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Abstract

Subsystem symmetry has emerged as a powerful organizing principle for unconventional

quantum phases of matter, most prominently fracton topological orders. Here, we focus
on a special subclass of such symmetries, known as higher-form subsystem symmetries,
which allow us to adapt tools from the study of conventional topological phases to the
fracton setting. We demonstrate that certain transitions out of familiar fracton phases,
including the X-cube model, can be understood in terms of the spontaneous breaking of
higher-form subsystem symmetries. We find simple pictures for these seemingly com-
plicated fracton topological phase transitions by relating them in an exact manner, via
gauging, to spontaneous higher-form subsystem symmetry breaking phase transitions of
decoupled stacks of lower-dimensional models. We harness this perspective to construct
a sequence of unconventional subdimensional critical points in two and three spatial
dimensions based on the stacking and gauging of canonical models with higher-form
symmetry. Through numerous examples, we illustrate the ubiquity of coupled layer con-
structions in theories with higher-form subsystem symmetries.
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1 Introduction

The study of phases of matter and the transitions between them lies at the heart of condensed
matter physics. Landau’s theory [1] attempts to paint a picture of their classification using
spontaneous symmetry breaking as measured by local order parameters, but for quite some
time it has been appreciated that this perspective requires extension: for example, there are
topological phases that do not break any conventional symmetry, and transitions into these
phases that cannot be diagnosed by any local order parameter [2-6] (see e.g. [7] for a re-
view). However, by considering higher-form symmetries [8] and non-local order parameters,
the scope of the Landau paradigm has been successfully broadened to include many of the
phases it was previously thought not to accommodate; more general “categorical” notions
of symmetry are anticipated to extend its reach even further [9-18] (see [19] for a nice re-
view). Far from being mere theoretical curiosities, the non-local physical characteristics of
such topological systems are of particular importance for applications, e.g. in quantum error
correction [20,21].

One ingredient which has been powerful in the classification and understanding of (2+1)D
topological phases in particular is the picture of string-net condensation [22]. Among other
things, it has led to explicit, representative wavefunctions for a large class of topological phases
(those with gappable boundaries), as well as exactly soluble Hamiltonians that realize these
wavefunctions as their ground states. It also makes manifest the powerful role of tensor cate-
gory theory in encoding the universal properties of topological order in (2+1)D [23-25].

Recently [26-34], new classes of fracton “topological” phases (see Refs. [35, 36] for re-
views) have inspired a surge of activity due their novel symmetry structures, and the associated
mobility restrictions on their topological charges, which land such models beyond a straightfor-
ward description by the conventional framework of topological quantum field theory [37,38].
These physical properties again lead to interesting and useful applications in quantum com-
putation [27,28,39-42], connect to other branches of condensed matter physics [43-47], and
raise intriguing challenges to the program of capturing universal properties of phases of matter
using continuum quantum field theory [48-58].

There are several reoccurring ideas and themes that underlie investigations of fractonic
physics. The concept of a zero-form subsystem symmetry [33,59,60], which generalizes con-
ventional global symmetries to allow symmetry transformations that are supported on rigid
submanifolds of space, has proven immensely valuable in understanding the properties of frac-
ton phases and their characteristic mobility restrictions: indeed, if a symmetry acts only along
a submanifold of space, then its corresponding charged excitations cannot move out of the
submanifold without violating their associated conservation laws. The related (as explained
below) approach of layering lower dimensional topological orders and condensing composite
excitations [52,61-65] (see also [66]) has also proven extremely useful: in particular, it has
led to constructions like the cage-net models [67], which form a particular fractonic analog
of the string-net approach to topological phases. This approach culminated in the topologi-
cal defect network construction [68], which aims to describe all gapped fracton topological
phases.

While the ideas of the previous paragraph have dramatically increased our understanding
of fracton-adjacent physics, this subject is still in its infancy. For example, the structure of a
higher-form subsystem symmetry (HFSS), while implicit as an important ingredient in many
examples (particularly the X-cube model [33]), has not to our knowledge been emphasized to
the same extent as have zero-form subsystem symmetries (although it has appeared, such as
recently in Ref. [69]). Moreover, many of the general structural results on ordinary symmetries
and their higher-form generalizations should admit extensions to the subsystem setting; while
many of these extensions have been anticipated in examples, a systematic theory is still largely
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lacking. Furthermore, the majority of attention has been on gapped fracton topological phases,
while relatively little has been understood about their transitions into neighboring phases and
the associated critical points, and whether or not such transitions can be incorporated into
the Landau paradigm (we highlight the relevant recent works Refs. [70-76] in this direction).
Finally, while e.g. cage-nets do constitute one fractonic analog of string-nets, a mathematical
structure as powerful as tensor category theory in the case of topological phases has yet to be
fully elucidated (the proposal of topological defect networks aims to establish a framework for
the development of such a theory [68]).

1.1 Summary of results

In this work, we explore some of the issues introduced above in the context of translation
invariant lattice network models. Heuristically, we define these to be systems with D spatial
dimensions which are obtained by foliating space with models of d < D spatial dimensions—
possibly for multiple values of d—and then coupling the various leaves of these foliations
together. Models of this type have of course appeared in the fracton literature before [52,61,
62,64,65]; we revisit and extend some of these known constructions, and also introduce new
ones, obtaining a unified perspective by focusing particularly on aspects of their symmetry.
Table 1 contains an overview of the network constructions we consider. In order to explain its
contents, we start by sketching an impressionistic definition of g-form subsystem symmetry.

First, recall that a theory with d spatial dimensions is said to have an ordinary g-form
symmetry G if it admits symmetry operators Uy (M (@-9)) for every (d — q)-dimensional sub-
manifold M(@~9 of spacetime, and every g € G; by definition, these operators are required to
furnish a representation of the group,

U, (M) U, (MY D) =U,;,(MTD), forall gheq, (1)

and to be topological in the sense that correlation functions that include them as insertions
should be insensitive to deformations of the submanifold M@~9), provided that those defor-
mations do not move the submanifold through a charged operator. In order for this to make
sense, the charged operators of a g-form symmetry must necessarily have dimension q.

A foliated q-form subsystem symmetry is a modest generalization of this notion; as an ad-
ditional piece of input data, we must specify a foliation & = {L{470} of space, say by leaves
LU= of codimension k.! Informally, we say that a theory with d spatial dimensions has a
foliated q-form subsystem symmetry G(@%)(%) / ~ of codimension k (or a (g, k)-symmetry for
short) if it has an ordinary g-form symmetry within each leaf L% € &. More precisely, to
each L@ € & each submanifold M@*® c (47K and each g € G, we require symmetry
operators U, (M (d=9-k)) which are topological if M(¢~%=9) is deformed within the leaf L(¢=) in
which it is contained, provided again that we do not deform it through a charged operator. In
order for an operator to be charged with respect to a subsystem symmetry associated to a leaf
L) its intersection with L) must have dimension q. The case of an ordinary higher-form
symmetry corresponds to k = 0. When the choice of foliation is clear, we often omit it from the
notation, G4 / ~ =GNz )/ ~; if there are multiple foliations, we express this by writing
GO Z,, F,,...) / ~. The quotient by ~ throughout these definitions is meant to reflect the
fact that the symmetry structure may have relations, of which we will see examples shortly.
Although we have used continuum language in this definition, we work almost exclusively on
the lattice, where the symmetry groups are represented by unitary operators that commute
with the Hamiltonian.

1We restrict ourselves in this paper to smooth foliations, see e.g. [51] for a study of fracton models on spaces
equipped with singular foliations.
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Higher-form subsystem symmetries are expected to behave similarly to ordinary higher-
form symmetries: they admit subgroups, they can be spontaneously broken, they can be
gauged, and so on and so forth. We anticipate and sketch some of these generalities in §2.1.
One useful fact which underlies much of our analysis is that when a discrete, Abelian HFSS
AGR(Z F,. ) / ~ is gauged in d spatial dimensions, the gauged theory, while losing its orig-
inal ACN(F,, Z,,...) / ~ global symmetry, is expected to gain an emergent “quantum” HFSS
Y\ R A / ~, where A = hom(A, U(1)) is the Pontryagin dual of A. This is a mod-
est generalization of a well-known result about ordinary higher-form symmetries [8,77-79];
in lieu of presenting a fully general proof (see §2.1 for relevant comments), we explore how
it is borne out in numerous examples.

It is relatively simple to obtain a lattice network model with a G{%)(Z) symmetry. If one
places a d = D —k spatial-dimensional theory with a symmetry group G on each leaf L(P~)
of &, and does not couple the leaves together in any way, then the full D spatial-dimensional
network model can be thought of as having a g-form subsystem symmetry. Because the leaves
are decoupled, the symmetry structure is free of relations, and we do not have to quotient by
a nontrivial ~ when we describe its symmetry group. However, models of interest typically do
have relations. Take as an example the (2+1)D plaquette Ising model (PIM). Its Hilbert space
consists of a qubit on each vertex of a 2d square lattice, and its Hamiltonian takes the form

0,1
zHéz )=y E Z;Zi1;Z2;j1Ziy11—h E :Xi,j: (2)
i,j i,j

where the sums over (i, j) run over pairs of integers which coordinatize the vertices of the lat-
tice, and X; ;, Z; ; are Pauli operators supported at the site (i, j). Call 9;' and 9‘;' the foliations
of the lattice by its rows and columns, respectively. This model enjoys a Z(zo’l)(g)ll,ﬁ';')/ ~
zero-form subsystem symmetry, in the sense that it admits unitary operators

vi=[[x;. v'=]]x. 3
i j

which are supported on the rows and columns of the lattice, respectively, and commute with
the Hamiltonian.? This symmetry satisfies a relation of the form

[l ]v=1, 4
j i

which is simply a reflection of the fact that performing spin flips on all of the columns is
identical to performing spin flips on all of the rows. One can describe this relation by saying
that the true symmetry group of the plaquette Ising model involves a quotient by the subgroup
generated by the left-hand side of Eq. (4); this is a conventional zero-form symmetry group,
which we term the diagonal subgroup and label as DZ(ZO). In other words, we can replace the
quotient by ~ with a quotient by ° Zgo) and write Zgo’l)(gr'}'(' , 9;,' ) / DZS)) for the global symmetry
group of the PIM.

Contrast this with a more trivial example, say, a decoupled grid of transverse field Ising
e 3
wires,

) (2),2)) =~ Z (220, + 220 10) — hz (x+x)). ®)
i,j L]

2This symmetry motivates our choice of notation 2H. (ZZ’D for the Hamiltonian of the plaquette Ising model: the
(0,1) in the superscript indicates that the model has a Z(Zo’l)(ﬁi', 9'y”) / ~ symmetry, and the 2 denotes its spatial
dimension. We define an infinite family ngIZ’k) of similar models in §2.1.

3As we explain in more detail below, the notation 1H2) is meant to stand for the (1+1)D transverse field Ising
model, and the apperance of ffi‘, ﬁ'y” indicates that we are foliating the TFIM along the rows and columns of space.

6
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Here, we have placed two qubits on each site of the square lattice, one for each of the two wires
that intersect it, and labeled the Pauli operators that act on the qubit coming from the wire
pointing in the x direction as Xi." P Z;‘, i and similarly for the qubit coming from the wire pointing
in the y direction (cf. Figure 3). This network model also enjoys a linear zero-form subsystem

symmetry which simply comes from the fact that each wire has a Z, spin-flip symmetry,
X _ 77y _ y
o= Ix,. o=]]x) (6)
i J

However here, the subsystem symmetry is relation-free, and we can simply write it as
20z, 7).

The differing symmetry structures between the plaquette Ising model and decoupled Ising
wires would seem to preclude a “network” description of the former theory. However, if we

insist on a coupled-wire description of ZH%U, there are two ways that we can proceed.

1) One option is to couple the wires together
177(0) 177(0)
1Y (7),2)) - HD (7], 21) + H, )

by adding a term H, in the Hamiltonian that drives the model through a transition into a
phase in which the diagonal subgroup ngo) is spontaneously unbroken. This subgroup
therefore acts trivially on the low energy Hilbert space of the model in this phase (as
if it were imposed as a relation), and there is a chance that the low energy effective
Hamiltonian coincides with the plaquette Ising model zHgi’l)

indeed the case in §3.1.1.

. We argue that this is

2) Another option is to simply gauge the diagonal subgroup,
1£4(0) 144(0) D~(0)
HO (51,51) = 0O (51,53) 9, ®

which trivializes its action and thus imposes it as a relation by fiat. This can more vividly
be thought of as immersing the decoupled network model in a bulk gauge theory, which
in turn mediates interactions between its leaves.

One subtlety with this approach is that, as we have mentioned in a previous paragraph, a
gauged theory gains its own emergent “quantum” global symmetry group; in the present

case, in addition to inheriting a Z(Zo’l)(ﬁﬂ, 9}'}) / DZgo) symmetry from the ungauged net-

work model, the gauged theory grows an emergent one-form symmetry DZS) which
does not appear in the plaquette Ising model. Fortunately, we show in §3.1.2 that if one
tunes the wires to be deep in their ferromagnetic phase, then in the gauged model the
emergent symmetry DZS) is unbroken and thus acts trivially on the low energy Hilbert
space; that is, it is not a part of the global symmetry of the IR theory. On the other hand,
the subsystem symmetry group Z(20,1)(9.)|(|’ 9‘;') / DZ(ZO) is spontaneously broken, and so it
is a non-trivial symmetry of the low energy theory. This matches the structure of the
symmetries deep in the ferromagnetic phase of the plaquette Ising model and, corre-
spondingly, we will show that the model is in a plaquette Ising phase.

It is also interesting to ask what happens in this construction if one tunes the un-gauged
Ising wires in the other direction, so that they are in the trivial phase. In this case, it
is possible to show that the roles of the two symmetries of the gauged theory are re-

versed: namely the subsystem symmetry group Zgo’l)(,?l',?}ll) / DZgO) is unbroken, but

the emergent one-form symmetry group DZ(ZD is broken. It turns out that this lands the

7
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gauged model in a toric code phase. Thus, as the strength of the nearest-neighbor inter-
actions on the Ising wires are tuned, the model undergoes a Landau transition between
a ferromagnetic plaquette Ising model phase and a toric code phase. In between these
two phases lies an interesting critical point, which can be described as a grid of Ising
RCFT wires coupled to a bulk (2+1)D Z, gauge theory. We say that this theory enjoys
subdimensional criticality [74].

The first of these protocols is essentially the same mechanism that was used to uncover a
coupled layer construction of the X-cube model in Ref. [61, 62], though it was described in
terms of “p-string condensation” rather than spontaneous symmetry breaking there. The sec-
ond method coincides with the one used to obtain the string-membrane-net picture of the
X-cube model in Ref. [52], though again, symmetry considerations were not the focus there.
We revisit both of these construction armed with our present perspective in §6.1.1 and §6.1.2,
respectively. One new feature that our analysis reveals is that the coupled wire construction
of the plaquette Ising model from Eq. (8) arises on the boundary of the analogous gauged
coupled layer construction of the X-cube model.

With these motivating examples of coupled wire constructions for the plaquette Ising model
in mind, we are now in a position to state our general construction. For simplicity, we focus
on network models for which the d spatial-dimensional leaves support either

a) the transverse field Ising model ngZ),
b) Z, lattice gauge theory dH(le), or more generally,

¢) g-form lattice gauge theory dH(Zqz) forq>1,

however many aspects of our analysis should extend to the case that the leaves are kept more
general. (See §2.2 for a review of the models dH(ZqZ) in low dimensions.) The Hamiltonian
nglz) admits a g-form symmetry, and it contains a free parameter which tunes the model
between a g-form symmetry breaking phase and a trivial phase; for example, in the case of
the transverse field Ising model, the parameter is simply the ratio between the strength of the
nearest neighbor interaction and the strength of the transverse field. Therefore, the lattice

network model obtained by taking stacks of trivially decoupled leaves of ¢H %2) along foliations
F1,F,,... of space has a relation-free qu’k)(gzl,?z, ...) HFSS, where k = D —d. It also

possesses a parameter which can be thought of as passing the model between a trivial phase
and a g-form subsystem symmetry breaking phase. We label the network model so-obtained
as ‘HY (1, F,,..).

Each subsection §A.B of this paper for A = 3,4,5,6 (except for the last subsection of of
each §A) involves the choice of two pieces of data:

1) a decoupled network model dH(ZqZ)(ﬂ'l,ﬂz, ...),and

2) an HFSS subgroup
=18 NG, T )~ (7, F, . )= 9, ©
of its global symmetry group.

The choice of this subgroup is typically motivated by having a target model in mind which
has a (g, k)-symmetry with relations described by s#; in other words, the target model ad-
mits an action of ¥ / €. In the plaquette Ising model example described above, we choose

_ (0 o 501 _
# ="z, cz,(F), T =9.


https://scipost.org
https://scipost.org/SciPostPhys.15.1.017

Scil SciPost Phys. 15, 017 (2023)

In §A.B.1, we couple the leaves of the network model together

dH(Zqz)(glng:"')_)dHéqz)(gl’gZ"“)-i_Hc’ (10)

with terms in H chosen to respect the subgroup . Thus, one might say that we are probing
the neighboring phase diagram of the network model “enriched” by its ## symmetry. In most
cases, H. includes in it a parameter that actually preserves the full ¢ symmetry and, when
driven to large values (i.e. strong coupling), induces a Landau transition into a phase in which
the # subgroup becomes unbroken. In such cases, we find that the low energy effective
Hamiltonian of the theory in these strongly coupled phases becomes a model with a global
symmetry of the form ¢ / . Our results show that several familiar models can be obtained in
this way, including the plaquette Ising model, the cubic Ising model, and the X-cube model.
In §A.B.2, we instead gauge the subgroup 42,

H( P, ,..) > HD( P, P )/%ﬂ. (11)

This produces a model whose global symmetry group has two parts. On the one hand, it is ex-
pected to inherit a (q, k)-symmetry ¥ / #¢ from the ungauged model, where now the subgroup
is imposed as a relation as it has been gauged.* On the other hand, while the subgroup itself
has disappeared, it is replaced by an emergent quantum HFSS group

—

._ 5(D—q'—k'-1,K)
=7y (ZF], F},..)]~. (12)

The g-form subsystem symmetry breaking phase transition of the un-gauged network model
is mapped after gauging to a phase transition in which the groups ¥ / # and F experience
some pattern of partial symmetry breaking and un-breaking. To round this picture out, in each
of our examples, we study how order/disorder parameters of the ungauged model descend to
parameters that diagnose the transition of the gauged model; we also track how excitations
condense across the transition. A glossary of the various constructions we obtain in this way
is presented in Table 1. These examples aim to exhaust all possible constructions in D < 3
spatial dimensions that are based on stacking Ising-like layers with g-form symmetry groups
qu) (i.e. that are based on stacking the model nglz)) on the cubic lattice.

A notable upshot of these constructions is that they recover a range of fractonic analogs of
string-nets, including the string-membrane-net models of Ref. [52] and additional models that
have not previously appeared to the best of our knowledge. Specifically, they naturally suggest
new pictures for the groundstate wavefunctions of existing fracton phases characterized by the
condensation of networks of objects of various dimensions: points, strings, membranes, and
so on. By making these various objects explicit in the condensate picture, our models facilitate
the study of phase transitions driven by the corresponding topological excitations. We harness
this to uncover a variety of subdimensional phase transitions out of the plaquette Ising and
X-cube models that have an exact description in terms of well known higher-form symmetry
breaking transitions coupled to higher-form subsystem gauge fields. Although we have only
worked out these pictures in detail for the Z, case, we expect that they are readily generalized
to Zy and beyond, see for instance Ref. [74].

“This is at least true in our simple constructions. In more complicated setups, the quotient ¢ / #¢ may be more
involved, not simply a subgroup of the symmetry group [79].
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1.2 Section outline

The structure of the remainder of this article is as follows.

In §1.3 we document basic notation and conventions.

In §2.1, we exposit various general ideas that are used throughout the rest of the paper.
We start by reviewing ordinary higher-form symmetries, and then defining what we mean by
a higher-form subsystem symmetry. We then describe several natural subgroups that a higher-
form subsystem symmetry group possesses. We explain the notion of a spontaneously broken
higher-form subsystem symmetry, sketch how to gauge a higher-form subsystem symmetry, and
describe how these two ideas play with one another using the idea of an emergent “quantum”
symmetry.

In §2.2.1-8§2.2.3, we provide a lightning review of Ising-like prototype models ngi) (in
spatial dimensions d = 2, 3,4) which possess ordinary q-form symmetries: these are the trans-
verse field Ising models and g-form gauge theories. Reviewing these models serves two pur-
poses. First, it allows us to demonstrate the general perspective we take throughout this paper
in a familiar setting. Second, it allows us to establish notations and conventions for these
models, which we make heavy use of as ingredients in all of our constructions. In §2.2.4, we

)

define more general Ising-like prototype models ¢H glz’k , in arbitrary spatial dimensions, which

possess qu’k) / ~ symmetries: these include transverse field Ising models, g-form lattice gauge
theories, plaquette Ising models, cubic Ising models, and tensor gauge theories with an X-cube
phase.

Sections 3-6 can be read more or less independently from one another, however we are the
most explicit and pedagogical in §3, and become briefer in later sections to avoid repetition.
Each section is organized around a prototype model ngi’k). Each subsection, except for the
last subsection within each of the sections, contains a different network model description of
i %qz’k), and explores different phase transitions out of the dH(ZqZ’k) phase. The last subsection
contains a “parent model” which recovers each of the network model descriptions of the pre-
vious subsections, as well as the associated phase transitions, in various special limits. There
are additional degrees of freedom in the parent model that facilitate the study of a wide range
of condensation driven phase transitions via single site perturbations to the Hamiltoinan. This
parent model realizes a fracton analog of the string-net picture for topological phases.

In §3, we explore phase diagrams proximate to the (24+1)D plaquette Ising model, ZHg;’l).
We start in §3.1 by studying coupled wire constructions. In §3.2, we explain how to recover
the PIM by coupling a subsystem gauge theory to the toric code. In §3.3, we unify these two
constructions into a single point-string-net model.

In §4, we study transitions out of the (3+1)D cubic Ising model, 3H2’2). In §4.1, we offer
a coupled wire construction. In §4.2, we show how this coupled wire construction can be
combined with the X-cube model to give rise to a single point-cage-net model.

In §5 we study anisotropic constructions of the X-cube model, BH%’D. In §5.1, we show
how the X-cube model can be obtained by gauging a subsystem subgroup of a single stack
of ordinary gauge theory layers. In §5.2, we do something similar, but using two orthogonal
stacks of gauge theory layers. In §5.3, we show that these two anisotropic constructions can
be combined into a single string-string-net model.

In §6, we study isotropic constructions of the X-cube model. In §6.1, we review and slightly
extend two known coupled layer constructions of the X-cube model. One novelty of this sub-
section over others is that we comment on properties of the boundary theory, and relate this
back to the constructions we proposed in §3. In §6.2, we demonstrate how the X-cube model
can be obtained from the (3+1)D toric code by coupling it to a subsystem gauge theory. We
then show how these two viewpoints on the X-cube model are unified by the string-membrane-
net model.

10
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Finally, in §7 we conclude, and summarize numerous directions for future research.

Appendix A sketches how the ideas of the main text can be applied to obtain network
constructions and phase diagrams out of the (3+1)D toric code. Here we are much more
brief, and only summarize the parent models such network constructions lead to.

1.3 Notation and conventions

All of our models are defined on cubic lattices A in varying dimensions. Throughout this paper,
v denotes a vertex of such a lattice, e an edge, p a plaquette, and ¢ a cube. Alternatively,
when it is more convenient, we label objects by the coordinates of their center of mass, e.g.
in a 2d square lattice, we label vertices v by a pair of integers (i, j), vertical edges by a pair
(i,j+ %), horizontal edges by (i + %,j), and plaquettes by (i + %,j + %). We also generically
use the symbol y to refer to a path through the lattice (i.e. a sequence of edges) and m to
refer to a membrane (i.e. a set of plaquettes). We use A to denote the dual lattice, and refer
to the vertices, edges, paths, etc. of the dual lattice as ¥, €, ¥, and so on. We often use the
correspondence between objects of A and dual objects of A. For example, if A is a 2d square
lattice, then vertices v can be equivalently thought of as dual plaquettes p, edges e can be
equivalently thought of as dual edges €, and so on.

We employ notation of the form ) . and D, . ; the former indicates that one should
sum over all the vertices which have non-trivial intersection with a given cube c (i.e. that one
should sum over the corners of the cube ¢) whereas the latter indicates a sum over all the cubes
which have non-trivial intersection with v. More general symbols of a similar form, such as
e » OF > 0507 should be read similarly, although we often abuse the symbol “€” and write
e.g. Zee? to indicate a sum over edges e that are intersected by the dual path ¥, in spite of the
fact that they are not “contained inside” 7.

We use & = {L} to denote a “foliation” of the lattice, by which we mean a discrete family
of sublattices L. The notation & Iul " refers to the obvious foliation of a d-dimensional cubic

lattice by n-dimensional sublattices which each span the u; ... u, directions, whereas & “Ll )
refers to the obvious foliation by (d —n)-dimensional sublattices which are each orthogonal to
the u, ...u, directions.

Throughout, X,;, Z, denotes a Pauli-X/Pauli-Z operator acting on a qubit that is supported
on the simplex o. Occasionally, there is more than one qubit supported on each simplex o, in
which case we distinguish between them by decorating the superscripts of the Pauli operators
with additional information. We typically label the eigenstates of a Pauli-Z operator as |T) and
|1}, and the eigenstates of Pauli-X as |+) and |—), i.e.

Zm =+,  Zl)=-M),

X[+)=+H4),  Xl-)=—). a3

Finally, we also frequently make use of CNOT gates acting on pairs of qubits, which can be
defined by their action on Pauli operators as

(C1X2)X5(C1X,) =Xy, (C1X)X,(C1Xp)" =X, Xy,

(C1X2)Zy(C1X,)' = Z4Z,, (C1X,)Z1(C1X,) = 1Z;.

2 Summary of Techniques
In this section, we explain some basic ideas which underlie the rest of the paper. In §2.1, we

(informally and briefly) exposit some general principles related to global higher-form subsys-
tem symmetries and their gauging. In §2.2, we review how these principles play out in simple
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examples. Many of these examples form the building blocks out of which we construct the rest
of the models that we consider in later sections; in §2.3, we explain the protocol with which
we assemble them.

2.1 Generalities

As stated in the introduction, one of our goals is to study lattice network models with sym-
metry considerations in mind. The relevant kind of symmetry here is a higher-form subsystem
symmetry (HFSS), a notion which we now explain. For the moment we are impressionistic and
phrase things in continuum language, though everything we say is intended to most directly
apply to lattice models. Throughout this entire paper, we restrict our attention to discrete
symmetries.

Higher-form global symmetries

The idea of a higher-form global symmetry is by now standard, see e.g. Ref. [8] for a care-
ful discussion and background references. In the continuum, the rough intuition is that a
(d + 1)-dimensional theory has a g-form symmetry group G if it admits topological symme-
try operators U (M (@=9)) supported on M@ for each g € G and each (d — q)-dimensional
submanifold M(@~9 of spacetime, and if those operators further furnish a representation of G
in the sense that

Ug (M(d—CI)) Uh (M(d—Q)) — Ugh (M(d—Q)) ) (15)

for each (d — q)-dimensional submanifold M. What is meant when one says that the
Uy, (M (d=a)y) gre topological is that their correlation functions should not be sensitive to de-
formations of M(4~9), provided that one is careful not to deform M(@~® through an operator
which is charged under the symmetry. As the name suggests, the charged operators of a q-
form symmetry are supported on g-dimensional submanifolds of spacetime. Furthermore, we
only consider a topological operator to contribute to a g-form symmetry group if there exists
a g-dimensional operator which is charged under it; thus we exclude e.g. the “porous” 0-form
symmetries of [80] which act on lines but are blind to local operators.

If we take M(4~9 to be defined at a fixed instant of time, then we obtain an extended
operator which acts on the Hilbert space of the theory; on the lattice such U, (M (d-9)) manifest
themselves as extended unitary operators which commute with the Hamiltonian. A notable
example which we review shortly is Kitaev’s toric code, which admits a Z, x Z, one-form
symmetry group, and whose associated symmetry operators are simply the string operators of
Ref. [20].

Global subsystem symmetries

Another notion is that of a (zero-form) subsystem symmetry. Here we focus on foliated sub-
system symmetry (sometimes referred to as type-I, due to its connection to a subset of type-I
fracton phases [33]). To define it, consider a foliation & = (L1470} of space by codimension
k leaves, i.e. leaves L4 of spatial dimension d — k.° Roughly speaking, a Hamiltonian is
said to have a foliated zero-form subsystem symmetry G(%X(Z) / ~ of codimension k if there
are operators Ug(L(d_k)) supported on L@ for each g € G and each leaf L(¢™® € &, and
if Ug(L(d_k))Uh(L(d_k)) = Ugh(L(d_k)). (Here and throughout the rest of the paper, since we
are working with lattice models, we focus on operators that act at a fixed instant in time.) We

SThroughout this paper we essentially only consider the natural smooth foliations of flat space (either R or
a d-torus T¢). Extra care is likely needed in the more general case, e.g. to accommodate singular foliations, as
considered in Ref. [51].
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generally deal with systems that admit subsystem symmetries with respect to several different
foliations Z, %,, ...; when this is the case, we use the notation GO (Z,,Z,,...) / ~. When

there are ( dik) foliations whose leaves all intersect orthogonally, we refer to such a symme-
try as isotropic. When k = d — 1, we call the symmetry a linear subsystem symmetry; when
k = d — 2, we refer to it as a planar subsystem symmetry.

There are a few remarks we can make. First, we emphasize that although the definition of a
subsystem symmetry appears similar to the definition of a higher-form symmetry, they are dis-
tinct notions. For example, the symmetry operators of a subsystem symmetry are only defined
on the leaves of the foliations, whereas the symmetry operators of a higher-form symmetry are
defined for any submanifold of the right dimension. Moreover, the symmetry operators of a
subsystem symmetry are rigid, whereas those of a higher-form symmetry are topological, i.e.
deformable.

Second, we remark that it is often the case that various combinations of the symmetry
operators act trivially. For example, a typical relation one encounters (and that we ourselves
find when we come to the plaquette Ising model in §3) is

[1 v, =[] v,@™. (16)

Lid-keg, Ld-keg,

Technically speaking, this means that the subsystem symmetry group is acting non-faithfully,
and that the “true” symmetry group should involve a quotient by this relation. The quotient by
~ in the notation GOX(Z,, Z,,...) / ~ is meant to indicate the possible existence of relations
of this kind, though without specifying what they are. In the cases that we can be more specific,
we will write GO (Z,, Z,, ... )/R, where R is typically some subgroup of GOX(Z;, Z,,...)
(we define a set of distinguished subgroups shortly). In the case that the symmetry is relation-
free, we simply write G(O’k)(gz'l, Z5,...). In either case, we refer to both symmetry structures,
with and without relations, as subsystem symmetries.

Higher-form global subsystem symmetries

It is fruitful to combine these two ideas into a single notion, that of a higher-form subsystem
symmetry. We say that a (d + 1)-dimensional system has a g-form foliated subsystem symme-
try of codimension k for a group G if, for each g € G, each leaf L@ of the foliation, and
each (d — k — q)-dimensional submanifold M@~*9 c L(d7K)there are symmetry operators
U, (M (d-k=4)) supported on M{@~*=9) that are topological within L%, That is, the operators
U, (M (d-k=4)) are insensitive to deformations of M@~ provided that M@= never leaves
the leaf in which it is contained. We call such a symmetry a (g, k)-symmetry for short, and use
the notation GX(Z,, Z,, ... )/ ~ to specify this structure. We abbreviate to G(@K) / ~ when
we would like to suppress the choice of foliations, to G(9 when k = 0, and to simply G when
q = k = 0. Again, the quotient by ~ is a shorthand to indicate that there may (or may not) be
relations, without specifying precisely what they are. When we are being more specific about
what the relations are, we write this as G0 (Z,, Z,,...) /R; when the higher-form subsystem
symmetry is relation-free, we simply write it as G@K)(Z,, Z,,...). The prototypical example
of a theory with a higher-form subsystem symmetry is the X-cube model [33], which admits a
Z(Zl’l) / ~ symmetry, this is reviewed below.

Whenever there is a higher-form global subsystem symmetry, there are natural “subgroups”

one can consider. Describing these subgroups is useful e.g. so that we can more explicitly
specify relations.
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Subgroups by refinement

For example, let n be a non-negative integer. Say that a foliation &y of codimension (k+n)
(d—k—n)
L
R

is a refinement of a foliation & of codimension k if each leaf of &y is contained in
some leaf L4 of &, and if, for each L1470 e Z, the set {ngd_k_") | ngd_k_") c LU0} s a
foliation of L@, Then a @1 () / ~ symmetry admits a “subgroup” of the form

Gla—nken) (9;({1)>91§2)’ o ) [~ GOR (F)[~, (17)

for any set of codimension (k+n) refinements & (1), ,%({2), ... of the foliation & . The reason this
makes sense is that the symmetry operators of a (g, k)-symmetry are supported on (d —q—k)-
dimensional submanifolds, as are the symmetry operators of a (q —n, k + n)-symmetry, and so
we can define the symmetry operators of the latter to be equal to the symmetry operators of
the former.

As an example, consider a G(!) one-form symmetry in (2+1)D, whose symmetry operators
are topological line operators. By picking a foliation & of space by lines, and restricting our
attention to just the line operators of G() that are supported on the leaves of this foliation, we
obtain a GOV (Z) / ~ subgroup of G1). We make use of this precise example in later sections,
e.g. in §3.2 and §6.2.

Subgroups by coarsening

In the other direction, say that a foliation % of codimension (k —n) is a coarsening of
a foliation . of codimension k if & is a refinement of Z. A symmetry G¢(Z) / ~ admits
various “diagonal” subgroups of the shape

GOR M (F) [~ C GOR(F)[~ . (18)

The symmetry operators Ug(M (d=g=k+n)) of GOk~ (Z..) are defined in terms of the symmetry
operators Ug(N(d_q_k)) of GOH(F) as

Ld-keg

See Figure 1 for a visualization.

The reason it makes sense to plug M@—17k+1)  [(d=k) jnio U, is that the submanifold
Md=a7k+n) js (d—q—k+n)-dimensional, and the leaves of & are (d—k)-dimensional; they both
are living inside a leaf of # which has dimension d—k+n, and therefore they generically® have
an intersection (if it is not empty) of dimension d —q—k, which is precisely the right dimension
for the symmetry operators of a (q, k)-symmetry in d spatial dimensions. For example, when
q =0 and n = k, the symmetry operators of the diagonal zero-form group *G(® simply consist
of the product of the symmetry operators of G over all the leaves of the foliation.

One can also take diagonal subgroups when there are multiple foliations in the natural
way. That is, if &,..., %, admit a common coarsening %, then one can identify a mutual
diagonal subgroup

n
i=1 L(d—k)eﬁi

0n the lattice, this assertion appears to be a safe one, however more care may be required in the continuum.
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Figure 1: A relation-free G- symmetry in (3+1)D (i.e. a planar one-form subsys-
tem symmetry group) admits an ordinary one-form subgroup PG called the diag-
onal subgroup. The symmetry operators of G(11 live on lines supported on the 2
spatial-dimensional leaves of the foliation. The symmetry operators of °G() live on
membranes. The membrane operators are built up by taking a product of line oper-
ators over the leaves of the foliation, according to Eq. (19). In this case, the foliation
gzi ={L®}is by planes perpendicular to the z direction, and a symmetry operator
supported on a 2-sphere is built out of line operators on the circles $2 N L® which
foliate it.

Symmetries of boundaries

It is also useful to note what happens when one places a theory with a higher-form global
subsystem symmetry G@X(Z) / ~ on a manifold with boundary. In particular, let ¢ > 0 and
take the spatial manifold M@ to be such that M@~ is transverse to every leaf of Z. Fur-
thermore, call ¥ = {LU@-R) q gpmd-1D | L@k e g} the induced foliation of the boundary.
Then the boundary theory enjoys an action of G4~1K( %) / ~ (though on the low energy sub-
space, this action may potentially have non-trivial kernel). The reason for this is that one can
simply push the symmetry operators of G(%F)(.F) / ~ along the leaves of the foliation until they
are supported entirely on the boundary, where they can then be interpreted as G4~5K (%) / ~
symmetry operators of the boundary theory.

Spontaneous breaking of higher-form global subsystem symmetries

Our focus throughout this work is on quantum phases and phase transitions that are charac-
terized by the spontaneous breaking of discrete higher-form subsystem symmetries. Here, we
make explicit an assumption that is used in various places throughout this work: heuristically,
the assumption says that spontaneous symmetry breaking phase transitions can always be diag-
nosed by the scaling behavior of order/disorder parameters. Accordingly, we call this assump-
tion the Landau assumption. A pleasant feature of such a characterization by order/disorder
parameters is that, as we explain below, it plays well with gauging. We also comment on the
relation of this characterization to a characterization by the superselection sector of the exci-
tation created at the boundary of a truncated symmetry operator; for lack of a better name,
we refer to such objects as truncated symmetry excitations (TSEs). We do not claim that the
notions we introduce below are necessarily fully general, but they are suitable for the purposes
of what we set out to do in this paper.

Order parameters

Let us begin with a discussion of order parameters in the context of ordinary g-form sym-
metries G9. An operator @ is a candidate order parameter for an element g € G if it is a “large”
g-dimensional operator that is globally g-symmetric, yet locally looks charged. For example,
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when g = 0, we usually consider operators of the form

Oz 2 = 0L 0z, (21)

as |X¥ —X’| —» oo, where Oy is a local operator that has a non-trivial transformation under the
action of g. When g = 1, we consider large, contractible closed loop operators &,. And so on
and so forth.

Let 7 be a gapped theory with a G symmetry. The Landau assumption for order param-
eters says the following.

1) If an element g € G is spontaneously broken, then there exists a candidate order param-
eter O for g whose vacuum expectation value (&) decays with its g-dimensional size. In
this case, we say that @, or (@), is an order parameter for the spontaneous breaking of g.

2) If an element g € G is unbroken, then all candidate order parameters for g have vacuum
expectation values that decay with the (q + 1)-dimensional size of their bulk.

A few remarks are in order. The first is that, for ordinary zero-form symmetries, often Oy is the
object that is referred to as the order parameter, as opposed to 0% 3/, and one correspondingly
uses (Oz) to diagnose spontaneous symmetry breaking. One reason we have opted to consider
the two-point function as opposed to the one-point function is that the latter always vanishes
for reasons of symmetry; this forces one to introduce symmetry-breaking perturbations, and
study the behavior of (Oz) as they are turned off. We find it more straightforward to simply
consider the two-point function.

Second, it might strike the reader as surprising that we have introduced this as an assump-
tion, rather than as a fact. To the best of our knowledge, the “Landau assumption” as stated
has not been proven in full generality, although see e.g. [81] for work in this direction in the
simplest case of Z(ZO) symmetries in (1+1)D.

We make a similar assumption in the case of higher-form subsystem symmetries. Here, if
we are interested in an element g that implements the symmetry on a particular leaf L%,
then a candidate order parameter for g should be an operator that, when truncated to the leaf
LU looks like a candidate order parameter for an ordinary g-form symmetry on the leaf.
When we refer to the size of the order parameter, we will typically mean the size as measured
in this leaf-truncated operator. Similar comments apply to the case that we are considering an
element g that acts on multiple leaves simultaneously.

Disorder parameters

Disorder parameters play a dual role to order parameters in diagnosing the spontaneous
breaking of a symmetry. (See e.g. Ref. [82] for a discussion.) Again, we warm up with the
case of discrete ordinary higher-form symmetries G9. An operator @ is a candidate disorder
parameter for an element g € G if it is a g-symmetric operator that is obtained as a truncated
symmetry operator Uy (M (d-9)) decorated by an operator on its boundary dM@~4"1_ The
Landau assumption for disorder parameters says the following.

1) If an element g € G is unbroken, then there exists a candidate disorder parameter 2 for
g whose vacuum expectation value (2) decays with the (d —q — 1)-dimensional size of
the boundary. In this case, we say that 9, or (%), is a disorder parameter for g.

2) If an element g € G is broken, then all candidate disorder parameters for g have a
vacuum expectation value that decays with the (d — gq)-dimensional size of the bulk of
the operator.
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The scaling behavior of disorder parameters is closely related to the superselection sector of
the associated TSEs. If the superselection sector of the TSE is trivial, i.e. if there exists some
operator acting within a local neighborhood of the TSE (taken as the size of the truncated
symmetry operator diverges) that removes the TSE from the ground state, then the disorder
parameter is expected to decay exponentially with the size of the boundary. This is because
the action of the truncated symmetry within the ground space is equivalent to that of an oper-
ator within a neighborhood of the boundary. In contrast, for TSEs which belong to nontrivial
superselection sectors, no operator acting within a neighborhood of the boundary of the trun-
cated symmetry operator can remove the TSE. Thus, the disorder parameter should decay
faster than the size of the boundary region, and is generically expected to decay with the size
of the bulk of the truncated symmetry. This point of view can be used to deduce which TSEs
are condensed across a spontaneous symmetry breaking phase transition. That is, for each
set of disorder parameters that exhibit a jump from boundary to bulk scaling across a phase
transition, the associated TSEs are condensed as they switch from a nontrivial to the trivial
superselection sector.

Again, this discussion generalizes to discrete higher-form subsystem symmetries. If we are
interested in an element g that implements the symmetry on a particular leaf L), then a
candidate disorder parameter for g should be a truncated version of the symmetry operator
that implements g, decorated by an operator along its boundary.

Gauging qu’k) [~ symmetries

The examples we treat are sufficiently simple that we do not attempt to give a fully general
prescription for how to carry out the gauging of a (g, k)-symmetry group (see Ref. [33,34,83]
for some work in this direction). However there are a few steps that we carry out in all the
models we consider, and it is useful to summarize them in words. We distinguish between two
slightly different kinds of gauging, which we call strict gauging and energetic gauging.

1) First, one enlarges the Hilbert space to include degrees of freedom describing the gauge
field.

2) Next, one imposes a Gauss’s law constraint on the enlarged Hilbert space so that only
gauge invariant states are considered. In this paper, we exclusively work with qu’k) / ~
symmetries, and our convention is that if the symmetry generators are made up of Pauli-
X (Pauli-Z) operators, then the associated Gauss’s law operators are made up entirely
out of Pauli-X (Pauli-Z) operators as well.

3) One should then modify the terms of the ungauged Hamiltonian so that they commute
with the Gauss’s law constraint. We refer to this as “covariantizing” the Hamiltonian,

and it is this process which couples the “matter” fields of the original model to the gauge
field.

4) Finally, one can sometimes define local “flux operators” which for our purposes are oper-
ators that commute with the Gauss’s law constraint, act non-trivially only on the degrees
of freedom of the gauge field, and by convention—in the case of Z(zq’k) / ~ symmetries
generated by Pauli-Xs (Pauli-Zs)—are formed entirely out of Pauli-Zs (Pauli-Xs). The
difference between strict gauging versus energetic gauging lies in how we incorporate
these flux operators.

(a) In strict gauging, we impose that the flux operators all have eigenvalue 1 as a con-

straint on the Hilbert space, which can be thought of as a kind of flatness condition
for the gauge field. One reason for doing this is that, when they exist, they can
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often be interpreted as implementing a Gauss’s law constraint of the gauged theory.
Furthermore, imposing them as a constraint turns out to guarantee certain emer-
gent “quantum” global symmetries of the gauged theory (which are commented
on shortly). With this protocol, the number of parameters of the Hamiltonian is
the same before and after gauging, and one can track how different phases and
phase transitions are mapped under the gauging procedure. This procedure also
more closely mirrors what happens when one gauges a discrete symmetry in the
continuum.

(b) In energetic gauging, we add the flux operators as terms in the gauged Hamilto-
nian, i.e. we impose them only energetically. This way, we are free to add any other
terms to the Hamiltonian to control the energetics of the gauge fields, so long as
they commute with the Gauss’s law constraint, but even if they do not commute
with the flux operators. (This is in contrast with the case of strict gauging, where
we can only add terms which commute with the flux operators.) Under this proto-
col, the number of parameters of the gauged model is greater than the number of
parameters of the ungauged model by at least 1 (the strength of the flux term). This
protocol is more useful if we are interested in recovering a more general gauged
Hamiltonian with more knobs to tune.

Unless we explicitly say otherwise, it should be assumed that the strict gauging procedure is
being used.

It will be useful to keep track of the fate of certain classes of excitations under the gauging
map, as we make use of these properties in the examples throughout the text. TSEs become
topologically trivial in the gauged theory. Symmetry twists, i.e. defects created at the end of
a truncated symmetry excitation, are locally equivalent to standalone flux excitations after
gauging (i.e. violations of the flux operators) because any TSE they were attached to is triv-
ialized during the gauging procedure. Similarly, excitations charged under the symmetry are
mapped to gauge charges after gauging. These gauge charges are by definition TSEs of the
dual emergent quantum symmetry operators, described below.

We now establish some expectations about the properties of the theory ’T/ (Gek / ~) ob-
tained by gauging a non-anomalous G@%) / ~ symmetry of a theory 7 defined in (d + 1) space-
time dimensions. We specialize throughout to the case that G is a finite Abelian group.

Expectation 1: The gauged theory T/ (G(q’k) / N) enjoys (at least) an emergent “quantum”
global symmetry group G(@*—4-1K) / ~, where G = hom(G, U(1)) is the Pontryagin dual of G.
Moreover, re-gauging this emergent symmetry should recover the original theory, i.e.

T /(G(q,k) [~) /(@(d—k—q—l,k) [~ T. (22)

Both of these claims generalize familiar phenomena in the context of ordinary higher-form
symmetries G (cf. e.g. [8,77-79]). See also [83] for examples in the setting of subsystem
symmetries.

Sketch of the idea: We briefly and roughly remind the reader of the intuition behind this emer-
gent global symmetry group in the case of ordinary higher-form global symmetries G@. We
want to argue that T/ G enjoys a G(4~97V global symmetry; since g-form symmetries act on
g-dimensional operators, we should understand the space of (d —q — 1)-dimensional opera-
tors in 7'/ G, These can be described as follows. Let ("9~ be the space of (d —q — 1)-
dimensional operators of the theory 7, let (d_q_l)’]'g be the space of (d —q—1)-dimensional op-
erators which can live on the boundary 8 M@~9~1 of an open symmetry operator U o (M (d=q)y,
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and call (d_q_1)7? its G\@-invariant subspace. (There is only potentially a difference between

(d_q_l)’Y; and (d_q_1)7é in the case that 2q = d—1, e.g. zero-form symmetries in (1+1)D, one-
form symmetries in (3+1)D, and so on.) By definition, the genuinely (d — g — 1)-dimensional
operators of T/ G@ can be identified as

(d—q—1) (T/G(q)) ~ @ (d—q—1)7'g+ ) (23)

gei

The statement then is that there is a symmetry action of G = hom(G, U(1)) on this space of
(d — q — 1)-dimensional operators of the gauged theory: an element y € G simply acts on all
operators in the summand (d_q_1)7'g+ by multiplication by y(g). Since the Pontryagin dual
acts on (d —q — 1)-dimensional operators, we interpret it as a G491 symmetry of T/ G@,

A similar idea generalizes easily to relation-free higher-form subsystem symmetries
G(q’k)(gl,gz, ...), since their gauging can essentially be thought of as simply gauging ordi-
nary g-form symmetries leaf-by-leaf along the foliations. This is the main case that is needed
in this paper.

In the case that there are relations, more care is needed in general to make sense of this
proposal. We leave this interesting question to future work. For an infinite family of examples
where Expectation 1 holds, see §2.2.4. The network construction presented in §4.1.2 also in-
volves gauging an HFSS with relations.

Our second expectation concerns how spontaneous symmetry breaking plays with gauging.
For simplicity, we only state how this works for ordinary g-form symmetries, and content our-
selves with seeing how a similar idea plays out in examples of subsystem gauging throughout
the rest of the paper. Even in the simpler setting of g-form symmetries, we were not able to
find the following claim in the literature.

Expectation 2: Consider the case of a gapped theory 7 with a discrete g-form symmetry
G@ which is spontaneously broken down to a subgroup H@. We further assume that the
theory has trivial order under the unbroken subgroup H@. The claim is then that, in the
gauged theory 7/G@, the emergent quantum symmetry group G@~9~V is broken down to
the subgroup K@~971) defined by

K={ye€G|HcCkery}. (24)

In particular, if G'9 is completely spontaneously broken, then G441 is completely unbro-
ken; if G is unbroken, then G(4—4-1) ig completely broken.

Remark: In the above statement, it is important that the theory has trivial order under the
unbroken subgroup H@ rather than nontrivial symmetry-preserving order such as symmetry-
protected or symmetry-enriched topological order.

An example of this which is familiar to high-energy theorists is Yang-Mills theory in (3+1)D:
it is believed that the pure SU(N) theory enjoys an area law for its fundamental Wilson loop,

suggesting that its electric Z](\}) one-form symmetry is unbroken, whereas the SU(N)/Zy Yang-
Mills theory (which can be thought of as being obtained by gauging the Z](Vl) symmetry of
SU(N) YM) should have a ’t Hooft line with a perimeter law, signaling that its magnetic Zz(\})

symmetry (i.e. the emergent “quantum” global symmetry guaranteed by the gauging of Z](vl)) is
spontaneously broken. We see how a similar idea holds for subsystem symmetries in examples
throughout the rest of the paper.
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Sketch of idea: Let us offer one potential proof strategy. It rests on the Landau assumption
explained earlier in this section.

First let us show that, in the gauged theory T/ G, symmetry elements x belonging to K
are unbroken. We can do this by showing that all candidate order parameters have vacuum
expectation values which decay with the size of the (d — q)-dimensional region which they
bound. In the ungauged theory 7, consider a candidate disorder parameter 7, for some g € G.
Since it is by definition G@-even, it descends to an operator of the gauged theory 7/G(@.
Since the bulk of the operator is by definition implementing a symmetry that is being gauged,
the bulk acts trivially in the gauged theory, and the operator becomes a genuinely (d —q—1)-
dimensional operator 5;. Such an operator can be used to define a candidate order parameter
in 7/G@ for any y for which y(g) # 1. Thus, candidate order parameters b; in 7/G@ for
elements y € K come from candidate disorder parameters 2, in 7 for elements g ¢ H. By
assumption, such g are spontaneously broken in 7, and so candidate disorder parameters for
such g all have vacuum expectation values that decay with the (d —q)-dimensional size of the
bulk of the operator. Moreover, since we are gauging a discrete symmetry, we have that

(G) 1160 = (D) T (25)

Thus, all candidate order parameters satisfy that (5;) decays with the (d — q)-dimensional
size of the bulk of the operator. According to the Landau assumption, this means that K is
unbroken.

On the other hand, let us show that symmetry elements y that are not inside K are bro-
ken. We can do this by showing that there exists a candidate order parameter whose vacuum
expectation value decays with its (d —q — 1)-dimensional size. If y is not in K, then it means
there is some g € H such that y(g) # 1. In the ungauged theory 7, such a g is unbroken, and
so by the Landau assumption, there exists a disorder parameter 9, whose vacuum expectation
value decays with its (d — g — 1)-dimensional boundary. In the gauged theory, this descends
to an operator 5’; that is locally charged with respect to y, and has a VeV that decays with
its (d —q — 1)-dimensional size. This means that 5; is an order parameter that diagnoses the
spontaneous breaking of y .

Local equivalence and condensation of topological excitations
In many of the examples throughout this work we deal with topologically nontrivial phases
and their excitations. For our purposes a gapped quantum phase of matter is considered topo-
logical if it is disconnected from the trivial phase under gap preserving adiabatic deformations
and additionally admits no local order parameters. The trivial phase is defined to be the phase
that contains a totally decoupled paramagnetic Hamiltonian. Within topological phases, ex-
citations are often grouped into superselection sectors. That is, they are considered only up
to equivalence under local operations in a neighborhood of the region on which they are sup-
ported (i.e. where their associated energy density is supported). Excitations that can be created
within a neighborhood of their support are considered topologically trivial. Excitations that
can only be created by an operator on a much larger region than the support of the excitation
itself are topologically nontrivial, often referred to simply as topological. Similarly, a pair of
excitations supported on some region that differ only by the application of an operator on a
neighborhood of that region are considered topologically equivalent. A familiar example of a
topologically trivial excitation is a spinon in the trivial phase of the Ising model. An example
of a topologically nontrivial excitation is an anyon in the (2+1)D toric code.

In many of the examples throughout the text we consider phase transitions that are driven
by the fluctuation and condensation of topological excitations. We say that the addition of a
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local term to a Hamiltonian supporting a topological phase fluctuates some topological excita-
tion if the term introduces a matrix element for that excitation to change its position. As the
strength of such terms are increased sufficiently we expect the topological excitations that are
fluctuating to condense [84]. Here we are assuming that all the fluctuating excitations have
trivial mutual topological braiding processes, otherwise there may be some inconsistency that
prevents condensation. We consider an excitation, defined by the violation of a certain set of
local terms in a Hamiltonian whose interaction strengths are being tuned, to be condensed if it
switches from being topologically nontrivial to topologically trivial as a phase transition point
is crossed. This occurs for example to the electric anyons of the toric code as it is driven into
the trivial phase by their condensation.

Many of the examples we consider contain fractonic topological excitations that obey some
mobility restrictions, i.e. they can only be moved within a subdimensional manifold via local
operators. In some of the examples we also encounter interesting related phenomena where
particular representative topological excitations have restricted mobility, even though there
are no mobility restrictions on the associated topological superselection sector. That is, such
excitations have mobility restrictions unless they are transformed via the application of local
operators into some different representative excitations for the same topological equivalence
class.” In both of the situations outlined in this paragraph, when terms are added to a Hamilto-
nian that correspond to hopping operators for some topological excitation within a subdimen-
sional manifold, we say that such terms cause the associated excitations to fluctuate within
that manifold. When the strength of those Hamiltonian terms is increased sufficiently to in-
duce a phase transition, we similarly say the corresponding excitations are condensed within
the subdimensional manifold.

To orient the reader, and to establish notations and conventions, we now review how all the
principles that we have laid out in this section play out in the more familiar theories dH(ZqZ)
with ordinary higher-form symmetries. For the rest of the paper, we specialize to the case that
G = Zz.

2.2 Review of building blocks

As we have already mentioned, our constructions involve taking simple building blocks (which
in the present context, are the theories 1H éqz) with ordinary higher-form symmetries), foliating
space with them, and applying various gauging procedures to obtain new theories. Therefore
we start by establishing the basic properties of these ?H. %2) Hamiltonians: symmetries, gauging,
duality, order/disorder parameters, boundaries, and so on.

In (1+1)D, only ordinary zero-form symmetries are possible. The standard choice of a
model with such a symmetry is the transverse field Ising model (TFIM) 1H2) which we review
in §2.2.1. In (241)D, it is possible to have theories with zero-form or one-form symmetries.
Here, the standard choices are again the (2+1)D TFIM ZHg;) and Z, lattice gauge theory

ZH(le), respectively. We exposit both these models and the relations between them in §2.2.2.
In (3+1)D, it is possible to have zero-form, one-form, or two-form symmetries. We review
the various Z, higher-form gauge theories that realize these symmetries in §2.2.3. Finally, we
show in §2.2.4 how all of these considerations can be generalized to the higher-form subsystem
setting by sketching how they play out in an infinite family of models ngi’k) in d spatial
dimensions with Z(Zq’k) / ~ symmetry.

Readers who are familiar with this material can safely skip this subsection on a first read
through.

7 A similar property, and its association with subsystem symmetry, is explored in Ref. [85].
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2.2.1 (1+1)D transverse field Ising model

Consider a one-dimensional lattice with N sites on a circle, and place a qubit on each site so
that the Hilbert space is H = (C2)®N. We take the Hamiltonian of the transverse field Ising
model to be

N—-1
1Hgl)(J’ h) = —Z(JZIZH_:[ +hX1)) (26)
i=0

where X;,Z; are Pauli operators supported at site i, and the boundary conditions are
Z,.; = QZ,, with Q = +1 corresponding to periodic boundary conditions, and Q = —1 cor-
responding to anti-periodic boundary conditions. This model enjoys an ordinary zero-form
global Z(zo) symmetry that is implemented by the unitary operator

-1

v=][x. 27)

1=

An example of a local operator which is charged under this Z, is simply Z;. This symmetry
allows us to split the Hilbert space into even/odd sectors,

H= P HO, 28)
(j::tl

depending on the eigenvalue of U.

In the thermodynamic limit, N — oo, the TFIM famously enjoys a phase transition at
the critical point J/h = 1 that is associated with the spontaneous breaking of the global Zgo)
symmetry. When J/h < 1, the model has a unique, gapped, ground state |Q2) that is invariant
under the action of U, and the system is said to be in the disordered, or symmetry-preserving
phase. The single quasi-particle excitations above the vacuum in this phase are spinons which,
in the limit that J /h < 1, can be obtained by acting with a spin flip operator on the vacuum,

i) ~ Z;|Q2) + - (29)

Corrections to this expression can be computed using standard perturbation theory techniques.

On the other hand, when J/h > 1, the model has a pair of degenerate ground states that
are mixed into each other by the action of U, and the theory is said to be in its ordered, or
symmetry breaking phase. In this case, the low-lying quasi-particle excitations are pairs of
domain walls (a.k.a. kinks) that live on the links of the lattice, and which separate islands of
up spins from down spins. Deep in the ordered phase, J/h > 1, they can be obtained from
either of the two vacua as

J
=50+ 5 ~] [xd+--, (30)
k=i

where in the above expression, we have denoted the links of the lattice by half integers.

As we have explained in §2.1, the philosophy of the Landau program is to identify operators
that diagnose which phase one is in through their ground state expectation values. Roughly,
for zero-form symmetries in (141)D, if the operator has a non-zero expectation value in the
ordered phase while having zero expectation value in the disordered phase, it is said to be
an order parameter; if its expectation values are the other way around, it is called a disorder
parameter. It is known that every gapped, translationally invariant, Z,-symmetric spin chain
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admits order and disorder parameters [81]. For the Hamiltonian in Eq. (26), it is standard to
consider the two-point function

li—jlooo ™ 7 ’
as an order parameter, and to take a truncated symmetry operator
J
9= 1lm (2,;), 2;,;= l_[Xk: (32)
li—jl—>o00 i

as a disorder parameter. Notice that 0;; creates a pair of spinons when J/h < 1, while %;;
creates a pair of domain-walls when J/h > 1. When one is away from these extreme limits
of J/h, the true spinon/domain-wall creation operators still have non-zero overlap with g;;
and 9, respectively. For this reason, the pattern of expectation values enjoyed by the or-
der/disorder parameters can be interpreted as the statement that the vacuum in the symmetry
preserving phase is a condensate of domain-walls, while spinons are condensed in the vacua
of the symmetry-breaking phase.

Now, we can consider gauging the global symmetry. According to the discussion of the
previous subsection, this should produce a theory with an emergent quantum Zgo) symmetry.
Let us see how this comes about in practice. In the present case, the first step of the gauging
protocol outlined in §2.1 can be accomplished by placing an additional qubit on each edge of
the lattice; we write X 1, Z, 11to denote Paulis acting on the edge between sites i and i + 1.
The Gauss’s law constraint is then that all states should satisfy

G =X, 1 XX 1. (33)

i+ =
The transverse field terms of the Ising model already commute with this constraint, however
the other terms do not. To covariantize them, we couple them to the gauge field by replacing
22,1 > Z;Z_ 1 Z;,,. As for the last step of the gauging protocol, there are no local flux
terms for us to consider, and so the difference between strict gauging and energetic gauging
is somewhat immaterial. All in all, the gauged Hamiltonian becomes

N—-1
1,00 [,(0) _
HO (29 == (22,1241 +1X;)
i=0 (34)
Gi == Xi— XlX =1.

1
i+3

D=

In its current form, solving the Gauss’s law constraint is somewhat cumbersome because
it is a three-body term. However, we can apply a local unitary circuit which localizes it to a
single site. Indeed, consider the circuit

N—-1

v=mT](cx_1)(CX:1), (35)
i=0
where C;X;, 1 are CNOT gates, and H®?" is a tensor product of Hadamard rotations which
swaps all Pauli-X operators with Pauli-Z operators. Using the identities in Eq. (14), one finds
that conjugating by V leads to the Hamiltonian

=
—

1% (1H2)/Z(20)) vi=— . Y (JXH% + hzi_%zizi+%)
A

VGVi=2Z=1.

(36)

I
o

23


https://scipost.org
https://scipost.org/SciPostPhys.15.1.017

Scil SciPost Phys. 15, 017 (2023)

Now, imposing VG,; VT = 1 simply freezes the qubits on the lattice sites to the +1 eigenstate of
Pauli-Z. Therefore, the gauged Hamiltonian simply goes over to

" N-—1
14,00 (0) . VGiv'=1 ~
v(tHY U, h)/Z2 v ——-— Z): (JXH% + hzi_%zH%) > ff, (h,J). (37)
=

We see that we have recovered the Kramers—-Wannier dual of the Ising model.® The tilde in
Hy, is meant to emphasize that the model is defined on the dual lattice. We see that we have

gained an emergent 220) symmetry implemented by
U=] [%us- (38)
i

Because J and h have been exchanged, the spontaneous symmetry breaking phase of 1Hg?

maps after gauging to the symmetry preserving phase of 1132) = 1Hg;) / 7, and vice versa.
In connection with this, one can check that the order/disorder parameters are exchanged by
the gauging procedure. For example, in the thermodynamic limit, there is essentially a unique
way to covariantize the order parameter (at least if one would like to maintain finite support),
and after conjugating by V, it leads to

i1 -1
Ccov. 174 ~
Oj =2 — 1, (l |Zk+§)zj - | IXk+§ =9
k=i k=1

which is the disorder parameter of 11:[;02). One can similarly track the fate of the disorder

> (39)

;1
J=3

D=

parameter of 1 H (ZZ)’ and one finds that it is mapped to the order parameter of ' H (Zz)' Deep in the
symmetry-breaking/symmetry-preserving phases, these manipulations can also be interpreted
as describing how spinons are converted into domain-walls after gauging, and vice versa.

Finally, it is straightforward to see that re-gauging this emergent symmetry results back in
the original TFIM,

D (h,J) / Z = HY(J,h). (40)

The entire discussion of this subsection is summarized in Table 2.

2.2.2 (2+1)D transverse field Ising model and Z, gauge theory

We now repeat this discussion in one higher dimension. Consider an Ny X Ny square lattice on
a torus, and place a qubit on each site v = (i, j) € Z/NyZ x Z/N,Z. The Hamiltonian of the
transverse field Ising model in (2+1)D is

0
2HY) =—1 > 2,2,—h ) X,, (41)
) v

(v,v/

where the first sum is over nearest neighbors on the lattice. This model again enjoys an ordi-
nary global Zgo) symmetry generated by

v=[]x. (42)

8Technically, lﬁg;)(h,J ) is only dual to 1Hg;)(.] ,h) when the two models are restricted to their Z,-even sectors,
while the charged sectors are dual to twisted sectors and vice versa; however, in keeping with tradition, we often
abuse the word “dual” by ignoring this subtlety. See e.g. Ref. [86] for a careful treatment of Kramers-Wannier
duality.
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Table 2: A summary of the (1+1)D transverse field Ising model before and after
gauging its global symmetry. The model after gauging is the (1+1)D TFIM again,
but on the dual lattice. We have ommitted the second half of the table because it is
essentially a mirror reflection of the first half.

177(0) 177(0) [(0) ~ 177(0)
HY | 1Y [ =AY
Z(zo) symmetry: U =[], X; | 29 symmetry: U =TT, X, 1
ordered/sym. breaking phase: J/h > 1 disordered/sym. preserving phase: J/h > 1
order parameter: (Z;Z;) ~ const. disorder parameter: {; Xy +%) ~ const.
disorder parameter: (['],_, Xi> ~ exp. decay | order parameter: (Z, +1Z; +%) ~ exp. decay
excitations: domain-walls [ [,_. X;|Q) + - excitations: spinons Z;|Q) + - --
condensed: spinons condensed: domain-walls

disordered/sym. preserving phase: J/h <1 ordered sym. breaking phase: J/h < 1
disorder parameter: ([ [,_. X;) ~ const. order parameter: (Z, 11Z; +%> ~ const.

As before, the basic charged operators are Z,, and we can decompose the Hilbert space into
even and odd sectors with respect to the action of U. We now must specify whether the
boundary conditions are periodic or antiperiodic around each cycle of the torus; that is, we
take Z;,; ; = QaZ; j and Z; ;,; = QgZ; j, where Q,,Qp = 1 indicate whether the boundary
conditions are periodic or anti-periodic around the A and B cycles of the torus, respectively.

Just as in (1+1)D, the (2+1)D TFIM enjoys a spontaneous symmetry breaking phase tran-
sition at some critical value of J/h. We can again ask for order and disorder parameters that
diagnose the phase. The order parameter for ZHgl) is basically the same as for 'H g;),

0= lim (ﬁv v/) , ﬁv v = szv’ . (43)
|[v—v’|—> 00 ’ ’

As before, we diagnose the phase depending on whether it limits to a constant or is exponen-
tially decaying with the separation |[v —v’|. Accordingly, we say that the spinon quasi-particles
are either condensed or not, respectively. The disorder parameter can again be taken to be a
truncated symmetry operator. That is, we choose a large connected domain wall (i.e. a loop ¥
on the dual lattice), and we take a product over sites in the interior of this domain wall,

9= lm (2;), 2;=]]x%, (44)

A(f)—o0 veps

where A(7) is the area of the loop 7, and 7° is the set of vertices in the interior of ¥. We say
that we are in the disordered phase if 2 decays with the perimeter of ¥, and that we are in the
ordered phase if it decays with the area. Accordingly, the domain-walls are either condensed
or not, respectively.

Let us again consider gauging the global symmetry, at first according to the “strict” gauging
procedure outlined in §2.1. As before, we enlarge the Hilbert space by placing qubits on each
edge of the lattice. The model one then obtains is structurally similar to the one obtained in
one lower dimension; the new feature is that the gauge field now admits non-trivial local flux
terms F,,

0 0
PH) (2 =T D 2,220 —h Y X,
(v,v) v

Fp=l—[ze=1’, G, =x,[ [x.=1.

e€p esv

(45)
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In the above, we are labeling edges using their boundary vertices, e = (v, v’). We impose both
F,=1and G, =1 as constraints on the Hilbert space.
Again, we apply a local unitary circuit to make imposing G, = 1 more straightforward,

vV = H®N l_[ (Cvx(v,v’)) (CV/X(V,V/)) s (46)
(v,v')

where N is the total number of qubits of the gauged model. Conjugating by this unitary leads

to
v(HY 29" = JZX —hZz [ ]z

esv

vV =] [x.=1, vGvi=z,=1.

e€p

(47)

If we now shift perspectives to the dual lattice (so that vertices v become plaquettes p, pla-
quettes p become vertices ¥, and edges e get sent to edges &) and impose VG, V' = 1, we
find

T S 3 g et
b e (48)
VEVT =] [%=:G;,

ésv

which is the Hamiltonian of Z, lattice gauge theory on the dual lattice (see Ref. [87] for a
standard reference on lattice gauge theories). We have interpreted the flux term VF;V as the
Gauss’s law constraint G; of 2H (1) , so we demand that G, = 1. Thus, gauging again recovers
the Kramers—Wannier dual (or rather the Wegner dual [2]) of the (2+1)D TFIM.

We note in passing that if we were to instead use the “energetic gauging” protocol, our

gauged theory would take the form

ZH(Z‘?/EZ(ZO) J(ZZ VZ iy v,—th —tZl:[Z —UZXE,
v,v’) p e€p (49)

G, =x,[ [x.,

esv

where now, we have incorporated the flux operators into a term in the Hamiltonian that im-
poses them energetically, and we have further added an electric tension term proportional to
U. After performing the same manipulations as above, we are lead to

v (2D [ 2P ) v —— vl ———-h> [[ze—= D> ] [%- UZZ~—JZX~ (50)

p éep y ésv

This is essentially a toric code model perturbed by uniform X and Z fields. We return to the
toric code shortly.

Note that Zﬁg; on the dual lattice has an emergent one-form symmetry 2(21), whose asso-
ciated symmetry operators are supported on paths through the original lattice,

U, =] . (51)
éey
where the product is over edges in the dual lattice which are perpendicularly bisected by the

path y. As is standard, the symmetry operators of the emergent quantum one-form symmetry
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associated to contractible paths are generated by the flux operators/emergent Gauss’s law
operators. The charged operators of a one-form symmetry are line operators; in this case, the
basic charged operator is the Wilson-Wegner loop

g, = |z. (52)

éey

which we see momentarily is an order parameter for the spontaneous breaking of 2(21). We also
note in passing that, in accordance with the discussion in §2.1, this one-form symmetry group
admits an isotropic Z(zo’l)(ﬂ')l', ﬂ'y”) subgroup generated by the lAJ), associated to the paths y that
lie entirely on a single row or column of the original lattice; we make use of this fact below, in
§3.2. If one were to instead use the energetic gauging procedure, the term proportional to U in
Eq. (50) would break the symmetry from Eq. (51). It is only when one uses the strict gauging
procedure, where this term is forbidden because it does not commute with the flux operators
F,, that we are guaranteed an emergent symmetry of the gauged theory. This is related to the
statement that the one-form symmetry of Z, lattice gauge theory is a consequence of Gauss’s
law (imposed as a constraint).

It is well known that as h is cranked up from zero to infinity, this model undergoes a con-
finement to deconfinement phase transition at some critical value of h/J (see e.g. Ref. [88-90]
for more information) that coincides with the spontaneous breaking of 2(21). Thus, the spon-
taneous symmetry breaking phase of the TFIM maps after gauging to the phase of Z, lattice
gauge theory in which the one-form symmetry is preserved, while the symmetry preserving
phase of the TFIM maps to the phase where the one-form symmetry is broken. We can ob-
tain order and disorder parameters for this phase diagram by studying how those of the TFIM
map under gauging. Starting with the order parameter, one finds after covariantizing and
conjugating by V that it gets mapped to a truncated symmetry operator,

coV. v ~
0‘),1,/ = ZVZV/ —V> Zv (I_[ Ze) Zv’ — l_[Xé = B, > (53)

ecy éey

which can hence serve as a disorder parameter for Zﬁgz). In the above, we have chosen a
path y on the original lattice whose end points are v and v’; it might seem that this is an
arbitrary choice, however matrix elements of @},’f,/ taken between gauge invariant states are
insensitive to ¥ because of Gauss’s law. Note that deep in the deconfined phase, this disor-
der operator is a creation operator for a pair of quasi-particle excitations (called e.g. visons,
magnetic monopoles, 7-fluxes, etc.) that can be thought of as living on the plaquettes p,
p’. Because this operator has a non-decaying expectation value in the confined phase, one
says that monopoles are condensed in this phase. Here the Z, charges of the Ising model are
mapped to gauge fluxes rather than gauge charges as we have changed basis after gauging
such that the dual symmetry is a product of Pauli-X operators.

The disorder operator of the TFIM does not need to be covariantized; conjugating it by V
leads to an order parameter for Z, LGT,

9, = x> |2z:=a., (54)

vefe ey

which is none other than the Wegner-Wilson loop. This loop is charged under the one-form
symmetry, so depending on whether it satisfies an area law or a perimeter law, the Wilson loop
diagnoses the phase to be either confined or deconfined (symmetry preserving or symmetry
breaking) respectively. Deep in the confined phase, this operator can be thought of as a creation
operator for electric flux line excitations.
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Table 3: A summary of the properties of the (2+1)D transverse field Ising model
before and after gauging. After gauging, the model can be identified with Z, gauge
theory on the dual lattice. The notation y(p,p’) indicates that it is a path through
the lattice with endpoints p, p’, and 7° denotes the set of vertices in the interior of

the path 7.

277(0)
HZZ

277(0) [(0) ~ 277(1)
HZz /ZZ — HZz

0
Z(z ) symmetry: U = ILX,

P =
Z(z ) symmetry: Uy, =[lec, Xe

ordered/sym. breaking: J/h > 1
order parameter: (Z,Z,,) ~ const.
disorder parameter: (]_[vef,o X,) ~ area law
excitations: domain-walls [ [,.. X,[2) +

condensed: spinons

disordered/sym. preserving/confined: J/h > 1
disorder parameter: (]—[éey([))ﬁ,)xé} ~ const.
order parameter: (l_[éey Z;) ~ area law

excitations: electric flux line HEG? Z;|Q2) +
condensed: magnetic monopoles/visons

disordered/sym. preserving: J/h < 1
disorder parameter: (]_[VGy ) ~ perim. law
order parameter: (Z,Z,,) ~ exp. decay
excitations: spinons Z,|Q) +

condensed: domain-walls

ordered/sym. breaking/deconfined: J/h < 1
order parameter: ([ [,.. Z;) ~ perim. law
disorder parameter: (]_[eey(p’p,)xé) ~ exp. decay
excitations: monopoles l_[éey(ﬁ,oo) X:|Q) +

condensed: electric flux lines

sy

Re-gauging the one-form symmetry 2(21) re-obtains the original TFIM. To see this, this time
we place the gauge degrees of freedom on the plaquettes p, impose Gauss’s law, and covari-
antize to find

25 5 _
A (280 = JZX~ hZz [ ]z
é éep
(55)
. I
G=]]%> Gy =XXpmXp
esv

In the above, éﬁ is the Gauss’s law constraint of 2H. %12) (which was present even before gauging)

while égﬁ 5) is the Gauss’s law constraint that one imposes to gauge the one-form symmetry.
We can solve this latter constraint easily after conjugating by the circuit

V=u"T ] [cxs. (56)
P éch
where N is the total number of qubits, which yields
7 (7 [z
V(AL 28V = Z Z5Z.5.5n L5 hZX~
(57)

Imposing \755//T = 1 then freezes X; = 1, so that VG; V' = 1 is automatically satisfied as well.
Switching perspective back to the original lattice then simply recovers the Hamiltonian of the
TFIM. The entire discussion thus far is summarized in Table 3.

Before moving on, we briefly comment on how the relationship between the TFIM and
LGT is modified when defects are introduced. First, imagine flipping the nearest neighbor
couplings in the TFIM from ferromagnetic to antiferromagnetic on some network of bonds.
This can be described by taking the Hamiltonian to be

2HOQ) =7 > Z,Quu) 2 — hzxv,

vv)

(58)
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where Q = {Q, = £1} is a defect network which determines whether each coupling is ferro-
magnetic or anti-ferromagnetic; when all the Q, = 1, this simply describes the TFIM without
any defects present. If one traces through the steps we have taken in this section to gauge the
global Z(ZO) symmetry, one finds that one ends up with

2HO(Q)[29) ~ -1 Y X —h Y | |z

p éep (59)

Gy(Q) = l_[QEXé .

ésv

We see that the defects do not appear explicitly in the Hamiltonian itself, but rather only in the
definition of Gauss’s law. One of course typically restricts to the gauge invariant subspace of
the extended Hilbert space corresponding to G;(Q) = 1; in the present case, this is equivalent
to eliminating the defects entirely, and working in the subspace of ordinary Z, lattice gauge
theory defined by G; = +1, where G; = —1 if ¥ is the endpoint of one of the defect lines in
Q (now thought of as a network of lines on the dual lattice), and +1 otherwise. Thus, after
gauging, a network of antiferromagnetic defect lines in the (2+1)D TFIM becomes equivalent
to an insertion of probe electric particles (i.e. local violations of Gauss’s law) in Z, lattice gauge
theory.

Relationship to toric code and boundaries

Let us now revert from the dual lattice back to the regular lattice. When the on-site Pauli-
X term is turned off and Gauss’s law is imposed energetically in Z, lattice gauge theory, the
resulting model is called the (241)D toric code,

Hryc :_ZAV_ZBP)
v P
a=l%. B=]]z.

esv e€p

(60)

In addition to the one-form symmetry from before, Eq. (51), the toric code has an additional
Z(Zl) one-form symmetry. These two one-form symmetries are typically referred to as “electric”
and “magnetic”. In the context of the toric code, the discussion is typically phrased in terms
of “string operators”
san=[]z. s.M=] %, (61)
e€y ecy

where again, y, ¥ are paths through the lattice and dual lattice respectively. These string op-
erators perform double duty. For example, S,(y) is the symmetry operator for one of the Zgl)
one-form symmetries, while being the charged line operator with respect to the other, and
similarly for S, (7). In particular, these operators are topological in the sense that they only
depend on the homotopy class of the defining path (at least after one is careful to introduce
punctures in the underlying manifold where there exist quasiparticles). Now, there are also
two types of quasiparticles: electric e particles and magnetic m particles, which are violations
of the vertex terms and the plaquette terms, respectively. They can be created at the end points
of string operators (see Figure 2).

We now move on to a discussion of the different kinds of boundaries of the toric code. See
e.g. Refs. [91-94] for related discussions.

Rough boundary Let us consider placing the toric code on a semi-infinite cylinder

M = (—00,0] xS, so that the manifold on which it is defined has a circle boundary, dM = S?.
We label the number of lattice sites along the circle direction as L.
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B; Se(7) Bj
smooth rough
boundary boundary

Sn(r)
Ay Ay

[

Figure 2: The rough and smooth boundaries of the toric code, along with their asso-
ciated boundary vertex and plaquette operators, A, and B, . An edge colored yellow
indicates a Pauli-Z operator acting on that edge, while an edge colored red indicates
a Pauli-X.

There are two common choices for how to give the underlying lattice a boundary, which
are referred to as “rough” and “smooth”, depicted in Figure 2. Let us first choose the rough
boundary for concreteness, and return to the smooth boundary later. We assume that the
Hamiltonian in Eq. (60) contains only operators associated to bulk vertices and plaquettes,
which we define to be vertices and plaquettes which intersect exactly four edges. We must
decide what form the Hamiltonian takes near the boundary. Let us use the notation v,, p; for
boundary vertices and boundary plaquettes. It is common to include either boundary vertex
terms A, (i.e. the single body X term on the only edge emanating from the boundary vertex
va) or boundary plaquette terms B, (i.e. the three body Z term on the three edges which
border the boundary plaquette p;) because they both commute with all the terms in Hy¢, but
not both if one would like to preserve the commuting-projector property of the toric code. For
now, we include neither, and instead work with “free” boundary conditions, taking Eq. (60) as
the complete specification of the Hamiltonian, with the sums over v and p understood to be
sums over only bulk vertices and bulk plaquettes. We add in boundary vertex/plaquette terms
in a moment.

Let us now determine the ground space. First, we define W and W to be the electric and
magnetic string operators from Eq. (61) respectively, with the paths taken to be ones which
wrap the circle. These two operators commute with one another, and of course with the toric
code Hamiltonian, and so we can use their eigenvalues (Q and Q respectively) to label different
topological sectors of the ground space,

He= D P HQQ. (62)
Q=%1q=+1

Now, because the boundary vertex and plaquette operators A, and B, also commute with

Hyc, W, and W, they map each topological sector 7—[((52’6) to itself. In fact, it is straightforward
to convince oneself that a state in Hg is determined completely by its eigenvalues under the
following mutually commuting operators:

{ww,a,,}. (63)

Thus, we can think of the degrees of freedom of H(g’a) as those of a (1+1)D spin chain whose
L effective qubits live on the boundary vertices. The algebra furnished by {A,, B, } within
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Hgsz’@ is the same as that of the Paulis {)A(VB, ZVa ZVaH} acting on the effective boundary spin

chain in the ]_[va )A(va = Q subspace (i.e. the Z, even/odd subspace), subject to the boundary
condition Z, = QZ; (i.e. periodic or antiperiodic boundary conditions).

Because these edge states are exactly degenerate, we can take the effective edge Hamilto-
nian which governs them to be identically zero, Hegqe = 0. In order to obtain more interesting
boundary dynamics, we may consider perturbing the toric code as follows:

Hyc—Hic+Hy, Hy=—hy ». A, —h; > B, (64)
boundary boundary

We take hy and h; to be sufficiently small so that the effect of these fields is to split the energy
levels within Hgsz’Q), but otherwise keep them well separated from excited states. We may then

encode this splitting in an effective edge Hamiltonian H,qg. which acts on Hég’Q). Because the
boundary terms commute with the bulk terms, the edge Hamiltonian can be represented as

Hedge = _Z (hXXva + hZ Zva Zva +1) B (65)

Vo

where the sum is over boundary vertices. In other words, the (14+1)D transverse field Ising
model controls the edge modes of the perturbed toric code model, Eq. (64). Again, Hegq acts
in the Z, even/odd subspace depending on the value of Q, and is taken to have periodic/anti-
periodic boundary conditions depending on the value of Q.

The fact that we obtained an edge Hamiltonian with a Zgo) global symmetry can be un-
derstood as a consequence of the ZS) one-form symmetry of the bulk. Indeed, the Z(O) global
symmetry is generated by the unitary l_[‘,a X, y = I es Xegs which is none other than a one-form
symmetry generator of the bulk toric code brought to the boundary of the half space (which
we have called W). At a technical level, the Z(ZO) symmetry is imposed by the fact that it is
impossible to construct a local operator in the toric code that acts as 2,,5 on the effective edge
spin chain; therefore, if we take H, to be general and compute an effective edge Hamiltonian
in perturbation theory, the perturbation series only produces terms which are products of )A(Va

and ZVa ZVaH. That is, for generic local perturbations, we expect

Hedge = Hedge ({)A(va b {zva zva +1}) > (66)

to be a function just of single body Pauli-X terms and two-body Pauli-Z terms, which are always
Zy-symmetric.
We may also identify boundary excitations of Heq4 with bulk excitations of the toric code.
In the unperturbed toric code, the string operators in Eq. (61) produce the toric code e and
m particles at their endpoints. When perturbations are introduced, the operators that create
these excitations generically require modification. However, if we turn on hy # 0 while keep-
ing h; = 0, for example, then the string operators S,(y) that create electric particles are not
corrected. From the perspective of the edge degrees of freedom, the effective Hamiltonian
simplifies to Hegge ~ —hx ZVa X, ,- 1f we push the string operator which creates electric par-
ticles to the boundary, we see that it can be expressed simply in terms of operators acting on
the virtual spin chain as
Se(y) ~ zva zvé > (67)

where va,vé are the endpoints of y. Since this operator creates two spin excitations at v,
and vé in the boundary transverse field Ising model, we see that spin excitations in the edge
Hamiltonian are simply bulk e particles which have been pushed to the boundary. We expect
the takeaway of this discussion to continue to hold once one dials h; away from zero.
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Similarly, if one takes h, # 0, hy = 0, then the string operators which create magnetic
particles are the same as the operators S,,(¥) which create them in the unperturbed toric
code, and the edge Hamiltonian simplifies to Hegge ~ —hy ZVa Z, 7, ;. If one pushes the
magnetic string operators to the boundary, they take the form

Sa@~ [1 %, (68)

/ 1
VaSVasSvy

The operator on the right hand side creates domain walls in the virtual spin chain, and so we
are lead to identify domain wall excitations in the edge model with bulk magnetic particles
which have been pushed to the boundary. Again, nothing of importance changes if one deforms
away from hy = 0.

Smooth boundary Before moving on, let us comment briefly on what happens in the case
of smooth boundaries. Here again, we only include bulk vertex/plaquette terms in the Hamil-
tonian, and in particular, exclude three-body A, and single-body B, terms which can be
associated to boundary vertices/plaquettes.

We start by noting that the toric code with these boundary conditions is dual (under
electric-magnetic duality) to the toric code with rough boundary conditions discussed in the
previous subsection. To see this, first perform a rotation X, — Z,, Z, — —X, on all edges, and
then interpret the qubits as living on the edges of the dual lattice. The combination of these
two actions maps vertex terms to plaquette terms (hence the name electric-magnetic duality)
and swaps the rough and smooth boundary conditions. Therefore, our expectation is that the
physics of the edge is equivalent; actually, it turns out that the edge Hamiltonian in the case
of smooth boundary conditions is Kramers-Wannier dual to the edge Hamiltonian with with
rough boundary conditions. Because the logic of the argument that shows this is identical to
the one employed in the case of rough boundary conditions, we do not go through it explicitly.

2.2.3 (3+1)D transverse field Ising model and higher-form Z, gauge theories

We conclude by summarizing some basic facts about the theories BH%Z) forg =0,1,2. Because
there is nothing fundamentally new in d = 3, we are brief.
The model with g = 0 is again the transverse field Ising model

SHY =—J > 2,Z,—h ) X,, (69)
) v

with qubits on the sites v of the 3d cubic lattice, and with its global symmetry implemented
by the operator

v=[]x. (70)

The order and disorder parameters that diagnose whether this symmetry is spontaneously
broken or not are

0= lim (ﬁv,vl> 5 01,,1,/ = ZVZV’

[v—v’|—> 00

9=_lim (2:), Zs=]]X,

Vol(m)— o0

(71)
veme

where m is a connected domain wall, or a closed membrane on the dual lattice, and m° is the
set of vertices in the interior of the domain wall.
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If one gauges this global symmetry, one obtains

377(0) |/(0) _
HO 29 =1 3 2,202, —h Y X,,
) v

Fo=[1z.. & =x]]x.

e€p eV

(72)

One can again follow the same kind of protocol as in the previous subsections to simplify this
theory. After applying the same unitary circuit as in Eq. (46) (extended in the obvious way
to three dimensions), imposing VG, V' = 1, and switching to the dual lattice, the model one
obtains is

vHD ) Y x-S [ =

¢ pec (73)

a1l

VEV =] ]x;=G,

p>é

where p, ¢, and € are plaquettes, cubes, and edges of the dual lattice, respectively. That is, we
recover two-form lattice gauge theory, where the flux term VF;V' now plays the role of the
Gauss’s law term of 3H 222). When J = 0 and the Gauss’s law term is energetically imposed, the
model is also known as the (3+1)D toric code.’

This theory has an emergent two-form symmetry group Zgz). The symmetry operators are

implemented by string operators associated to closed paths y through the original lattice

U,=][%. (74)
per
where the product is over the plaquettes p of the dual lattice which are pierced by y. As
an aside, we note that a two-form symmetry group in (3+1)D admits at least two subsystem
subgroups. Namely, there is a Zgl’l)(gj,ﬂyl,gj) and a Z(ZO’Z)(?)U,QYH, 9‘2”) subgroup.

As one varies J /h, there is a phase transition at some critical value of J /h that corresponds
to the spontaneous breaking of this two-form symmetry. When J > h, the theory preserves
the two-form symmetry, and when h > J, the theory spontaneously breaks the 222). Thus,
we confirm that the spontaneous breaking of the original Z(ZO) of the TFIM corresponds after
gauging to the symmetry preserving phase of the two-form gauge theory and vice versa. The
order and disorder parameters of 3171%22) can be found by studying how those of the (3+1)D
TFIM are mapped under gauging, as we have done in (14+1)D and (2+1)D. If one does this,
one finds

6=_lim (), Gu=]]z.

Vol()— 00 pei
~ ~ ~ (75)
9 = lim D=~ , Dz = X .

|E—E’|—>oo< ¢,c > ¢,c 113:! P

In the above, the order parameter is a Wilson—-Wegner membrane supported on i, that is
charged under the two-form symmetry. For the disorder parameter, y is an arbitrary path of
the original lattice whose endpoints are the cubes &, & of the dual lattice (again, 2 doesn’t
depend on this choice of path), and the product in the definition of @5’5/ is over plaquettes of
the dual lattice that are pierced by v.

“We thank the authors of Ref. [95] for sharing their work which investigates natural phase transitions out of
the (34+1)D toric code phase.

33


https://scipost.org
https://scipost.org/SciPostPhys.15.1.017

SciPost Phys. 15, 017 (2023)

Table 4: A summary of the properties of the (3+1)D transverse field Ising model
before and after gauging. After gauging, the model can be identified with Z, two-
form gauge theory on the dual lattice. The notation y(¢,¢’) denotes a path through

the lattice with endpoints &, ¢’.

377(0)
H Z,

34O [0  37(2)
HZZ /Zz - HZZ

0
Z(z ) symmetry: U =[], X,

P Py
Z(2 ) symmetry: Uy, =[5, X

ordered/sym. breaking: J/h > 1

order parameter: (Z,Z,,) ~ const.
disorder parameter: ([ [ . X,) ~ volume law
excitations: domain-walls [ [ .. X,[Q) +---

condensed: spinons

disordered/sym. preserving/confined: J/h > 1
disorder parameter: (any(E,E') X;) ~ const.
order parameter: (l_[ﬁeﬁl Z;) ~ volume law

excitations: membrane-nets l_[pem Z5|Q) +---

condensed: magnetic monopoles/visons

disordered/sym. preserving: J/h < 1
disorder parameter: ([ [,.;.X,) ~ area law
order parameter: (Z,Z,,) ~ exp. decay
excitations: spinons Z,|Q) + - - -

condensed: domain-walls

ordered/sym. breaking/deconfined: J/h < 1

order parameter: (l_[ﬁeﬁ1 Z;) ~ area law
disorder parameter: <Hﬁ€y(€ ) Xp) ~ exp. decay
excitations: monopoles npey(e o) XplQ) + -+

condensed: membrane-nets/electric flux membranes

Regauging this emergent symmetry leads to the original TFIM. We can see this by placing
qubits on the cubes of the dual lattice, which leads to

3ﬁé22)/222) :_JZXﬁ—hzzel_[Zﬁ’

¢ peé

a1l

(76)

where in the above, (¢, ¢’) specifies a plaquette p of the dual lattice through its two neighboring
cubes. Defining

v=m"]]] [, (77)
¢ peé
we find, after switching back to the original lattice, that
VG, vi=1
~(2) |5 + e
v(CED 729 v ——3a] (78)

The salient elements of this discussion are summarized in Table 4.
Similar manipulations apply to ordinary Z, lattice gauge theory in three dimensions,

Y =-Uu> X, -ty | ]z,
e p e€p
G, = [x..

esv

(79)

The theory has a Z(zl) one-form symmetry, whose symmetry operators are supported on sur-
faces. More specifically, let 1 be a closed membrane of the dual lattice, composed of a series
of plaquettes of the dual lattice. Then the symmetry operators are

Ur?l :l_[Xe’

ecEm

(80)
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Table 5: A summary of the properties of (3+1)D Z, one-form lattice gauge theory,
before and after gauging. The objects m(y) and m(7) are open membranes on the
lattice and dual lattice with boundaries y and ¥, respectively.

377(1) 37(1) (D) ~ 377(1)
Hy, | Hy, /Zz ="Hy,
1 501 P
z) symmetry: Uy, = [ ,cr X | 73V symmetry: U, = [ ;e Xe
ordered/sym. breaking: t/U > 1 disordered/sym. preserving: t/U > 1
order param: (l_[eey Z,) ~ perim. law disorder param: (]_[éem(y) X;) ~ perim. law
disorder param: (l_[eem(?) X,) ~ area law order param: (l_[ée)., Z;) ~ area law
excitations: magnetic strings [ [ ,cz7)XeIQ2) + -+ | excitations: electric flux lines [ [, Zs|Q) + -
condensed: electric flux lines condensed: magnetic strings
disordered/sym. preserving: t/U < 1 ordered/sym. breaking: t/U < 1
disorder param: (]_[eeﬁlm X,) ~ perim. law order parameter: (]_[éq Z;) ~ perim. law

where the product is over the dual plaquettes that make up the membrane, thought of as edges
. . . . 0,1
of the original lattice. This symmetry group admits a Z(z )(gj, 3"}}, 9’;) subgroup.
There is a confinement/deconfinement phase transition which occurs at the critical value
of U/t =1 because Z, lattice gauge theory is self-dual in (34+1)D. The charged operators of a
one-form symmetry in (3+1)D are strings, and so we expect the order parameter to be a line

operator. In fact, it is the same as in (2+1)D, namely the Wegner-Wilson loop,

o= lm (0), o=||z, (81)
A(Y)%J v ! le;[ ¢

where 7 is a closed loop of the lattice. The disorder parameter can again be taken to be a
truncated symmetry operator. That is, we define

2= o =[x
where m is again a membrane of the dual lattice (this time open) whose boundary is 7, a
path of the dual lattice. In (3+1)D, Z, lattice gauge theory maps to itself under gauging of
its one-form symmetry, except that its confined phase is mapped to its deconfined phase, its
order parameter is mapped to its disorder parameter, and so on. See Table 5 for a summary
of this discussion.

2.2.4 Prototype models nglz’k) with Z(zq’k) / ~ symmetry in all dimensions

Many of the features we have highlighted thus far in the context of models with ordinary
g-form symmetries can be generalized to the setting of g-form subsystem symmetries. We
anticipate some of these generalizations here, filling in further details as needed throughout
the remainder of the text.

There is a standard choice of Ising-like Hamiltonians dH;qZ’k) in (d + 1) spacetime dimen-

sions (for d > k + q) that respect isotropic qu’k) / ~ symmetry groups. To define them, let
us consider a d-dimensional cubic lattice and consider it as a simplicial complex A, using the
notation A, for the fundamental p-simplices. Thus, A is the set of lattice sites, A, is the set
of edges, A, is the set of square plaquettes, A3 is the set of cubes, and so on. We also use the
notation y ... u, to denote a collection of directions in the lattice. For example, if d = 3 and
n = 2, then the possibilities are u,u, = Xy, yz, xz.
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With these conventions in place, we place the qubits on the fundamental g-simplices, and

define
e o S xS [ @

OEN, WEA 4141 O€W

where X,;, Z, are the Pauli operators that act on the qubit associated to the g-simplex o. In
the case that g > 0, the theory is a generalized gauge theory, and we accordingly supplement
the Hamiltonian with a Gauss’s law constraint,

Gzl...,ud—k — l_[ XU =1 5 (84)
o3p
ol gk

which we require to hold for every p € A;_;, and for every collection ;... ug_ of d —k
directions in the lattice.

If one unpacks these definitions for small values of q and k, one finds a venerable list of
familiar models. For example, when g = k = 0, this recovers the transverse field Ising model;
when g = 1, k = 0, one finds ordinary Z, lattice gauge theory; when q¢ > 1, k = 0, the
Hamiltonian is that of g-form gauge theory; when ¢ = 0, k = 1, one obtains the plaquette
Ising models; when q = 0, k = 2, this leads to cubic Ising models; and finally when g =k =1,
this recovers the X—cube models. This is summarized in Table 6. Part of this paper involves
studying the myriad interrelations between these Z, models, for different values of d, g, and k.

The symmetry operators of these theories can be defined as follows. Consider the foliation

3’& A of the cubic lattice. Each leaf L(475) ig thought of as a (d — k)-dimensional cubic

sublattice that is parallel to the yy ... gy directions. Call L*(47%) the dual of this sublattice
(thought of as a simplicial complex), and let 7(@*9 be a closed (d — k — q)-dimensional
membrane built out of fundamental (d — k — q)-simplices of L*(¢7%). Thinking of m(@*9 as
an object of the original cubic lattice A, the operators

gL (d—k) [
m(d k—q) — l(_d[k )X L € ‘g’.“l___’ud_k 5 (85)
oem —q

can be thought of as being supported on the leaf L%, These operators generate the qu’k) / ~
symmetry of the model, where the product is over g-simplices of A that intersect (@ —%—2. We
remark that these symmetry operators satisfy non-trivial relations when k > 0. To describe an

example, note that the foliation 9‘! g, €A1 be obtained as a coarsening (cf. §2.1) of any

of the foliations 9"”1 P where (; 1nd1cates that we omit u; from the list ;... Ug_g41-
bl gy

There are d — k + 1 such foliations; since d > k + q, we can pick q + 2 of them, and pass

to the associated diagonal subgroup Z(zq’k_l) [~. Each g-simplex that lives in a leaf L{d—<+1)

of 9‘ ” e belongs to 2 of the q + 2 foliations that were used to construct the diagonal
(d—k+1)

subgroup, and therefore the coarsened symmetry operator (U¢): kg (C f. Eq. (20)) involves
a product of two Pauli-X operators at each g-simplex that is intersected by /m(4=*=4+1)_ It follows
that the entire subgroup acts trivially. As an example, this construction recovers precisely the
diagonal subgroup DZ(ZO) when applied to the (2+1)D plaquette Ising model ZH;Z’D, described
in 81.1 (cf. e.g. Eq. (4)).

It is interesting to compare the behavior of these models in the extreme limits of their
parameters. In the case that U > t, the model is proximate to a trivial phase with a single
gapped ground state in which every g-simplex is in a +1 eigenstate of Pauli-X. On the other
hand, when t > U, the model has a large ground state degeneracy, with the symmetry oper-
ators in Eq. (85) acting non-trivially on this ground space (when wrapped around non-trivial
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d H(q k)

Table 6: A glossary of the various Ising-like theories. The Hamiltonian
well-defined in any spatial dimension d such that d > k + g, and has a global (q, k)
symmetry Z(zq k) / ~. The qubits of ngIZ k)

(v,v’) indicates nearest neighbor vertices.

are placed on g-simplices. The notation

(g,k) ‘ Name ‘ nglz’k) ‘ Ggl"'“d"‘
transverse field Ising models
(0,0) (TFIMD —t Z 7,2, —U ZXV
lattice gauge theories
1,0 —t Z,—U Y X, X
(.0 a.em) Zﬂ 2x | L=
two-form gauge theories
(2,0) (LGT,) _tZl_[Zp - UZXP l_[Xp
pec pe
plaquette Ising models B B
0,1) IV t;gz UZX
X-cub 1
(1,1) b ;?Odes -t> [z —UZX [T x
( ) c eEc [=2%
ellphy -tk
cubic Ising models
(0,2) (CIVD) —tZ];!z —UZX

cycles). In fact, the qu’k) / ~ is completely spontaneously broken. Thus, as the competition
between U and t is varied, these models should undergo at least one phase transition. For
some choices of (g,k) (e.g. k = 0 and q = 0,1), it is well-established that there is only one
phase transition point, and that it happens at a finite value of U/t. It is natural to speculate
that a similar story holds for all (q, k), but to our knowledge this has not been established
rigorously in the literature.

It is also interesting to ask what happens when one gauges the HFSS. One can follow a
procedure copied almost mutatis mutandis from §2.2.1-§2.2.3, and obtain that

IO | (209 ) 2 U, (56)

where the tilde in the Hamiltonian on the right-hand side indicates that the model is defined on
the dual lattice. We immediately find a result that is consistent with Expectation 1 from §2.1:
upon gauging the (g, k)-symmetry, we find a theory with an emergent quantum (d—k—q—1, k)-
symmetry. Furthermore, it turns out that, assuming the speculations of the previous paragraph
are true, gauging maps the symmetry preserving phase of ¢H éqz’k) to the symmetry breaking

phase of dﬁéd_q_k_l’k), and vice versa. This is a version of Expectation 2, suitably extended to

the setting of higher-form subsystem symmetries.

The case that G = Z, is straightforward enough that we can simply write down models with
the desired symmetry groups, as we have done above. However, for the purpose of uncovering
structure that generalizes, it is useful to imagine how one might obtain these models starting
with simpler building blocks. We turn to this next.

2.3 Assembling the building blocks

Having established the basic properties of the building blocks H éq), we now explain the pro-

tocol that we use to assemble them throughout the rest of this paper, and also anticipate some
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of the general structure that underlies most of our results.
As we described in the introduction, each section §A for A= 3,4,5, 6 is organized around
one of the models DH%Q’k). Each subsection §A.B (except for the last subsection of §A) is

dedicated to two related network constructions that recover phase diagrams containing (at
Dpylak)
Zy

least the symmetry breaking phase of) in some corner. These two network constructions
involve two pieces of input data.

The first piece of data is a decoupled network model, which in the present paper simply
involves a choice of building block theory dH;qZ), and a choice of foliations &7, %,, ... of space.
(Although we are using continuum language, in the case of lattice theories, the leaves of a
foliation are thought of as a discrete family of d-dimensional sublattices of the D-dimensional
lattice on which the (D + 1)-dimensional model ultimately lives.) The decoupled network
model is then obtained by foliating space with the theories dH(Zqz) along the leaves of the folia-

tions &1, %5, ..., and its Hamiltonian can schematically be written as

H(F, Ty )~ Y
i LeZ;

(87)

This decoupled network model has an obvious (relation-free) g-form subsystem symmetry
of codimension D —d, i.e. a Z(q k)(gz'l’gz,_ .) symmetry with k = D —d. Tuning the free
parameter of its dH @) Jeaves drives a phase transition that can be described as spontaneously

breaking this hlgher form subsystem symmetry.
The second piece of data is a subgroup

=28 (7, 75, ) [~ c 280 (T, Py, .. ) (88)

of the global symmetry group of the decoupled network model. This subgroup is generally

chosen based on relations satisfied in the target model ? Hgi’k), i.e. we want that

k k
23 F, F,..)| 7 < sym (PHEY) . (89)
The two network constructions of §A.B are then obtained as follows.

1) In §A.B.1, we deform the decoupled network model by terms that couple the leaves
together and preserve the 5 symmetry,

dHéqz)(gl,?z,..-) - ngZz)(gbgz’---)"‘HC’ (50)

where H is a coupling Hamiltonian that features operators whose support spans multi-
ple leaves. That is, we consider the decoupled network model enriched by its # symme-
try. Generally, H; includes a parameter that preserves the full subsystem symmetry group
and drives the system into a phase where the subgroup 5 becomes spontaneously un-
broken; thus, 5 acts trivially in the low energy effective Hilbert space in this phase, and

we are be able to identify the residual group which acts faithfully, qu’k)(fil, Foy.nn) / H,

with (a subgroup of) the symmetry group of PH. gi’k). The transitions we obtain in this
way are generalizations of the p-string condensation mechanism of Ref. [61].

2) In §A.B.2, we couple the leaves together by gauging the # symmetry,
H(F, F,..) = HD (T, T, )] 2. (91)

That is, we immerse the decoupled network model inside of a bulk gauge theory which
mediates its interactions. Here, we find that the symmetry breaking phase of the decou-

pled network model maps after gauging to the symmetry breaking phase of ’H gi’k). The

38


https://scipost.org
https://scipost.org/SciPostPhys.15.1.017

Scil SciPost Phys. 15, 017 (2023)

symmetry preserving phase of the decoupled network model generally maps to a “pure
gauge theory” of the global symmetry 5#. Thus, the gauged network model has a phase
diagram that interpolates between these two phases, and we may leverage our knowl-
edge of the phase structure of the ungauged model (using various well-known results
covered in §2.2) to understand the transition of the gauged model. For example, we find
that we can obtain order/disorder parameters for the transition by simply studying how
order/disorder parameters of the decoupled network model are mapped under the gaug-
ing of s#. Furthermore, the decoupled subdimensional critical point of the ungauged

network model ¢H. éqz)(gﬂ, F5,...) maps to a coupled subdimensional critical point that
sits in between the two phases described above.

Finally, in the last subsection §A.B of each section, we write down a parent model that recovers
all of the network constructions above in special limits.

3 (2+1)D Plaquette Ising Transitions

Our goal in this section is to produce interesting phase diagrams involving Zgo’l) / ~ zero-form
subsystem symmetries in (2+1)D. The prototypical example of a model with such symmetries
is the plaquette Ising model ZH(ZZ’D (also known as the Xu-Moore model [96-98]), and it
features heavily in our analysis, emerging deep in different corners of the phase diagrams we
study.

We start in §3.1 by studying coupled wire constructions (and gaugings thereof), and
demonstrate that they recover phase diagrams that involve the plaquette Ising model. In §3.2,
we take anyon models such as the toric code or Z, gauge theory as our starting point, and
show that gauging subsystem subgroups of their one-form symmetry leads to another perspec-
tive on the plaquette Ising model. Finally, in §3.3, we unify these two constructions within
a “parent model” which we call the point-string-net model (PSN), in analogy with the string-
membrane-net model of Ref. [52]. It has the property that it specializes to the models explored
in §3.1-83.2 in various limits, and therefore exhibits all the phase transitions of interest in a
single setting.

3.1 Coupled wire constructions

In this subsection, inspired by analogous methods for producing Z, foliated fracton theories
in (3+1)D, we model the linear subsystem symmetries of the plaquette Ising model using Zgo)_
symmetric wire arrays. In the language of §2.3, the two pieces of input data for this subsection
are the decoupled network model 1H2)(9)|(|,§}|,|) and the subgroup # = DZ(ZO) of its global
symmetry group that enacts a Z, transformation simultaneously on all of the wires.

We start in §3.1.1 by strongly coupling together a crossed array of (14+1)D transverse field
Ising wires, which drives a “k-string condensation” transition (k is for kink) from a decoupled
wire phase to the plaquette Ising model; we focus on understanding this k-string condensation
transition using ideas of spontaneous symmetry breaking. This idea generalizes an analogous
construction of the (3+1)D X—cube model using strongly coupled (2+1)D toric code layers and
p-string condensation, first presented in Refs. [61,62]. We call this model the Ising quilt.

In §3.1.2, we study the effect of gauging the diagonal DZgo) subgroup of the Ising quilt.
This is inspired by the string-membrane-net picture of the X-cube model in one dimension
higher, first studied in Ref. [52]. Here, we find that the subsystem symmetry breaking phase
transition of the ungauged wires (i.e. the breaking of the ordinary Z(ZO) symmetry simultane-
ously on each TFIM wire) maps after gauging to a subdimensional phase transition between
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oL

i

Figure 3: The Ising quilt (c.f. Eq. (93)) is defined on a two dimensional square lattice
with two qubits per site. We represent the qubit ’H;" i with a black dot slightly above
and to the left of site (i, j), and the qubit ’Hf’} with a black dot slightly below and
to the right of site (i, j); the wires from which these qubits originate are drawn with
dashed gray lines. The subsystem symmetry operators U]’.‘ and Uiy defined in Eq. (97)
are indicated by the horizontal and vertical red bars, respectively.

the ferromagnetic plaquette Ising model and the (2+1)D toric code.

Finally, in §3.1.3 we study how well-known dualities, such as Kramers-Wannier duality,
play with this coupled wire construction. As we see below, this is tantamount to studying the
effects of gauging the full linear subsystem symmetry group of the Ising quilt.

3.1.1 Coupling an array of transverse field Ising wires

Following the discussion in §2.3, one natural approach for constructing a non-trivial theory
with a g1 / ~ subsystem symmetry is to assemble (1 + 1)D wires, each of which have a
global symmetry group G, into an intersecting “quilt” of N, rows and Ny columns, and then
directly couple them together in a way that respects this symmetry. To accomplish this, we
place a G(®-symmetric (1+1)D theory on each of the leaves of two foliations 94' and ?}l, and
then couple these leaves together. The resulting model, thought of as a (2 + 1)D system, has a
subextensively large symmetry group G(O’l)(gj, ﬂy”) of subsystem symmetries. We then crank
up the coupling, aiming to pass through a phase transition into a more interesting phase than
that of a collection of trivially decoupled wires. In our case, we find that this transition is from
a phase in which the diagonal global symmetry subgroup ®G© is spontaneously broken to one
in which it acts trivially on the low energy subspace of the Hilbert space. Correspondingly, the

low energy effective Hamiltonian has an effective symmetry group G(O’l)(ﬂ)y, 9y”) / PG the
quotient by PG© can be thought of as a non-trivial relation between the symmetries on the

rows and on the columns of the quilt, and is the reason we are taken out of a decoupled wire
phase.

The Ising quilt
We illustrate the effectiveness of this idea by taking for simplicity G = Z, and choosing each
of the wires to be transverse field Ising models (TFIM); however, we have in mind future
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applications of this idea to more general groups. To implement the proposal of the previous
paragraph, we place two qubits at each site v = (i, j) of a square lattice,

H=Qren). (M=, =c), 2

139)

and label the Pauli operators which act on the first qubit }} ; at site (i, j) as X} ;, Z} ;, and simi-
larly for the Paulis which act on the second qubit. We think of the factors &); H; ;jand Q; 7-[2’ i
as the degrees of freedom of spin chains that reside on the rows and columns respectively of
an Ny x Ny grid, which we can take for simplicity to have periodic boundary conditions. We
call 9}1' the foliation of space by the rows of the lattice, and 97}|,| the foliation of space by the
columns of the lattice. See Figure 3 for a visual summary of the setup.

The resulting Ising quilt has Hamiltonian'°

Hio="'HY (7], 7))+ Hc, (93)
where 1H(ZZ)(,97)|(|, ﬁy”) is the Hamiltonian of the decoupled TFIM wires,

170 gl grlly — Y oY y
HO(F), g == (02825, +hX +JZ 7 +hX ) (94)

39)

:_;j(]

and H contains the inter-wire coupling terms,
— _ X vy X 7y
He == (KX X) + K, 232 )
i,j

(95)

:_;j(Kx

This model is spiritually similar to the coupled layer construction of the X-cube introduced in
Refs. [61,62]; we expound upon this in §6.
If we take K, = 0, then the Ising quilt respects the Zgo) symmetry on each TFIM wire,

H ,U*|=o0, H
ol U] =0. [tho

X y . . . .
where U f and U; are the unitary symmetry operators acting on the jth row and ith column
respectively,

U ] =0, (96)
-

=[x, U= X! (97)
i J

We think of the group generated by these unitaries as a group of “subsystem symmetries” of

the Ising quilt, Zgo’l)(t?l',@}['). If we allow K, # 0, then this subsystem symmetry group is

DZ(ZO)

explicitly broken down to the subgroup generated by

v=][xx =] ] v, (98)
i,j j i

19Throughout this section, we do not pay careful attention to boundary conditions.
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which we refer to as the diagonal subgroup. Following the discussion of §2.1, this subgroup is
the one obtained by coarsening both 91')'(' and 5‘7}|,| to the trivial foliation (@)yy

Phases and excitations

We now analyze the corners of the phase diagram that one encounters as one tunes the various
parameters of the Ising quilt to be very large or very small, as well as the excitations in these
phases.

Weakly interacting wires at K; =0 and Ky < 1

When K, = Ky = 0, the Ising quilt simply consists of decoupled (1+1)D TFIM wires. One
can also turn on a small amount of Ky and stay in this phase, however we strictly enforce
K, = 0 in order to preserve the subsystem symmetries. In this regime, as one varies the
competition between the terms proportional to J and h, the individual wires each undergo a
symmetry breaking phase transition, as reviewed in §2.2.1; we interpret this as a subsystem
symmetry breaking phase transition of the full (2+1)D model. The quasi-particle excitations
on either side of this transition can be characterized in terms of spinons/domain-walls on
the individual TFIM wires. (Cf. §2.2.1 for a review of the relevant aspects of the (1+1)D
TFIM.) Our philosophy is that because this transition is equivalent to subextensively many
more familiar lower-dimensional phase transitions, we can leverage it to understand any (more
interesting) phase transitions that are related to it by gauging. We turn to this shortly, in the
next subsection.

But before we do so, we offer some explorations of the rest of the phase diagram of the Ising
quilt, in particular at strong coupling. We expect (and verify shortly) that the model passes
through a phase transition as we dial the strength of either K, or Ky (or both). Our strategy is
to first perturbatively determine the low-energy effective Hamiltonians that describe the Ising
quilt deep in these new phases. In doing so we run into a familiar cast of characters.

(2+1)D plaquette Ising model at K; = 0 and Kx > 1

First, let us take K, = 0 and study what happens at Ky > 1. To do this, we view H as
a soluble Hamiltonian, and consider adding 'H. g;)(?i', ?y”) as a perturbation. The former has
an extensively degenerate ground space, spanned by states that, on each site (i, j), have both
qubits in the same eigenstate of Pauli-X. More precisely, its ground space takes the shape

Heo =M, (99)
i,j

where H;; C 1, ® Hly jis the space spanned by {|++),|—)} with |£) the eigenstates of

Pauli-X. The addition of the perturbation ng)(gil,g;l) splits the energy levels of the states
in Hg,, but still keeps them well separated by a large gap from the rest of the excited states.
Our goal is to write down a low energy effective Hamiltonian Heg that acts on H, and whose
eigenvalues encode the energies of these states.

If we think of the states {|++),|—)} at the site (i, j) as the |+).4 states of an effective
qubit, the operators

_ 77X 7y _wvX vy
Zi;=7{Z;;, X;j=X;=X; (100)

act in the standard way as Pauli operators,
X;jlEE) = £|2%),  ZjlEE) = |FF). (101)

The low energy Hilbert space H, then consists of one qubit per lattice site, and Hg resembles
a (2+1)D lattice model built out of the operators Z; ;, X; j- In fact, one can show that to fourth

L2
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order in perturbation theory, up to an overall constant

Hegp ~ —Z (TZijZi 11 201 j1 Zi 1 + 1Ky )
L,j
Z Z

:—%:(J , +h

(0.5

(102)

i.e. H.g is the plaquette Ising model. Here, h ~2h(1+0(1/K?)) and J ~ #%(1 + 0(1/K)).
The precise values of J, h are unimportant for what follows.
This plaquette Ising model inherits its subsystem symmetries from the Ising quilt. In par-

ticular, when restricted to Hg, the symmetries in Eq. (97) become

_ y _
b, = [0 UMb =] %0, (103)
L J

which one can verify commute with Hg. In the IR, the diagonal DZ(ZO) subgroup acts triv-

ially on the Hilbert space, so that the full symmetry group of the plaquette Ising model is
2005}, D[P

Furthermore, as one might expect, as one varies the ratio J/h in the Ising quilt (while
keeping Ky strong), the plaquette Ising model undergoes a subsystem symmetry breaking
phase transition. However, we emphasize that this does not occur when J/h = 1, but rather
when J/h = 1. In more detail, when J/h < 1, the subsystem symmetry group is preserved,
and the excitations are spinons,

V) ~Z,|Q) +--- (104)

When J/h > 1, the subsystem symmetry group is spontaneously broken; the spinons are
condensed, and the excitations are fractons supported at the four corners of a membrane
operator,

|p1)p2’p3:p4>Nl_[XV|Q)+"': (105)
vER

where p4,...,p,4 are the four corner plaquettes of a rectangle R.

Now, in order to more directly connect the physics of the plaquette Ising model to that of
decoupled TFIM wires, we study the transition between these two phases as one drives Ky
from small to large values. We see that it is similar to the “p-string condensation” mechanism
of Ref. [61], and we follow some aspects of their discussion closely; however, at the end of this
subsection we are also able to offer an alternative perspective which relates this transition to
more familiar physics. See also Ref. [99] for a related discussion.

For simplicity, let us turn off the transverse fields on each of the wires, i.e. set h = 0, so that
we are deep in the subsystem symmetry broken phase of the Ising quilt. When Ky = 0, the
operator XX Xy creates two pairs of domain walls/kinks, one pair on each of the two TFIM
wires wh1ch 1ntersect the site (i, j). If we represent a kink on a TFIM wire as a squiggly line
segment which bisects the edge on which the kink lives, then the operator X? Xy] creates a
squiggly “k-string” loop (k for kink) formed out of the four squiggles which blsect the edges
that emanate from the site (i, j). Acting with this operator on several neighboring sites creates
larger and larger k-string loops.
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Figure 4: A closed k-string and a pair of open k-strings with excitations supported at
their end points.

It is fruitful to consider open k-strings, i.e. k-strings with endpoints. These can be created
for example by acting with ]—[(i, )eRr X'Zj, where the product is over sites inside of some rectangle
R. Since we are using Paulis which act only on the TFIM columns (and not the rows), this
creates two horizontal k-strings whose four endpoints reside inside plaquettes which corner
the rectangle R. We consider the endpoints of these open k-strings as excitations in their own
right. See Figure 4.

As we drive Ky to larger values, the k-strings proliferate throughout the system and eventu-
ally condense. Because application of Xf Xz' creates closed loops and therefore cannot move
around the endpoint of an open k-string, the bulk of the k-strings fluctuate and become un-
observable, while their endpoints remain well-defined objects that we can identify with the
excitations of the PIM that violate the plaquette terms. In tandem with this condensation,
the diagonal DZ(ZO) subgroup of the subsystem symmetry group transitions from being sponta-
neously broken to being preserved.

This entire discussion is in complete analogy with the p-string condensation mechanism
of Ref. [61], with kinks in the TFIM wires playing the role of magnetic m particles in the toric
code layers, and the endpoints of k-strings/the associated PIM excitations playing the role of
the totally immobile fractons of the X—cube model. The perspective we emphasize presently is
that the k-string condensation transition is a conventional phase transition of Landau type, in
the sense that it coincides with the spontaneous unbreaking of a global symmetry.

(2+1)D transverse field Ising model at Ky =0 and K; > 1

Before moving on, we briefly comment on the low energy effective Hamiltonian one obtains
if one instead drives K; > 1 in the Ising quilt of Eq. (93), taking Ky = 0. In this case,
the coupling breaks the full collection of subsystem symmetries down to the diagonal DZS))
subgroup, and consequently we expect to recover a more conventional model with ordinary
Z, symmetry. Indeed, one need only go to second order in perturbation theory in this case
to find the (2+1)D transverse field Ising model as the effective Hamiltonian (up to an overall
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constant),

effN_Z(J (ZijZi1;+ 22 500) + X)), (106)
i,j

where now, J' ~ #J2/K(1+ 0(1/K)) and h’ ~ 2h(1 + O(1/K)). The above Hamiltonian acts
on the ground space of H¢|k,—¢ in the K; — oo limit, which consists of an effective qubit at

each site,
Heo =M, (107)
=

where H; ; C ”HX ® ’Hy is spanned by {|11),|ll)} with |T)/|]l) the eigenstates of Pauli-Z. The
operators actmg on th1s effective qubit which appear in the effective Hamiltonian above are
defined in terms of Paulis acting on the full Hilbert space as
—gX —gY — wX Y
Zi; =2} ,=7, X=X X. (108)
See §2.2.2 for further properties of the (2+1)D TFIM, including discussion of its spinon and
domain wall excitations.

Order and disorder parameters
There are several useful order and disorder parameters that one can use to probe the phase
diagram of the Ising quilt. Throughout this mini-section, we set K, = 0. We are primarily
interested in understanding the subsystem symmetry breaking phase transition when Ky is
also set to 0, but the parameters we write down here can be used to understand the rest of the
phase diagram as well, away from Ky = 0.

One possibility is to consider order/disorder parameters on the individual wires,

X — X X X
0(1,1) r =1 JZl+r,J > (l,J) r D X k,j >
<k<
, - i i+r (109)
0(1,1) r =2 ,JZl,J+r ’ (1,1) r l—[ X
j<k<j+r

Here, ﬁ( i), can be thought of equally well as a candidate order parameter for the subsystem
symmetry supported on the jth row, or as a candidate order parameter for the diagonal zero-
form symmetry DZ( ). On the other hand, one can only think of @X ) asa candidate disorder
parameter for the subsystem symmetry on the jth row. On the KX = 0 line these behave as
532 (#e /5, J/h<1 %2 (const., J/h<1
< > r—oo { / P < U > r—o0 s / P (110)

o' L
(@.j).r const., J/h>1, (@.7).r #e TS J/h>1,

and so these can be reliably used to diagnose the spontaneous symmetry breaking phase tran-
sition as J/h is varied in the decoupled wire phase, depending on whether they have long
range order or not.

The order parameters above can also be combined in various ways. For example, it is
natural to consider the combinations

SS _ SS _ SSgY
=[] zz. Sz=[]x. Sz=]]x. (111)

vecorner(R) VER vER

where here, R is a rectangle, thought of as a set of vertices, and corner(R) is the set of 4

vertices which form the corners of R. Note that 55603 and 52}, can be thought of as candidate
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order/disorder parameters for the generators of the subsystem symmetry. In the decoupled
wire phase (Ky = K; = 0), we have that

Kx=0 —P(R Kx=0 —height(R)/&
<550R> large R {#e ()/E’ J/h<<1 SS -~ x large R {#e eight( )/i, J/h<<1 (112)

Py ——
const., J/h>1, Y #e AR Ao J/h>1,

where P(R) is the perimeter of R and A(R) is the area. One reason to consider these parameters
is that in the Ky > 1 limit (i.e. in the plaquette Ising model phase), they collapse to “natural”
order parameters for the plaquette Ising model,

Kxy>1 Kx>1
55 g, =2, Z,, ss@gx_,l_lxv_ (113)

vecorner(R) veR

We call these order/disorder parameters “natural” because they map to one another under the
self-duality of the plaquette Ising model. It is possible to show [ 100] that in the PIM, Eq. (102),
these satisfy

Ky>1 AR Ky>1 .-
(SS@: ) largeR | #e (R)/4q , J/hl (SS@M) large R | const., J/h<1 (114)
—_— . —_ , .
R const. J/h>1, R #e AR/Ay - JIh>1.

According to the discussion of §2.1, in a symmetry preserving phase, any candidate order
parameter for, say, a row symmetry should decay with the separation of the two points at
which local operators are inserted on that row. This may seem at odds with the fact that we
found a perimeter (area) law in the decoupled wire (plaquette Ising) phase. The resolution is
that we should be studying how the order parameter decays with the width of R, assuming it
has a large but fixed height. Indeed, if the height is fixed, then the perimeter and area laws
can both be thought of as “width laws”, which is consistent with the general picture of order
parameters for subsystem symmetries we explained earlier.
Another natural combination is as follows

0, =17 ( 1 z’;zg) z¥, o =] [xx, (115)

vecorner(y°) veR

where here, y is an open path on the lattice with vertex endpoints y; and y¢, and corner(y°) is

defined as the set of vertices in y which are met by two edges of y which form a right angle.

Also, u; is the direction of the edge in y which emanates from y;, and similarly for u;. Again,

when Ky = 0, the behavior of these parameters can be computed using trivially decoupled
wires,

Kx=0 , Kx=0 ”
D lafge Y #C_L(Y)/E 5 J/h L1 5 D lafgeR #e—P(R)/§ 5 J/h L1 N
S e A : (") _aryA (116)
! #emalcomerI+D) - y/p > 1 #e B/ J/n> 1.

The disorder parameter is a truncated symmetry operator corresponding to the diagonal sym-
metry DZQO). We explain why the order parameter is natural below

Relation to (2+1)D TFIM with dynamical disorder

The fact that the k-string condensation transition is a spontaneous symmetry breaking transi-
tion allows us to obtain an intriguing alternate perspective on its physics as follows. First, we
notice that when h = 0, the Ising quilt gains an extensive number of conserved charges

Z __ y
Q4 =7},7), (117)
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which commute with the Hamiltonian and among themselves. Therefore, we can work in a
simultaneous eigenbasis of all these operators. To facilitate this, we can perform the following
change of variables (which is similar to one used in Ref. [101]),

Z;; =7y, X —XX]Xy],

’ s (118)
Z __ y X _ vy
Q=2Zi;, Q=X

One can verify that these operators have the same algebra as two commuting sets of Pauli
operators. If one expresses the Ising quilt in terms of these new variables, one finds

HIQ|h:o - _Z (J(ZIJZIHJ + Q Qz ]+1 i,j+1) +KXXi,j) . (119)
i,j

More suggestively, if we act on eigenstates of the le j with eigenvalues g; ;, then the Hamilto-
nian within a such a “g-sector” is

HIQ({Qi,j})\hZO = —Z (J(zi,j2i+1,j + qi,jqi,j+12i,j2i,j+1) + KX)A(i,j) . (120)
i,j

This is none other than a (2+1)D transverse field Ising model with antiferromagnetic disor-
der!'! This gives the qubits QZ ij the interpretation of “dynamical disorder fields” which are
very similar to those employed in Ref. [102] to achieve disorder-free localization. Thus, we
find that the k-string condensation transition is in the same universality class as a conven-
tional Ising critical point decorated with dynamical disorder. In connection with this, we see
that the order/disorder parameters written in Eq. (115) become precisely the order/disorder
parameters of an Ising transition.

We hope that this observation will help catalyze future investigations into the relation-
ship between fracton physics and many-body localization [103], excited state phase transi-
tions [104], etc. (see Refs. [105,106] for some work in this direction).

3.1.2 Gauging the diagonal subgroup

We now explore an alternative method for coupling together (1+1)D wires. Instead of directly
coupling together TFIM wires through local operators supported at their intersections, we im-
merse them inside a (24+1)D Z, gauge theory that mediates their interactions. This idea is
similar to the foliated description of the X-cube model presented in Ref. [52], or more gener-
ally the topological defect networks of Ref. [68], however it differs in that we do not require
the various strata to be topological. (See also Ref. [107] for a spiritually similar supersym-
metric U(1) construction which arises on the world-volumes of branes in string theory.) Our
ultimate aim, as we stated earlier, is to study the fate of the subsystem symmetry breaking
phase transition of decoupled Ising wires after they are coupled to the bulk topological gauge
theory.

The gauged Ising quilt
We obtain the desired model by applying the energetic gauging prescription (cf. §2.1) to the
diagonal subgroup ¢ = DZ(ZO) of the global subsystem symmetry group of the Ising quilt in

0One might be confused about why the defects only seem to appear on vertical links in the lattice. This is
essentially because our change of variables in Eq. (118) picked a direction. If we had instead chosen 2 = Zy
and QX = X"j then the dislocations would appear on the horizontal edges. In general, we are free at each site to
perform the change of variables differently, in which case the defects appear on some combination of both vertical
and horizontal edges.
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Eq. (98). One motivation for gauging this particular subgroup is that we are interested in con-
D Zgo) is precisely

structions of the plaquette Ising model, and we can observe that this overall
the difference between the global symmetry group of decoupled Ising wires, Z(zo’l)(g)y, 9y”),

and the global symmetry group of the plaquette Ising model, Zgo’l)(ﬁ')'(', 9‘;') / DZ(ZO). In other
words, the idea is that, in order to eliminate the extra symmetries of decoupled Ising wires that
act trivially in the plaquette Ising model, we can simply gauge them. We indeed find below
that in a certain limit, the PIM is recovered from this construction.
The resulting gauged Ising quilt has Hamiltonian
HIQéDZ(ZO) = Hcpw + He + Hgayge

(121)
G, =xx[[x.= @% ,

esv

whose ingredients are defined as follows. First, in addition to the two qubits per lattice site
of the Ising quilt (which we alternate between labeling with their coordinates (i, j) or simply
by v for “vertex”), we have added a qubit to every link of the lattice (which we label either by
e.g. (i+ %,j), (i,j+ %), or by e for “edge”) to play the role of the Z, gauge field. The term G,
written above is the Gauss’s law constraint for this gauge symmetry. We take the energetics of
this gauge field to further be governed by

gauge UZX _tZl_[Z (122)

Ly $.+$ . 03 @z@

These terms play the role of the “E2” and “B2” terms one would encounter in gauge theories
with a continuous gauge group. In the strict gauging procedure, we would have called the
second term a “flux term” and imposed it as a constraint on the Hilbert space, however we
choose to impose it energetically for now. To give ourselves more knobs to tune, we have also
included the first term proportional to U; we investigate how it impacts the physics shortly.
We demand that the rest of the terms in the gauged Ising quilt be gauge invariant, i.e. that
they commute with each G,.

The term H¢py is obtained by taking the Hamiltonian 1Hg;)(9‘)|(|,9}|,|) for the decoupled
Ising wires, Eq. (94), and “covariantizing” the two-body Pauli-Z terms—e.g. by making substi-

tutions like Z7 ]Zf i1 - Z7 le 41 JZ i41,j—S0 that they are gauge-invariant, leading to

— X X y y Yy
<HQWV———§Z(JZJ o1 T, X T2 7 T R )
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Finally, for completeness, we also include the coupling terms from the Hamiltonian in
Eq. (95),

Ho=— ) (KX X + K, 2570 ), (124)
i,j
since they are gauge invariant without requiring any modification. However, they do not play
a crucial role in our story, and for the most part we keep them turned off, in which case the
only interactions between the wires are mediated indirectly through the gauge theory.

We note in passing that, when Ky = K, = 0, many aspects of this model are amenable to ex-
act analysis, simply because the (1+1)D transverse field Ising model is exactly soluble. In par-
ticular, any DZEO)-even correlator function of the decoupled Ising wire model, 'H. 2)(9')9, 9}','),
descends to a correlator of the gauged Ising quilt with the same value.

Before moving on, we perform a local unitary circuit that makes imposing the Gauss’s law
constraint more straightforward. It is defined as

V= l_[( i,j 1+21)( l+1,in+%,j)(C,JX11+2)(Ciy,j+1Xi,j+%)
A
(125)
[T« .
i,j

Here, C/'X, (for u =x,y) is a controlled-X gate. Using the identities from Eq. (14), we find

e D N A D N )

_UZX —tZl_[Z l_lzXZY Z(KXX)\iXZl_[Xe'i_KZZ):Zz) (126)

p e€p VEpP eV

VG,V =x%7 .

The motivation for considering this unitary circuit V is that, as one can see, it converts the
Gauss’s law constraint to a product of operators supported on a single site. Solving this con-
straint can now be accomplished in the same way we computed the Ky > 1 effective Hamilto-
nian in §3.1; i.e. we reduce to a single effective qubit per site, whose effective Pauli operators
are defined in terms of X},, Z!/ as in Eq. (100). Then, within this constrained Hilbert space, the
gauged Ising quilt becomes

Herg 1=V (Hig 25" ) V'

VG, V=1
= _Z(Jze + UXe)_hZ( i1 ]XlJXl+ J +X 1XlJXl,J‘F ) (127)
e i,j

—e> T1z] ]z —Z(KXHX8+KZZV)

p e€p vep esv
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S L B IR SS ISP 5 S 25

elly ellx elly ellx

VAZVARVA

)| BB® + @ |- ) @tt@ (128)
v r DD
—Z KX.%."'KZ# .

This is the model we work with. We note that if we were to instead use the “strict” gauging
procedure, then we would obtain almost the same model, except with U = 0 and with the term
proportional to t imposed as a constraint. The strict version of the theory has an emergent
quantum DZS) one-form symmetry (cf. Expectation 1 of §2.1), whose symmetry operators take

the form
o=]]z. ]| 2. (129)

ecy vecorner(y)

where v is considered a “corner” of y if two edges of y meet v at a right angle. In addition,
both the strict and energetic versions of the model have a subsystem symmetry group of the

form Zgo’l)(gll, ?}I,I) / DZEO) that are generated by the operators
— v _
vr=[Ix;. =] ]x,- (130)
i J

Interestingly, by virtue of this construction, the strict version of the gauged Ising quilt has a
sector whose correlation functions are well-described by decoupled Ising wires, and so are
exactly soluble. This appears similar to the idea of “dimensional reduction” (see e.g. Ref. [97,
108]).

Phases and excitations

To gain some intuition for the phase diagram of this Hamiltonian, we study it in various ex-
treme limits of its parameters. We are primarily interested in what happens as one tunes
the competition between J and h when Ky = K, = 0, which before gauging corresponds to
the subsystem symmetry breaking phase transition of decoupled Ising wires. After gauging,

Expectation 2 of §2.1 suggests that it should correspond to a simultaneous breaking of the

1)

Z(zo’l)(ﬂy,g}',') / DZEO) subsystem symmetry group and an unbreaking of the emergent DZZ

one-form symmetry (cf. Figure 5). We find that this expectation is fulfilled below.

Plaquette Ising model at Ky =K, =0and J > 1
First, let us turn off the couplings Ky and K, and study what happens when J is taken to
be very large. Before gauging, this is the subsystem symmetry breaking phase of decoupled

Ising wires. After gauging, one is still in the subsystem symmetry breaking phase. Since DZgo)

was spontaneously broken before gauging, the emergent quantum DZS) one-form symmetry
should act trivially on the low energy theory deep in this phase after gauging.
Let us check that this expectation is borne out. The effect of taking J large is to freeze

out the degrees of freedom on the links so that they are all in the spin up state. We can then
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compute the effective Hamiltonian within this subspace using perturbation theory, in the same
way we have been in previous sections. We find that if one goes to third order in perturbation
theory, the low energy effective Hamiltonian is

HGIQ%—EZHZV—EZXV, (131)

p VveEp v

which is precisely the plaquette Ising model. The term proportional to U in Hgq is crucial
here for the purposes of generating the transverse field term proportional to i, which is why
we have included it.

In the “strict” version of the gauging procedure, introduced in §2.1, the term proportional
to U is not present, the flux term is imposed as a hard constraint on the Hilbert space, rather
than energetically. In this case, the Hamiltonian is essentially zero, and the entire Hilbert space
by definition consists of the ground states of the plaquette Ising model with the transverse field
term turned off, i.e.

strict

Hgio—0, 132)
132
szl_[szl, Vp.
vep

Fractonic excitations (i.e. violations of the F,) correspond to inserting antiferromagnetic de-
fects in the Ising wires before gauging; this is completely analogous to the fact that electric
particles in Z, lattice gauge theory correspond to anti-ferromagnetic defect networks of the
transverse field Ising model, as we have described in §2.2.2.

In total, we confirm our expectations that the subsystem symmetry breaking phase of de-
coupled Ising wires maps, after gauging, to the subsystem symmetry breaking phase of the
plaquette Ising model, and that the DZ(ZD
(i.e. is unbroken).

is realized trivially on the low-energy Hamiltonian

Deconfined Z, lattice gauge theory at Ky =K, =0and h> 1

On the other hand, we can consider the limit in which h becomes very large. Before gaug-
ing, this corresponds to the subsystem symmetry preserving phase of the decoupled Ising wires,
and so the subsystem symmetry group remains unbroken after gauging the diagonal subgroup.
Moreover, after gauging, the emergent quantum DZ(ZD symmetry is spontaneously broken. We
see that this corresponds to a deconfined Z, gauge theory phase (i.e. a toric code phase) below.

It is actually easier to work with the Hamiltonian in Eq. (121) rather than Hg,q (note that
the two are unitarily equivalent). If we take h > 1, then the two qubits at each site of the
lattice are energetically forced into +1 eigenstates of Pauli-X. This has the effect of freezing out

all the matter degrees of freedom, leaving behind only the gauge qubits, which are governed

by the Hamiltonian
0) hk>1
o207 S xS [ 2.
e

P e€p (133)
G, =[[x..

[=2%

This is simply pure Z, lattice gauge theory. In the strict gauging procedure, the Hamiltonian
is a constant, and in addition to the Gauss’s law constraint, G, = 1, we also impose the term
proportional to t as a constraint. In this case, one sees that the emergent quantum DZS)
one-form symmetry is identified with one of the one-form symmetries of the toric code, which
allows us to verify that it is indeed spontaneously broken. The model evidently also grows

another one-form symmetry in this limit as well.
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Having identified this phase with toric code, we offer an interesting picture of its ground
state. To achieve this, we make use of the unitary circuit

S (CENN CRENREI N s ot
139)

(134)
Then the gauged Ising quilt becomes
VHgoV' = —JZ( o1+ 2T i)~ UZX
(135)
—hZ(x +x, [ [x. )—tZl_[Z
esv p e€p

Consider Ky =K, =U=J =0in \N/HGIQ\N/T. We recognize that the ground state wavefunction
in the Pauli-X basis corresponds to an equal weight superposition of closed strings (similar to
the conventional toric code groundstate) decorated with points where the strings turn corners.
This model has interesting symmetry properties under the gauged zero-form linear subsystem
symmetry [85].

Phase transition at Ky =K, =U =0and J =h

Let us trace how excitations of the Ising wires descend to excitations of the gauged Ising
quilt. We set Ky =K, =U = 0.

When h = 0, a domain wall on an Ising wire maps to an excitation of the single body
Pauli-Z term proportional to J. A pair of such excitations can be created e.g. by the operator

(pair of gauged domain walls) ~

Xt | [T Xii [Xouplo)- (136)
io<i<i,

Such excitations are locally equivalent to violations of the plaquette terms proportional to t.

For example, multiplying the above creation operator by X; _1j, converts one of the gauged

domain walls to a pair of plaquette excitations. Such plaquette excitations coincide with frac-

tons of the plaquette Ising model.

On the other hand, when J = 0, a spinon on an Ising wire is mapped to a violation of
the three-body Pauli-X term proportional to h. In the deconfined Z, gauge theory phase, they
coincide with gauge charges/flux excitations.

With these identifications in place, we see that the image of the decoupled (1+1)D Ising
symmetry breaking phase transitions on wires maps after gauging to a phase transition from
the toric code to the ferromagnetic phase of the plaquette Ising model induced by the conden-
sation of gauge charges along lines. We point out that the independent condensation of the
gauge charges along vertical and horizontal lines is due to the presence of two different kinds
of terms with coefficient h, whose excitations lie in the same superselction sector but differ via
some local dressing that causes one type to be condensed along horizontal lines, and the other
vertical. If one instead considers the phase transition point passing from the ferromagnetic
plaquette Ising model to the toric code, one finds pairs of adjacent corner kinks are condensed
along horizontal or vertical lines, orthogonal to their displacement vector.

Order and disorder parameters

As we’ve emphasized, the Ky = K; = 0 line of the phase diagram, before gauging, corresponds
to the subsystem symmetry breaking transition of decoupled (1+1)D Ising wires. After gauging
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Ising quilt (Kx = K; = 0 decoupled wires): ng?(ﬁ'll, 9}',')

Zgo,l)(g)y’gy) Z(zo,l)(g)y’ 9;|)
subsystem symmetry | subsystem symmetry
preserving phase breaking phase

> J/h
. D (0)
J gauging “Z,

Gauged Ising quilt (Ky =K; =0): 1Hg?(9)|(|, Q}U) / DZ(ZO)
Z(Zo’l)(ﬁ)l(l , 9’;' ) / DZEO) preserved Zgo’l)(g')'(' , 37}|,| ) / DZ(ZO) broken

DZS) broken ngl) preserved
(toric code phase) (PIM phase)
> J/h

Figure 5: Phase diagram of the Ising quilt, before and after gauging the diagonal

DZ(ZO) subgroup of its symmetry group.

the diagonal , we have seen how this transition is mapped to one that spontaneously

D Z(zo)
breaks Z(zo’l)(ﬂ'}ll, 9y”) / DZ(ZO) while unbreaking DZ(ZI). Indeed, the symmetry preserving phase
of the decoupled Ising wires maps after gauging to the toric code phase, where the Di(zl) one-
form symmetry is broken but there are no non-trivial subsystem symmetries. On the other
hand, the symmetry breaking phase of the decoupled Ising wires maps at low energies to a
plaquette Ising model phase, where the subsystem symmetry is spontaneously broken but the
ng) symmetry acts trivially. See Figure 5. In between, there is a critical point, which our
results suggest is described by a grid of (14+1)D Ising conformal field theories coupled to a
(24+1)D Z, gauge field. It would be interesting to try to explore this critical point further in
the continuum using techniques of (1+1)D CFT.

We can obtain order/disorder parameters for this symmetry breaking transition by map-
ping over the order/disorder parameters of the Ising quilt (described in the previous subsec-
tion) via gauging. In the strict version of the Ising quilt, these order/disorder parameters have
the same ground state expectation values as in the ungauged model. Carrying this out for the

most basic parameters described in Eq. (109), we find for the order parameters that

V(o P2 T 2y

i<k+3<itr

VG, V=1 (137)
y D5 (0)(,+ Vv —
V(ﬁ(i,j),r/ L )V — l_[ Zijy1s
j<k+i<j+r
and for the disorder parameters that
Dy (0)) ¢ VG V=1
V(2. [720) V' Xl T % | Xirass
i<k<i+r
(138)
vy D (0)) 1 VOV =1
J<k<j+r

w
(i)j)’r
metry operators of the gauged Ising quilt, decorated by local operators at their endpoints.

As one can see, the disorder parameters 9 are mapped again to truncated subsystem sym-
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These can therefore be thought of again as disorder parameters for the subsystem symmetry
in Eq. (130). On the other hand, the order parameters 0(‘; o also appear to be mapped to
truncated symmetry operators, except this time they are associated to the emergent quantum

one-form symmetry ngl) from Eq. (129). Since the symmetry operators are oriented only
strictly in the u direction, they could also perhaps be thought of more specifically as disor-
der parameters for the zero-form subsystem subgroup DZ?’”(?L?&) of DZS). (Cf. §2.1 for
a description of subgroups obtained by refinement of foliations.) The vacuum expectation
values inherited by these operators is consistent with the claimed pattern of symmetry break-
ing/unbreaking.

For completeness, we also write how the order/disorder parameters from Eq. (111) map,

v (SsﬁR/DZ(QO)) v vcv—v'=1) l_[ Z,,

vecorner(R)
55 gy [Dr7(0)) 1 YOV'=1
V( 9%/ Z, )V' l_[ Xig-1j l_[ Xij [Xit1)o (139)
Jo<j<h i <i<i;
557 [D(0)) 1 YEV'=1
v ( @R/ ) v’ T Xee | TT %0 %000
ip<i<iy Jo<i<i1

as well as the parameters from Eq. (115),

v (DﬁY/DZ(ZO))VT yevi=, [ ]z

ecy

v (2R [PZ) v vevay, []x..
e€dR

(140)

Here, v is an open path on the lattice, the rectangle R has corners (iy, j), (ig, j1), (i1,Jo), and
(i1, j1), and IR is the closed path on the dual lattice that surrounds all the vertices of R. Note
that, for example, 55@, is mapped to an order parameter for the spontaneous breaking of the

subsystem symmetry group Zgo’l)(g)y,?}',') / DZ(ZO). Also, it is clear that Dﬁy gets mapped to

a truncated symmetry operator for DZS) (with its corners stripped of their local operators)
and so may be thought of as a disorder operator for the spontaneous breaking of the emergent
quantum one-form symmetry. On the other hand, %y is mapped to a closed line operator that
is charged under the emergent quantum one-form symmetry, and so can naturally be thought
of as an order parameter for its spontaneous symmetry breaking. Again, the vacuum expecta-
tion values of all these operators, supplemented with their interpretations as order/disorder
parameters in the gauged theory, are consistent with the claimed pattern of symmetry break-
ing.

Most of this discussion generalizes straightforwardly to the case of Zy where, following
the analysis of Ref. [74], we expect this phase transition to become stable for sufficiently large
N. A natural further generalization would be to study arrays of more general (1+1)D RCFTs
with global symmetry coupled to bulk discrete (24+1)D gauge fields.

3.1.3 Dualizing the leaves

It is interesting to ask how the coupled wire construction of the previous section plays with
performing a Kramers-Wannier duality transformation on each of the wires. Because of the
close connection between KW duality and gauging (cf. §2.2.1), the discussion of this section
could alternatively be rephrased in terms of gauging the linear subsystem symmetry of the
Ising quilt. We circle back to this perspective in §3.2.
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We briefly recall how KW duality acts on the (1+1)D transverse field Ising model. If we
place dual qubits on the edges of the lattice (which we label by half integer coordinates) then
the KW map is implemented at the level of the operator algebra by

X; = Zi—§Zi+§ )
e 141
221 =%, = Zi=] X (141)
i">i
The TFIM then transforms as'?
> U2 T +1X) o =D (IR s +hZ 17, ). (142)
; ;

We can consider KW dualizing, say, the TFIM wires which run along columns before coupling
them together.
Similarly, the plaquette Ising model enjoys a duality with the 90° compass model,

HQC:_Z( i,j+3 l+1,1+1+hz %Zi,j+%)

Z

Z—Z(j X® Xe® +h
L,J

(@.5)

) (143)

Z

see e.g. Refs. [98,108,109]. The above Hamiltonian is precisely the one obtained by applying
the KW map column-by-column to the plaquette Ising model.

The XX coupling remains local under the KW map, this suggests that we should be able to
obtain a coupled-wire construction of the quantum compass model as well. This intuition is
correct; we can consider the columnwise KW dual of the Ising quilt,

- X 77X X Y 7y 7y 7y X 7Y
H Z(lejzmﬁhx UK HRE T HGE xuzwz) (144)

% () % % E ()] E
iLj (i.j) @i (i.j)

and proceed by computing the low energy effective Hamiltonian of this model at large Ky,
following the same procedure discussed in the previous section.

Now, the low energy effective Hilbert space coincides with the ground space of the term
proportional to Ky, which can be thought of as follows. If we write the full Hilbert space as

’H=®(7—L oH ) (7—[ =M %«:Z), (145)
3y

2

and consider tensor product states in H

gs» ONCE One fixes the qubits in the spaces H 1 to be
2

B

in eigenstates of Z’ 1 the states of the qubits in 1} j are completely determined: namely, we
L]ty 5

2Here and in the rest of this section we ignore global issues. For example, the TFIM is technically not self-
dual under Kramers-Wannier duality, but rather dual to a TFIM coupled to a Z, gauge theory; since discrete
gauge theories in (1+1)D are topological, this often neglected subtlety does not rear its head if one restricts their
attention to certain local aspects of the physics, including symmetry-even correlation functions of local operators.
See Ref. [86] for a careful treatment of Kramers-Wannier duality.
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Figure 6: A typical state in the low energy subspace of the Hamiltonian in Eq. (144)
in the Ky — oo limit. Arrows pointing right/left indicate an eigenstate of Pauli-X
with eigenvalue +1/—1. Arrows pointing up/down indicate an eigenstate of Pauli-Z
with eigenvalue +1/—1. The effective qubits are simply the yellow ones.

place H; i in an eigenstate of X} ; with eigenvalue —1 if there is a domain wall between the

edges (i,j — %) and (i,j + %), and in a +1 eigenstate otherwise. Thus, we can think of the
effective qubits of the low energy space as living on the vertical edges of the lattice labeled
by (i,j + %), see Figure 6. The Pauli operators on these effective qubits can be expressed in
multiple ways, e.g. as

Z.. 1=
Ljtg ij+3
=x*7"  =x*x* 77 =...= ||xx 7y =
1,j ’]__ 1,j°0,j—1 l]—— i,j’ i,k—%
k<j'<j
~ _ _ (146)
=X 7 = X T == [ 7=
1,j+1 i,j+% 1,j+1°7,j+2 1]+2 i,j’ i,k+% ’
k>j'>j
7 7 _ 7y 24 —_ ywX
Zl,]—%zl,]-‘r%_Z’J EZi’j-}—% Xi,j’
X — 77X vy X
Xi,j+% i,j ij+ i,j+1°

If one then carries out perturbation theory to fourth order and expresses the resulting effec-
tive Hamiltonian in terms of the effective operators above, one recovers the quantum compass
model in Eq. (143). It would be interesting to understand the “dimensional reduction” prop-
erty of the quantum compass model [108] from the perspective of this coupled wire construc-
tion.

If one now dualizes the Ising quilt both along columns and along rows, one obtains the
Hamiltonian

H=-— JXX i+ hZ! 2 +ny  +hZ 77 ot Kyz* | 7* | 70 |7’ (147)
2] l+ ;] 2 ;] 2 1,j+ 2 1_7 ] H'2 ] l,]_7 ;]
(i.7) (i,j) o (i) + KX @
I I I ij ig E

where we can now think of the qubits as living on the links of the lattice. The low energy
subspace is again the ground space of the term on the second line. This ground space is
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spanned by “closed string states”. L.e. if we work in the basis of eigenstates of all the Pauli-Z
operators acting on the links, and color links that are spin down blue, while leaving links that
are spin up uncolored, the ground space consists of states for which the blue links form closed
loops with no endpoints. For simplicity, let us consider the sector of Hilbert space consisting of
closed string states that can be consistently thought of as domain walls.!®> Then, up to global
issues, we can think of the low energy subspace as having the same degrees of freedom as a
Hilbert space consisting of an effective qubit on every plaquette (whose Pauli operators we
write f(i +14ls Zi 114l ), with the colored links forming domain walls separating qubits with
eigenvalue +1 from those with eigenvalue —1 with respect to Pauli-X (see Figure 7). The
logical operators of this ground space can then be expressed in terms of the original Paulis as

=%, %, R

Hadts Ty i iy Ly (148)
X 1. X1, X 11X 1. 2=2, 7%, =70 7 .

=g, j—3 ity j—3 iyt Uit ts i—%,j 41, i,j—3 "0+

Again going to fourth order in perturbation theory recovers the following “nexus” Hamilto-
nian [110],

1 X

Hipexus = — E :(Jzi+%,j+% +hX;_ i+ 181 41 i+%,j+§)

L,j

:_Z J o
i,j

(@0.5)

ol
<.

|
(S

(149)

N

which is precisely the Hamiltonian obtained by KW dualizing the plaquette Ising model along
columns and rows.
This entire discussion can be summarized by the “commuting diagram” in Figure 8.

3.2 Gauged subsystem symmetry enriched anyon models

In the previous section, we considered a somewhat unconventional matter content which
trivially realized subsystem symmetries—i.e. decoupled wires, each with an ordinary global
symmetry—and subjected it to a conventional gauging procedure to bring it into a more inter-
esting phase. In this section, we show that the reverse is also effective: that is, we start with
a conventional matter theory and couple it to an unconventional gauge theory.

More specifically, our matter theory is a (2+1)D theory with a one-form symmetry group
G, By definition, such a theory admits, for each group element g € G and path y through
the system, a symmetry operator U,(g) that commutes with the Hamiltonian. By restrict-
ing attention to the symmetry operators associated to rows and columns of the system, the
one-form symmetry can be thought of as having a linear subsystem symmetry subgroup
G(O’l)(?j,?y”) / ~. We consider the theory to be enriched by this subsystem symmetry sub-
group, so that we allow ourselves to deform the Hamiltonian by terms which commute with
G(O,l)(g:jl(l, gyll)/w.

We may then consider gauging this subsystem symmetry. As reviewed in §2, just as gauging
an ordinary Abelian symmetry G(*) in (1+1)D leads to an emergent quantum symmetry GO
with G = G (see e.g. Ref. [78]), gauging a discrete, Abelian, linear subsystem symmetry
GO / ~in (2+1)D leads to an emergent quantum subsystem symmetry G / ~, where again

13Note that e.g. on a torus, not every string state corresponds to a domain wall configuration: for example, a
state with a string stretching along one of the cycles of the torus.
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<
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Figure 7: A typical state in the low energy subspace of the Hamiltonian in Eq. (147)
in the Ky — oo limit. Arrows pointing right/left indicate an eigenstate of Pauli-X
with eigenvalue +1/—1. Arrows pointing up/down indicate an eigenstate of Pauli-Z
with eigenvalue +1/ — 1. The effective qubits are the red ones. Unlike in Figure 6,
the effective qubits do not coincide with any physical qubits of the Hamiltonian in
Eq. (147).

- v XX coupling ( -
( Decoupled TFIM wires ) L Plaquette Ising model ]

Column KW Column KW

ZXZ coupling

( Decoupled TFIM wires ] { Quantum compass model ]

Row KW Row KW

- \ 7777 coupling (
[ Decoupled TFIM wires ) | Nexus Hamiltonian ]

Figure 8: A commuting diagram summarizing how our coupled wire constructions
play with dualities.

G = G. Therefore, our subsystem gauge theory, together with the one-form symmetric matter
to which it is coupled, enjoys a quantum subsystem symmetry group GV / ~; if the theory
before gauging possesses a non-trivial phase diagram, so too does the theory after gauging,
and so we may hope to obtain a non-trivial theory in this way.
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3.2.1 A subsystem symmetry enriched (2+1)D toric code

As a first pass, let us try testing this idea in the particular case of GV = (1) by taking the
matter theory to be (24+1)D lattice gauge theory,

2Hy) = UZX —e> 1]z,

boeep (150)
G, = l_[Xe:

esv

where above, G, = 1 is the Gauss’s law constraint. As reviewed in §2.2.2, this model has a
Z(Zl) one-form symmetry group that is generated by string operators of the form

=] [x.. (151)

ecy

where 7 is a closed loop on the dual lattice, and the product is over edges which are perpen-
dicularly bisected by 7. Following the discussion of the previous paragraph, these symmetry
generators admit a zero-form linear subsystem symmetry subgroup Z(ZO’U(?)'J, ?;') which we
are interested in gauging, generated by

X y
=X vl =] 1% (152)
t J

Since we are gauging just this subsystem subgroup, we could in principle allow ourselves to
deform the model by terms that respect Z(Zo’l)(gll,?}l,l), but not the full ZS). However, the
one-form symmetry is a consequence of Gauss’s law: so long as we are imposing Gauss’s law
as a constraint on the Hilbert space, the Hamiltonian can only include terms that commute
with it, and it is therefore not possible to add any terms which break the one-form symmetry.

Our solution is to simply work in the extended Hilbert space and drop the Gauss’s law
constraint. We could choose to impose it energetically, however this is not necessary for our
goals. Instead, to avoid a proliferation of terms, we simply perturb by the lowest order term
that breaks the one-form symmetry down to its linear subsystem subgroup. The model this
leads to is

HPTC:_UZX _tZl_[Z _hZ( l]+2 l+1]+%+zl+;]zl+ ]+1) (153)

p eep

where above, we are alternating between labeling edges by e or by (i + %, /G, 7+ %) as
convenient. We refer to this as a “perturbed toric code”. We think of it as being an example
of a more general class of “deformed anyon models”, by which we mean theories of anyons
perturbed by terms that break their one-form symmetries (associated to abelian anyons) down
to linear subsystem subgroups.

Phases and excitations

We note that if one switches perspectives to the dual lattice, then the Hamiltonian Eq. (153)
becomes precisely the model in Eq. (147), i.e. the theory one obtains by performing Kramers-
Wannier duality along all the rows and columns of the Ising quilt. We see shortly that this is
not an accident. An overview of the phase diagram is then easy to infer. At large ¢, the model
is in a nexus Hamiltonian phase. When t is small, it is in a phase that is essentially described
by decoupled Ising wires.
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Order and disorder parameters

Let us focus on the model along the h = 0 locus of parameter space. In this case, the
phase transition as one tunes the competition between U and t is more or less the confine-
ment/deconfinement phase transition of Z, lattice gauge theory (though a version where the
Gauss’s law constraint is not imposed). Our focus is on this transition. A natural set of or-
der/disorder parameters that diagnose this transition were reviewed in §2.2.2. They are

0, = l_lze > Di(pipp) = l_[Xe > (154)

e€y ecy

where ¥(p;, pg) is a path on the dual lattice whose endpoints are the plaquettes p; and py.
In the present context, we note that 9y, ., if ¥(p;, p¢) is oriented just along a single
row/column, can be thought of as a truncated symmetry operator for the subsystem symmetry,
and can therefore serve as a disorder parameter for this symmetry. Its vacuum expectation
value, which transitions from being long-ranged to decaying with the separation of p; and py,
is consistent with the subsystem symmetry being broken as U is lowered. Consider instead the
product of these disorder parameters over two neighboring rows. Here, in contrast to the case
of a single row, it is expected that the vacuum expectation value is always long-ranged, even in
the toric code phase. This suggests that the symmetry elements corresponding to the product of
subsystem symmetry generators over pairs of rows are unbroken rather than broken. Indeed,
this is sensible because, in the toric code phase, it is known that wrapping a string operator
around a non-trivial cycle acts non-trivially on the ground state, while wrapping two string
operators acts trivially.

3.2.2 Gauging the linear zero-form subsystem subgroup

We can then gauge the subsystem symmetry of this perturbed toric code as follows. We intro-
duce two qubits on each plaquette of the lattice X, Zg for u = x,y; these are the subsystem
gauge field degrees of freedom. The local gauge transformation (i.e. Gauss’s law constraint)
is implemented by the operators

G .1=X", X . 1Xf G .1.=X |, (155)

jt3 i L,j+5 i+ 412 i+3,] Xl+ ]Xy 1,1
)T 1—5,J+5 /T2 i+3,j+5 2> l+§,] 2 §]+§

where we are labeling plaquettes by tuples of half integers. We can then suitably “covariantize”
the terms of Hppe to obtain a “subsystem gauged toric code”

Hinc 25" (2], 7)) =~V 3 X, - tZZ"Zyl—[Z

e€p

(156)
_hZ( ,J+2 it 2]+ Zl+1,]+§+zl+2,Jz J+zzi+%’j+1).

Note that there are simply no non-trivial flux terms to consider adding into the mix.

As we have done in previous sections, we now simplify this model by solving the Gauss’s
law constraint. To make this easier, we first transform the model using the following local
unitary circuit,

QN y y
V=H l_[( i+1,j+3 1+§,j+;)(c,l+éxl+2,]+2)(Ci+§:f+1xi+;,j+§)(Cl‘+éxlx+2,}+) (157)

where H®N is a Hadamard which rotates all Pauli-X operators into Pauli-Z operators, and CEXZ
is a CNOT gate.
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After applying this to the Gauss’s law constraint, it simply becomes G, = Z, so that the
qubits on the edges are frozen to +1 Pauli-Z eigenstates. Therefore, after switching perspec-
tives to the dual lattice, the Hamiltonian we’re left with is

0,1 VG, vi=1
V (Hpre[29 (), #) VI ———

~ (158)
_ X X Y 7Y X y X vy |~

Z (U(z{jz{+ T2 )RS X )+ tX{J_ij) > f,,
L,J

where here, (i, j) are coordinatizing sites of the dual lattice. Thus, we precisely find that the
gauged perturbed toric code is unitarily equivalent to the Ising quilt, Eq. (93), on the dual
lattice! Indeed, the subsystem symmetry group of the Ising quilt arises here as the emergent
quantum symmetry group 2(20’1)(9)9, 9‘;') guaranteed by the gauging procedure. When h =0,
the symmetry group of Hppc enhances from a subsystem symmetry to a one-form symmetry,
and one can ask what remains of this enhanced symmetry in the gauged model. To answer
this, one can simply study how the symmetry operators from Eq. (151) map under the gauging,
where one finds

. VG, V=1
vyt ——— ] zz. (159)

Vecorner(¥)

In a local Hamiltonian, being symmetric under V Uj VT for any 7 implies in fact that the Hamil-
tonian commutes with the operators z’;zﬁ for any 7. These are precisely the local conservation
laws that were leveraged to make contact with the disordered transverse field Ising model at
the very end of §3.1.1. One could perhaps think of this as a point-like subsystem symmetry
Z;O’Z). See e.g. Ref. [53] for a U(1) example of a point-like subsystem symmetry in a continuum
setting.

Recall that Hpy¢ was identical (after switching to the dual lattice) to the Hamiltonian one
obtains after performing Kramers—Wannier duality on all the rows and columns of the Ising
quilt. Here, we have found that gauging the Zgo’l)(?il,?y”) subsystem symmetry has lead
back to the Ising quilt. We could have anticipated this beforehand because for this class of
models, subsystem gauging implements row-wise/column-wise KW duality, much in the same
way as we found that gauging the global Zgo) of the (14+1)D TFIM implemented KW duality in
§2.2.1. Thus, the manipulations of this section are more or less the same as those of §3.1.3,
only described in different words.

One intriguing upshot of this is that if we set h = 0, then we find that what is essentially
the confinement/deconfinement phase transition of the toric code (though without imposing
Gauss’s law) maps after gauging Zgo’l) to the k-string condensation transition that we discussed
in §3.1. Furthermore, the order/disorder parameters from Eq. (154) map under gauging the
subsystem symmetry to the disorder/order parameters from Eq. (115), respectively.

3.3 The point-string-net model

We now unify the models of the previous two subsections into a single parent model, which
we call the point-string-net model. It is defined on a Hilbert space consisting of two qubits per
site and one qubit per edge of a square lattice

= ®(7{f1 O M} ® M,y ®H;501), (160)
l’]

where

fo’j %H{j gHH%J =N, ;z(cz. (161)
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The perturbed point-string-net Hamiltonian is

HPPSNz—AZXXXyl_[X AZZ
esv
_YZ( i—3,j X l+2J+XlJ—1Xl,JXl,J+ )
—A Z( i,j l+1]ZT+1]+Zy]Z1]+2ZiI]+1)

-> (7L XX + k27 + 7 (X + X))

(162)

This Hamiltonian respects a Zgo’l)(z?)l(l, ?y”) linear zero-form subsystem symmetry generated
by Z, operators along straight lines through the lattice,

— Yy
=1z, v =112 (163)
i j

When the perturbation strength y is set to 0, this AR F ”, 7Y is enhanced to a more conven-
p gty 2 X y

tional Z(Zl) one-form symmetry group whose symmetry operators are supported on arbitrary
loops v through the lattice,

(1) —
v =]z, (164)

ecy

as opposed to just on straight lines. (Cf. the discussion about subgroups obtained by refining
foliations in §2.1.)

The perturbed point-string-net model also respects an ordinary global
tained by flipping all vertex spins,

Zgo) symmetry ob-

U= l_[XXXy (165)

When k’ = 0, this symmetry enlarges to another 2(20,1)(g4|’g}|7|) linear subsystem symmetry

group whose generators are
7y — y
]_[x,], o=]1x,. (166)
J

(Cf. the discussion about subgroups obtained by coarsening foliations in §2.1.)
There is also a local unitary duality that acts on the model by exchanging A «— A/, A’ < A,
and y < y’/, which is given by the circuit

7 X Y
V= ]_[cl’]xi__ CEXip1  CIX 1 CY X, (167)

This circuit is essentially the “entangler” for the (1 + 1)D symmetry-protected cluster
phase [111] along each row and column.

As we mentioned above, the purpose of introducing the point-string-net Hamiltonian is to
collect the constructions explored in §3.1-8§3.2 into a single model. The limits in which these
previous constructions are recovered are the following.

* Inthe A — oo limit the edge degrees of freedom are pinned into the |T) state of Pauli-Z,
and the A,y terms in Eq. (162) are projected out (because they do not commute with
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the term proportional to A). The remaining terms reduce to the Ising quilt, which was
explored in §3.1.1,

A—00

Hppsy — Hig, (168)

(cf. Eq. (93)). This is equivalent to the limit A” — oo under \7, which corresponds to a
perturbed coupled cluster chain phase, and reproduces the cluster chain construction of
the toric code from Ref. [112] as A/, k’ — oo.

* In the limit that y — 0 and A — oo with A small, the Hamiltonian reduces to the gauged
Ising quilt, Eq. (121). In this limit, the term proportional to A enforces the Gauss’s law
constraint, and the plaquette flux terms [ | eep Le of the gauged Ising quilt are generated
at leading order in perturbation theory in A. Thus,

r—0

A— 00

A 1l
Hppgn S HIQ/ Zy. (169)

* Inthe y’ — oo limit the vertex degrees of freedom are pinned into the |+) state of Pauli-
X and the A, x’ terms are projected out. After switching perspectives to the dual lattice
and performing a Hadamard rotation H®" which swaps all Pauli-X operators with Pauli-
Z operator, the remaining Hamiltonian reduces to the deformed toric code considered
in §3.2.1 (cf. Eq. (153)),

H®N

')/ - 00
Hppsy — Hprce- (170)

This is equivalent to the limit y — oo under V, which coincides with a perturbed sub-
system symmetry-enriched toric code phase [85] after additionally taking A’ — oo.

e For A/,y/,k’ — 0, after applying a Hadamard rotation H®" and switching perspectives
to the dual lattice, the Hamiltonian reduces to a deformed toric code model with its
zero-form linear subsystem symmetry gauged, as we considered in §3.2.2,

H®N
A >0

Ay’ k' —0
HPPSN—’HPTC/ z>Y (3’” g”) (171)

(cf. Eq. (156)). Here, the term proportional to A’ corresponds to Gauss’s law (cf.
Eq. (155)), which becomes a strict constraint on the Hilbert space in the A’ — oo limit.

The zero correlation length point-string-net model is recovered in the limit A, A’ — oo and

k’ — 0, which yields
HPSN:_ZAV_ZBp_ZCeJ (172)
v D e
where we have defined

—xxxyl_[xe, B, =]_[ze,

edv e€p (173)
— X —
Ci+%,] Z; ]Zl+1 ]Z1+1] ’ Ci,j+2 Z; ,]Zl,]+2Z1]+1

For simplicity of presentation we have kept only the leading order plaquette terms generated
by products of Z, 1 and Z, j+1 terms from the above Hamiltonian. In addition, we have
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rescaled the coupling strengths to 1. Both of these redefinitions preserve the phase of matter
as the Hamiltonian consists of commuting projector terms (up to an overall rescaling of the
energy).

This model can equally be viewed as ferromagnetic Ising wires with their diagonal global
symmetry gauged, or as toric code model with its linear subsystem symmetry gauged. Ex-
citations of the plaquette term are equivalent to corner domain walls of the ferromagnetic
plaquette Ising model, as shown below. An excitation of an edge term is equivalent to a pair
of plaquette excitations, as all three are created by an X, operator. Excitations of the star term
are seen to be trivial below.

The point-string-net model is equivalent to the ferromagnetic phase of the plaquette Ising
(Xu-Moore) model [96,97]. Hence the full perturbed point-string net model above can be
understood as exploring the phase diagram proximate to the ferromagentic plaquette Ising
model, including the limit of decoupled Ising wires and the toric code. To demonstrate the
equivalence we apply the local unitary circuit V introduced in Eq. (167), followed by the on
site transformation

v=[]cx, (174)
v

to the point-string-net Hamiltonian to find

Vil Vv ==>"x->"T 2] [2.-D . (175)
v p vep e€p e
Each plaquette term can be further modified to — l_[VEP Z), by multiplication with single body
Z, terms from the Hamiltonian without effecting the phase of matter. Finally, the qubits on
the H vertices and edges are decoupled in |+) and |T) states, respectively, resulting in the
ferromagnetic plaquette Ising model

ViHs TV~ => [ ]2, (176)

p vep
The point-sting-net picture for Hpgy is obtained by interpreting |+) states as empty, |—)
states on vertices as points (red if Xj = —X) = —1, blue if X}, = —XJ = —1, and purple if
X' = X, = —1), and |-) states on edges as black string segments. The term .A, then ener-

getically enforce a Z, parity constraint on the total number of points and strings incident at
vertex v. The term B, fuses a closed Z, string bordering p into the lattice, while C, fuses an
open Z, string segment, ending on a pair of points, into the lattice. The ground states of the
point-string-net model can then be understood as point-string-net wavefunctions that satisfy
the Z, parity constraint at each vertex, and that involve a uniform sum over all ways of fusing
in closed strings or horizontal/vertical open string segments into a fixed reference state that
satisfies the Z, parity constraint at each vertex. For example, one such ground state is

1) oc [ Ja+co] J(1+8,) %)
€ p
177)
>+ >+

where here the reference state is
|T,) = Z§Z¥|Q) , (178)

with |Q2) the completely empty state, and v the vertex colored purple in the first term in
Eq. (177). Note that this state is different than the ground state one would obtain by choos-
ing the reference state to be |Q2) since there is no way to obtain |¥,) from |Q) by fusing in
closed/open string segments.
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4 (3+4+1)D Cubic Ising Transitions

In this section, we focus on constructions of phase diagrams involving the cubic Ising model.
In §4.1, we demonstrate how coupled wire constructions are well-suited to this task. In §4.2,
we combine the various theories considered in §4.1 as well as the X-cube model into a single
parent Hamiltonian that we call the point-cage-net model.

As in the previous section, we expect that all the constructions we present here can be
generalized to Zy and beyond.

4.1 Coupled wire constructions

Consider 3 orthogonal foliations of 3-dimensional space—ﬁ'l', ﬁ'}',', and 9Z”—each consisting

of one-dimensional leaves. The wires of 9’4' stretch in the x direction and are located at fixed
positions in the y and z directions, and similarly for %/ and 92”. We then imagine placing
(1+1)D transverse field Ising models on the leaves of each of these foliations to produce a

Hamiltonian ngi) (94',%“, 972”). Such decoupled Ising models enjoy a linear zero-form sub-

system symmetry, i.e. a Zgo’z)(ﬁ)y , 9;',', gz”) symmetry structure, which we would like to identify
with the linear subsystem symmetries of the cubic Ising model

SHg)Z,Z):_hZXV_JZl_[ZV’ (179)

c Vvec

which are generated by the operators
— Y _ —
U= 1% U= [Xws U5 =] [ X (180)
i j k

However, the symmetries of the cubic Ising model enjoy certain relations that are not satisfied
by the symmetries of decoupled wires. In particular, there is a planar zero-form subsystem
symmetry subgroup

e e T (R E L g EA R O A g RS
i j k j k i

which acts trivially in the cubic Ising model, but faithfully in the decoupled wires. (Here, 9}1|y

is the foliation of 3d space by planes which span the xy directions, and similarly for g)llz and
AN

As in §3.1, there are two ways to fix this discrepancy. In §4.1.1, we show that it is possible
to directly couple the wires together strongly enough that they are driven to a phase where
the planar subgroup ¢ is unbroken; we then find that the low energy effective Hamiltonian
in this phase is the cubic Ising model. In §4.1.2, we proceed instead by simply gauging the the
planar subgroup, in which case we force it to act trivially by construction.

4.1.1 Coupling a grid of transverse field Ising wires

A discretized version of the setup described above can be achieved by considering an Ny XNy XN,
3d cubic lattice, and placing 3 qubits on each site v = (i, j, k), each qubit belonging to a leaf of
one of the three foliations. We use X, Z> to denote the Pauli operators acting on the qubit at

vertex v belonging to the foliation 9’)1', and similarly for the other two foliations. The Hamil-
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tonian of a decoupled grid of transverse field Ising wires is then

HO@, 2l 2=~ > > (szez, +hxy) (182)

u=xy,z v

where v + [i denotes the lattice site which is one over from v in the u direction. Although
our primary focus remains on this decoupled model, it is also useful at times to consider the
slightly more general Ising grid model,

tio =1 (21,71, 7)) + e as

which has its wires coupled together by the inter-wire coupling terms

He=—Ky Y (XX + XX + XIXE) — K, > ZX2V72 . (184)
v v
Now, when K; = 0, this model has a relation-free linear subsystem symmetry group,

Zgo’z)(gz)y, ,?y”, ﬂz”). The operators that generate these symmetries are

L L L
— Yy _ y —
ue=1 % vlh=1 X vt =1 % (185)
i=1 j=1 k=1

Note that, at least when Ky = K, = 0, as the competition between J and h is varied, each of
the wires undergoes a phase transition related to the spontaneous breaking of their global Zgo)
symmetry; from the perspective of the full Ising grid, we may think of this as a spontaneous
breaking of the Z(ZO’Z)(QJ(', 9;', 9‘2”) linear subsystem symmetries.

When K, is turned on, the Z(ZO’Z)(Z!', 9;',92”) is explicitly broken down to a planar sub-
system symmetry subgroup. To describe this, we note for example that, in the language of
82.1, the foliations 9;'! and 9’;' admit a common coarsening 3{|(|y: namely, the foliation of
3d space by planes that span the xy directions. Associated to this coarsening is a subgroup

Zgo’l)(gll il

vz EJJZ) / ~ whose symmetry generators are

L L L
Xy __ X y yz __ y Z XZ __ X Z
Uy = l_[ Xi,j,kXi,j,k’ Ui = l_[ Xi,j,k ij.k? Uj = l_[ Xi,j,kxi,j,k’ (186)
ij=1 jk=1 ik=1
(cf. Eq. (20)). The quotient by ~ is due to the fact that not all of these symmetries are inde-
pendent. In particular, they enjoy a relation of the form

L

ﬁUi(ylL[U}“l_[Uiyz =1 (187)
k=1  j=1 i=1

The left-hand side is the generator of the diagonal subgroup DZ(ZO)

ening the three foliations Z! | Z! 9')|(|Z to the trivial foliation .Z!

xy? < yz? Xyz®
the planar subgroup can be described as

obtained by mutually coars-
Thus, in total, we find that

— »(0,1) (0)
=200 (7). 2], 7)) [Pz, (188)
In the next section, we show that gauging 5 leads to an interesting phase diagram featuring
the cubic Ising model and the X-cube model. Before we do this, we now (relatedly) argue that
the Ising grid undergoes a phase transition when K, = 0 as Ky is varied from oo to 0, which
corresponds to the spontaneous breaking of 2.
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Phases and excitations
We now explore the strong coupling phases.

Cubic Ising model at K, =0 and Ky > 1
The strong K coupling limit of the Ising grid can be taken similarly as we did in §3.1.1
for the Ising quilt. Namely, we compute the ground state of the Ky term, and perturbatively
compute a low energy effective Hamiltonian H that acts on this ground state and accounts for
the splittings of the energy levels induced by 'H g;)(ﬂ'i', ﬂ'}l,l, 92”), thought of as a perturbation.
The ground state simply consists of an effective qubit on each lattice site, |+).g := |££=£).
The effective Hamiltonian can be constructed out of operators which preserve this ground
space; these are
Z,:=7707*, X

vTyTy? v

=X =X =X, (189)

which act in the standard way as Pauli operators on the effective qubit. In terms of these, the
effective Hamiltonian (if computed to 12th order in perturbation theory) takes the form

Hee~—h Yy X, 7> [ ]2, (190)

c Vvee

up to an overall constant, which is precisely the cubic Ising model. When & > J, the excitations
of the cubic Ising model are simply spinons

V) ~Z,|Q) +--- (191)

On the other hand, when J > h, the excitations are supported on the fundamental cubes.
They must be created 8 at a time, and the corresponding states take the form

v, ced ~ [ [ X1+, (192)

veC

where ¢y, ..., cg are the eight fundamental cubes at the corners of the cuboid shape C, thought
of as a collection of vertices.

We can note immediately that the planar subsystem symmetry subgroup 5 (Eq. (186))
acts trivially on this low energy Hilbert space, corresponding to the fact that the Ising grid
leaves it unbroken in this phase. Because the symmetry is clearly broken when Ky = 0 (at
least when h < J) we find that there must be at least one phase transition as one interpolates
between the weakly and strongly coupled regimes. We offer a characterization of this phase
transition in terms of “planar k-ribbon condensation” next.

We can elucidate the phase transition to the cubic Ising phase by analyzing the patterns of
condensation. For simplicity, we turn off the transverse fields on the wires, h = 0. Just as in
§3.1.1 (see Figure 4), when Ky = 0, an operator of the form X,'X,? creates a k-string in the
W1y plane. It is actually more natural to puff this k-string up in the direction orthogonal to
the u;u, plane, so that it turns into a “planar k-ribbon” formed out of plaquettes of the dual
lattice. By taking a product of such operators over multiple vertices v in this u,u, plane, we
create a larger and larger planar k-ribbon. Note that k-ribbons on different planes fuse into
each other and disappear on the dual plaquettes where they intersect. A network of planar k-
ribbons (thought of as a network of dual plaquettes) has the property that every fundamental
cube of the lattice is touched by an even number of corners of the dual plaquettes. As Ky is
driven to become large, such planar k-ribbons proliferate throughout the system and eventually
condense.

Now, we consider what happens when a single-body Pauli-X, i.e. X, is applied. This pro-
duces two parallel open ribbons. In contrast to closed k-ribbons, the eight cubes that have v
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as a vertex are touched by an odd number of corners of dual plaquette kinks. We consider
these cubes to be supporting their own excitations. Any application of operators of the form
XL1X!? does not affect the excitations living on these 8 cubes, it only changes the “bulk” planar
k-ribbon configuration while leaving its corner cubes invariant. Therefore, as we drive Ky to
infinity the planar k-ribbons fluctuate at all length scales and become unphysical. The only
remnant of the condensed k-ribbons is their corner cubes, surviving as excitations of the model
deep in the Ky > 1 phase which we established above to be the cubic Ising model.

Two coupled plaquette Ising layers at K; > 1 and Kx =0
In the large K, limit, we focus on a low energy Hilbert space consisting of two effective
qubits per site v, (which we label #}* ® H)?), spanned by

TDer =111, WDer=1T),  1TDer=NT1, e =1111T). (193)
The effective Pauli operators that act on these two qubits are
=77}, I'=77), X'=XX,6 X’'=XX. (194)

In terms of these operators, one can show that the low energy effective Hamiltonian that
governs the K, — oo limit (to fourth order in perturbation theory) takes the form

Hi~ . (hZXMHz iy l‘[zulpu)

UM =X2,yZ pllpyug VEP

_ KX ZXxZXyZ _ K Z l_[ ZXZZyZ

pllxy vep

(195)

The first line has the interpretation of two decoupled stacks of plaquette Ising model layers,
while the terms on the second line couple these layers together.

Order and disorder parameters

We are mainly interested in the Z(ZO’Z)(?J(', gy”, ?Z”) subsystem symmetry breaking phase tran-
sition at Ky = K, = 0 since, as shown below, it maps under gauging the planar subgroup
to a phase transition between the cubic Ising model and the X-cube model. There are several
choices of order/disorder parameters that diagnose this phase transition. The obvious disorder
parameters to consider are truncated symmetry operators of the linear subsystem symmetry

and its planar subgroup, e.g.
=[x, = ]—[ XXV (196)

veELy

The disorder parameters @Zy, 97 and 73" , @;’; are defined similarly. Above, L, is an open
line segment that points in the x direction and R,y is a rectangle that spans the xy directions,
both thought of as a set of vertices. The behavior of both of these disorder parameters is easily
inferred from properties of the (1+1)D TFIM,

|LX|—>(>O
(7% ) Ky=K;=0 | const., J/h<1,
Ly #e—lel/EJ J/h>1,

(197)

(o y B0, {#e PEDIE R,
Ryy

#e A(ny)/Ao, J/h>1.
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Above, where we have written |L,| — c0 and |R,,| — 00, we mean that all dimensions of Ly
and R,y should be taken large. We take |L,| to be the length of Ly, P(R,y) the perimeter of R
and A(R,y) the area of R,.

As far as order parameters go, we can consider the operator

Xy>

Sgo= [] zmz, (198)

yecorner(C)

where C is a cuboid subset of the lattice, thought of as a set of vertices. This is the natural
generalization of the order parameter of the Ising quilt from Eq. (111), and behaves as

(Seop) (199)

K% (#e-UChHCHCL/E  J/h <1
b b
const. , J/h>1,

where above, |C|, is the size of the cuboid C in the u direction, and again we write |C| — oo
to mean that |C|y, |Cly,|C|, should all be taken large. One sees that this order parameter
diagnoses the spontaneous breaking of the linear subsystem symmetry.

Another choice is

P oxy — gUigz Xgygz | gz
oY =772 ]_[ X777 |77

vovew YeOYf

vecorner(y°)
(200)
Hi z X y z I3 z
Zyi+22n+2 l_[ Zv+izv+izv+2 ny+izyf+i >
vecorner(y°)

which is a choice of generalization of the order parameter of Eq. (115). Here, v is a path on the
lattice which is restricted to lie parallel to the xy directions, v +Z is the nearest neighbor of v in
the +2 direction, y;/v¢ are the initial/final vertices of the path, and u;/us are the initial/final
directions of the path. Also, corner(y°) is the set of vertices of v at which two edges of y meet
at aright angle. The order parameters * 0" and P0;” are defined similarly. Again, the behavior
of both of these order parameters can be inferred from properties of the (14+1)D TFIM.

4.1.2 Gauging the planar zero-form subsystem subgroup

We now gauge the planar subgroup Zgo’l)(,ﬂ')yy, 9}','2, gjllz) / DZ(ZO). To do this, we add a gauge
qubit to each edge e of the cubic lattice, and take the Gauss’s law terms that implement the

local versions of the symmetries to be

gie =xixi [ x,. (201)
edv
ellpypa

Notice that these Gauss’s law operators satisfy the relation
GGGy =1. (202)

This is necessary because the symmetry we are gauging satisfies an analogous relation,
Eq. (187), which is already apparent from the action of the symmetries at a single vertex.'*
The minimal flux operators one can define that commute with these Gauss’s law operators are

141t is insightful to briefly compare this gauging protocol to what one would need to do in order to gauge the
Z(zo’l)(ﬂily,gy'L,ﬂjz) symmetry of (2+1)D TFIM layers, i.e. the model 2Hg;)(ffi‘y, ﬁ'}l’z,ﬂy”z) In this latter case, the
global planar subsystem symmetry does not satisfy any relations, and when it is gauged, the Gauss’s law operators
should not either. This fact requires one to introduce two gauge qubits per edge as opposed to the single gauge

qubit we have used here.
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F.=]]z. (203)
ecc
We impose G,'"2 =1 and F, = 1 as constraints, and take the gauged Hamiltonian to be
— b
Hgl == 3 > (20242, , +hX) + H, (204)
U=xy,z v

where (v,v + i) is the edge which stretches between v and v + (i, and # is as in Eq. (188).
Note that H. simply comes along for the ride, without requiring any modification, because
every term in it already commutes with the Gauss’s law generators.

To solve the Gauss’s law constraint, we transform the model by a local unitary circuit,

V= l—[ l—[(cfxw,wm)(C5‘X<v,v_m)- (205)

u=xy,z v

This leads to

V(H[#)VI == 37 D (T2 + XXXy i)

U=X,y,Z2 V
— Ky Z ZX51X52 l_[ Xe—KZZ ANAS (206)
U1 o =XY,YZ,XZ V esV v
ellpr pia
vyt =xiuxt: vEV =] ]z.] [222iz.
eec VEC

Imposing that G,'"? = 1 for all v and for u; Uy = Xy, yz, Xz reduces the local Hilbert space at the
sites of the lattice from 3 qubits to 1 effective qubit. In terms of the 3 qubits, the two states of
this effective qubit are |+)qg := [+++) and |—).¢ = |——), where |+) denotes the eigenstate
of Pauli-X with eigenvalue 1. It is straightforward to see that, when restricted to the subspace
spanned by this effective qubit, the operators Z,, := Z’;ZXZi and X, :=XJ = X, = X? act in the
standard way as Pauli operators, i.e.

Z,|%E)ett = |F)efr» X, £ efr = E|E) et - (207)

Thus, in terms of these operators, the gauged model becomes

|4 (HIG/%) VT = Z Z(Jz(v,vﬂ&) + hX(v,v—,a)XvX(v,vﬂ&))
U=X,y,z v
~K >, 2 llx-x2z (208)
U1 M2 =XY,yZXZ V e”ﬁ\; i v
vrvi=]]z] |z
eec VEC

We note that, when K, = 0, this gauged model inherits the linear subsystem symmetries of
the original Ising grid, which now act as

L L L
_ Yy _ _
Ue=1 1% U= 1% U5 =] [Xun: (209)
i=1 j=1 k=1

The main difference is that because we have gauged the planar subsystem symmetry subgroup
¢, these symmetries are now subject to certain relations, e.g.

L L
[ Tos] [l =1 (210)
j=1 i=1
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and so the group is Z(zo,z)(g)y’ 9;',94') / .
On the other hand, the model also gains emergent quantum planar one-form subsystem
symmetry groups

- _ (1,1
# =23 (7,2, 2L)|~, (211)

which are generated by the flux terms. More precisely, if ¥ is a path on the dual lattice which is
restricted to lie in the xy plane at some fixed location in the z direction, then we have symmetry
string operators

02 =] Jvrvt, (212)

cEY

which, together with analogous operators U;fz, ﬁ;’z, generate the higher-form subsystem sym-

metry group 2.

Phases and excitations

Let us study the fate of these symmetries as the value of the coupling J/h in the gauged
Hamiltonian is tuned. We find that the subsystem symmetry breaking phase transition before
gauging maps to a simultaneous breaking of Zgo’z)(ﬁ')y, ﬁ'y”, gz” ) / #¢ and an unbreaking of 7,
as summarized in Figure 9.

Cubic Ising model at Ky =K, =0andJ > h

If we take J to be very large, then the qubits that live on the edges are frozen to be in +1
eigenstates of Pauli-Z operators. The term proportional to h essentially decouples in this limit,
so that the Hamiltonian is a constant. The flux term constrains the low energy Hilbert space
to be in eigenstates of

[z =1. (213)

with eigenvalue +1. Thus, the effective Hilbert space in this limit agrees with the ground state
of the cubic Ising model deep in its ferromagnetic phase. In this phase, the linear subsystem

symmetry group Z(zo’z)(ﬁ')'(', 9‘;',9;”) / ¢ is spontaneously broken, while the emergent planar

one-form symmetry group € is unbroken, which is consistent with Expectation 2 from §2.1.

X-cube model at Ky =K, =0and h > J
Take on the other hand the opposite limit, h > J. To make the analysis of the Hamiltonian
simpler, let us perform one more unitary circuit,

V= l_[ (CXpuv8) (CXpyy—gy) - (214)

Then, dropping the term proportional to J which is irrelevant in this limit, we find

v (tE (7). 7], 972”)/%) vITT=—n > [ X, + X, [ [x +x ] [%

il 3 (215)

WEVTT =]]z.

ecc

The ground state of this Hamiltonian is such that the qubits on the sites are frozen in X, = +1
eigenstates. The qubits on the edges are then constrained to satisfy the vertex terms of the
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Ising grid (Kx = K; = 0 decoupled wires): 1Hg;)(9')l|, ;@y”,?Z”)

(0,2) (0,2)
zy, (7). 7)., 2)) zy, 2 (7), 7)., 7))
subsystem symmetry | subsystem symmetry
preserving phase breaking phase
> J/h

gauging J¢

R

Gauged Ising grid (Ky = K; = 0): 1H(ZZ)(9;|<|:95U:9Z”)/=75

Z(ZO’Z)(?)I(I, 9;' , ?Z” ) / ¢ preserved Z(ZO’Z)(%!I, 9;' , ﬂz” ) / ¢ broken
# broken # preserved
(X-cube phase) (CIM phase)
$ J/h

Figure 9: Phase diagram of the Ising grid, before and after gauging the planar sub-
group ‘H = Zgo’l)(ﬂ'” )

Xz’

Q}I,IZ) / DZ(ZO) of its symmetry group.

X-cube model, while the flux term further constrains them to satisfy the cube term of the
X-cube model. Thus in this phase, we find that the low energy Hamiltonian is essentially a
constant, with the low energy effective Hilbert space agreeing with the ground state of the
X-cube Hamiltonian. In this phase, the emergent planar one-form symmetry group His spon-
taneously broken, while the linear subsystem symmetry Zgo’z)(ﬂ')y, ﬁy”,ﬁ'zn) / J¢ is unbroken.
This is again consistent with Expectation 2 from §2.1.

Excitations and phase transition at Ky =K; =0and J =h

Under gauging the planar subsystem symmetry, kink excitations on the wires in their fer-
romagnetic phase are mapped to quadrupoles of cube excitations in the ferromagnetic cubic
Ising model phase. To see this we note that an excitation of a single edge J term in the gauged
Hamiltonian is locally equivalent to a quadrupole of flux term F, excitations, which become
excitations of the cube term in the cubic Ising model phase. This follows by considering the
trivial local cluster of excitations created by a single X, term, which precisely corresponds to
a single J edge term excitation and a quadrupole of F, cube excitations.

Hence the phase transition from the ferromagnetic cubic Ising model to the X-cube model
obtained by gauging the planar subsytstem symmetry of decoupled critical Ising wires can be
viewed as the condensation of quadrupoles of cube excitations along lines. On the other hand,
the phase transition from the X-cube to the ferromagnetic cubic Ising model is clearly driven
by single body Z, operators, which induce the condensation of lineon excitations.

Order and disorder parameters

To obtain order/disorder parameters that diagnose the transition from the cubic Ising model
to the X-cube model, we can simply map over the order/disorder parameters of the ungauged
model. The simplest to study is the disorder parameter for the linear subsystem symmetry,

v(@fx/%)v'*‘w [1x]1x. (216)
e€dLy, VELy

where above, the product over dL, is a product over the two edges at the boundary of the
line segment L,. Thus, we see that in the gauged model, this disorder parameter is mapped
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to a truncated symmetry operator, with additional insertions decorating its boundary, and so

it retains its interpretation as a disorder parameter of the Z(zo’z)(g'il, ﬂ'y”, 5‘;”) / ¢ symmetry.
On the other hand, the disorder parameter for the planar subsystem symmetry in the un-
gauged model maps as
vGytHyT=1
[r)vi—=——= [] x.. (217)
e€0Ry,

xy
V(o
As one expects, since we are gauging this symmetry, the bulk of the symmetry operator disap-
pears, and we are left just with a line operator supported on its boundary, which we can think
of as an order parameter for the emergent planar one-form subsystem symmetry 2.
Now, if we map over the order parameter for the linear subsystem symmetry, Eq. (198),
L VGh2yt=1
v(Se o) —— ] =z, (218)
vecorner(C)
we find that it retains its interpretation as an order parameter in the gauged model. If we
map over the order parameter for the planar subsystem symmetry, Eq. (200), we find a ribbon
operator of the form

P »xy T
v(Pop )V
VG2 y =1 (219)
B A (l_[ Zeze+z) ( [ Z<v,v+z>) Liyeyevs) >
ecy vecorner(y°)

where we are using the notation (v, w) to denote the edge which stretches between v and w,
and e+2 is the edge one obtains by displacing e by one unit in the Z direction. As one can see by
comparing to the symmetry operators for the emergent quantum planar one-form symmetry
in Eq. (212), this has the form of a truncated symmetry operator (with the operators which
decorate its corners stripped off) and so can be thought of as a disorder parameter for this
emergent planar one-form symmetry.

In total, we find that order/disorder parameters for the linear subsystem symmetry
Z;O’Z)(E)l',?}l,', 9’2”) of the ungauged model remain order/disorder parameters for the linear
subsystem symmetry Zgo’z)(ﬂ)l(l,gy,ﬁz”) / #¢ in the gauged model, while order/disorder pa-
rameters for the planar subgroup ¢ are mapped to disorder/order parameters respectively of
the emergent planar one-form symmetry group .

4.1.3 Dualizing the leaves

Before closing this subsection, we remark briefly on what happens if one sets K, = 0 and

gauges the full Zgo’z)(:grj’gy”,gzﬂ) subsystem symmetry group (or equivalently, performs
Kramers—Wannier duality on each of the wires). One finds a model with a qubit on each
edge whose Hamiltonian is unitarily equivalent to

I L
HIG/Z(ZO’Z)(%'J,@Y”,QZ”)z—JZze—Z >, (hﬁxe+KXﬁxe). (220)
e

vV U=XY,Z eV esv

Note that, consistent with Expectation 1 from §2.1, this model enjoys an emergent quantum
2(20’2)(9)(', gry”’ ﬁz”) linear subsystem symmetry

o _— L
o =11 Ziiliko U= [ Zij 1 U= [ Zijkel- (221)
i j k
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The low-energy effective Hamiltonian around Ky — ©0 is precisely an X-cube model per-
turbed by the lowest order non-trivial term which respects this linear subsystem symmetry.
This is analogous to the fact that gauging the linear subsystem symmetry of the Ising quilt
(or equivalently, performing row and column-wise Kramers—Wannier duality) produces a toric
code perturbed by operators which respect a linear subsystem symmetry subgroup of its global
symmetry group (cf. §3.2). In principle, we could dedicate another subsection to studying this
subsystem symmetry-enriched X-cube model, mirroring §3.2, but we instead choose to leave
this to future work.

4.2 The point-cage-net model

We now introduce the point-cage-net-model, which is designed to combine the coupled Ising
wires, the X-cube model, and their planar and linear subsystem symmetry gauged variants,
respectively. This model is defined on a Hilbert space with three qubits per site and one qubit
per edge of a cubic lattice

H= ®( ]k®,H1]k®,HZ]k®,Hl+2]k®Hl]+ k®H,]k+ ) (222)
i.j.k
where
~ Y o~ ~ ~ ~ ~ 2
Lk S S H e F e i E M S H el EC (223)

The perturbed point-cage-net Hamiltonian is then

Hppen :—AZ(XXXY]_IX +XXXZ1_[X +xYxZ]_[x )—AZze
e

esdv esdv esdv
Z
- YZ(Xl 1xX L irX i+ 1k T X1 kxl il T X1 XX 1)
i,j,k
_ A/ X X y y z
A Z (Zi,j,kzi+%,j,kzi+1,j,k +Z 0 Zi ik g T L el 2 k+1)
i,j,k

— A OO A XX A XX — ' D (X + XY+ X7)
v v

—&' > BT (224)
v
This model respects a Z(ZO’Z)(Q')'J, ﬂ'}',', QZ'Z”) linear zero-form subsystem symmetry generated by

Pauli-Z operators acting on the edges of 1d sublattices which are parallel to the x, y, and z
directions, i.e.

- 0y = 0z —
Ujr = l_[Zi+%,j,k’ Ui = l_lzi,j+§,k ) Ui = l_[Zi,j,k+§ : (225)
i j k

This symmetry can be understood as a subgroup of a larger subsystem symmetry generated by
“cages” of Z, operators acting on the edges of a cube which is recovered when the perturbation
strength v is set to zero.
(0,1)
The model also respects a Z, (L@J(ly, 91'2,

try group generated by spin ﬂlpS of the form

xy ~yz o
l_[X,Jk i,j,k’ UXZ l_[X,Jk i,j,k? Ui l_[XleXle (226)

9’ I )) / DZ(ZO) zero-form planar subsystem symme-
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When «’ = 0, this symmetry is enlarged to a Zgo’z)(g)y, 9;',94') linear zero-form subsystem

symmetry (distinct from the Zgo’z)(ﬂ')y, 3@”, Q'Z”) symmetry above),

l_[Xle’ r[xl]k’ IZ]:l_[X?,j,k' (227)

k

There is also a global Z, duality that acts on the phase diagram by swapping A «— 1, A" <> A,
and y < y’; it is implemented by the circuit

V=] Jcr X .t Cl X1k CF X 41 CF X s CF (228)

3,J:k l,]kl+ ,J-k 1]kl]——k i,j l]+ k i,j 1]k+

i,j,k
The point-cage-net Hamiltonian above combines the coupled wire example explored in
84.1 with a deformed X-cube model. These models are recovered in various limits, as described

below.

* As A — oo the edge qubits are pinned into the |1) state, and the A,y terms are projected
out, resulting in the Ising grid Hamiltonian explored in §4.1,

A—00

Hppey — Hig (229)

(cf. Eq. (183)). This is equivalent to the limit A" — oo under \7, which corresponds to
a coupled cluster chain model that has an X-cube phase in the limit y/, k" — oo [112].

* As A,y — 0, we recover the Hamiltonian of the Ising grid with its planar subsystem
symmetry gauged, Eq. (204), up to the term proportional to A, which can be thought of
as imposing the Gauss’s law constraint Eq. (201) energetically. The piece that is absent
in the PPCN Hamiltonian in the strict A — 0 limit is the flux terms which arise in the
gauging of the Ising grid, Eq. (203). These can be incorporated energetically by taking
A to be small but non-zero, in which case the flux terms are generated in perturbation
theory. In total, we have that

y—0

A—0Q
A small

Hppen —— HIG/ T (230)

* As Y/ — o0, the vertex qubits are pinned into the |+) state and the A’,x’ terms are
projected out. Backing away slightly from the y’ — oo limit, we can perturbatively
incorporate the effects of the A’, k¥’ terms: if one calculates the effective Hamiltonian to
8th order in x” and 12th order in A’, then one finds that these terms conspire to produce
the cage term of the X-cube model. Altogether, we find

Homen 2% (r[x T +1—[x)_t2nz

edv esv esv c eec (231)

_)LZZ _YZ( 1—5,]kX1+2]k+X1]—§,kXL]+ k+X k—le,]k+%)
i,k

The first two terms are those of the X-cube model, while the last two terms are perturba-
tions that respect the linear subsystem symmetry group, Eq. (225). Thus, in this limit,
the point-cage-net model is equivalent to a linear subsystem symmetry-enriched X-cube
phase, a model whose study we leave to future work.
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* Consider the limit A’,7’,x” — 0. If we also take A to be large but non-infinite and
compute the effects of the term proportional to A in perturbation theory, we find that it
generates the cage term of the X-cube model. Thus, in this limit, we find

A large
A small
ALy k'—=0
HPPCN

—AZ Xxxyl_lx +XXXZl_[X +nyzl_lx —t Z]_[z

esvy esvy esvy c eec (232)
_YZ(Xl—l J, le,] kxl+2,] k +X i,j— z,kxz 7 kxl]+2,k +X i,], k—lX i,j, kX i,], k+1)
i,k
—A Z( l}kZl+2]kZl+1]k+Z,]kZl]+ kz ,]+1k+Z1]klek+1zljk+1)
i,j,k

This has the interpretation of a deformed (due to the term proportional to y) X-cube
model with its linear subsystem symmetry gauged. Here, the A’ term energetically en-
forces the Gauss’s law constraint associated with this subsystem gauging.

The zero correlation length point-cage-net model is recovered in the limit A, A’ — oo and
/
k' —0,

Hpon == » (A + A+ A= B.—>¢C,, (233)

where we define

ly lz
—XyXZl_[Xe, A=xx]]x. A=xx]]x..

esv esv esv
_ X X (234)
5.=] [z, Civd ik = ZijaZisd jkLivn ik
ecc
Y _ Z
Ci,j+§,k = Zi,j,kzi,j+2,kzl J+1,k? Ci,j,k+% =Z; i, kZl,] k+i Zl,] k+1°*

For ease of presentation we have included the leading order cube terms generated by prod-
ucts of Z, interactions in the Hamiltonian above, and rescaled the energies; both operations
preserve the zero temperature phase of matter of this commuting Hamiltonian.

The point-cage-net model can be viewed either as a stack of ferromagnetic Ising wires
with their planar subsystem symmetry gauged, or as the X-cube model with its linear subsys-
tem symmetry gauged. Excitations of the cube terms are equivalent to corner domain wall
excitations of the cubic Ising model, see below. Excitations of the edge terms are equivalent to
quadrupoles of cube excitations, as a single X, operator excites an edge term along with the
four adjacent cubes. We find below that excitations of the star terms are trivial.

The point-cage-net is equivalent to the ferromagnetic phase of the cubic Ising model, and
hence the perturbed phase diagram can be understood as exploring neighboring phases and
phase transitions, including decoupled Ising wires and the X-cube model. The equivalence is
implemented by the circuit V followed by the unitary

L2 2 A

V= l_[ C*X? CYX? (235)
v

resulting in

VUHpen ViV = —Z(x"xy +x+x)-> [ [2] |z —Zz (236)

c Vec ecc
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’ a’ ”

Figure 10: A stack of lattice gauge theory layers. The planar zero-form subsystem
symmetry groups are generated by the product of line operators of the gauge theory
layers over the leaves of the stack.

Each cube term is equivalent to [ [, Z? up to multiplication with Z, terms from the Hamilto-
nian. This leaves the subsystem of (3) vertex spins decoupled from a trivial product ground-
state on the rest of the system, which can be removed while preserving the phase of matter

VP 7V~ =T ]2 (237)

c Vec

The point-cage-net picture for Hpcy is obtained similarly as in §3.3 by interpreting the
cube term B, as fusing a Z, cage into the edges of the cube, the edge term C, as fusing in a
single link ending on a pair of points. The vertex terms A, enforce Z, parity constraints at v
which say that edges must appear as part of closed cage terms or end on points. The ground
states are again given by picking a reference state which satisfies the Z, parity constraints, and
fusing in all possible cages and line segments into this reference state.

5 (3+1)D Anisotropic X-Cube Transitions

In this section, we study anisotropic layer constructions. In §5.1, we realize the X-cube model
by gauging a certain planar zero-form subsystem symmetry group of a single stack of Z, gauge
theory layers, and in §5.2, we do something similar, but utilizing two orthogonal stacks instead
of one. This culminates in §5.3, where we combine these two constructions into a single string-
string-net parent model.

5.1 Single layer construction
We start by briefly revisiting (and slightly extending) the single-layer construction that first
appeared in Ref. [64].

5.1.1 A gauge theory stack

Our starting model is obtained by filling space with gauge theory layers that live on the leaves
of a foliation ﬁ)ljy of space by planes parallel to the xy directions. To implement this system,
we imagine first placing a qubit on each edge of a 3d cubic lattice, except for those edges that
point in the z direction. (Thus, we place qubits on edges whose coordinates are either of the
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forme = (i + %,j, K)ore=(i,j+ %, k).) The Hamiltonian of such a decoupled stack is

2H212) (gil(ly) :—UZXe—tZl_[Zea
ellxy pllxy €€p (238)
¢, =] [x..

(=Y
ellxy

where e || xy and p || xy indicate that the edge e or plaquette p should be parallel to the xy
plane. Such a system has a

g =7 (7]), (239)

planar one-form subsystem symmetry group associated with the one-form symmetries on each
of the gauge theory layers. The generators of this symmetry are

Uy = l_[ Xapk- (240)
(a,B)ef

Here, k is an index that labels the layer that the symmetry generator acts on, and ¥ = {(a, )}
is a path on the dual lattice of a 2d square lattice, thought of as the set of edges e = (a, ) on
the original 2d lattice that it intersects.

Let g:xl and - be the foliations whose leaves consist of planes perpendicular to the x
and y directions, respectively. The ¢ symmetry group admits a planar zero-form subsystem
subgroup,

s =13 (7L 7)), (241)

which can be defined through the following generators,
S - Yy
Ui+% B E[X”%,J}k’ Uj+% - l:[xi,j+%,k' (242)
J, i,

That they commute with the Hamiltonian follows from the fact that they are suitable products
of the topological line operators of the Z, gauge theory constituents, Eq. (240), over the layers
of the foliation. See Figure 10 for an illustration.

In the language of §2.1, we could describe this planar zero-form subsystem subgroup using
the notions of refinement and coarsening. Specifically, the foliation ﬁ)yy admits a refinement

37)|(| whose leaves are lines that point in the x direction; associated with this refinement, there is
a Z(zo’z)(gil) < Z(zl’l)(ﬂ')l(ly) subgroup. We can then coarsen the foliation 9')1' to another foliation
Q'YL whose leaves are simply all the planes which are perpendicular to the y direction; this
in turn leads to a Z;O’l)(e@yl) < Zgo’z)(t?)y) subgroup, whose generators are the unitaries in
Eq. (242). This process is described in Figure 11.

Although we do not have much to say about it here, we comment for completeness that it
is natural to introduce an inter-layer coupling of the form

1
Hl—stack = ZHéz)(g)l(ly) + HC D

He =—Ky Z Zopilapic+1>
(a.,B,k)llxy

(243)

which preserves the # symmetry, where above the sum over (a, 8,k) is a sum over edges
parallel to the xy directions. We demonstrate how this coupling arises in the string-string-net
model of §5.3.
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x E— E—
refine coarsen
Z
y

I 1
Ty 7, Z,

Figure 11: The foliations glly, 9')1', and ﬂ'yl associated to the sequence of subgroups
z9V(FH < 29?7 < 28V (F)).

Phases and excitations

Set K, = 0 for simplicity. As described in §2.2.2, the individual Z, gauge theory layers of
zng)(?JJy) undergo a spontaneous one-form symmetry breaking transition as the competition
between t and U is varied; one can think of this as a planar one-form subsystem symmetry
breaking transition of the layered system. In the present case, we are interested in the behav-
ior of the # subgroup as the model crosses its phase transition point. Here too, this group is
spontaneously broken, but only partially. More precisely, any single operator U;'y+ , Or Ul_X+ , acts

2 2

non-trivially on the ground state space, but a pair of such operators U¥+1 U.y,+1 or U'X+1 Uf+1

Jtz JT3 vy UT3
acts trivially, essentially due to the topological property of line operators which generate a
one-form symmetry in (2+1)D. So the model’s 5 planar subsystem symmetry group is spon-
taneously broken down to the subgroup generated by pairs of generators. Since this system
simply consists of decoupled layers, the excitations can be determined from the discussion of

82.2.2.

Order and disorder parameters

As in previous sections, there are several choices of order and disorder parameters. We start
with the disorder parameters. One option is to take a truncated version of the symmetry
operators for the planar zero-form subsystem symmetries 7 from Eq. (242),

7z =11%. 7 =]]x%. 244)

ecRy, e€Ry,

where R,, and Ryz are rectangular open membranes on the dual lattice which are parallel to
the xz and the yz directions, respectively. These are products of disorder parameters over
the individual Z, lattice gauge theory layers, and so their behavior in the different phases is
straightforwardly determined,

#e AR U/t < 1. (249

R |— —IRy,l,/&
@} ) Ry, |00 {#e v/ U/t>1
In the above, I}lezlZ is the length of Ryz in the z direction, and A(Ryz) is its area. We write
IRy,| = oo to indicate that all dimensions of Ry, should be taken large.
Another option is to consider a truncated symmetry operator for the planar one-form sym-
metry ¢ from Eq. (240), i.e.

D3 o,k = Up(p,p) k> (246)
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where here, ¥(p, p’) is an open path on the dual lattice of a 2d square lattice with plaquette
endpoints p and p’. This behaves as

(247)

lp—p’l—00 const., U/t>1,
<@7(p,p’),k> =

#e P PIE . U/,

For an order parameter, we take a product of two Wegner-Wilson loops that are supported
on distantly separated layers,

Oy = l_[ ZopkZapi (248)
(a,B)ey

where ¥ = {(a, 8)} is a path on a generic 2d square lattice whose edges have coordinates
e = (a, ). This behaves as

(o

Y

oo [#e AW i1,
I { / (249)

/) —— !
Jek') #ePOIE U<,

5.1.2 Gauging a planar zero-form subsystem subgroup

Now we may consider gauging the subgroup J# = Z(zo’l)(gj, gzyl). Since ¢ is free of rela-
tions, we can achieve this by gauging Z(zo’l)(ﬂ'xl) in one step and Z(zo’l)(ﬁ'yl) in the next. To

gauge Zgo’l)(ﬁ'}}), we introduce a qubit to each plaquette p of the cubic lattice which is parallel
either to the xy plane or the yz plane; we label the Pauli operators which act on these qubits
XZ, ZZ. Similarly, to gauge Z(Zo’l)(gj), we place a qubit on each plaquette which is parallel
to either the xy plane or the xz plane; we label Pauli operators that act on these qubits as
X;, Z;. Thus in total, if we gauge the combination of these two symmetries, we should place
two qubits on each plaquette parallel to the xy plane, and one qubit on each plaquette parallel
to the xz plane or yz plane.
Then, the gauged Hamiltonian (using the strict gauging procedure) takes the form

0l gly_ X
Hl—stack/Zz (gx 7&9}, )=-U X, —t ZPZZ Z,
ellxy pllxy e€p
— X y
Kz Z}; (Zi+%,j,kzi+%,j,k+%Zi+%,j,k+1 T Zi,j+%,kzi’j+%’k+%Zi,j+%,k+1) >
i.j,

~ X X*, ife|lx, (250)
szl_[Xe, forall v, G, = el_[pae b I
X1, %, ifelly,

esdv
ellxy

F :l_[Z“, for u=x,y.

pEc
pllp

The operators G, are the Gauss’s law constraints associated to this gauging, and the F! are
local flux operators associated to the fundamental cubes ¢ of the cubic lattice on which the
model is defined.

As in previous sections, we can perform a series of manipulations to make the physics of
this model more manifest. We start by applying a local unitary circuit of the form

v=m[ [ Jex[ ] Jex. (251)

ellx p3e elly p3e
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where N is the total number of qubits in the gauged model. This acts on the gauged Hamilto-
nian as

14 (Hl-stack/z(zo,l)(gxl: g;_)) vi=

e et oo 2s-2)

elx  pe ely  p>e pllxy pllyz plixz
ve,vi=[lz [z []z. véevi=z, (252)
esv p3v p3ov

ellxy  plxyxz  pllxy.yz
uys T — u _
VF'V' = l_[Xp for u =x,y.

pEc
pllp

The Gauss’s law constraint then simply freezes the qubits on the edges so that they are in +1
eigenstates of Pauli-Z. Therefore, after switching perspectives to the dual lattice and solving
the Gauss’s law constraint, the model becomes

VG;VT=1
0 gl iyt %
V (Hygaa [T FH) v ——

y y y
(BBl (50 3x)
Pllxz é<p bllyz ésp éllz élx élly
. VG;VT=1 . VGVT=1
vev  ——T|z[ 2] |2z, vrvi——][x.

eec eec éec ésy

élx  elly  éllz élu
We notice that the symmetry group 2 which was present before gauging now disappears in
the gauged model; an emergent quantum global symmetry group

=231 (775, (254)

which is generated by the flux terms VF f VT, takes its place. The original planar one-form
subsystem symmetry group ¢ associated with the gauge theory layers persists in the gauged
model, and is generated by the Gauss’s law operators VG; V. Because it has a subgroup that
is gauged, it is more accurate to refer to the symmetry group of the gauged model as

gl =250 (7)) 2P (7L 7)) . (255)

Indeed, one can straightforwardly check that forming the analogs of the operators from Eq.
(242) in the gauged model simply produces the identity operator.

Phases and excitations

Now we consider the phase diagram of this model. When U < t, since ¥ is unbroken before
gauging, we expect ¢ / € to be unbroken after gauging as well. On the other hand, Expecta-
tion 2 from §2.1 suggests that 52 should be completely broken in the gauged theory since
is completely unbroken in the ungauged theory. When t > U, the group ¥ is broken in the
ungauged model, and we should correspondingly find that the group ¥ / £ is broken in the
gauged model as well. On the other hand, 5 is partially broken in the ungauged model, so
we expect that 42 is also partially broken. Let us check these expectations explicitly.

X-cube model at Ky =K, =0and t > U
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When t > U, the low energy Hilbert space becomes the ground state of the term pro-
portional to t, which consists of one effective qubit per dual edge é (so we can remove the
superscript on the Pauli operators). Within this low energy Hilbert space, the gauged Hamil-
tonian becomes 0, and the constraints become

U U
L VGzVT=1 L VGzVT=1
VGEVFP—>]_[zé, VFé‘V'P—>l_[Xé, for u=xy. (256)
eec esv

élu

The Gauss’s law constraint of the original gauge theory layers becomes the cube term of the
X-cube model, i.e. in this limit, the group ¢ / ¢ goes over to the group generated by the cube
terms of the X-cube model, which is completely spontaneously broken.

The flux terms associated to the planar zero-form subsystem gauging become two of the
three vertex terms of the X-cube model. Since the third vertex term is the product of the
two appearing in Eq. (256), it is satisfied automatically, and thus the (constrained) low en-
ergy Hilbert space of 2H. gz)(ﬂ')lly) / Z(Zo’l)(ﬂ'xl, 9}}) in the large t limit can be identified with the
ground state space of the X-cube model. In this limit the emergent quantum symmetry group
# goes over to the usual planar one-form subsystem symmetry group of the X-cube model
generated by its vertex terms; the relations of the X-cube model are obeyed as a consequence
of the fact that 52 is only partially broken (cf. Expectation 2 from §2.1).

Two stacks of gauge theory layers at Ky =K, =0and U >t

If we take U > t, then the low energy Hilbert space becomes the ground state of the term
proportional to U. This term resembles the plaquette operators of two stacks of toric codes
layers spanning the xz and yz directions. In this low energy Hilbert space, the operators VGV
all act trivially, and so the constraint associated to them is automatically satisfied. Related to
this, the group ¥ / J¢ is unbroken.

The flux terms VF “f VT act as the vertex terms of two stacks of toric code layers. Thus in to-
tal we see that in this phase the model at low energies simply resembles a foliation of space by
two decoupled stacks of toric codes. The emergent symmetry 5 coincides with the relation-
free planar one-form subsystem symmetry of these two stacks. It is completely spontaneously
broken.

Excitations and phase transition at Kxy =K, = 0 between t L U and t > U

Excitations of the X, terms in the ungauged Hamiltonian (in its trivial phase) are mapped
after gauging # to gauge charges on one of the decoupled layers of Z, gauge theory. As t
increases, composite loop excitations consisting of these gauge charges are created and fluctu-
ated within xy planes by the plaquette terms. Hence the phase transition from two decoupled
stacks of Z, gauge theory to the X-cube phase is induced by xy-planar p-string condensation
of gauge charges from the Z, gauge theory layers.

Similarly, the gauge flux excitations on the layers of the ungauged Hamiltonian (in the
topological phase) are mapped after gauging to composite planon excitations formed by
dipoles of lineons in the X-cube phase. This equivalence follows by considering the local charge
pattern created by a Z;/ ¥ operator, which excites the gauged xy-plaquette term along with a

pair of adjacent flux terms F /Y. Hence as U increases, the phase transition described above
from the X-cube phase to two decoupled stacks of Z, gauge theory is induced by the fluctuation
and condensation of composite xy-planon excitations that consist of lineon dipoles.

Order and disorder parameters
To obtain order and disorder parameters that diagnose the phase transition from two decou-
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Figure 12: One xy slice of the 3d cubic lattice. The dashed line is the path ¥(p, p’),
and the red lines are edges of the dual lattice of the 3d cubic lattice which form the
ribbon T'(p, p’).

pled toric code layers to the X-cube model, we can study how the parameters from the un-
gauged model are mapped through the gauging map.
Starting with the disorder parameters for the subsystem symmetry from Eq. (244), we find
that it maps to
L VGzvT=1
v (@;{yz 29V E, %L)) vi—— | | z, (257)

e€oR,,

where ERYZ is the path on the dual lattice which borders Ryz. This is a Wegner-Wilson loop of
the gauged model that is charged under (and thus can serve as an order parameter for) the
emergent quantum planar one-form symmetry 221,1)(9.;’ 37}}).

On the other hand, consider the disorder parameter 9y, )« for the planar one-form sub-
system symmetry from Eq. (246). Recall that 7(p, p’) is a path on the dual lattice of a generic
2d square lattice. Thicken it in the z direction to a ribbon I'(p, p’) as in Figure 12. Then the
claim is that

O gl gly)yt LGV'=!
v (@ﬂp,p,),k / Z9( L, F; )) vi—_

(258)

Ui y y W

eer(p,p’) eer(p,p’)  éer(p,p)

élix élly ez, é#&;.8
In the above expression, €; and é; are the edges on the dual lattice that correspond to the
plaquettes p,p’ on the original lattice, and u; and s are the initial and final directions of
the path . By comparing this to the operators VG;V' in Eq. (253), one finds that this is
a truncated symmetry operator for the Zgl’l)(ﬁ)lily) / Z(zo’l)(gj, ,EZ'YL) symmetry of the gauged
theory, and therefore 9y, ;) retains its interpretation as a disorder parameter.

And finally, the order parameter from Eq. (248) is mapped as

0.1 L VGVT=1
V(ﬁy,k,k,/z(z (L) T T Xy p ksl s (259)
(a,p)ey K/
k<k’ <k’
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which is a product of truncated symmetry operators for the emergent 7 symmetry. Hence,
this can serve as a disorder parameter.

5.2 Double layer construction

In this section, we treat a construction of the X-cube model by gauging a planar zero-form
subsystem symmetry group of two orthogonal stacks of Z, lattice gauge theory layers. This
construction is based on Ref. [65].

5.2.1 Two gauge theory stacks

Consider two orthogonal foliations 9’; and 9)} of 3d space by 2d planes, the first set of planes
stretching in the xz directions and the second set stretching in the yz directions. We imagine
placing Z, lattice gauge theories on the leaves of these foliations. On the cubic lattice, this
can be accomplished by placing two qubits on each of the edges that point in the z direction,
and placing one qubit on each of the edges that point in the remaining x or y directions. Pauli
operators acting on the qubits of the gauge theory layers that are parallel to the xz plane are
denoted XJ,ZY, while the qubits of the layers that are parallel to the yz plane are denoted
X?,Z}. The Hamiltonian of these two decoupled stacks is then

(gt FhH==>] (UZXI; +ey l_[zg) :

U=,y elu plue€p

(260)
Gl = l_[XZL, forallv, for u=x,y.
esv
elu
This model admits a planar one-form subsystem symmetry group
g=2""" (7t 7)), (261)

corresponding to the two foliations of space by gauge theory layers. This symmetry is sponta-
neously broken as the coupling t /U is tuned from 0 to co. For the purposes of our construction,
we can focus on a particular

=29 (71), (262)

subgroup of ¥, where ﬁ)yy is the foliation of space by planes which stretch in the xy directions.
Its symmetry generators are

Xy _ I_[ X y
Uk+§ - Xi,j,k+§Xi,j,k+§ ) (263)
i.j
The reason # is a subgroup of the planar one-form subsystem symmetry group is that these
operators can be expressed as suitable products of the line operators on the gauge theory layers
which generate their one-form symmetries.
It is possible to couple these two stacks while preserving the 5# subgroup,

1
Hygaac=2HY (Z1, 7}) + He, (264)
by adding the term
He=— Y (KeXX! + K, Z°7) , (265)
ellz

to the Hamiltonian. In fact, when K, = 0, the full ¥ symmetry is preserved.
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Phases and excitations
For simplicity, we just study the Ky — oo limit, keeping K, = 0.

X-cube model /Z, tensor gauge theory at Ky — oo and K, =0

In the Ky — oo limit with K, = 0, the two qubits on the edges that point in the z direction
reduce to a single effective qubit, and the effective theory which governs this low energy
subspace (computed to fourth order in perturbation theory) is essentially (a deformation of)

the X-cube model,
HeffN _ﬁ Z Xe_UZZXe - EZl_[Ze;

ellxy ellz ¢ eec

effGC‘ = l_[Xe , forall v, for u=x,y,

ecv
elu

(266)

where above, we have stripped the superscripts from the Pauli operators because there is now
only a single qubit per edge. The 5 symmetry, Eq. (263), acts trivially on the low energy
effective Hilbert space on which H.g acts, and so as Ky is tuned from oo to 0, the model
undergoes spontaneous symmetry breaking phase transition corresponding to the breaking
of #. In order for the model to transition into an X-cube phase, this must be the case, as
the planar one-form subsystem symmetry of the X-cube model satisfies the relation that its
Z(zo’l)(ﬁ)l(ly) subgroup is trivially realized.

This construction of the X-cube model is similar in spirit to the isotropic coupled layer
construction of Refs. [61, 62], which we revisit from a different point of view in §6.1.1. In
particular, the transition from anistropic decoupled Z, gauge theory layers to the X-cube model
in the present case is also mediated by a p-string condensation mechanism, though here, the
strings that are being condensed lie strictly parallel to the xy planes. Since the mechanism in
the anisotropic case is otherwise identical to the isotropic case, we omit the details here, and
refer readers to Refs. [64,65] (see also Ref. [113]).

Order and disorder parameters

We now discuss choices of order and disorder parameters that are able to diagnose the
planar confinement/deconfinement phase transition of the decoupled layers at Ky =K, =0
(we anticipate that they are strong enough to probe the broader phase diagram away from
Ky = K; =0 as well).

We begin with disorder parameters. One natural option is to consider a truncated symme-
try operator for the 5 subgroup,

X
27 =[]xx (267)

e“e?
Xy ~
e€Ryy

where here, ny is an open rectangular membrane on the dual lattice which is parallel to the
xy directions (and so only intersects edges which point in the z direction).

Another option is a truncated symmetry operator for the larger ¢ symmetry, which takes
the form

X _ X y _ y
Bomi= |1 Xap Zoou= 11 Xip (268)
(a,B)ef(p.p") (a,B)ef(p.p")

where here, 7(p,p’) is an open path on the dual lattice of a generic 2d square lattice with
endpoint plaquettes p and p’.
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For an order parameter, we will consider

o= ] z= || = (269)

ecoutline(C)  ecoutline(C)
elx ely

where C is a cuboid, and outline(C) is the set of edges which outline it. This order parameter
can be thought of as a product of four Wilson loop operators, two associated to gauge theory
layers which are perpendicular to the x direction and two associated to gauge theory layers
which are perpendicular to the y direction. Therefore, it is a sort of order parameter for ¥.

5.2.2 Gauging a planar zero-form subsystem subgroup

We now gauge the subgroup . To promote this global symmetry to a local one, we place
qubits on the plaquettes of the lattice which are either parallel to the xz plane or the yz plane
(but we do note place qubits on the plaquettes that are parallel to the xy plane). Then the
gauged Hamiltonian takes the form

ol == 3 (0T e Tl ) o

U=x,y eJ_u plu esp
fozl_[X’e‘ forallv, for u=x,y, —XXXyl_[X , for el z, (270)
esv poe
elu
17
pec
plixz,yz

In the above, ée is the Gauss’s law constraint for the gauging of Zgo’l)(g)yy) and F, are local
flux operators. We can solve Gauss’s law by performing the following unitary circuit,

V:l_”_[C:Xpl_[CeyXp' 271
e||z De poe
plx ply
This acts on the gauged model as

V(Hysac[Z3 D)V ==t 37 >z, [ |2

U=xyplu eep

S (sl T ) o xS TS el | e

ellz p>e e||x elly ellz U=X,y p3e
plu
vervi = [x¢[ x,, vévi=xx, vevi=[|zz [] z,.
esV pov ecc pEC
ely  plu ellz pllxz,yz

Thus, one can impose G, = 1 for all edges e which point in the z direction by reducing from
two qubits per such edges e to a single effective qubit. In total there is only a single qubit on
every edge of the cubic lattice, and so we can erase the superscripts from the Pauli operators.
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The model becomes

V (Hosac /220 22— S 7, 2

plixz,yz eEP

_Z(le_lxp+1<zze) Sx+> > x[]x 273)

ellz p>e ellx,y ellz U=X,y p3e
ply
. VG Vi=1
vervt ZEA Tk %, vEV ST 2 [ 2
esv pov ecc pEC
ely  plp ez plxzyz

We note that the original ¢ symmetry persists in the gauged model in the form ¢ / £, and
is generated by the operators VGLVT. On the other hand, the model gains another emergent
planar one-form subsystem symmetry group from the gauging

#=23V (7)), (274)
which is generated by the flux terms, VF. V.

Phases and excitations
We now analyze the phase diagram.

X-cube model at Ky =K, =0and t > U
In order to make the physics more manifest in the t > U limit, we perform one more local

unitary circuit,
Vi=]11]cx. (275)

ellx,y p>¢
plxy

This brings the model to the form

A% (2ng) (9513;;) /Z(zo’l)(gily)) VTW, BVE VT =1 . Z 2

plxy
U > []%+> > %] [%
ellx,y P9€ ellz b=Xy P9€
pl plu (276)

~ e BVGVITT=1
V1VG5VTV1' l—) l_[Xe , forall v, for u=xy,

esv

elu
~ it "G, vivi=1
Wvrvi ———T1 1z ] 2.
eec pec
pllxz,yz

Thus, in the large t limit, the plaquette degrees of freedom are frozen to Z, = 1 eigenstates.
The Hamiltonian becomes a constant, the Gauss’s law constraint G, goes over to (two of the
three) vertex terms of the X-cube model, and the flux term F, goes over to the usual cube term
of the X-cube model.
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In the t > U limit before gauging, the model is well-described by two stacks of toric code
layers, and hence the original symmetry group ¥ is spontaneously broken. Upon gauging, the
# symmetry acts trivially which is consistent with the fact that the X-cube model enjoys a
9 / ¢ symmetry, with & describing the relations. This ¥ / ¢ symmetry is completely sponta-
neously broken.

The subgroup 5 being gauged is also partially spontaneously broken, in a somewhat sub-
tle way, as pairs of planar symmetries are preserved, similar to the construction in the previous
subsection. The emergent symmetry group 4 is accordingly also partially spontaneously bro-
ken, as follows. Symmetry operators supported on individual planes are broken as the asso-
ciated string operators create topologically nontrivial planons consisting of a dipole of X-cube
fractons. At the same time, there is a subgroup generated by the product of an identical sym-
metry operator on each plane which remains unbroken as the truncation of such an operator
creates no topological excitation.

Single stack of toric code layers at Ky =K, =0and U >t
Let us now analyze the opposite extreme limit, U > t. This time we simplify the physics
with a slightly different local unitary circuit,

BL=T1][cx,- 277)

el|lz p>e
plixz

In this case, the gauged Hamiltonian becomes

Wy (O, #0200 @) v LB Sz S

pllxz e€p pllyz CEP

_U(er+zxe(1+1—[xp))

ellxy ellz p>e (278)
S IALAAAS! ~ et IALAAAS!
e ——5[[x][x. ®vevy ——]]x.
es3v pov es3v
elx ely

~ PSR VG,V =1
—————
TAG:ARA [ z-
pEC
plixz,yz

In the U — oo limit, the edge degrees of freedom are frozen into X, = +1 eigenstates, and
A, = l_[pae X, =1 for all edges e that point in the z direction. In this low energy subspace,

the Gauss’s law constraints G/ = 1 are automatically satisfied because the G. act trivially.
(Accordingly, the inherited ¢ / ¢ symmetry is unbroken in this phase.) The only remaining
operators that we must impose are the flux operators. If one imagines the edges that are
parallel to the z direction are the sites of a stack of 2d square lattices which span the xy
directions, and the plaquettes that emanate from them are the edges of each layer, then the
operators A, behave as the vertex terms of a stack of toric codes. Likewise the flux operators
VZVFCVT\N/Z"L serve as plaquette terms. Thus, deep in this phase, the model has a low energy
effective Hamiltonian equal to zero, and a Hilbert space equal to the ground state of a stack of
toric code layers. This is consistent with the emergent symmetry 7 being fully spontaneously
broken, as the original symmetry group 5# before gauging is fully respected by the initial trivial
phase.
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Excitations and phase transition at Ky =K; = 0 between t L U and t > U

For t < U, gauging the planar subsystem symmetry maps excitations of the X, terms,
in the trivial phase, to flux excitations on the layers of toric code. Increasing t creates and
fluctuates composite string excitations, formed by the flux excitations, over the planes that
have been gauged. Hence the phase transition from a single stack of toric code layers to the
X-cube phase, obtained by gauging a planar zero-form symmetry on two stacks of Z, gauge
theory layers undergoing a confinement/deconfinement transition, is driven by planar p-string
condensation of composite string excitations.

For t > U gauging the planar subsystem symmetry maps the magnetic flux excitations of
the plaquette terms in the stacks of toric code layers to composite planon excitations. These
planons are equivalent to a pair of fracton excitations in the X-cube phase, as a single X,
operator creates a local cluster consisting of a pair of fractonic excitations of adjacent cube
terms F. along with a single gauged plaquette excitaiton. Increasing U drives these xz and yz
planons to fluctutate and condense resulting in a phase transition from the X-cube phase to a
single stack of toric code layers.

Order and disorder parameters

We now compute how the order and disorder parameters of the ungauged model map under
gauging. First, we compute that the disorder parameter associated to the 5 symmetry of the
ungauged models maps as

Xy (0,1) - V5€V'5'=1
(o ep)v == 1] @79
pEERXy

where here, we are thinking of 3ny as a path on the dual lattice. We note that this operator

is charged under the emergent quantum 251’1)(9)&) symmetry, and thus serves as an order
parameter which diagnoses its spontaneous symmetry breaking.

On the other hand, the disorder parameter associated to the ¢ symmetry of the ungauged
theory maps as

G yi=
V(92 0 2001V T x, ( 1 Xi,a,ﬁ) X, (280)
(a,p)€7(p.p")
Thus, it is mapped again to a truncated symmetry operator, this time with operators decorating
its boundary. We interpret this as a disorder parameter for the global symmetry of the gauged
model, ¢ / FE.
And finally, the order parameter we defined maps as

0.1 VG,vT=1
v(e [z Eh)vi—— [] z. (281)
ecoutline(C)

This retains its interpretation as an order parameter for the ¢ / ¢ global symmetry.

5.3 The string-string-net model

In this final subsection, we move on to consider the string-string-net model for the anisotropic
layer constructions presented in §5.1 and §5.2. This model combines layers of Z, gauge theory
on xz and yz planes with layers of Z, gauge theory on dual xy planes in a nontrivial way.

The Hilbert space for this model is constructed on a cubic lattice with two qubits per z
edge, one qubit per x and y edge, and one qubit per xz and yz plaquette,

H=®H§®HZ®HP’ (282)

elx ely pllz
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where

HE= W =H, =C2. (283)

This can equivalently be viewed on the dual cubic lattice with two qubits per dual xy plaquette,
one qubit per dual xz and yz plaquette, and one qubit per dual x and y edge,

H=QH; QM R H:, (284)

plix plly élz

where
X~y ~ ~ m2
Hﬁ—Hﬁ—HE—C . (285)

A useful picture for the model is in terms of square lattice systems which have one qubit per
edge. In particular, the degrees of freedom 4 (”Hg ) are the same as those of two stacks of
square lattice systems on the xz and yz planes of the cubic lattice, while the degrees of freedom
H; (H,) are the same as those of a single stack of square lattice systems on the xy planes of the
dual lattice. The choice of stacking on either primal or dual planes depending on the direction
is responsible for the anisotropy of the model.

The perturbed string-string-net Hamiltonian is

1x ly
Hpssn =—A :XZ“XP_AZZP_Y(ZXEI_[XP +ZXZI_[XP)

ellz p>e pllz elx p>e ely p>e
— A’ (Z zp]_[z§+Zzp]_[z§) —A D XX (286)
plx  e€p ply e€p ellz
—y (ng +ng) Yz (Zz§+Zz§) .
elx ely e|lz ellx elly

This model has a Z(ZO’U(QXL, gyl) planar subsystem zero-form symmetry generated by Z, op-
erators on xz and yz planes, or equivalently

_— o _— o
U{+§ - l_[ Zi 1 jko Uj+% = l_k[ L5l ko (287)
i,

where in the above, we are thinking of (i + %, 7, k) and (i, j+ %, k) as coordinates for edges € on
the dual lattice. This symmetry enhances when y = O to a larger Z(zl’l)(g;yy) planar subsystem
one-form symmetry generated by operators

ﬁy,ll: l_[ Zd,[ﬁ,k’ (288)
(a,p)ey

where here, y = {(a, )} is a path on the dual lattice of a generic 2d square lattice. The edges

of the 2d square lattice that it intersects have coordinates (&, ) such that G+ f8 € Z + 1,

and we think of & = (&, B, k) as specifying an edge of the dual lattice of the 3d cubic lattice

on which the PSSN model is defined. These symmetries should be compared to those of the

model in §5.1, in particular the symmetry generators presented in Eq. (242) and Eq. (240).
The model also has a Z(ZO’D(ZUY) symmetry generated by

vy, =% X (289)

L k3" 5 k+3
i,j
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When x’ = ¢/ = 0, this enhances to a larger Z(Zl’l)(ﬂ'xl, 9}}) symmetry generated by

X X y __ y
uho= [ ] Xups U= T X (290)
(@B)eT (@p)ei

where here, ¥ = {(a, )} is a path on the dual lattice of a generic 2d square lattice. These
symmetries should be compared to those of the model in §5.2.
There is a Z, local unitary circuit

V:r[r[c:xpl_”_lchp’ (291

plx e€p ply e€p

that acts on the phase diagram as A «> A/, A’ <> A, and y < 7.
The string-string-net Hamiltonian reduces to an anisotropic single stack or two coupled
stacks of Z, gauge theory in certain limits, as explained below.

* As A is taken large, the plaquette qubits are pinned into the |1) state, and the effects of
the A,y terms can be computed in perturbation theory, leading to star terms

1x ly
[T JIx. (292)

edv [=a%

that appear at 4th order in perturbation theory in y. Their product appears at 4th order
in y and 2nd order in A. The resulting anisotropic model corresponds to two stacks of
Z, lattice gauge theory with couplings, Eq. (264),

A large
Hpssn — Ha srack - (293)

* As A,y — 0 we find the model from above, but with its Z(Zo’l)(?)l(ly) subsystem symmetry
gauged (cf. Eq. (270)), where Gauss’s law is energetically enforced by the A term, be-
coming strict in the limit A — o0o. The difference is that the flux term constraints from
Eq. (270) are absent when A = 0. These flux terms can be incorporated energetically
by backing off from the strict A = 0 limit, and taking into account small A effects to 4th
order in perturbation theory. We therefore find that

r—0
A—
A Sch;i?l (0,1) I
Hpssy — H 2—stack/EZ2 (9Xy) , (294)

where we emphasize that we have used the “energetic” gauging prescription described in
§2.1 because the flux terms are imposed energetically as opposed to as strict constraints
on the Hilbert space.

* Asy’ — o0, the edge qubits are pinned into the |+) state, the A’ term acts trivially, and
the A’,k’, ¢’ terms are projected out. If we take y’ to be large but not strictly infinite,
and compute an effective Hamiltonian perturbatively in A’,k’, and ¢’, then one finds
that at 4th order in both A’ and x’, and simultaneously eighth order in ¢’, terms of the
form

pllz
[1z. (295)
pEC
are generated. If one applies a Hadamard gate H®V to swap all Pauli-X operators with
Pauli-Z operators, and switches perspectives to the dual lattice, then one finds that the
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PSSN model goes over to the stack of Z, gauge theories with inter-layer couplings (cf.
Eq. (243)),

H®NHpsonH®N ~ Hy o, for 7' large, (296)

where we have used the symbol ~ to emphasize that the Gauss’s law operators of the
gauge theory layers in Hy_ g, are imposed as constraints on the Hilbert space, whereas
they are imposed energetically in Hpggy by Eq. (295).

e Taking A’ = ¢’ = 0, A’ — o0, and y/,x’ small, applying a Hadamard H®" gate, and
switching perspectives to the dual lattice, the PSSN model reduces to the model from
§5.1.2—a single stack of coupled gauge theory layers with its Zgo’l)(gj, gyl) subsystem
symmetry gauged—as follows. The Gauss’s law constraints of the subsystem gauging,
i.e. the operators G, from Eq. (250) up to a change of basis, are energetically enforced by
the A’ term, and become strict in the A’ — oo limit. Computing a low energy effective
Hamiltonian perturbatively in v’ produces terms

1x ly
[1x. TIx. (297)

edv ey

which play the role of the flux operators F" from Eq. (250), while finite x” contributions
produce the operators from Eq. (295) which again play the role of the Gauss’s law op-
erators of the gauge theory layers (i.e. the operators G, from Eq. (250) up to a change
of basis). In total,

®N ®N ., (0,1) 1l gL
H HPSSNH - Hl—stack/Ezz (gx ;g’.y ) (298)
asA' =€ =0, A"—> oo, v, k' small.

The zero correlation length string-string-net model emerges in the limit A, A’ — oo

Hogn=— ) A= > BS=> B/ = > C.— > (DX +DY), (299)

ellz plx ply c
where we have defined
pllz Ly
A=xx|x,, B'=z,]]z". c.=]]z. D'=[]x. 00
poe e€p pEC esv

We have included the leading order cube and vertex star terms, and rescaled the energies for
simplicity of presentation; both of these operations preserve the zero temperature phase of
matter of the commuting Hamiltonian.

The string-string-net model can equally be viewed as xy-planar subsystem gauged stacks
of toric code along xz and yz planes, or as an xz- and yz-planar subsystem gauged stack of toric
codes along the xy planes. Excitations of the edge star term are equivalent to planon compos-
ites formed by pairs of x- or y- lineons separated along z. Excitations of the x- and y-plaquette
terms are equivalent to planon composites formed by pairs of fractons separated along x and
y respectively. Excitations of the cube term correspond to X-cube fractons. Excitations of the
x and y vertex star terms correspond to y- and x-lineons, respectively.

To justify our identification of the excitations above, we show how the string-string-net
model is equivalent to the X-cube model. This further implies that the perturbed model can be
interpreted as exploring neighboring phases to the X-cube model, including one or two stacks
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of (2+1)D toric code, and the relevant anisotropic lineon or fracton dipole condensation phase
transitions. The equivalence follows by applying the circuit V and then an additional circuit

v=]]cx, (301)
e|lz
to achieve
pllz  ellz elz
R X WA N AN LA I
ellz pllz ¢ pec ecc e€c
elly ellz ely
SUT I e+ [x | (302)
14 esv esv [=2%

The cube term is equivalent to the X-cube term (up to a change of basis) [ | ecc
plying with four Z, terms, and similarly the x vertex star term is equivalent to

Z, after multi-

ely  elz

[ ]x oo

esv esv
after multiplying with two z edge terms. This redefinition of Hamiltonian terms, which is a
topological phase equivalence of the commuting Hamiltonian, decouples the plaquette qubits
and z edge qubits with superscript y with a trivial Hamiltonian, and they can hence be removed

while preserving the phase. This results in the X-cube Hamiltonian (up to a change of basis)

elx ely
VIH TV~ => T [2.- D] (l_[xe +l_[xe), (304)

c eeEc v esv edv

where we have dropped the superscript on the remaining qubits, as there is one per edge.

The string-string-net picture for the Hamiltonian Hggy follows, similarly as in previous
sections, by interpreting the cube term C, as fusing a closed Z,-loop into the edges of the dual
lattice xy planes, and similarly interpreting D} and D} as fusing a Z,-loop into the lattice yz
and xz planes, respectively. The edge term .4, enforces a Z, parity constraint that the dual
lattice loops must be Z,-closed, or terminate on an odd number of edge strings, while the
plaquette terms Bg similarly enforce that the edge strings must come in Z,-closed loops, or
terminate on a dual string through a plaquette in the same plane. The ground states are then
given by an equal weight superposition over all string-string-net configurations built on top of
a reference state that satisfies the Z, parity constraints.

6 (3+1)D Isotropic X-Cube Transitions

In this section, we explore constructions of the X-cube model that are unified within (an exten-
sion of) the string-membrane-net model of Ref. [52]. We start in §6.1 by reviewing the coupled
layer constructions of Refs. [52,61,62]. We then move on in §6.2 to consider another con-
struction which proceeds by coupling topological phases to subsystem gauge theories [52,64].
Finally, we demonstrate in §6.3 that both of these constructions can be recovered by taking
certain limits of the string-membrane-net parent model.

This section is structurally similar to §3, and so we are briefer here. One of the novelties
of this section over previous sections is that we comment on boundaries, and in fact show that
in some instances, the models of §3 govern the boundary dynamics of the models we consider
here.
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6.1 Isotropic layer constructions

The (deformed) X-cube model 3ng’1) has a Z(zl’l)(g I Zl

xy> P xz 9'y”z) / Dz planar one-form sub-

2
system symmetry group, where &, !Ul s is the natural foliation of 3d space by planes that span the
U1y directions. A natural attempt at modeling these symmetries is via the system
ZH(le)(ﬁ)lJy, 9;'2,5‘7;}2) of three isotropic decoupled stacks of Z, lattice gauge theories; since
each individual layer has an ordinary one-form symmetry, the combined system has a planar
one-form subsystem symmetry group. However, there is an important difference between the
symmetries of H %12’1) and ZH(Z?((Z'('},, 91'2, 9;'2): in the latter Hamiltonian, the symmetries on
the different stacks are completely decoupled from one another, whereas in the case of the X-
cube model, there is a global relation between them. Specifically, the diagonal subgroup DZS)
(cf. Figure 1) acts trivially in the X-cube model, whereas it acts faithfully in the decoupled
stacks.
There are two ways to fix this discrepancy. First, we may introduce interactions between
the decoupled layers,
zng) (gll 7l

Xy’ < xz’

1Y 20D (gl ol
9yz)—> HY (9 Z

Xy’ < xz’

7)) +He, (305)

which are strong enough to induce a transition to a phase where the diagonal subgroup is
unbroken. It turns out that this is precisely what the coupled layer construction of the X-cube
model from Refs. [61, 62] achieves, and we review it from this perspective of spontaneous
symmetry breaking in §6.1.1.
A second way to proceed is to impose the relation that the diagonal subgroup is trivially
realized by gauging it [52]. More specifically, one considers the theory
2H(le) (gll Pl

xy’ < xz’

I 277(1) | I
9}/2) - HZz (gxy’g

Xz’

7)) [Pz (306)

and argues that, in a certain limit, it reproduces the X-cube model. We go down this route
in §6.1.2 and, as an added bonus, show that when this gauged model is formulated on a
manifold with boundary, the boundary dynamics are described by the analogous coupled wire
construction of the plaquette Ising model treated in §3.1.2.

6.1.1 Coupling stacks of gauge theory layers

In this section, following Refs. [61,62] (see also Ref. [99]), we model Z(Zl’l)(ﬁ}l(ly, Q}UZ, )y / ~
one-form planar subsystem symmetries in (34+1)D by directly coupling together stacks of
(2+1)D theories with ordinary Zgl) one-form symmetries. This section may be thought of
as a generalization of §3.1.1, where an analogous coupled wire construction was carried out
to model Zgo,l)(g)y’g}u) / ~ zero-form linear subsystem symmetries in (2+1)D. Because this
case has already been treated extensively in the literature, we are brief; our main goal is to
emphasize how this coupled layer construction fits into our broader perspective.

We start by taking three orthogonal stacks of decoupled Z, lattice gauge theory layers to
produce a (3+1)D model whose Hilbert space consists of two qubits on each edge of a cubic
lattice, one qubit from each of the two layers that intersect the edge. We label operators by
the edge they act on and the plane to which the qubit being acted on belongs, e.g. Z.” denotes
a Pauli-Z operator acting on the qubit at edge e which resides in the xy plane. With these
conventions, the Hamiltonian of decoupled gauge theory layers can be written as

) (Fh, 2], 7)) =—v D oxe—e ST [ [z, (307)

€ pizlle M1 M2 =XY,y2.X2 p||uy piy €SP
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where the sum over U, || e is over the two planes u, U, which are parallel to the edge e. We
accompany this with a Gauss’s law constraint that is implemented by operators

Giht2 = l_[ Xtz - for all vertices v,  and for iy = Xy,yz,Xz. (308)

esv
ellui g

From here, we can couple these layers together with terms of the form

1
Hy o = 2HY) (7], 21, #],) + He.,

He= —Z (KX ]_[ Xk 4 K, l—[ ng)' (309)
e

pikzlle pikalle

When K, = 0, the model enjoys a planar one-form subsystem symmetry group,

_ 700 (gl gl gl
g=2" (7, 7], 7)), (310)

whose corresponding symmetry operators are

Xy __ Xy XZ __ X7 yz __ yZ
vhe= ] e up= 11 x5, uli= 11 x5, G11)
(@B)er (wp) (@p)et

where e.g. in the operator U;’yk, the object ¥ = {(a, )} is a path on the dual lattice of the 2d
square sub-lattice at the location z = k. We think of ¥ as the set of edges that it intersects on the
original 2d square sub-lattice, which we specify with 2d coordinates (a, ). These symmetry
operators simply act in the same way as do the one-form symmetries of the individual Z, lattice
gauge theory layers. When K, # 0, this Z(Zl’l)(ﬁll , Z

XZ,,?YHZ) is broken down to its diagonal
subgroup,

7 ="zl (312)

whose symmetry operators take the form

Py, = XPiba = Utike, (313)
l_[ l_[ e l_[ l_[ Lnm

eEmM g uslle U1 U2 =XY,yZ,XZ Leyluwz
In the above, m is a membrane on the dual of the 3d cubic lattice on which the model is
defined, L is a leaf of the foliation 9"!1 1y and by L N we mean (¥, £), where ¥ is a path on
the dual of L (thought of as a 2d lattice) obtained by intersecting the membrane m with the
leaf L, and { is the coordinate of the leaf L in the direction orthogonal to u;u,. See Figure 1
for a visualization in the case of one foliation.

Phases and excitations
We now study some of the phases that occur at extreme limits of the coupling strengths in the
coupled gauge theory layer model above.

Decoupled gauge theory layers at Ky =K, =0

When Ky = K; = 0, the model is in a “decoupled layers” phase. As one varies the
competition between U and t, the decoupled gauge theory layers each undergo a confine-
ment/deconfinement phase transition. We interpret this as a spontaneous breaking of the
Zg’l)(gll Al

Xz’

,ﬂ'}l,lz) one-form planar subsystem symmetry of the full (3+1)D model. In the

next section, we demonstrate that this phase transition maps, upon gauging the diagonal DZS)
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in Eq. (313), to a transition between the (3+1)D toric code and the X-cube model.

Next we briefly recall some of the main results of Refs. [61, 62].

X-cube model at K; =0 and Kx > 1

When K; = 0 and Ky > 1, one can compute the low energy effective Hamiltonian which
describes Hs o, deep in this phase. Using techniques similar to those used in §3.1 for the
Ising quilt, this leads to a lattice model with one qubit per edge, and with the low energy
effective operators expressed in terms of the “UV operators” as

7, =7zt X, =X = X (314)

where u;u, and uus, are the two planes parallel to the edge e. Going to sixth order in per-

turbation theory, one finds
Har~ =02 X =82 ] |2,
e

c eec

Gihllz — l_[ Xe- (315)

esv
ellug sz

If one were to set U = 0 and impose Gauss’s law G,'"> = 1 energetically as opposed to as
a constraint, then this would correspond to the X-cube model. Instead, we have chosen to
present the model more in the style of the generalized (tensor) gauge theory BH%’U.

This model inherits a Zg’l)(ﬂ'ﬂy, ﬁ'ilz, 35'}|I|Z) / ~ one-form planar subsystem symmetry struc-

ture from its toric code constituents, which is furnished by the symmetry operators

pe= L] Xape U= ] Xujpo U= || Xiap- (316)
(a,p)ey (a,p)ef (a,B)et

The gauge theory enjoys a phase transition associated with the spontaneous breaking of this
symmetry as one dials U/f. On the other hand, we notice that the diagonal DZS) subgroup
from Eq. (313) is trivially realized on the low energy subspace throughout this Ky > 1 phase,
i.e. PU; = 1 regardless of the values of U, f. Since this diagonal subgroup acts non-trivially in
the decoupled layer phase, the phase transition as one tunes from Ky = oo down to Ky = 0
is a DZS) spontaneous symmetry breaking phase transition. See Ref. [61] for a description of
this phase transition in terms of p-string condensation.

Z,, lattice gauge theory at Ky =0and K; > 1

One can perform a similar computation to determine the low energy effective Hamiltonian
in the K, > 1 phase. Again, one finds a lattice model with one qubit per edge, this time with
the low energy operators defined as

X, = Xihuzxi‘l“z , Z,= Z,:;Ll.UQ = Zé‘l“z ) (317)

The effective Hamiltonian is then precisely that of Z, lattice gauge theory

Hy=-0>%X,—t> [ ]z. (318)
e

p e€p
with Gauss’s law constraint
G, =] [x.. (319)
(=24
The diagonal DZS) one-form symmetry group from Eq. (313) goes over to the usual one-form
symmetry of Z, lattice gauge theory, and tuning U/ takes one through the usual confine-
ment/deconfinement phase transition. See §2.2.3 for a brief review of this model.
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Order and disorder parameters

Let us consider the natural disorder parameters one could write down to diagnose the phase
diagram of Hj o, One option is a truncated symmetry operator for the diagonal one-form
symmetry DZ(; ,

7o =1 [ 1 %, (320

e€ri iy le

where here, 11 is an open membrane on the dual lattice with boundary path 7. Another option
is to consider disorder operators associated to the individual gauge theory layers, e.g.

P = ]_[ XYy (321)
(@p)ef

A natural order parameter can be obtained as

o= [] T[]z (322)

ecoutline(C) pyusle

Alternatively, one can simply consider a single Wegner—Wilson loop on one of the gauge theory
layers.

The behavior of the vacuum expectation values of these parameters can be determined eas-
ily, at least when Ky = K, = 0, from the corresponding behavior of order/disorder parameters
of (2+1)D Z, lattice gauge theory.

6.1.2 Gauging the diagonal subgroup

In this section, extending slightly the work of Ref. [52], we study the model that one obtains
upon gauging the diagonal one-form symmetry subgroup of decoupled gauge theory layers,
Eq. (313). We find a phase diagram that interpolates between a (3+1)D toric code phase and
an X-cube phase (see also Ref. [75] for related work). One novelty of this section over others
is that we formulate the theory on a manifold with boundary (see also Ref. [114] for related
work in this direction) which we use to make closer contact with the results of §3.1.2.

Actually, it is simpler to phrase the discussion in terms of perturbed toric code layers,
rather than gauge theory layers, the difference being that in the former we impose Gauss’s law
energetically, whereas in the latter we impose it as a constraint on the Hilbert space. We place
these perturbed toric code layers on M = T2 x (—o0, 0] with a rough T2 boundary (i.e. the
obvious generalization of the 1d rough boundary in Figure 2) which we take to lie in the xy
plane. In the bulk, the Hamiltonian is simply*®

Huw= >, |-t > [Jzere—ad [] xtve-v > x|, (323)

M1 Mo =Xy,X2,yZ pllpy g €SP v esv ellugpa
elluguy

where we understand the sums to be over bulk plaquettes p, bulk vertices v, and bulk edges
e. On the boundary, we include interactions of the form

Hy=—h) (&% +A%)—J Y B, , (324)
Vo Pa

15We could also include the XX and ZZ coupling terms considered in the previous section, as was done for the
Ising quilt. We have chosen to omit them for clarity.
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where
A‘\f;”z — l_[ X,, Bpa — l_[ ZI:Wz(Pa)_ (325)
e3Vy eE€py
ellugug

The notation v; and p; denotes boundary vertices and boundary plaquettes, i.e. vertices of the
lattice that have only one edge emanating from them, and plaquettes of the lattice that have
three edges bordering them. The operator A“ 112 i simply the Pauli operator X.'"?, where e is
the single edge that meets the boundary Vertex va. The operator B, is a three-body Pauli-Z
operator, where uU,(p;) is the plane to which the boundary plaquette p; is parallel.
Our total “toric layer” Hamiltonian is the sum of these two,
HE

3-stack —

= Hpux +Hj, (326)

where the E in the superscript is to emphasize that Gauss’s law is imposed energetically in
this model. For the moment, let us set U = 0 for simplicity. Straightforwardly generalizing
the discussion of §2.2.2, the effective edge Hamiltonian of the above model is described by
decoupled transverse field Ising wires,

(HE qacilo—o)eage = — 0 (VL2 o + WX + JZP T+ X2, (327)

Vo t+X 7] +¥
Va
which is the same as the Hamiltonian 1Hg)2)(ﬁ')|(|, ,?}I,I).

Now, in analogy with the construction of the gauged Ising quilt, we can consider gauging
the diagonal one-form symmetry subgroup DZ(ZD by coupling the model to a Z, two-form
gauge theory, and analyzing what effect this has on the edge. Following the standard minimal
prescription for gauging one-form symmetries on the lattice (cf. §2.2.3), the Hamiltonian takes
the form

1
H?]:: stack/ DZ(Q ) = Hc-bulk + Hgauge + Hc-a >
(328)
Ge = l_[ X?lﬂz (l_[XP) ,
pikzlle p>e

where G, is the Gauss’s law constraint term, defined for both bulk and edge vertices. The rest
of the pieces are defined as follows. The term Hg,,4 contains energetics for the two-form

gauge field,
Hgayge =—U, ZX Z l_[ Zy. (329)

¢ pec

The term H_ 4, covariantly couples the bulk part of the toric code layers to the gauge field so
that they enjoy local gauge symmetry (i.e. so that they commute with each G,),

Hepuk = Z —t Z Zpl_lzglﬂz —AZ l_[ Xgluz —U Z ijl“z

Mo =XY,XZ,yZ plluiuy  €<p v esv efluq iz
ellppa
(330)
Finally, H. 5 encodes the boundary terms
]
Heo =07 2 %, —0 2, | 12
cs DECy (331)

—hZ(AXZ +A)— JZZPa -
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In the above, a boundary cube is one which has 7 plaquettes forming its boundary.

Now, the upshot is that the boundary Hamiltonian can be thought of as acting on an effec-
tive/virtual 2d lattice: we identify the boundary plaquettes p, with edges e of this effective
lattice, and boundary edges e; with vertices v of the effective lattice. Boundary cubes c; are
then naturally associated with plaquettes p, and boundary vertices v, with vertices v. Cor-
respondingly, we place a qubit on each edge and two qubits on each vertex of the effective
lattice. We can then map the various operators which appear in the boundary Hamiltonian
to operators which act on these effective qubits, as in Table 7. Indeed, the algebra furnished
by the operators in the last two columns is the same as that furnished by the operators in the
first two columns. Making these substitutions, we find that the boundary Hamiltonian of this
gauged theory is isomorphic to

(1 aal0us), ~ ) (1.50) 20 a

(cf. Eq. (121)), i.e. it is the same as the model obtained by gauging the diagonal subgroup

ngo) (Eq. (98)) of the subsystem symmetry group of decoupled transverse field Ising mod-

DZ(ZU of the bulk corresponds on the

D(0)
2

els. Evidently, gauging the diagonal one-form symmetry
boundary to gauging the corresponding diagonal zero-form symmetry , i.e. the symmetry
obtained by pushing the topological surface operators that implement the one-form symmetry
in the bulk to the boundary.

Now, in Ref. [52], the authors applied a local unitary circuit to this theory (on a manifold
without boundary) in order to exhibit its equivalence to the X-cube model. We can apply the
same circuit here, extended in the obvious way to our space with a boundary,

o= (e ) (e (o). o

plixy €€p pllxz e€p pllyz e€p

and then solve the resulting Gauss’s law constraint VG, V' =1

Her, =V (HE

D (1)) /1
3—stack/E ZZ ) ‘VGeV‘i‘zl, Ao | (334)

In the above, we understand that if p is a boundary plaquette, then the product over e € p
is a product over 3 edges (see Figure 7 of Ref. [52] for a visualization of this circuit in the
case that there is no boundary). If one follows how this circuit acts at the level of the effective
boundary Hamiltonian, one finds that it acts in the same way as the circuit in Eq. (125) does on
1H(ZZ)(9')|(|, Ey”) ADZ(ZO). Accordingly, the boundary theory of Hgp;, becomes exactly the gauged
Ising quilt appearing in Eq. (127), i.e.

(HorL)edge ~ Haig - (335)
The Hamiltonian Hgyy inherits a planar one-form subsystem symmetry group

gl =20 (7,20, 7)) P2, (336)
from the ungauged toric code layers, and also grows an emergent symmetry group,

# =7, (337)
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Table 7: The first two columns contain operators which appear in the boundary
Hamiltonian in Eq. (331). To each such operator, we associate a corresponding “ef-
fective operator” which acts on an effective 2d lattice which describes the boundary.
These operators are the same as those appearing in the Hamiltonian of the gauged
Ising quilt, Eq. (121). The algebra furnished by the boundary operators is the same
as that furnished by their corresponding effective operators.

Boundary operator Effective operator

P
X,, ﬁ X, X
{ J
e
|

Lz = M= | @r¢

xx | [x, .
K] 1%

uikallea

Vo 3
Yz y
A)\(/Z’Ava e Xz’xl
ba X
Z,.By, (pallxz) 11 z[ [z
VvEe

a

ZpaBpa (pBHYZ) Zg Z}KI

100


https://scipost.org
https://scipost.org/SciPostPhys.15.1.017

Scil SciPost Phys. 15, 017 (2023)

Phases and excitations
As one varies U/t in the ungauged model, one passes through a planar one-form subsystem
symmetry breaking phase transition. Let us analyze how this phase diagram maps after gaug-

ing DZS). We find that (at least when the strict version of the gauging procedure is used) the

corresponding phase transition of the gauged model is a simultaneous breaking of ¢ / ¢ and

an unbreaking of 42, in line with Expectation 2 of §2.1. We are telegraphic here because the
logic and calculations are all very similar to §3.1.2.

X-cube model at t /U > 1

The t/U — oo limit freezes out the qubits that live on the plaquettes, and the bulk low
energy effective theory in this limit is simply the X-cube model,

Her, t/U—oo BH%I) ‘ (338)
Intriguingly, using the results of §3.1.2 and additionally taking the boundary coupling
J/h — oo recovers the plaquette Ising model (Eq. (102)) as the edge Hamiltonian of the
X-cube model. This is a sort of subsystem symmetric analog of the fact that the (1+1)D Ising
model can arise on the boundary of the toric code/Z, gauge theory (cf. §2.2.2).

Using the strict gauging procedure, the Hamiltonian is a constant, and the Hilbert space
precisely coincides with the ground state of the X-cube model. Thus, ¥ / H£ is spontaneously
broken. On the other hand, 4 is unbroken in this phase, and does not act on the low energy
effective Hamiltonian.

Z gauge theory at U/t > 1

Let us now consider only the bulk phase, ignoring effects of the boundary. In the other
limit, one can show that when U/t > 1, the edge degrees of freedom are all frozen out, and
the remaining low energy effective Hamiltonian is unitarily equivalent to Z, gauge theory on
the dual lattice,

U/t— ~
Hegp ——2 3 A (339)

When the strict gauging procedure is used, the low energy Hamiltonian is a constant, and the
low energy Hilbert space coincides with the ground state of the (34+1)D toric code. In this

case, one sees that the planar one-form subsystem symmetries ¥ / ¢ are unbroken, while the
emergent ordinary one-form symmetry # is spontaneously broken.

The statements we have made so far are summarized in Figure 13.

Excitations and phase transition between t < U and U >t

Gauging the diagonal one-form subsystem symmetry in the trivial phase U > t maps ex-
citations of single body X.'*? terms to topological loop excitations. The two Pauli-X operators
on each edge give rise to a pair of representatives for a segment of topological loop excitation,
associated to the planes passing through that edge, that are equivalent under local operations.
Increasing t causes the different representative loop excitations to fluctuate and condense
within their associated planes. This is an instance of planar string condensation, however
unlike the previous examples in this work, here the string excitations that condense are not
composite. This drives the phase transition from the (3+1)D toric code phase to the X-cube
phase, obtained by gauging an isotropic stack of Z, gauge theory layers that are undergoing
confinement/deconfinement phase transitions.

For t > U the layers are in the toric code phase before gauging, and the magnetic flux
excitations of the plaquette terms are mapped after gauging to composite planon excitations,
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Fr)

Decoupled gauge theory layers: ZH(le)(L@JJy, Q}UZ,

Zg,l)(gn gl g}llz) Z(Zl,l)(gll,gll g}ﬂz)

Xy’ < yz? yz?
subsystem symmetry | subsystem symmetry
preserving phase breaking phase
» t/U
;o Drr(1)
J gauging Zs
Gauged layers: 2H gz)(ﬂ'jy, ﬁ}l,lz, ﬁ)lilz) / DZ(zl)
287N, 71, 7)) [PZD preserved | z3V(#L, 21, #1) P2 broken
DZ(ZU broken DZ(ZU preserved
((3+1)D toric code phase) (X-cube phase)
> t/U

Figure 13: A summary of the phase diagram obtained after gauging the diagonal
one-form symmetry of decoupled toric code/Z, gauge theory layers.

consisting of a pair of X-cube fractons. This follows by observing that a single X, operator
creates a local charge cluster consisting of a single gauged plaquette excitation along with
a pair of fracton excitations on adjacent cubes. As t increases these planons are condensed
within their respective planes of mobility, resulting in the phase transition to the (34+1)D toric
code phase via the same critical point as in the above paragraph.

Order and disorder parameters

Order/disorder parameters for this phase transition can be obtained by mapping the or-
der/disorder parameters of the ungauged toric code layers across the gauging map. For ex-
ample,

.+ VG V=1
vigPzPwt —— ] =z.
ecoutline(C)
e+ VG VT=1
Pzt —=T] [x,.
PEY

(340)
V()
The first of these can be interpreted as an order parameter for the ¥ / € subsystem symme-

try, while the second of these can be interpreted as an order parameter for the emergent A
symmetry. The other order/disorder parameters can be treated similarly.

6.1.3 Dualizing the leaves

Just asin §3.1.3, we can ask what happens if we perform a Wegner duality on each of the gauge
theory layers to transform them into transverse field Ising models. Because Wegner duality is
equivalent to gauging the one-form symmetry of Z, lattice gauge theory (in the sense described
in §2.2.2), we could equivalently say that we are gauging the Z(Zl’l)(ﬁ)g,, 97}|(|Z, 9}|,|Z) planar one-
form subsystem symmetry of the coupled gauge theory layers model, Eq. (309). In either case,
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we end up with a model with a qubit on each plaquette, and Hamiltonian

Hy=—t > X,—U > 2,2, —Ky .| | 2. (341)
p

(p.p") e p3e

where the sum over nearest neighbor plaquettes is a sum over pairs of plaquettes which share
an edge and lie in the same plane.

We now compute the low energy effective Hamiltonian in the strongly coupled Ky > 1
regime. The low energy Hilbert space is the ground space of the term proportional to Kx. If
we think of Z, = —1 as a colored plaquette, and Z, = 1 as a plaquette without color, then the
ground space is spanned by states for which the colored plaquettes form closed membranes
(cf. §3.1.3 where the ground space was the space of “closed string states”). We restrict at-
tention to closed membranes which can be consistently thought of as forming domain walls
separating regions of effective spins in +1 eigenstates of Pauli-Z from regions of effective spins
in —1 eigenstates of Pauli-Z. In other words, up to an overall global qubit, these states can be
parametrized by an effective qubit on each fundamental cube c. The logical operators which
act on this effective qubit can be expressed in terms of the original operators as

x=[]%. [lz=]1z=[]z. (342)

pEec coe p>e p>e
pliua pllus

where in the above, the product over ¢ 3 e is a product over the four cubes which have e as an
edge, and the product over p > e such that p || u; is a product over the two plaquettes which
have e as an edge such that both plaquettes are parallel with the u; plane, where u,, u, are
the two planes parallel to the edge e.

If ones carries out the computation of the low energy effective Hamiltonian, treating the
terms proportional to ¢t and U as small perturbations, then symmetry considerations alone
imply that to leading order it should take the shape

Hi~h Y %, =T > [ 25, (343)
%

P vep

where we have switched perspectives to the dual lattice, i.e. 7 and p are dual vertices and
plaquettes corresponding to cubes and edges on the original lattice, respectively. In other
words, we recover the (34+1)D plaquette Ising model on the dual lattice. This is consistent
with the fact that the plaquette Ising model in (3+1)D is essentially “Kramers—Wannier dual”
to the X-cube model [33] (up to global issues that we are neglecting).

6.2 Gauged subsystem symmetry enriched topological phases

In the previous section, we explored coupled layer constructions (and their gauging) as a
means of recovering the X-cube model. In this section, we describe another method for obtain-
ing the X-cube model. Our starting point is a (3+1)D model with a one-form symmetry G():
such a model admits a planar zero-form subsystem symmetry subgroup
H = G(O’l)(ﬁj,ﬁ}},ﬁj)/ ~, as we have described in §2.1. Gauging this subsystem sub-
group results in an emergent, quantum 5 = @(1’1)(9‘;‘, 9;‘, 9;') / ~ planar one-form subsys-
tem symmetry group. Taking G = Z, then leads to the symmetry structure of the X-cube model.
This section can be thought of as a higher-dimensional generalization of the results of §3.2.
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6.2.1 A subsystem symmetry enriched (3+1)D gauge theory

As reviewed in §2.2.3, one example of a model with a one-form symmetry is (3+1)D Z, lattice

gauge theory,
*HY) = UZX —e> [ ]z, (344)
p e€p

with Gauss’s law

6, =[]x.. (345)

esv

The one-form symmetry is implemented by operators supported on membranes i of the dual
lattice,

Un= [%.. (346)

ecm

Asin §3.2.1, we would like to deform this model by terms which break the one-form symmetry
Zg) down to its # := Z(zo’l)(,?j,gj, gzzl) subsystem subgroup. However, imposing Gauss’s

law as a constraint forbids the addition of any terms that violate Z(zl). We therefore discard
Gauss’s law (we could equally well choose to impose it energetically, but this is not needed in
what follows) and add the lowest order term which breaks Zgl) but respects 5#. This leads us
to a Hamiltonian for a deformed topological phase,

HDsz—UZX —t> 1]z —hZzze, (347)

p e€p (e,e’)

where the sum over (e,e’) is a sum over nearest-neighbor edges, by which we mean pairs
of parallel edges which differ by one unit of translation in a direction perpendicular to the
direction they stretch in. Note that, after switching perspectives to the dual lattice, this is
precisely equivalent to the Ising layer model of Eq. (341); here we have re-obtained it by taking
subsystem symmetry enriched topological phases as our starting point. The computations
of the previous section elucidate the rough structure of the phase diagram. At large t, one
is driven into a plaquette Ising phase. As the competition between U and h is varied, one
undergoes a partial subsystem symmetry breaking phase transition.

6.2.2 Gauging the planar zero-form subsystem subgroup

We can now gauge the # subsystem symmetry of this deformed topological phase, follow-
ing [115]. On each plaquette of the lattice, we place two qubits. If the plaquette lies in the
xy plane, we label operators acting on these two qubits X*,Z* and Xg, Zg, and similarly for
plaquettes lying in the yz and xy planes. The gauged deformed topological phase is then

Hyp [ —UZX —ey [ [z [z.-r > 2.2 2.,

P oulp ecp (e€’)
(348)
Ge=%] [%©, r=] ]z
p>e pEc
pliw

On the first line, in the operator Z‘{e (2), we are thinking of (e, e’) as the plaquette between the

edges e, e’, and u(e) is the direction that e points in. On the second line, G, is a Gauss’s law
operator. Also, F* is a flux operator, u is any direction (either x, y, or z), and p || 4 means that
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we restrict the product to be over plaquettes bounding the cube ¢ which are parallel to the u
direction.

We can solve the Gauss’s law constraint by first applying a local unitary operator of the
form

v =H®N l_[ ]_[ C XU, (349)

e p>e

which converts Gauss’s law to the simple form VG, V' = Z,. Thus, after freezing out the qubits
on the edges and switching perspectives to the dual lattice, the gauged Hamiltonian becomes

V(Hprp[ W =—UD [ [22P > [ [xt-0>> %

p eé<sp e ulle e ulle
uy T — U __, AU
VFV —| |Xé —.Gﬁ,

(=)
ellu

(350)

where now, instead of thinking of u as a direction, we are thinking of it as the plane orthog-
onal to that direction (xy, yz, or zx). This is precisely the coupled gauge theory layers from
Eq. (309). Putting together the computations of the last few sections, we have found that
performing Wegner duality on the leaves, or gauging planar subsystem symmetries (zero-form
or one-form) passes one back and forth between the coupled Ising layers model of Eq. (341)
and the coupled gauge theory layers model of Eq. (309).

Excitations and phase transition at h = 0 between t < U and t > U

Excitations of the X, terms in the trivial phase, t < U, are mapped under gauging planar
subsystem symmetry to planon gauge charges. As t is increased composite string excitations
made up of these gauge charges, in the layers they pass through, fluctuate and condense
throughout three dimensional space. This drives a p-string condensation phase transition from
an isotropic stack of toric code layers to the X-cube phase [62], which is obtained by gauging
the familiar confinement/deconfinement phase transition of Z, lattice gauge theory in (3+1)D.

The gauge flux loop excitations in the (34+1)D toric code phase, t > U, are condensed
within layers by gauging the subsystem symmetry, as they correspond to TSEs of the planar
symmetry being gauged. However, the gauging procedure introduces two locally equivalent
representatives of each segment of loop excitation to play the role of the TSE for the two
intersecting planar symmetries. At a junction where loops from intersecting planes meet to run
along a common line, forming a topologically trivial excitation there, a lineon excitation is left
behind. This follows by noting that an open string of Xg excitations in a plane perpendicular
to u is equivalent to a pair of (N}f)f excitations at the end points via the application of a string of
Zg operators. Furthemore, a pair of 5§ and ég excitations is equivalent to a z lineon excitation
in the X-cube model (and similarly for permutations of x,y,z, see below). Hence, the junctions
where loops of X} and XZ excitations join are equivalent to z lineon excitations, and the same
holds for permutations of x,y;z.

6.3 The string-membrane-net model

Finally, we turn to a parent model that combines the isotropic layer construction with the
deformed toric code model considered in the preceding subsections. This model combines
layers of (2+1)D toric code on the planes of a cubic lattice with the (3+1)D toric code. The
Hilbert space is defined on a cubic lattice with two qubits per edge and one qubit per plaquette

H=QH" e H2)R)H,, (351)
e p
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~

where u;, U, are the two directions orthogonal to the edge e, and H4" = Hy = C2. One can
equally view the plaquette qubits as living on the edges of the dual cubic lattice. A useful
picture for the model is in terms of square lattice systems, each with one qubit per edge,
stacked on the planes of a primal cubic lattice, which hosts one qubit per plaquette. Unlike the
model in the previous section, this model respects the spatial symmetries of the cubic lattice,
i.e. it is isotropic.

The perturbed string-membrane-net Hamiltonian is

Hoon =—A > [ [x¢] [% —AZZ —)/ZZX“I_[X

e ule p>e e ule p>e
B IO DN DN s
u plu eEep e ule e ule e ule

This model has a Zgl) global one-form symmetry generated by operators supported on surfaces
of the dual lattice,

a=] [xtxee. (353)

This symmetry enhances when k¥’ = 0 to a Z(Zl’l)(ﬁj,ﬁ}},ﬁj) planar one-form subsystem
symmetry generated by the operators

_ l_[ X g U l_[ X, .5, U l_[ X, 51 (354)
(a,B)e7 (a,B)ey (a,B)e7

where e.g. in the first operator, ¥ is a path on the dual lattice of the 2d sublattice in the yz
plane at transverse position i, and similarly for the second two operators.
The model also has a Z(zo’l)(ﬂ'xl, Z yL, 91';) planar zero-form subsystem symmetry generated

by
_ 7Y _ 7z _
= 1z000es> T =] 120p0 G=] 120000 659
jik ik i,j
This can be understood as a subgroup of a Zg) global one-form symmetry
Un=] 12, (356)
pEmM

that is restored when y = 0.
The following local unitary circuit

V=111 lc%,. (357)
p eep

has a Z, action on the phase diagram A <> A/, A’ < A, y < ¢’
The perturbed string-membrane-net Hamiltonian reduces to a stack of coupled (2+1)D
toric codes, or a (3+1)D toric code in certain limits:

* If one takes A to be large, the plaquette qubits are pinned in the |1) state. The y term
then contributes star terms

elu

[ [x. (358)

edv
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at 4th order in perturbation theory. The product of three of such terms appears at 6th
order in A (other products also appear at various orders in v and A). The resulting
model corresponds to coupled stacks of (2+1)D toric code on the planes of the cubic
lattice (cf. Eq. (309)),

Alarge o

Hpsyun — H3 g0 (359)

where the E in the superscript indicates that the Gauss’s law of H5_ ., should be imposed
energetically. The A’ term induces p-string condensation [61,62].

* As y — 0 with A small, we find coupled stacks of (2+1)D Z, gauge theory with the
DZ(zl) one-form symmetry gauged.'® The A term energetically enforces the Gauss’s law
constraint, which becomes strict in the limit A — co. The cube flux term [ ] .. Z, is

generated at 6th order in perturbation theory in A. In total,

pEC

y—0
A— 00

A small 1
Hpgyny —— HB—stack/EDZg ) (360)

In this gauged model, the confinement/deconfinement phase transitions of the layers of
H; .k map to a phase transition from the (3+1)D toric code to the X-cube topological
phase. This phase transition is driven by the condensation of fracton-composite planons
in the X-cube phase.

* Asy’is taken large, the edge qubits are all pinned into the |+) state, and the A’, k’ terms

are projected out, generating cube terms ]_IPEC Z, at 6th order in A’ and 12th order in x’.

Switching to the dual lattice and applying a Hadamard gate H®N that swaps all Pauli-X
operators with Pauli-Z operators, we find the subsystem symmetry enriched toric code
from Eq. (347),

H®N
y' large ~
Hpsvn — Hprp - (361)

* As A,y’,x” — 0 we find the subsystem symmetry enriched (3+1)D toric code with its

Z(zo’l) planar subsystem symmetry gauged,

H@N
Ao
PSMN DTP E 2 .

The A’ term energetically enforces the Gauss’s law constraint, which becomes strict in
the limit A’ — oo. Planar star flux terms are generated at 4th order in perturbation
theory in v’ (their products are generated at various orders in y’ and A’). In this model,
the (3+1)D Z, confinement/deconfinement transition of Hyrp is mapped via the gauging
of Z(Zo’l) to a transition from stacks of (2+1)D Z, gauge theory layers to the X-cube
topological phase driven by the condensation of p-string excitations.

The zero correlation length string-membrane-net model [52] emerges in the limit A, A’ — oo

o= ST [ [%- 22 [[2- S 15~ S50 e, oo

e p,J_e p>e u pJ_H e€p C pEc v u esv

16The vertex terms of these (2+1)D gauge theory layers appear in perturbation theory in small y’.
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where we have included the leading order cube and vertex star terms, and rescaled the ener-
gies, both of which leave the zero temperature phase of matter of the commuting Hamiltonian
invariant.

This zero correlation length model can equally be viewed as the (3+1)D toric code with its
planar subsystem symmetries gauged, or as layers of (2+1)D toric code with a diagonal one-
form symmetry gauged. Excitations of the edge star terms are equivalent to planon composites
of X-cube lineons. Excitations of the plaquette terms are equivalent to planon composites of
X-cube fractons. Excitations of the cube terms correspond to X-cube fractons. Excitations of
the vertex star terms correspond to X-cube lineons.

The model is equivalent to the X-cube model, and hence the perturbed model can be under-
stood as exploring neighboring phases and phase transitions of the X-cube model, including
transitions to the (3+1)D toric code, and stacks of (2+1)D toric code. To demonstrate the
equivalence we define the unitary

v=]Jcaxt, (364)
e

where the qubit labels A and B are chosen arbitrarily, and conjugate Hgyy by the product 4%
to find

elu
VVHSMNVTsz—ZXA Zz —Zgz l;c[zB Z;!;IXA/B (365)

where XA/ B stands for XA XB , Or X’:Xf , depending on the arbitrary choice made for V (we
demonstrate below that thls ch01ce does not effect the final model). The cube terms are equiv-
alent (up to a Hadamard) to the X-cube term ]_[ Zf after multiplying with six Z, terms, and
similarly the vertex terms are equivalent to [ [,-, Xf after multiplying with X’: terms. This
redefinition of the Hamiltonian decouples the cube and vertex terms from the edge and pla-
quette terms, allowing the trivial qubits to be decoupled while preserving the quantum phase

of matter. This results in the X-cube Hamiltonian (up to a Hadamard)

eec

elu
VVHSMNV“VW—Z];CIZ —Zzgxe, (366)

where we have dropped the B superscript, as there is now one qubit per edge.

The string-membrane-net picture for the Hamiltonian can be seen by interpreting the cube
term as fusing a Z, closed membrane into the plaquettes on the boundary of the cube, and the
plaquette terms as fusing in an open membrane ending on a Z, closed loop into the plaquette
and its boundary edges. Here, the vertex terms act as parity constraints that energetically
enforce the edge strings to come in Z, closed loops, and similarly the edge terms energetically
enforce the membranes to be either Z, closed, or end on an odd number of strings. The ground
state is then given by an equal weight superposition of string-membrane-net configurations
that obey these Z, parity constraints [52].

7 Conclusion and Future Directions

In this work, we have described a number of mixed-dimensional constructions of fracton-
adjacent lattice models, focusing on the unifying role played by higher-form subsystem sym-
metries. We explored an almost exhaustive list of examples based on layering low dimensional
Ising models or lattice gauge theories, and then gauging natural higher-form subsystem sym-
metry subgroups. This allowed us to map stacks of well-known critical models, that occur at
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the phase transition points of the layers, onto seemingly unconventional subdimensional crit-
ical points, that occur at fracton phase transitions. The mappings revealed generalized order
parameters for these phase transitions, inherited from those of the layers, and allowed us to
derive the subdimensional condensation mechanisms that drive these phase transitions. We
also constructed various parent models, each of which subsumes several of our layered con-
structions and reveals a fracton analog of the string-net picture for the associated phases and
phase transitions. For a summary of our results see Tables 1 & 8. While our focus was on
Z,, degrees of freedom, for simplicity, much of the analysis extends directly to Zy degrees of
freedom, where interesting stable critical phases may arise, see Ref. [74].

Finally, we summarize a number of directions for future research.

D

2)

3)

4)

5)

6)

7)

It would be fruitful to develop a more systematic theory of higher-form subsystem sym-
metries. Many of the cherished facts about ordinary higher-form symmetries should
have suitable analogs in the subsystem setting. Non-invertible generalizations would of
course also be interesting and potentially useful.

It would be interesting to carry out our constructions in the continuum. This should in
particular yield foliated field theory presentations [52,58,116] of several models that
were given continuum descriptions in e.g. [54-57,117-119]. A related problem is to
demonstrate the equivalence between the foliated field theory approach and the field
theories of op. cit. directly in the continuum.

The critical point in the phase diagram of the gauged Ising quilt (see §3.1.2), which sep-
arates a toric code phase from a plaquette Ising model phase, should admit a description
in terms of an “orbifold” of a quilt of (1+1)D Ising CFT wires. Can techniques from con-
formal field theory be brought to bear in the analysis of this critical point? Could other
RCFTs be used in place of the Ising model to produce interesting foliated conformal field
theories?

To what extent can the bifurcating entanglement renormalization group flows of gapped
fracton phases [51,120-122] be generalized to their subdimensional critical points, in-
cluding those studied here? We plan to report some progress in this direction in a forth-
coming work [123].

Most of the constructions we have presented can be vastly generalized. For example,
in (24+1)D, the Ising quilt of §3.1 can be generalized by substituting the transverse field
Ising model with any (141)D lattice model with a global symmetry group G. Similarly,
in §3.2, the toric code can be replaced with an arbitrary string-net model, or perhaps
even in the continuum with any theory with a one-form symmetry (Yang-Mills, BF theory,
Chern-Simons, etc.) And so on and so forth.

In this work, up to gauging, we have only considered systems which can be obtained
by foliating D-dimensional space with d-dimensional theories for a single d < D. For
example, in D = 3, we only considered coupled wires, or coupled layers, but not both si-
multaneously. One could imagine foliating space with d-dimensional theories for several
values of d < D simultaneously, and gauging more intricate subgroups of the resulting
network model. In particular, sequential gauging of a more complicated group may
result in non-Abelian phases [124-126].

Similar constructions to those we have used throughout the paper generalize to some
fractal type-I fracton phases, in the terminology of Ref. [127], including a subset of
Yoshida’s fractal spin liquids [29, 31]. These models support lineons along a preferred
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direction, and the local operators that create and propagate these lineons have the same
commutation relations with Hamiltonian terms along lines as the terms in a stack of
Ising wires. One can, in fact, realize such models by gauging a symmetry generated
by operators that form fractals in two directions and extend linearly along the wire
direction [128]. This produces certain lineon driven phase transitions out of the fracton
phase that are related to a stack of decoupled critical Ising wire transitions via gauging,
in a similar fashion to the higher-form subsystem symmetries we have considered in this
work.

8) In most of our network constructions, we were able to obtain the symmetry-breaking
phase of ? Hglz’k) in two ways from a decoupled network model: either by gauging a
subgroup # of the global symmetry of the decoupled network model, or by condensing
TSEs of 5. This appears to be a version of the familiar relationship between gauging
and condensation in the setting of (2+1)D topological phases, but it remains to be fully

understood.

Note added: During the course of the work reported here, we became aware of Ref. [74 ] which
contains results that have some overlap with our own. It has also been brought to our attention
that the term “fracton” has appeared previously in the physics literature in a different context
[129]; we trust that the multiple meanings of this word will not cause confusion.
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Table 8: A summary of the constructions covered in this appendix, using the notations
and conventions from Table 1 (gen. stands for generalized).

ubgrou ase ase — -
8 DNM Sub FC Phase A Phase B A—B B—A
§ Al 1Hg)2)(9)‘(|,9y”,92”) DZ(ZO) deconfined Z, | ferro. gen. e charges 4x plaq. kinks
. [sing wires diagonal 0-form gauge theory plaq. Ising (on lines) (on lines)
377(2) 02zl gl gl i
8A.1 HZZ Z? (Fx "%Ty 75) ferro.. Ising felrro.Ig.en. k-membranes -
2-form gauge theory linear subsystem wires plaqg. Ising
§A.2 2Hg)2)(9}f,$yl,ﬁzl) DZ(ZO) deconfined Z, | ferro. gen. e charges _
. fsing planes diagonal O-form gauge theory Ising (in planes)
§A.2 3H(ZZZ) Z(Zl’l)(ﬁxl,ﬁyl,ﬁf) ferro. Ising ferro. gen. | domain wall _
) 2-form gauge theory planar 1-form planes Ising membranes

A (3+1)D Toric Code Transitions

In this section we introduce a pair of models that both realize a (3+1)D toric code phase as well
as unconventional phase transitions out of that phase; the first model we consider transitions
to stacks of (1+1)D transverse field Ising models, and the second model transitions to stacks
of (2+1)D transverse field Ising models.

A.1 The linear point-string-net model

The first model we consider is a point-string-net model that combines coupled Ising wires with
the (34+1)D toric code, and their diagonal zero-form and linear subsystem gauged variants,
respectively. This is the (3+1)D analog of the (2+1)D point-string-net model introduced in
§3.3 of the main text. The model is defined on a Hilbert space with three qubits per vertex
and one qubit per edge

H=QH e H @ H)RX)H,, (A

where

HE =Y = HE =Y, =CP. (A.2)

The perturbed linear point-string-net Hamiltonian is

Hppsn =—A > XX [ [X. -2z,
v

eV e
elx elly ellz

—r o[+ [x+x] [x
v esv

edv edv

—A Z Zzeﬂzlj—x’ZX’;xzxi—y’Z(x’;+X§+x3)
v

U=X,Y,Z e||u vEe v

—&' D 2T + T+ TTE). (A3)
v

It has an ordinary Z(ZO) global zero-form symmetry

(A4)

L/

u=[[xxx
v
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which is a subgroup of a larger XZ(ZO) X YZQO) X ZZ(ZO) global zero-form group which is respected

when k' =0,
=] x5, vr=[]x, ve=]]x. (A.5)
\4 v 4

The model also admits a Zgo’z)(gﬂ,g}l', 92”) linear zero-form subsystem symmetry generated
by Z, operators along straight lines of the cubic lattice, i.e.

X 7y 77
o=11 Zijljk> Uip= [ Zij1g U= [ Zijrrd- (A.6)
i j k

When y = 0, this linear subsystem symmetry group enhances to a larger Zgz) global two-form
symmetry generated by Z, operators along any Z,-closed paths in the cubic lattice, i.e.

o,=]]z. (A7)

ey

There is additionally a Z, local unitary circuit

dix ey e
V=[] (]_[ x| [erx] ] cjxe) , (A8)
esv

v edv esv

that induces the following transformation on the phase diagram: A «—> A/, A’ <> A, y <> ¢’

The linear point-string-net Hamiltonian, introduced above, reduces to a stack of Ising
wires, the (3+1)D toric code, and their global zero-form and linear subsystem symmetry
gauged variants in certain limits:

* As A — oo the edge qubits are pinned into the |1) state and the A, y terms are projected
out. The resulting model corresponds to coupled Ising wires stacked on the cubic lattice,

A—00

0
Hprpsy — lHéz) (g)ll, 37}'}, 9}”) +Hc, (A9)

where the inter-wire coupling terms are given by

Ho=—X' ) XSXIX! —«' > (2828 + ZZ2 + ZX22) . (A.10)
4 4

* As A,y — 0 the model reduces to the theory one obtains from gauging the diagonal

global zero-form Zgo) symmetry of coupled Ising wires, where Gauss’s law is enforced

energetically by the A term, becoming strict in the A — oo limit. A generating set of

local flux terms, given by [ [, Z., appears at 4th order in perturbation theory in A. In
total, we find that

e€p

-0
soos
sma 0 0
Hppsy — (1H%2) (gil,ﬂsl,l,e?zn) + Hc) /EZg ), (A.11)

The linear subsystem symmetry breaking phase transition of the decoupled Ising wires is
mapped, upon gauging Zgo)’ to a transition from the toric code/deconfined gauge theory
to a linear subsystem symmetry breaking phase governed by the Hamiltonian

plx ply plz
Hsp=—) xxx;—> [ |zz-> [ [zz-2 ]2z, @12
v p VGp p VEp p VEp
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(This linear subsystem symmetry breaking phase is equivalent to the ferromagnetic gen-
eralized plaquette Ising model that appears below in Eq. (A.18).) This phase transition is
driven by the condensation of pointlike topological charges in the toric code phase; sim-
ilarly as in §3.1.2, there are three locally different manifestations of such particles which
condense along the axial directions of the lattice. Viewing the same phase transition go-
ing the other way, we find that groups of four plaquette excitations in the ferromagnetic
generalized plaquette Ising model are condensed along lines, again analogous to §3.1.2.

* Asy’ is taken large, the vertex qubits are pinned into the |+) state and the A’, x’ terms
are projected out, aside from generating plaquette terms [ | eep Le At 4th order in pertur-
bation theory in A" and «’. The resulting model corresponds to a toric code with linear
subsystem symmetry breaking perturbations,

HPLPSN _Y_l_alEi AZl_[Xe_ZZl_[Ze

v e€v p e€p
ellx elly ellz (A.13)
—AZZ —)/Z(l_lx +l_[X +l_lx)
esv esy esv

e As A, v, k" — 0, the model is equivalent to a Z, gauge theory (with the plaquette terms
being generated in perturbation theory in A) in the presence of linear subsystem symme-
try breaking perturbations, with the linear subsystem symmetry along each wire being
gauged,

A small

ey~ 2% A >xwxe [ [x, -2 Z Z,
v

ecy

_YZ(xXﬁx +xY]e|—|y[x +xZ]e|_|Z[x)—A’ > >z ]z

esv eV esv U=XY,Z e||u vee

(A.14)

The Gauss’s law within the wires is enforced by the A’ term, becoming strict as A" — oo.
The confineent/deconfinement transition of the Z, gauge theory before its subsystem
symmetr is gauged is mapped to a transition from ferromagnetic decoupled Ising wires
to the subsystem symmetry broken phase governed by the Hamiltonian H; ¢ introduced
in Eq. (A.12) above. This transition is crossed as one varies A/A. Similar to §3.2.2, the
phase transition is driven by the condensation of k-membranes, i.e. composite membrane
excitations formed by kinks on the Ising wires they intersect.

The zero correlation length linear point-string-net model is obtained in the limit A, A’ — oo

and ¥’ — 0,
Hpso =y xxxe [ [x.-D ] [z.- D) Diz.] [z (A.15)

esv p e<p U=XY,Z e||u vee

where we have included the leading order plaquette terms and rescaled the energies to 1, both
of which preserve the zero temperature phase of matter of the Hamiltonian.

The linear point-string-net Hamiltonian can be viewed as a (3+1)D toric code with the
linear subsystem subgroup of its two-form symmetry gauged. It can equally well be viewed as
a stack of (1+1)D ferromagnetic Ising models with the diagonal zero-form symmetry gauged.
Excitations of the vertex terms are found to be trivial, see below. Excitations of the plaquette
term are corner domain walls of a generalized plaquette Ising model with two spins per ver-
tex, shown below. Excitations of the edge terms are equivalent to a group of four plaquette
excitations via the application of an X, operator.
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We now show that the linear point-string-net model is equivalent to a generalized plaquette
Ising model with two spins per vertex. Hence the perturbed model above can be understood as
exploring the phase diagram in the proximity of the ferromagnetic phase of this model, which
includes decoupled Ising wires and the (3+1)D toric code. The equivalence follows from the
application of the circuit V in Eq. (A.8), followed by the on-site unitary

V= ]_[chX crxy (A.16)

v oytty?

to the point-string-net Hamiltonian above, resulting in

VVHpe VIV = ZXZ Z]_[z ]_[zY—Z]_[z [z

p e€p VEp p e€p VEp

—Z]_[z ]_[zXZY—Zze. (A.17)

p e€p veEp

The plaquette terms can be modified to act only on the vertices, up to multiplication with
single body Z, terms, which preserves the phase of matter. We then decouple the qubits on the
‘H* vertices and edges in |+) and |1) states, respectively, to find the ferromagnetic generalized
plaquette Ising model

VVHpeV V' ~—Z]_[zy ZHZX Z]_[z"zy (A.18)

p vep p Vvep p VvVeEp

The point-string-net picture for the above Hamiltonian follows by interpreting |+) states as
empty, and |—) states on vertices as points, and on edges as string segments. The vertex term
then energetically enforces a Z, parity constraint that the total number of strings entering a
vertex equals the number of points on that vertex, modulo 2. The edge terms fuse Z, string
segments attached to pairs of points into the lattice, while the plaquette term fuses a closed
Z, string into the lattice.

The ground state is then given by an equal weight superposition over allowed point-string-
net configurations, built on top of a reference state which satisfies the Z, parity constraints.

A.2 The planar point-string-net model

The second model we consider is another point-string-net model that combines the (34+1)D
toric code with coupled planes of the (2+1)D transverse field Ising model, and their planar
one-form subsystem symmetry and diagonal zero-form symmetry gauged variants. The model
is defined on a Hilbert space made up of three qubits per vertex and one per edge

H=QH e H @ H)RX)H.,, (A.19)
where
HE =Y ==, =CP. (A.20)
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The perturbed planar point-string-net Hamiltonian is

Hpppsy =— A > X% [ %, AZ Z,
v

esv

elx ely elz
Z(x"l_[x +x [ [x.+x] [x. )

esv edv esv

-ar 2, 2] |z- A’ZX’V‘Xixi—s’Z(X’;+X§+xi)
v

u= Xyzej_u vEe
—x Z (22! + 297 + 7°72),

which again has a Z(ZO) global zero-form symmetry generated by

U= ]_[xxxyxz

Vv

This is the diagonal subgroup of a XZ(ZO) X YZ(ZO) X ZZ(zo) global zero-form symmetry,
“[Te. v=[Tx. v=]x,
v v v

which is present when x’ = 0. The model also has a Zgz) global two-form symmetry,

0, ]z

eey
There is additionally a Z, local unitary circuit
elu
[111I]erx..
U=xy,z v edv

that acts on the phase diagram with A = 0 by swapping ¢ « ¢’.

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

The planar point-string-net Hamiltonian above reduces to a stack of (2+1)D Ising models,
the (3+1)D toric code, and their global zero-form and planar one-form subsystem symmetry

gauged variants in different limits:

* As A — 00, the edge qubits are pinned into the |1) state and the A, ¢ terms are projected
out. The resulting model corresponds to coupled stacks of the (2+1)D Ising model,

A—00

0
Hpppsy — ZH(ZZ) (g,‘xl,gyi’g‘zl) +Hc,

where the inter-plane coupling terms are given by

vVovoy

Ho=—X' ) XXIX! —«' > (2828 + B2 + ZX22) .
v v

(A.26)

(A.27)

* As ¢ — 0 with A small, the model approaches the theory that arises from gauging the
diagonal zero-form Zgo) symmetry of coupled (2+1)D Ising models, with Gauss’s law
enforced energetically, becoming strict as A — 00. A generating set of local flux terms,

I1 eep Le> appear at 4th order in A. In total,

e—0
A—00

A small 0 0
Hpppgy —— (ZHEZ)(«?;,L@;“?ZL) +Hc)/EZg ).
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Under the gauging of this Z(O), the spontaneous breaking of the planar zero-form subsys-
tem symmetry of the stacks of (2+1)D Ising models maps to a transition from a (3+1)D
toric code phase to a planar subsystem symmetry-breaking phase. Similar to §3.1.2, and
the previous subsection, this phase transition is driven by condensations within lattice
planes of locally differing excitations that are all equivalent to the pointlike-topological
charge.

* As ¢’ is taken large, the vertex qubits are pinned into the |+) state and the A’, x’ terms
are projected out, generating plaquette terms [ | ecp Le at 4th order in A’. The resulting
model corresponds to the (3+1)D toric code with perturbations,

Hpppsn %—AZHXe—ZZl—[Ze

v edv p e€p
oL (A.29)
—;\Zze—eZ( 3 ]_[xe).
e v\ U=x,y,z edv

» As A/, ¢’ e,k’ — 0, the model approaches a (3+1)D Z, gauge theory'” with the planar
one-form Z(Zl’l) subgroup of the global two-form symmetry gauged. The Gauss’s law

within each plane is enforced by the A’ term, becoming strict as A’ — oo. In total,

A e’ kK'—0
Hpppgy ———— —A ZX’jXXX‘Z, l_[ X, — AZ Z,
v esv e (A 30)

- > >z |z

U=xy,Zelu vEe

The confinement/deconfinement transtion of the Z, gauge theory (as one varies A) maps
after gauging Z(zl’l) to a transition from stacks of decoupled (2+1)D Ising ferromagnets
to a planar subsystem symmetry broken phase. Similar to §3.2.2, and the previous sub-
section, this phase transition is driven by the condensation of composite membrane exci-
tations made up of Ising domain walls where the membrane intersects the ferromagnetic

Ising layers.

The zero correlation length planar point-string-net model is obtained in the limit A, A’ — oo

and k' — 0
Hpsn =— . xxx: [ [x.-> T ]z.- D> Dz [, (A.31)
v

esv p e€p U=xy,zely  ve€e

where we have included the leading order plaquette terms and rescaled the energies to 1, both
of which preserve the zero temperature phase of matter.

The planar point-string-net Hamiltonian can be viewed as a (34+1)D toric code with planar
one-form subsystem symmetries gauged. It can equally be viewed as stacks of (2+1)D Ising
ferromagnets with the diagonal zero-form symmetry gauged. Excitations of the vertex terms
are found to be trivial below. Excitations of the plaquette terms are found to be redundant
with the edge excitations below. The edge excitations are found to be equivalent to those of a
generalized Ising model with two spins per site.

The planar point-string-net model is equivalent to a generalized ferromagnetic Ising model
with two spins per vertex. That is, the perturbed model above can be understood as exploring

17The plaquette terms are generated at 4th order in perturbation theory about A = 0.
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the phase diagram in the proximity of this model, including decoupled (2+1)D Ising models
and the (34+1)D toric code. To simplify the model we apply the following unitary

elly el|z elx

V= l_[czxx =y [ ] Jexx. ]_[cyx [ ex=.. (A32)

vV esv esv

to the planar point-string-net Hamiltonian to find

VHppsn V' = ZXZ Z]_[z ]_[zXzY—Zy:]_[ze]_[zg—i]_[ze]—[z’;

p e€p  VveEp p e€sp  VvEp p e€p  veEp
I I
—Zz ZX:z l_[zy Zz l_[zx ZZ:z l_[z"zy (A.33)
vee vee vee

The vertex z spins are now decoupled in the |+) state, and can be removed. The plaquette
terms are redundant, as they are products of the single body Z, terms, and vertex-edge Z
terms, hence they can be removed without changing the zero temperature phase of matter,
only shifting the energetics of excitations. Similarly, the vertex-edge terms can be modified to
act solely on the vertices, up to multiplication with Z, terms. The edge qubits are then also
decoupled in the |T) state and can be removed, resulting in a ferromagnetic generalized Ising
model with two spins per site

I ly Iz
VHppsy V' ~ — Ze: g 7 — Ze: lv;[ 75— Ze: ]v:! 7:77 . (A.34)

The point-string-net picture for the Hamiltonian in Eq. (A.32) follows by viewing |+) states
as empty, and |—) states on verties as points, and on edges as segments of string. The vertex
term then enforces that the parity of the points on a vertex matches the parity of the incoming
string segments on adjacent edges. The edge terms fuse a segment of string attached to a pair
of points into an edge and the adjacent vertices, while the plaquette terms fuse a closed loop of
string into the edges. The ground state can then be interpreted as an equal weight superposi-
tion over the allowed point-string-net configurations under the Z, parity constraints described
above (we emphasize that these differ from those of the linear point-string-net Hamiltonian).
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