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Abstract

We define a canonical ensemble for a gravitational causal diamond by introducing an ar-
tificial York boundary inside the diamond with a fixed induced metric and temperature,
and evaluate the partition function using a saddle point approximation. For Einstein
gravity with zero cosmological constant there is no exact saddle with a horizon, how-
ever the portion of the Euclidean diamond enclosed by the boundary arises as an approx-
imate saddle in the high-temperature regime, in which the saddle horizon approaches
the boundary. This high-temperature partition function provides a statistical interpre-
tation of the recent calculation of Banks, Draper and Farkas, in which the entropy of
causal diamonds is recovered from a boundary term in the on-shell Euclidean action. In
contrast, with a positive cosmological constant, as well as in Jackiw-Teitelboim gravity
with or without a cosmological constant, an exact saddle exists with a finite boundary
temperature, but in these cases the causal diamond is determined by the saddle rather
than being selected a priori.
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1 Introduction

Since the Bekenstein-Hawking entropy [1,2] of a black hole scales locally with the area of the
horizon, it seems that the presence of a horizon itself entails entropy, regardless of the global
structure of the horizon [3, 4]. This is certainly consistent with black hole entropy, the en-
tropy of acceleration horizons [5], and the entropy of entanglement wedges in the context of
AdS/CFT holography [6–8]. Gibbons and Hawking (GH) derived the entropy of black hole and
de Sitter horizons from a Euclidean saddle approximation of the gravitational partition func-
tion [9], and a similar method has been applied for entanglement wedges [10–12]. The case of
a static patch in de Sitter spacetime differs from the black hole and entanglement wedge cases
in that there is no boundary on which to anchor the specification of the states being considered.
Nevertheless, as GH found, the saddle action yields the expected entropy. Moreover, one can
introduce an artificial boundary inside the de Sitter horizon at which to define ensemble state
parameters [13–21]. A static patch in de Sitter spacetime being a particular case of a causal
diamond with an edge of finite area, it is natural to ask whether also the entropy of a causal
diamond [22–29] in Minkowski spacetime—or in any maximally symmetric spacetime—can
be computed by the GH method or something similar.

This question was addressed in a recent paper by Banks, Draper and Farkas (BDF) [30],
by evaluating the action for a Euclidean analytic continuation of the diamond metric. Using
this approach, which parallels well established computations of Killing horizon entropy, they
obtain the expected result A/4, where A is the area (in Planck units1) of the edge of the di-
amond. While evidently correct on some level, the fundamental basis of this computation
remains obscure. What is lacking, from our viewpoint, is a conceptual framework in which
the computation yields an approximation to the entropy of a well-defined ensemble. In this
note we provide such a framework.

We begin with a brief summary of the computation in [30].2 A causal diamond in a max-
imally symmetric spacetime admits a conformal Killing vector ζ whose flow preserves the
diamond, and the diamond horizon is a conformal Killing horizon with respect to ζ [29].
Although ζ is not a true Killing vector, and thus the diamond is not an “equilibrium” config-
uration in the usual sense, it is an “instantaneous” Killing vector on the maximal slice of the
diamond, in particular at the edge where the Killing vector vanishes. The diamond admits a
natural conformal Killing time coordinate s such that s = 0 on the maximal volume slice of
the diamond and ζ · ds = 1. BDF analytically continue s to imaginary values s = −isE, and
periodically identify sE with sE+2π.3 For a D-dimensional Minkowski diamond this results in
a flat Euclidean spacetime in which the fixed point set of the analytically continued conformal
Killing vector, i.e., the Euclidean horizon, is a surface of topology SD−2 (see Figure 1). We shall
refer to this analytic continuation of the diamond as the “Euclidean diamond”.

BDF adopt the viewpoint that the horizon should be excluded from the Euclidean domain,
and introduce an infinitesimal boundary around it and a Gibbons-Hawking-York (GHY) bound-
ary term in the gravitational action that evaluates to −A/4 (in agreement with the well-known
result for black hole horizons [31]). They interpret the value of the Euclidean action as minus
the entropy, on the grounds that the period of the infinitesimal time circle at the boundary is
zero, corresponding to infinite temperature, so the action—which for gravitational partition
function is the free energy U − TS divided by the temperature T—reduces to −S.

The answer is satisfactory, but what are the principles behind the calculation? In particular,
why is the horizon excluded by a boundary, what determines the added boundary term, and

1In this paper we adopt Planck units, ħh = c = G = 1, and mostly plus spacetime signature, with dimension D
unless otherwise specified.

2Ref. [30] studies causal diamonds in maximally symmetric spacetimes, as well as in Schwarzschild and
Schwarzschild-de Sitter spacetime. Here we restrict attention to the former cases.

3The norm of ζ is chosen such that the surface gravity of the horizon is equal to one.
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Figure 1: Minkowski causal diamond (left) and its Euclidean continuation (right)
where an SD−2 is suppressed. Orbits of the conformal Killing vector ζ (light gray
curves) are uniformly accelerated in the Minkowski diamond and circular in the Eu-
clidean one. Curves of constant conformal Killing time s ∈ (−∞,∞) (gray), defined
such that s = 0 on the maximal slice and ζ · ds = 1, and curves of constant radial
coordinate x ∈ [0,∞) (light gray), satisfying ζ · d x = 0 and |d x |= |ds|, are plotted
at equal coordinate intervals of 0.5. In the right figure the Euclidean horizon is the
fixed point set of the analytically continued conformal Killing vector, which is located
at x =∞. In both figures a conformally stationary York boundary is shown in black
at x = 1 that becomes stationary in the near-horizon limit.

why is the absence of a true Killing vector not problematic for an equilibrium state? To clarify
the significance of the BDF calculation we need to make more precise the question it purports
to answer. That is, we need to identify the ensemble whose entropy is being computed.

2 Causal diamond ensembles with a York boundary

Rather than starting with a particular solution to Einstein’s equation and analytically con-
tinuing to Euclidean signature, in principle one should start with a partition function for a
gravitational ensemble and find its saddle point approximation. To this end, we will follow
the method pioneered by York [32] for black hole ensembles, which has also been applied
to ensembles with cosmological horizons [13–21]. The idea is that if the physical context
does not supply a natural boundary at which the ensemble is specified, one can introduce an
artificial boundary with data that do so.

2.1 Canonical ensemble

A canonical ensemble is defined relative to a “York boundary” equipped with a time flow vector
field and some choice of fixed conservative boundary conditions, including a specified period
in imaginary time, i.e., the inverse temperature. In the present context we are interested in
saddle configurations in which the boundary sits inside the diamond, in the sense that its area
is smaller than that of the surrounding spheres in the system. For simplicity we adopt here
Dirichlet boundary conditions by fixing the induced boundary metric, which specifies both the
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spatial geometry of the boundary and the period in imaginary time, despite the fact that for
such boundary conditions the initial boundary value problem is likely not well posed [33].
Whether the conclusions of our analysis regarding the saddles and their actions would be
similar for, e.g., the conformal boundary conditions discussed in [33–36]—which seems likely
to be the case—is a question worthy of investigation.

The canonical ensemble is then defined by the density matrix

ρ =
1
Z

exp(−βHBY) , (1)

where β is the inverse proper temperature that is held fixed at the boundary, HBY is the Brown-
York (BY) Hamiltonian [37], and Z = Tr exp(−βHBY) is the canonical partition function. On
the constrained phase space HBY is given by

HBY = −
1

8π

∮

dD−2 x
p
σk , (2)

where the integral is over a spatial cross-section of the boundary with metric σ, and k is the
trace of the extrinsic curvature of the boundary as embedded in a spatial slice of the bulk,
defined with respect to the outward normal from the system. HBY generates the system’s
proper time evolution orthogonal to the spatial cross-sections of the boundary.

Of course the partition function for quantum gravity cannot be evaluated exactly, and gen-
eral relativity (GR) is not a UV complete theory so an exact partition function in that theory
alone does not exist in any case. Nevertheless, as first demonstrated in the pioneering paper
of Gibbons and Hawking [9], apparently meaningful approximations can be obtained using a
saddle point approximation and the action of the low energy effective theory. The canonical
ensemble is in principle time independent, so the boundary conditions defining the ensemble
should share that property. If a saddle exists, the spherically symmetric boundary SD−2 × S1,
with a product metric and S1 circumference β , should be embeddable in the saddle and gener-
ated by the flow of a spherically symmetric Killing vector field. One such saddle has topology
ballD−1 × S1, and corresponds to a solid cylinder in periodically identified Euclidean space,
RD−1×S1. This saddle approximates the contribution of “hot flat space” to the partition func-
tion, and does not include the horizon, hence misses the horizon entropy.

Instead, we seek a saddle with topology SD−2 × D2, where the boundary of the disk D2 is
the thermal time circle at the York boundary, which contracts to a point at the center of the
D2 where the horizon lies. Furthermore, we require that the horizon area is larger than the
boundary area, because we want to describe (Euclidean) causal diamonds (not black holes).
The existence of such a saddle would require the existence of a Ricci-flat D-geometry in which
SD−2 × S1 (with the product metric) could be embedded. We do not know whether such
a saddle might exist for D ≥ 4, but for D = 3 it clearly does not. In D = 3 dimensions,
Ricci flat implies flat, and the boundary is an intrinsically flat torus S1 × S1, which cannot be
isometrically embedded in 3-dimensional Euclidean space R3. Moreover, in any dimension
D ≥ 3, we can see that (a portion of) the Euclidean diamond is not a saddle that meets the
boundary conditions, since it admits no spherically symmetric Killing vector. On the other
hand, the Euclidean diamond does admit a spherically symmetric conformal Killing vector,
and one could be tempted to allow the ensemble boundary to coincide with one of its orbits,
as illustrated by the black line in Figure 1. But this is unacceptable for a stationary ensemble
since, as is clear from the figure, the radius of the boundary sphere is not constant along this
orbit.4 If at the Euclidean time sE = 0 the boundary is a (D−2)-sphere of radius r0, concentric

4One could instead generalize the definition of partition function to allow for time dependence of the boundary
conditions, namely those induced on a boundary following orbits of the conformal Killing field of the Euclidean
diamond. Then a saddle would exist, but it would not be a saddle of a true thermal partition function.
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with the horizon of radius R, then along the Killing orbit the radius of the sphere grows to a
maximum value of R2/r0 at sE = π,5 corresponding to a sphere on a spatial slice outside the
diamond in the Lorentzian geometry,6 and then returns to r0 at sE = 2π. The sphere hence
sweeps out a surface of topology SD−2 × S1 with different area of the SD−2 at different points
along the S1. In other words, the area radius of the boundary depends on the conformal Killing
time sE.

Despite the absence of a true horizon saddle, all is not lost. The horizon sphere is fixed
under the Euclidean conformal time flow, so as the orbit approaches the horizon, it becomes
stationary, hence can be identified with the York boundary defining a bona fide canonical
ensemble. In the near-horizon limit, the length of a Euclidean conformal time circle goes to
zero, hence a Euclidean diamond can be a good approximation to a saddle for an ensemble
with boundary radius r0 and temperature T provided that T ≫ 1/r0.7 The horizon radius of
that approximate saddle will approach the radius r0 of the boundary defining the ensemble as
T goes to infinity.

2.2 Microcanonical ensemble

A microcanonical ensemble with fixed BY energy was defined for black holes in [38], and
that construction has been extended to the case of cosmological horizons (for a recent review
see [19]). In the present case, however, such an ensemble would admit no horizon saddle
since, even in the near-horizon limit, the BY energy of the Euclidean diamond is not constant
on a York boundary that follows a circular orbit of the Euclidean Killing flow.8 This is clear
from Figure 1: the BY energy is proportional to the trace of the spatial extrinsic curvature of
the boundary sphere on a spatial slice, which is proportional to the rate of change of the sphere
radius r with respect to distance normal to the boundary along the spatial slice. The spatial
slices are indicated by the grey curves in the figure. The angle at which these curves meet the
York boundary (whose Euclidean “history” is indicated by the black circle) rotates through 2π
around the boundary, hence the spatial derivative of r oscillates, changing sign twice around
the Euclidean conformal time circle, no matter how close to the horizon the York boundary
lies. The BY energy therefore oscillates in Euclidean conformal time. Expressed differently,
in diamond universe coordinates the trace of the extrinsic curvature of a (D − 2)-sphere as
embedded in a constant sE spatial slice is: k = D−2

R sin sE , which notably does not depend on x
but rather on the Euclidean time sE , hence also at the Euclidean horizon k is time dependent.
Thus, since there is no horizon saddle for the microcanonical ensemble, we shall now focus
exclusively on the canonical ensemble.

5The radius r of the sphere on the circular closed orbits of ζ can be computed by expressing it in
terms of the “diamond universe” coordinates (sE, x) that cover a causal diamond in Euclidean flat space:
r = R sinh x/(cos sE + cosh x) [30]. Multiplying r0 ≡ r(sE = 0) and rπ ≡ r(sE = π) yields R2, hence rπ = R2/r0.

6If s and x are extended outside the Lorentzian diamond using the extension of the conformal Killing vector,
then the s = 0 slice outside the Minkowski diamond is isometric to the sE = π slice of the Euclidean diamond via
the identification of points with the same x value.

7One could instead generalize the definition of partition function to allow for time dependence of the boundary
conditions, namely those induced on a boundary following orbits of the conformal Killing field of the Euclidean
diamond. Then a saddle would exist without taking the infinite temperature limit, but it would not be a saddle of
a true thermal partition function except in the infinite temperature limit.

8For the special case in which the energy is related to the radius by EBY = −
1

8π
D−2

R A(R), there does exist an exact
saddle without a horizon, namely a ball in flat space.
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3 High-temperature canonical partition function

Now consider the Euclidean gravitational path integral representation of Z . The integral is
over D-metrics on a compact space with boundary geometry SD−2 × S1, with circumferential
radii R and β = 1/T , weighted by exp(−I), where I is the Euclidean gravitational action,
supplemented by a GHY boundary term at the system boundary.9 Although we do not know
of any exact horizon saddle in D ≥ 3 dimensions, and strongly suspect that there is none, as
explained in Section 2.1 the near-horizon limit of the Euclidean diamond can approximately
meet the boundary conditions of the ensemble in the high-temperature regime β ≪ r0 = R,
and a slight deformation of the near-horizon geometry can exactly meet the boundary condi-
tions while serving as an “approximate saddle” as explained in the following subsection. In
fact, it is precisely in this regime that one recovers something that matches the calculation
of Ref. [30]. The conceptual difference is that the boundary around the horizon is the York
boundary defining the ensemble rather than an ad hoc excision boundary, and the GHY bound-
ary term is required in the action for the quasilocal gravitational system with that boundary,
rather than being introduced by hand. The system consists of the region inside this boundary,
so the extrinsic curvature in the boundary term is defined with respect to the outward normal,
away from the horizon. In the following two subsections, we show explicitly how this works.

The situation is qualitatively different if there is a positive cosmological constant Λ, since
then the canonical partition function does admit an exact horizon saddle. That thermal parti-
tion function has previously been analyzed in D ≥ 3 dimensions [13,16,18,20], where the field
equations admit spherical solutions containing a free parameter corresponding to the mass pa-
rameter of a Schwarzschild-de Sitter solution. It is also interesting to examine the case of JT
gravity, in D = 2 spacetime dimensions. It turns out that, unlike in higher dimensions, there
is an exact horizon saddle for Λ = 0, as well as for Λ > 0 [17, 21], despite the absence of an
analog of the Schwarzschild-de Sitter mass parameter. No free parameter is needed, since in
JT gravity the value of the dilaton is decoupled from the boundary temperature. In view of
the current interest in JT gravity, we expand on that example in some detail here.

3.1 D ≥ 3: Einstein gravity

The approximate saddle we consider is the geometry SD−2 × D2
ε , where the first factor is a

sphere of radius r0, and D2
ε is a flat two-disk of radius ε, with metric

dℓ2 = dρ2 +ρ2dθ2 + r2
0 dΩ2

D−2 . (3)

The Euclidean time is denoted by θ and there is a Euclidean horizon located at ρ = 0. This
exactly meets the boundary conditions for a canonical ensemble with a spatial boundary ge-
ometry S(D−2) of radius r0 and with inverse proper temperature 2πε at the boundary where
ρ = ε. However, it is not Ricci flat, since the ρ-θ subspace is flat while the Ricci tensor of the
(D−2)-sphere is proportional to r−2

0 times the sphere metric. It is thus not a bona fide saddle,
but it can serve as an approximate one. The action to be computed is the bulk Einstein-Hilbert
action together with the GHY boundary term. The bulk action (divided by ħh) is proportional
to minus the disk area πε2 times the sphere area A times the curvature scale r−2

0 divided by a
power of the Planck length (which has been set to unity),

IEH∝−
�

ε

r0

�2

A . (4)

9As discussed in Ref. [19], the correct path integral is over a particular contour through the space of complex
metrics, and the working hypothesis is that the contour can be deformed to pass through a saddle that is a solution
to the Euclidean field equations.
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The GHY boundary term is

IGHY = −
1

8π

∫

SD−2×∂ D2
ε

dθdΩD−2
p
γK . (5)

Here
p
γ = ρrD−2

0 is the square root of the determinant of the induced metric on constant ρ
slices, and K = 1/ρ is the trace of the extrinsic curvature of those slices. The product

p
γK is

independent of ρ, so that the integral does not depend upon ε and evaluates to

IGHY = −A/4 . (6)

For ε≪ r0 the bulk action becomes negligible compared to the boundary term. It is thus plau-
sible that the path integral is indeed dominated by the (enormous) non-contribution of the
approximate saddle, and not by the (exact) flat space saddle, despite its violation of the field
equations. In that sense, we may conclude that at high temperature the entropy of this canon-
ical ensemble becomes the Bekenstein-Hawking entropy of the horizon whose area matches
that of the boundary.

We emphasize that while this computation is essentially identical to that in BDF,10 the
interpretation is quite different. While they computed the action of a particular Euclidean
diamond with the horizon excised, the role of the boundary here and the orientation of the
boundary term derives from specifying the canonical ensemble whose partition function is
being computed. The approximate saddle for this partition function can be identified with
the near-horizon region of the Euclidean diamond. The entropy A/4 must be interpreted as
associated with the plurality of near-horizon states in the ensemble, since the system consists
of only the small volume between the boundary and the horizon.

3.2 D = 2: Jackiw-Teitelboim gravity

In this section we consider the canonical ensemble in a two-dimensional gravity theory, Jackiw-
Teitelboim (JT) gravity [39,40], whose field content consists of a metric tensor g and a scalar
field φ (a.k.a. the dilaton) non-minimally coupled to the metric. York boundary ensembles
were first considered for 2D dilaton gravity black holes in Refs. [41, 42], and with a positive
cosmological constant Λ they have recently been considered in [17, 21]. Here we wish to
highlight how this differs from the D ≥ 3 case. While an infinite temperature, near-horizon
limit can again be considered, it is actually not the only option since, unlike for Einstein gravity
in D ≥ 3, an exact JT saddle exists at finite temperature for both Λ = 0 and Λ > 0. We begin
by introducing JT gravity and the canonical ensemble in that theory, and then consider the
Λ= 0 and Λ> 0 cases in turn.

The bulk action in Euclidean signature is given by

IJT
bulk = −

1
16π

∫

d2 x
p

g [φ0R+φ(R− 2Λ)] , (7)

where φ0 is a constant and the GHY boundary action is

IJT
GHY = −

1
8π

∫

dl K(φ0 +φ) , (8)

where dl is the boundary length element. The φ0 terms of the bulk and boundary action
together form the Euler characteristic of the manifold according to the Gauss-Bonnet theorem,

10BDF calculated the GHY term of Einstein gravity for causal diamonds in several different spacetimes, finding in
all cases that it is equal to minus the entropy A/4. Since this is evaluated in the limit that the boundary approaches
the horizon, all of these cases can be covered at once using the universal near-horizon geometry, which agrees with
that of the approximate saddle we have considered.
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Figure 2: Lorentzian causal diamond with a S0 edge (left) and its Euclidean contin-
uation (right) in two-dimensional flat spacetime. There are two fixed points of the
analytically continued conformal Killing vector corresponding to the Euclidean hori-
zons. A York boundary along a conformal Killing orbit is drawn in black surrounding
one of the horizons.

hence they are purely topological. The field equations are satisfied if and only if R = 2Λ,
∇2φ = −2Λφ and ∇µξν+∇νξµ = 0, where ξµ := εµν∂νφ (see e.g. [43]). The last condition
implies that ξµ is a Killing vector. A canonical ensemble is defined in JT gravity by specifying
the value of the dilatonφB and the temperature T at a York boundary. In a stationary ensemble
the dilaton should be constant at the boundary, hence a saddle approximating the partition
function should be a solution of JT gravity that contains a circle of circumference β = 1/T on
which the value of the dilaton matches φB.

For the case Λ = 0, the general solution is a flat metric, d x2 + d y2, and a linear dilaton,
φ = ax+ b y+c, where a, b, c are constants. For a = b = 0 and c = φB there is an exact saddle
solution that meets the boundary condition of a constant dilaton on a thermal boundary circle.
The bulk action of this solution vanishes because the Ricci scalar is zero and the boundary term
evaluates to [44]

IJT
GHY = −

1
4
(φ0 +φB) . (9)

Thus, for any temperature and constant dilaton the action of the saddle is given by minus the
JT horizon entropy, which can be interpreted as the entropy of a causal diamond in flat space.
Note the horizon entropy is independent of the size of the diamond. On the right in Figure 2
we show the analytic continuation of the conformal Killing orbits in Euclidean flat space. Since
the edge S0 of the diamond consists of two disconnected points, there are two fixed points of
the conformal Killing field, i.e., two Euclidean horizons.

Next we consider the case of a positive cosmological constant, for which the metric is that
of Euclidean de Sitter space, i.e., a 2-sphere, with radius L = 1/

p
Λ. The Killing vectors of

the 2-sphere generate rotations about an axis. If we orient the coordinates so that the Killing
vector determined by φ corresponds to the azimuthal vector field, ∂ϕ, the condition that ξµ be
a Killing vector implies that φ∝ cosθ . Since this is the ℓ= 1, m= 0 spherical harmonic, we
also have that ∇2φ = −(2/L2)φ, so this dilaton field satisfies in addition the required elliptic
equation. The solution to the field equations is therefore unique up to the orientation of the
dilaton Killing axis and the multiple of cosθ . We note that the dilaton is globally regular over
the 2-sphere, although we shall need it only within a patch.
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Figure 3: Lorentzian causal diamond with a S0 edge (left) and its Euclidean continu-
ation (right) in two-dimensional de Sitter spacetime. On the left t is the Killing time
of the de Sitter static patch and r∗ is the tortoise coordinate. The Euclidean diamond
covers the entire two-dimensional Euclidean de Sitter manifold, S2. A conformally
stationary York boundary is drawn in black.

As is well-known, the entire 2-sphere is the analytic continuation of a static patch of
Lorentzian de Sitter space, continuing the Schwarzschild-like Killing time coordinate t to imag-
inary values, and the analytic continuation of the static patch Killing vector ∂t is a rotation
Killing vector of the sphere. Perhaps surprisingly, if we analytically continue the conformal
Killing time in a causal diamond smaller than a static patch in de Sitter spacetime, the re-
sulting space still corresponds to the entire Euclidean 2-sphere [17, 30]. To see into how this
works geometrically, note that the analytically continued curvature must again be constant, so
it forms some part of the 2-sphere, and the analytic continuation of the conformal Killing vec-
tor is a conformal Killing vector of the sphere. We again arrive at the entire 2-sphere, because
the static patch and a smaller causal diamond are related by a conformal isometry, so their
analytic continuations must also be so related. Another way to see this is that the points along
the right side of the diamond lie at zero Lorentzian distance from each other, so they map to
a single point in the Euclidean space, and similarly for the points on the left side. The top
and bottom vertices of the Lorentzian diamond lie at positive and negative infinite conformal
Killing time, which in the Euclidean continuation means that they are identified.

The conformal Killing orbits of the Lorentzian diamond have constant acceleration [29], so
their analytic continuations are circles on the sphere. The pattern of conformal Killing orbits
(and the orthogonal curves) can in principle be found by placing circles with the appropriate
acceleration (i.e., extrinsic curvature on the sphere) at the corresponding points of the maxi-
mal slice of the causal diamond, which is shared with the analytic continuation. Alternatively,
they can be obtained by applying a suitable conformal transformation to the orbits of a rota-
tional Killing field on the sphere. In fact, that is how we generated the plot on the right in
Figure 3. Conveniently, the conformal group of the sphere is SL(2,C), the double cover of
the Lorentz group, and its action on the sphere can be realized by its action on the null rays
on a light cone in Minkowski spacetime, when identifying the sphere with a cut of the light
cone at a fixed Minkowski time in some frame. (This is the famous fact that Lorentz transfor-
mations conformally transform the celestial sphere.) The figure is generated by a boost (with
rapidity 1.5) perpendicular to the rotation axis of the rotational Killing vector. The relativistic
“beaming” effect causes the two poles to approach each other.
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If we begin with the aim of computing the entropy of a causal diamond as viewed by an
observer inside, it would seem natural to identify the boundary in the saddle with an orbit of a
conformal Killing field, like the black circle in Figure 3, since that is the analytic continuation
of a constant acceleration orbit in the Lorentzian diamond. Concerning the boundary value of
the dilaton, there is a solution whose pole agrees with the fixed point of the conformal Killing
flow, but unlike the constant dilaton in flat space this solution is not constant on the black
circle, since the fixed point does not lie at the center of that circle, so this solution cannot
serve as a saddle for the canonical partition function.

We hence consider instead a canonical ensemble with a prescribed constant value of the
dilaton on the boundary and a given temperature, and look for a saddle that meets those
boundary conditions. Unlike in Einstein gravity in the higher dimensional case, where a sad-
dle arises only approximately in the high-temperature regime, in JT gravity there is an exact
saddle. That solution has a pole at the center of the boundary circle, rather than at the fixed
point of the conformal Killing flow. That is, the saddle is invariant under the rotational Killing
flow that preserves the boundary. The portion of the 2-sphere between the York boundary and
the pole, together with the dilaton solution φH cosθ , form an exact saddle of the ensemble
that meets the boundary conditions with boundary at 0 < θB = sin−1(β/2πL) < π/2, and
horizon value of the dilaton φH = φB/ cosθB. Note that since this canonical ensemble is de-
fined without reference to the conformal Killing vector of the causal diamond initially under
consideration, its saddle has no relation to that diamond. Instead, it corresponds to a portion
of the Euclidean static patch.

In fact, there are two configurations consistent with the boundary conditions, since there
are two poles concentric with a given circle on the 2-sphere. In the Lorentzian counterpart, i.e.
the de Sitter static patch, if they arise from a dimensional spherical reduction of the near-Nariai
black hole geometry the two poles can be interpreted as the “cosmological” (φH/φB > 0) and
“black hole” (φH/φB < 0) horizon. The on-shell action for these configurations was computed
in [17,21] and is given by

IJT
tot = IJT

bulk + IJT
GHY = βEBY − S , (10)

where β is the proper inverse boundary temperature, and the Brown-York energy EBY and
horizon entropy S are, respectively,

EBY = ±
φBβ/2πL

8π
p

1− (β/2πL)2
, S =

φ0

4
±

φB/4
p

1− (β/2πL)2
≡
φ0 ±φH

4
. (11)

The plus sign corresponds to the cosmological configuration, whereas the minus sign is associ-
ated to the black hole configuration. In the last term φH is the value of the dilaton at the cos-
mological horizon, and −φH is the value at the black hole horizon. In the infinite temperature
limit, β → 0, the boundary circle shrinks to zero size, so φH → φB. In the limit β → 2πL, the
temperature drops to the de Sitter temperature, and a regular saddle exists only for φB → 0.
No saddle of temperature lower than 1/2πL exists. The free energy (F = IJT

tot/β) of the cosmo-
logical configuration is always lower than that of the black hole configuration [17,21], hence
the cosmological configuration dominates the ensemble.

4 Discussion

We set out to clarify the physical principles underlying the derivation of BDF [30] of the en-
tropy associated with causal diamonds. In all cases it was found there that a boundary term
localized at the horizon yields the familiar Bekenstein-Hawking area entropy when the action
is evaluated on a Euclidean analytic continuation of the corresponding Lorentzian diamond.
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While we do not doubt the correctness of the answer, what seemed less clear to us is the
question.

We took the viewpoint that to identify an entropy we should first specify the gravitational
ensemble. To this end we adopted York’s method of introducing a system boundary at which
the ensemble parameters are specified, and looked for a saddle point approximation to the
partition function for the canonical ensemble. For a finite boundary at a generic temperature,
if the cosmological constant vanishes the only saddle for Einstein gravity in D ≥ 3 spacetime
dimensions corresponds to “hot flat space”, which has vanishing entropy. However, the calcu-
lation of BDF can be recovered if one considers the regime in which the ensemble temperature
becomes very large, since then an approximate saddle with a horizon emerges, which corre-
sponds to the near horizon geometry. (This ensemble interpretation of the calculation also
justifies the contibution of the horizon boundary term as well as its orientation, which were
not clear to us in the framework of the BDF calculation.) One can thus interpret the entropy
as being associated with the near horizon states, and its universal form (1/4 per Planck area)
is independent of the particulars of the causal diamond. By contrast, there does exist an ex-
act saddle with a horizon in D = 2 for JT gravity, with the dilaton constant everywhere in
spacetime. The action of this saddle gives minus the horizon entropy of a diamond for any
temperature.

We also noted that when there is a cosmological constant, the partition function does admit
a horizon saddle for a wide range of finite temperatures. This was already found earlier in
Einstein gravity in D ≥ 3 spacetime dimensions [13,16,18,20], as well as in JT gravity in D = 2
dimensions [17,21]. In this case, the entropy is again given (at leading order) by the area law,
or its JT gravity generalization, even though the saddle includes a finite volume between the
York boundary and the horizon. However, the saddle in these cases does not correspond to
the original causal diamond one set out to associate an entropy with. In Einstein gravity, for
example, the saddle is a Schwarzschild-de Sitter geometry with a value of the mass parameter
that is selected by the ensemble parameters, and is never just an empty causal diamond that
is smaller than the de Sitter static patch.

Our conclusion is that the question for which the calculation of BDF is the answer is “what
is the entropy of an infinite temperature canonical ensemble defined by a boundary localized
just outside the saddle horizon”? In a sense, this is satisfactory since, as pointed out by BDF,
the near-horizon state has long been understood to behave, at least in a semiclassical approxi-
mation, as a thermal state with diverging proper temperature as the horizon is approached by
a static observer. On the other hand, the presence of the ensemble boundary just outside the
horizon is a physical ingredient alien to the original question intended by BDF, namely, what
is the entropy—or the dimension of the Hilbert space—associated with a causal diamond on
its own, without an artificial boundary inserted? To address this latter question one should
consider the limit in which the boundary shrinks to zero size and disappears. It was explained
in [19] (following the original suggestions of [45, 46]) how this leads to the entropy of an
“empty” de Sitter static patch when a positive cosmological constant is present. This amounts
to an interpretation of the original Gibbons-Hawking sphere partition function [9] as a compu-
tation of the trace of the identity operator on the Hilbert space, i.e., the dimension of the space
of states. When the cosmological constant vanishes, or for a diamond smaller than the de Sitter
static patch, this calculation fails, since no semi-classical saddle exists. In another paper [47]
we have taken up the challenge to make sense of the entropy of those causal diamonds.
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