) averaged over
100 realizations of the unitary for different particle numbers S and fixed mode num-
ber M = 200.

study strongly entangled system dynamics on a classical computer, which is considered to be
challenging [19]. This was possible because single elements of the GCS basis we used are
already highly entangled, which is not the case with single Fock states or MPS calculations.
Furthermore, we stress that in our simulation, we have the full state vector at our disposal.
This has allowed us to study bipartite entanglement.

In future work, the time-scale at which the entropy reaches its maximum shall be investi-
gated in more detail, e.g., with respect to its dependence on system size and/or mode number.
Furthermore, it would be worthwhile to also look into calculating other dynamical quantities,
like, e. g., higher-order correlation functions [50], using generalized coherent states. Fur-
thermore, apart from optical circuits, other circuits, like fermionic ones or molecular vibronic
spectroscopy [51], may be investigated using our current approach. In addition, it would be
a promising task to further manipulate the analytical results for the purity to simplify and
better understand them. These considerations may also enlighten the relationship between
entanglement and computational complexity. In addition, the open question why entangle-
ment is growing to its maximum value surprisingly fast deserves further attention. Finally,
the extension of the present investigations to Gaussian boson sampling [40,52,53], might be
worthwhile, with a special focus on the time-scale mentioned above.

A Rederivation of Glynn’s formula for the permanent

We verify the output wavefunction of Fock state boson sampling given in Eq. (14) by show-
ing that it contains Glynn’s formula for the permanent of a square matrix. To this end, we
stress that, in order to calculate the permanent of the unitary matrix U, we can assume the
input state to be the special Fock state |11 · · ·1〉. Then, from Eq. (12) the parameters of the
SU(M) coherent states are given by ξ⃗k =

1p
M

x⃗k, where x⃗k is a vector with M entries chosen
from the set {−1,+1}, except for k = 1, where the vector entries are fixed to be +1, and the
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Figure 6: Maximum Rényi entropy (α = 2) averaged over 100 realizations of the
HRU as a function of mode number for different depths and fixed particle number
S = 10.

corresponding amplitude from Eq. (11) is given by

Ak =
1
p

M !

�

M
4

�
M−1

2
M
∏

i=1

xki . (30)

So the output state under the unitary transformation is (presently S = M)

|Ψ〉out =
1
p

M !

�

M
4

�
M−1

2
2M−1
∑

k=1

�

M
∏

i=1

xki

�

�

�

�

�

M ,
1
p

M
x⃗k · U⃗1,

1
p

M
x⃗k · U⃗2, · · · ,

1
p

M
x⃗k · U⃗M

·

, (31)

where U⃗ j denotes the j-th column of the matrix U. The permanent of the unitary matrix can
then be obtained by projecting the output state onto the Fock state 〈11 · · ·1|, yielding

per(U) = 〈11 · · ·1|Ψ〉out

=
1

2M−1

2M−1
∑

k=1

�

�

M
∏

i=1

xki

�

M
∏

m=1

x⃗k · U⃗m

�

, (32)

where we have used the multinomial theorem and the fact that only terms with unit powers of
a†

i do survive the projection. The resulting formula thus is Glynn’s formula for the permanent
of a square matrix [22,54].

Our analytical manipulations based on Kan’s formula for the expansion of a Fock state
in terms of multiple GCS thus lead to an alternative derivation of Glynn’s formula, which is
considered to be a computational alternative to Ryser’s formula [27]. A generalized formula
for the permanent has been found along similar lines [55,56]. Furthermore, it is worthwhile to
note that different permanent identities have been proven in a quantum-inspired way in [57].
There the Glynn formula has, e.g., been proven using cat states.
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B Derivation of the purity in terms of the unitary

For the boson sampling problem, if the initial state is the Fock state |11 · · ·10 · · ·0〉, where
only the first S modes are occupied by single photons, in close analogy to the rederivation
of Glynn’s formula in the previous appendix, Kan’s formula implies that the values of the
amplitudes in the GCS expansion in Eq. (8) are Ak =

1p
S!
(S

4 )
S−1

2
∏S

i=1 xki where x⃗k is a vector
with S entries from the set {−1,+1}, apart from k = 1, and the values of the GCS parameters
are ξ⃗k =

1p
S
(xk1, xk2, · · · , xkS , 0, · · · , 0).

In analogy to the case S = M from Eq. (31), the output state after the rotation with the unitary
matrix U is

|ψ〉out =
1
p

S!

�

S
4

�
S−1

2
2S−1
∑

k=1

� S
∏

i=1

xki

�
�

�

�

�

S,
1
p

S
x⃗kU⃗1,

1
p

S
x⃗kU⃗2, · · · ,

1
p

S
x⃗kU⃗M

·

, (33)

where U⃗i is the truncated vector U⃗i with only the first S entries. Thus, we get (A coefficients
are time-independent)

AkA∗j =
1
S!

�

S
4

�S−1 S
∏

i=1

(xki x ji) , (34)

as well as

〈S − n, ξ⃗ j L̃|S − n, ξ⃗k′ L̃〉out =
�

ξ⃗k′ L̃ξ⃗
†
j L̃

�S−n

=
�

1
p

S
x⃗k′ · (U⃗1, U⃗2, · · · , U⃗ML

) ·
1
p

S
(U⃗1, U⃗2, · · · , U⃗ML

)† · x⃗ T
j

�S−n

=
1

SS−n
( x⃗k′ΛL x⃗ T

j )
S−n , (35)

and

〈n, ξ⃗ jR̃|n, ξ⃗kR̃〉out =
�

ξ⃗kR̃ξ⃗
†
jR̃

�n

=
�

1
p

S
x⃗k · (U⃗ML+1, U⃗ML+2, · · · , U⃗M ) ·

1
p

S
(U⃗ML+1, U⃗ML+2, · · · , U⃗M )

† · x⃗ T
j

�n

=
1
Sn
( x⃗kΛR x⃗ T

j )
n , (36)

for the ingredients of Eq. (22). Here the Hermitian matrices ΛL/R are defined as

ΛL = (U⃗1, U⃗2, · · · , U⃗ML
) · (U⃗1, U⃗2, · · · , U⃗ML

)† , (37)

ΛR = (U⃗ML+1, U⃗ML+2, · · · , U⃗M ) · (U⃗ML+1, U⃗ML+2, · · · , U⃗M )
† . (38)

This leads to the final result

Tr(ρ2
L) =

�

1
2

�4(S−1) S
∑

n=0

1

[(S − n)!n!]2

2S−1
∑

k, j,k′, j′=1

S
∏

i=1

(xki x ji xk′ i x j′ i)
�

x⃗k′ΛL x⃗ T
j x⃗kΛL x⃗ T

j′

�S−n �
x⃗kΛR x⃗ T

j x⃗k′ΛR x⃗ T
j′

�n
, (39)

for the purity.
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