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Abstract

Answers to the question how a classical world emerges from underlying quantum physics
are revisited, connected and extended as follows. First, three distinct concepts are com-
pared: decoherence in open quantum systems, consistent/decoherent histories and Kol-
mogorov consistency. Second, the crucial role of quantum Markovianity (defined rigor-
ously) to connect these concepts is established. Third, using a random matrix theory
model, quantum effects are shown to be exponentially suppressed in the measurement
statistics of slow and coarse observables despite the presence of large amount of coher-
ences. This is also numerically exemplified, and it highlights the potential and impor-
tance of non-integrability and chaos for the emergence of classicality.
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1 Introduction

It is an obvious everyday fact that the world around us does not show direct quantum effects:
we can safely disregard the wave-like behaviour of matter and do not need to worry about
the effects of measurement backaction. But this causes a conundrum because our everyday
world is built out of particles that are fundamentally quantum. Studying the emergence of
classicality from underlying quantum physics is thus of foundational importance, but also has
great practical relevance for the realization of quantum technologies. Yet, the questions how
to prove the emergence of classicality and also the prior question what needs to be proved are
not fully settled. The present paper aims to clarify and extend the discussion and it is divided
into two parts.

The first part (Sec. 2) is about clarifications and makes two contributions. The first contri-
bution is to give a focused overview over three different approaches to the question what needs
to be proved. These are the decoherence approach in open quantum systems (OQS) [1–4],
the consistent/decoherent histories formalism [5,6], and a recent approach based on the no-
tion of Kolmogorov consistency [7–15]. The second contribution emphasizes the crucial role
played by the rigorous definition of (multi-time) quantum Markovianity [16–18] (for intro-
ductions see Refs. [13, 14]), which connects the decoherence approach in OQS to the other
two approaches.

The second part (Sec. 3) is about how to prove classicality by extending recent research
results [7, 8, 15]. Therein it has been observed that isolated many-body systems can behave
classical even in presence of large amount of coherences and that non-integrability and chaos
might be the key to understand this behaviour. In particular, Ref. [15] argued that this is a
generic effect for a large class of observables (specified in greater detail later on) and estimated
that deviations from classical behaviour are exponentially small in the system size. Here, we
confirm this estimate and provide an alternative derivation of it in Sec. 3.1, which is inspired
by the idea to model complex isolated quantum systems by random matrix theory [19–24].
Moreover, a simple model is used to illustrate important features of this new approach to
classicality in Sec. 3.2, before concluding in Sec. 4.

For completeness, we remark that there are alternative explanations of classicality, which
we will not study here. For instance, classicality is sometimes explained by gravity as the fun-
damental cause for decoherence [25] or by collapse theories that directly modify Schrödinger’s
equation [26]. However, we are here interested in explanations within the conventional frame-
work of non-relativistic quantum mechanics, where gravity or collapse theories cannot play
any role. Moreover, also the semiclassical limit of large action S/ħh≫ 1—formalized by taking
ħh→ 0 [27] among other limiting procedures related to temperature, mass, angular momen-
tum, etc.—is often invoked to explain classicality. While this provides an important consistency
check, we here avoid such limiting procedures (after all, decoherence is a major obstacle to
build a quantum computer and one can certainly not claim that a quantum computer oper-
ates in the high temperature limit). Finally, for fundamental criticism about decoherence we
refer the reader to Leggett [28], the importance of decoherence for macroscopic objects was
discussed in Refs. [29–34], and for a general criticism of prevailing notions of classicality in
the cosmological context see Ref. [35]. Furthermore, a topic which we will only briefly touch
is quantum Darwinism [36–38], which further refines the notion of decoherence in OQS.
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2 Classicality: Definitions and approaches

2.1 Definition used in this work

For any discussion of the quantum-to-classical transition, it is important to precisely define
what “classical” behaviour means. One here hits the first obstacle as the boundary between
the quantum and classical world is not one-dimensional: depending on the problem different
boundaries can be drawn.

For instance, one legitimate way to define classicality could be to ask whether a state of
a bipartite quantum system obeys all Bell inequalities or not. This definition, however, only
reveals static quantum features of a state, and does not allow to draw any conclusion about
how classicality emerges from an underlying quantum description.

Here, we are precisely interested in this emergence and ask whether a process, i.e., an ex-
perimentally well-defined procedure to access the time evolution of a quantum system [13,14],
can look classical. To be precise, consider an isolated quantum system with (time indepen-
dent) Hamiltonian H prepared in some state (density matrix) ρ0. Let X =

∑M
x=1λxΠx be

some observable with eigenvalues λx , eigenprojectors Πx and M denoting the total number of
distinct eigenvalues (measurement outcomes). The probability to measure xn, . . . , x1 at times
tn > · · ·> t1 is

p(xn, . . . , x1)≡ tr
�

Πxn
Un . . .Πx1

U1ρ0U†
1Πx1

. . . U†
n

	

, (1)

with Uk ≡ e−iH(tk−tk−1) the unitary time evolution operator between two times (ħh ≡ 1). Note
that Eq. (1) can be experimentally reconstructed by performing n repeated measurements on
a quantum system and by repeating this procedure many times to create sufficient statistics.
Next, pick some k ∈ {1, . . . , n− 1} and define p(xn, . . . ,��xk , . . . , x1) to be the same probability
as in Eq. (1) except that no measurement is performed at time tk (and thus no outcome xk
is recorded), which is indicated with the notation ��xk and obtained from Eq. (1) by dropping
the two projectors Πxk

. Then, the process is classical if the following “probability sum rule”
is satisfied for all k < n and all n > 1 (up to some error much smaller than the considered
probabilities):

∑

xk

p(xn, . . . , xk, . . . , x1) = p(xn, . . . ,��xk , . . . , x1) . (2)

In words, a process is classical if marginalizing over measurement results is identical to not
measuring at any given time tk. Since measurements can be disturbing in quantum mechan-
ics, even on average, the validity of Eq. (2) signifies the absence of quantum effects from the
perspective of measuring X . An example violating Eq. (2) is the famous double slit experi-
ment, see Fig. 1. The following facts further support the idea that this is a good definition of
classicality (though, as emphasized above, not the only one).

First, observe that Eq. (2) defines a classical stochastic process [39], where it is also known
as the Kolmogorov consistency condition. Classicality as considered here therefore has a clear
operational meaning, which was also used in Ref. [7–15]: a process is classical if (at least in
principle) a classical stochastic process can be used to generate the same measurement statistics.
The idea of defining classicality in this way is rooted in a “black-box-mentality”: there might
be some very expensive quantum computer in front of you, but if the available measurement
statistics can be simulated, or emulated, with a classical stochastic processes, then the measure-
ment statistics alone do not allow you to draw the conclusion that there is anything quantum
going on in the computer. Furthermore, this definition of classicality also has a clear practical
motivation because classical stochastic processes are much easier to analyse and simulate than
quantum stochastic processes.

Moreover, Eq. (2) implies the validity of Leggett-Garg inequalities [40,41] and it is closely
related but not equivalent to the conditions imposed in the consistent or decoherent histories
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Figure 1: The double slit experiment where a coherent source of particles ρ0 hits a
detection screen at position x2 after passing a wall with two holes (the double slit).
(a) The particle’s location x1 is also measured at the double slit, allowing to decide
through which slit it passed (corresponding trajectories indicated by dashed lines).
No interference pattern is seen on the detection screen, also not after averaging over
x1. (b) There is no measurement of the particle’s location at the double slit, it thus re-
tains its coherent wave-like properties and an interference pattern emerges. Clearly,
Eq. (2) is violated: the dynamics is non-classical.

formalism [5, 6], which we review below in Sec. 2.3. Importantly, however, the definition of
classicality used here does not hinge on any specific interpretation of quantum mechanics.
Confirming Eq. (2) experimentally only requires measurements of X , no further hidden as-
sumption is contained in its definitions. Clearly, classicality is defined with respect to some ob-
servable X , i.e., a system that behaves classical with respect to X can behave non-classical with
respect to a different observable Y . Finally, notice that Eq. (2) could be also violated in a clas-
sical context, for instance, whenever an external agent (e.g., some observer or experimenter)
actively intervenes in the process, e.g., by performing feedback control operations [13,14,42].
We exclude these scenarios here by definition of the probabilities in Eq. (1), which in the clas-
sical limit (replacing projectors on Hilbert space by characteristic functions on phase space)
clearly obey Eq. (2).

In the remainder of this section, we first review the well known decoherence approach and
ask whether it explains classicality according to the definition used here (Sec. 2.2). Afterwards,
we comment on the relation to the perhaps less well known consistent or decoherent histories
approach (Sec. 2.3). Finally, Sec. 2.4 concludes with an intuitive explanation why Eq. (2) can
be satisfied for an isolated quantum system.

2.2 The decoherence approach for open quantum systems

We consider an open quantum system (OQS) S coupled to some environment or bath B. The
total Hilbert space is thus a tensor product HS ⊗HB of the system and bath Hilbert spaces
HS and HB, respectively. The dynamics in the full system-bath space is unitary and generated
by a Hamiltonian HSB = HS + HB + VSB with HS (HB) the system (bath) Hamiltonian alone
(suppressing tensor products with the identity in the notation) and VSB their interaction. The
reduced system state ρS(t) = trB{ρSB(t)} is obtained from a partial trace of the full system-
bath state over the bath degrees of freedom. In contrast to ρSB(t), ρS(t) does not evolve in a
unitary way.

Decoherence happens whenever it is possible to identify a fixed special basis {|ψx〉} in HS ,
which is called the pointer basis. The special role of this basis is to ensure that any initial
OQS state ρS(0) becomes after a characteristic (and typically very short) decoherence time
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tdec diagonal in that basis. In equations,

ρS(0) =
∑

x ,y

cx ,y(0)|ψx〉〈ψy | −→t≥tdec
ρS(t)≈

∑

x

px(t)|ψx〉〈ψx | . (3)

Here, the cx ,y(0) = 〈ψx |ρS(0)|ψy〉 are complex numbers, which ensure positivity and nor-
malization of ρS(0) but are otherwise arbitrary, and the px(t) are the probabilities to be
in state |ψx〉 at time t. Equation (3) is indeed a remarkable robust prediction of OQS the-
ory [1–4,43,44]. In particular, we repeat that the pointer basis is fixed, i.e., it does not depend
on the initial system state, but it is determined by the system-bath Hamiltonian and the initial
bath state (though the dependence on the latter should be mild in realistic situations). The
pointer basis is also often described as “stable”, “robust” or “objective” [1–4] and we come
back to these properties below.

We further add some clarifications. First, for the sake of generality one should stress that
the pointer basis might not be a basis of pure states |ψx〉, but rather a complete set of or-
thonormal projectors {ΠS

x} acting on HS , where certain projectors can have a rank greater than
one [45]. In that case, there exist “decoherence-free subspaces” (caused, e.g., by additional
conservation laws), but they do not change the fundamental point of our discussion and we
continue to call {ΠS

x} the pointer basis for simplicity. Moreover, we here assume pointer states
to be orthogonal, which is typically the case for finite dimensional OQS, but pointer states can
be non-orthogonal (e.g., coherent states of a harmonic oscillator [46]). Second, in Eq. (3) we
allowed the probabilities px(t) to be time-dependent. Their change, however, typically hap-
pens on a time scale much slower than the decoherence time scale (see, e.g., Ref. [47]) and
is called “dissipation”—a phenomenon already known from classical open systems. Third, we
remark that a more nuanced presentation of decoherence is possible. For instance, in order to
determine the measurement basis, Zurek in his seminal paper was actually interested in the
decoherence of the measurement apparatus, which was in turn coupled to the system to be
measured and an environment [48]. However, also the measurement apparatus is an OQS,
and for the remainder of this paper it is not necessary to explicitly distinguish between system
and measurement apparatus. In the following we call the phenenology explained above OQS
decoherence to distinguish it from the decoherent histories mentioned later.

Next, we ask whether decoherence explains the emergence of classicality according to
Eq. (2) if applied to a system observable XS =

∑M
x=1λxΠ

S
x , i.e., an observable commuting

with the pointer basis and acting trivially on the bath space. To this end, we first confirm that
for all times larger than the decoherence time tdec we have

DρS ≡
∑

x

ΠS
xρS(t)Π

S
x = ρS(t) , (4)

where D is a dephasing operation in the pointer basis.1 Thus, measuring and averaging is
identical to not measuring. Next, let us additionally assume that Eq. (4) holds for the full
system-bath state:

DρSB(tk) =
∑

x

ΠS
xρSB(tk)Π

S
x = ρSB(tk) . (5)

If that is the case, one can confirm our definition of classicality, i.e., the validity of Eq. (2).
However, Eq. (4) does not imply Eq. (5), even though the converse is true. Thus, OQS deco-
herence does not imply classical measurement statistics according to Eq. (2).

It is thus worth thinking about which condition on top of decoherence could imply classi-
cality, and it seems that two different strategies are conceivable.

1In principle, Eq. (3) implies only an approximate equality (≈) in Eq. (4). However, since classical behaviour
should be always understood as some approximation, we replace ≈ by = whenever we mean “equal up to some
irrelevant measurement error”.
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The first strategy takes a more detailed look at the environmental degrees of freedom.
Indeed, the validity of Eq. (5) is equivalent to having vanishing quantum discord [49] in the
pointer basis, and testing Eq. (4) has been suggested as a tool to probe non-classical system-
bath correlations [50]. However, deciding whether the system-bath state has zero quantum
discord or not requires knowledge of the full system-bath state. This knowledge is unavailable
experimentally and therefore the condition of zero quantum discord is inaccessible from an
operational perspective of OQS theory. Moreover, the idea of having zero quantum discord
is problematic from the perspective of having a unitarily evolving “universe” consisting of the
system and the bath as explained later in Sec. 2.3.

However, a refinement of this idea is possible and has lead to the recently much stud-
ied approach of quantum Darwinism, see Ref. [36–38] and references therein. In a nutshell,
quantum Darwinism starts by dividing the bath into many different “fragments” F ⊂ B and
asserts that most fragments, even those of small size, have (close) to zero quantum discord
with respect to the pointer basis, i.e., Eq. (5) applies to most states ρSF (tk) = trB\F{ρSB(tk)},
where B \ F denotes all bath degrees of freedom except those of the fragment. The resulting
classical correlations between the system S and most fragments F allow external observers
to learn about the system state even by only looking at a small fragment F of the bath, and
different observers looking at different small fragments will agree about the state of S. Thus,
an objective world emerges.

For the important mechanism of photons scattered off some material object the idea of
quantum Darwinism is indeed intuitively appealing because the scattered photons allow dif-
ferent observers, by looking at different narrow angles at the object, to infer, e.g., the same
colour or position of it. Moreover, since photons are non-interacting and scatter off to infinity,
it becomes clear that their detection does not change the future evolution of the object. As a
consequence, Eq. (2) follows.

For other environments, however, the applicability of quantum Darwinism is less clear
and whether it guarantees the emergence of classical measurement statistics is unknown at
present. In condensed matter and other situations, the bath does not split into non-interacting
fragments and perturbations might not be able to escape to infinity. In this case, quantum Dar-
winism will generically hold at most for transient times [51], yet objectivity and Kolmogorov
consistency might nevertheless arise—as this work will indeed confirm now within and later
also without OQS decoherence.

Within the paradigm of OQS decoherence, this brings us to the second strategy implying
classical behaviour. This strategy is different from the first by rejecting the idea that informa-
tion about (fragments of) the bath is directly accessible or known. Instead, solely the degrees
of freedom of the OQS are deemed operationally accessible, and it then becomes necessary
to think about how could one locally decide whether the pointer states are stable, robust or
objective. Historically, Zurek introduced for this purpose the “predictability sieve” [52], which
requires to compute the change in von Neumann entropy of the OQS state ρS(t) as a func-
tion of a pure initial state ρS(0) = |ψ(0)〉〈ψ(0)|S . If it changes very slowly, the dynamics are
predictable as the state remains approximately pure, but if it changes very rapidly, the dy-
namics are unpredictable as the state becomes very mixed. Now, from what we said above,
we see that initial pointer states are characterized by a slow change in von Neumann entropy,
whereas superpositions of pointer states quickly decohere into a mixture on a time scale tdec.
The predictability sieve thus selects out the pointer states.

Although the predictability sieve has appealing properties, it is ultimatively not satisfactory
for the following reason. If we want to find out whether something is predictable (or stable,
robust or objective), it is best to really “take a look at it”. For instance, the memories in our
computers are stable because we can repeatedly read them out without changing their state.
How can this idea be formalized mathematically? Clearly, one way to test this property is to
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measure the OQS in the pointer basis, say at some time t1 ≥ tdec, and then to look whether this
measurement influences the future evolution of the OQS at some time t2 > t1, for instance, by
checking whether the future probabilities of the pointer states depend on the measurement at
time t1. We now notice that this idea to check for predictability is exactly equal to testing our
definition of classicality in Eq. (2) for the pointer basis {ΠS

x}. Clearly, other ways are possible,
but within this second strategy they should always be related to watching the response to some
form of external perturbation or intervention on the OQS: do the pointer states remain stable
if we shake them a bit?

After having spelled out the basic idea, it remains mostly a technical problem to realize
that OQS decoherence in the form of Eq. (3) plus the condition of Markovianity as defined
in Ref. [16] (for introductions see Refs. [13, 14]) is sufficient to imply classical measurement
statistics. In short, this definition of Markovianity is based on the idea that local operations on
the system performed by an external agent do not influence the OQS dynamics generated by
the environment. Importantly, the property of Markovianity can be checked by local system
operations only (no knowledge of the bath state is required) [13, 14, 16, 17]. However, since
the definition of Markovianity requires to check multi-time correlations (in complete analogy
to the classical definition), knowledge of the time evolution of ρS(t) alone is insufficient to
check for Markovianity (a discussion focused on this point can be found in Ref. [18]).

The connection to Markovianity now becomes transparent by realizing that “shaking a bit
the system” is an external intervention that will sooner or later also influence the environment.
Can this influence of the environment cause a different behaviour of the system? If the answer
is no, then this precisely means that the dynamics is Markovian. In that case, we can conclude
the following. First, we found above that OQS decoherence implies that DρS(t1) = ρS(t1)
for t1 ≥ tdec. Obviously, one also has IρS(t1) = ρS(t1) where I is the identity operation
which, operationally speaking, literally means “do nothing!” Now, according to the definition
of Markovianity explained above, the dynamics induced by the environment is insensitive to
local operations on the system performed by an external agent. Since the two operationsD and
I do not change the OQS state, the future dynamics is insensitive to the dephasing operations,
that is: the pointer states are stable and the dynamics is classical. Formal definitions and a
proof are given in Appendix A.1.

This important message together with various other notions (some of which are only in-
troduced in Sec. 2.3) is summarized in Fig. 2. Notably, the role of multi-time statistics to
probe the stability of pointer states and its connection to Markovianity is not the focus of the
OQS decoherence approach [1–4] and also not of quantum Darwinism [36–38], although —
within the histories framework introduced below — connections (with varying degree of gen-
erality and rigour) have beed made [53–56]. Moreover, a clear-cut consensus from numerical
studies about the relation between non-Markovianity and quantum Darwinism has not yet
emerged [57–59]. Thus, it seems worthwhile in the future to look for a closer connection of
(non-)Markovianity and quantum Darwinism in physical relevant situations.

Finally, we make two more important observations. First of all, the question “what is the
pointer basis?” is non-trivial and has been only answered in certain limiting cases (e.g., very
strong or very weak system-bath coupling) [1–4]. In general, for a complex open many-body
system coupled to a complex many-body environment the pointer basis is not known. It is
an advantage of the approach presented in Secs. 2.4 and 3 of this paper that no pointer basis
needs to be identified. Second, all what we said above was restricted to the OQS paradigm,
i.e., local observables defined on a system-bath tensor product structure, whose identification
can be non-trivial [60]. This restriction is also lifted in the present approach, which makes it
appealing for questions usually studied within the formalism reviewed next.
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global
decoherence

Happens only
trivially!

zero
discord

OQS
decoherence

plus
Markovianity

decoherent
histories

consistent
histories

Kolmogorov
consistency

Leggett-Garg
inequalities

Figure 2: Overview over relations between different concepts defined in the text.
Arrows mean strict mathematical implications (only for arrow (7) it is currently not
known whether also the inverse implication holds). Comments: (1) is explained at
the end of Sec. 2.3 (and “happens only trivially” is the only term not defined rigor-
ously in this diagram), (2) assumes a local system observable (discord is undefined
without a system-bath tensor product structure) and is here understood as applying
repeatedly for all times tk considered in Eq. (2), (3) is discussed around Eq. (5), (4)
is easily shown with the definition in Sec. 2.3, (5) is explained in Sec. 2.2 and proven
in Sec. A.1 (the strict implication follows from the existence of classical processes
that are non-Markovian), (6) and (7) are shown in Sec. 2.3, (8) follows because the
derivation of Leggett-Garg inequalities assumes Kolmogorov consistency [40,41].

2.3 Consistent and decoherent histories

The consistent or decoherent histories formalism is an attempt to explain how standard rea-
soning based on classical logic can be applied in an isolated quantum system in general, and in
the cosmological Universe in particular [5,6,61–66]. As we will see, it is closely related to the
Kolmogorov consistency criterion. It has been also viewed as a new interpretation of quantum
mechanics [6,61,63], but this view has been fiercely debated [67]. We here prefer to remain
agnostic about this question, but simply point out again that the mathematical definitions and
relations introduced below make sense without reference to any particular interpretation of
quantum mechanics.

The approach starts by introducing a decoherence functional D for two histories
x≡ (xn, . . . , x2, x1) and y≡ (yn, . . . , y2, y1) “happening” at times tn > · · ·> t1:

D(x;y)≡ tr
�

Πxn
Un . . .Πx2

U2Πx1
U1ρ0U†

1Πy1
U†

2Πy2
. . . U†

nΠyn

	

. (6)

Here, the projectors and unitary time evolution operators have the same meaning as in Eq. (1)
and we immediately confirm that the diagonal elements of the decoherence functional corre-
spond to our previously introduced joint probabilities: p(xn, . . . , x1) =D(x;x).

Depending on the precise reference, different notions of “consistency”, “decoherence” or
“(quasi)classicality” have been introduced based on the decoherence functional. It is beyond
the scope of this article to review them all here, so we restrict the discussion to the two most
commonly employed definitions. First, Griffith originally proposed what we here call the con-
sistent histories condition [61]:

consistent histories: ℜ[D(x;y)] = 0 , for all x ̸= y , (7)

i.e., the vanishing of the real part of the decoherence functional for different histories. Gell-
Mann and Hartle, among others (see, e.g., Refs. [65,66] and references therein) prefer to use
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the following condition, which we call the decoherent histories condition:

decoherent histories: D(x;y) = 0 , for all x ̸= y . (8)

Three immediately obvious remarks follow. First, condition (8) implies Eq. (7). Second,
D(x;y) = 0 always if xn ̸= yn, i.e., the final “measurement results” cannot be different. Third,
Eq. (7) implies the Kolmogorov consistency condition (2) (and hence so does Eq. (8)). Con-
firming the last result requires a few lines of algebra, but it was already shown by Griffiths [61]
and many others and will thus not be repeated here.

A not so obvious conclusion is that the decoherent histories condition is strictly stronger
than the consistent histories condition. This is explained with a result of Diósi [68],
who considered two decoupled quantum systems A and B prepared in a decorrelated state
ρA(t0)⊗ρB(t0), unitarily evolving without interaction according to UA⊗UB and measured with
decorrelated projectors ΠA

x ⊗ Π
B
x ′ . In this situation, one immediately confirms that the joint

decoherence functional factorizes as DAB(x,x′;y,y′) = DA(x;y)DB(x′;y′), where unprimed
(primed) histories refer to subsystem A (B). Now, suppose that A and B separately satisfy the
decoherent histories condition. Then, this is also the case for the non-interacting composite
AB, as one would intuitively expect. However, this conclusion does not hold for the consistent
histories condition, thus the latter cannot imply the former. Thus, Diósi’s argument is typically
invoked to say that Eq. (8) is a more meaningful condition than Eq. (7).

Now, if we consider the probabillities for such a decoupled system, they factorize as ex-
pected: pAB(x,x′) = pA(x)pB(x′). Interestingly, if A and B separately satisfy the Kolmogorov
consistency condition, then this is also true for the composite AB. Thus, Diósi’s argument
cannot be invoked to refute our definition of classicality based on Eq. (2).2 Two further state-
ments are noteworthy: First, what we said above implies that the decoherent histories con-
dition is strictly stronger than the Kolmogorov consistency condition. Second, confirming the
decoherent histories condition experimentally is obviously much harder than confirming the
Kolmogorov consistency condition.

Next, we turn to the relation between decoherent histories and OQS decoherence, which
obviously has been already the topic of previous works, see, e.g., the above references and
in particular also Refs. [69, 70]. Quite intuitively, one would expect that histories defined by
measurements in the pointer basis naturally satisfy the decoherent histories condition, i.e.,
that OQS decoherence generates decoherent histories, but it has been recognized that this re-
lation is not that easy [69,70]. Indeed, since OQS decoherence alone is not sufficient to imply
Kolmogorov consistency, it also cannot be sufficient to imply decoherent histories. Interest-
ingly, the extra condition of Markovianity is again sufficient to show that OQS decoherence
implies decoherent histories. The proof of this statement is given in Appendix A.1 (see also
Refs. [53–56] for related work).

Finally, we turn to the question whether decoherence in a stronger, global sense can ex-
plain the emergence of decoherent histories. Here, global decoherence means that the unitarily
evolving state is block diagonal with respect to the projectors {Πx}, i.e., ρ(t) =

∑

x Πxρ(t)Πx
(note that this implies zero quantum discord, Eq. (5), for local system projectors). If that
is the case for all times tk appearing in definition (6) of the decoherence functional, one
immediately confirms that the histories satisfy the decoherent histories condition. Unfortu-
nately, however, if ρ(t) is unitarily evolving this can in general only be the case for trivial
situations. To see this, we restrict the discussion to pure states |ψ(t)〉, which is sufficient
for isolated systems. Now, from

∑

x Πx = I we infer that every pure state can be written
as |ψ(t)〉 =

∑

x

p

px(t)eiϕx (t)|ψx(t)〉 with px(t) the probability to measure outcome x and
Πy |ψx(t)〉 = δx ,y |ψx(t)〉. Next, notice that the only states |ψ(t)〉 that are block diagonal or

2Diósi also gives a second argument to argue in favour of decoherent instead of consistent histories. Again, also
this second argument does not disfavour our definition.
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globally decohered are states with px(t) = δx ,x∗ for some x∗, i.e., these states are fully local-
ized in one subspace or, with respect to the measurement outcomes, we can say that they are
deterministic. Now, this can certainly happen in some cases, for instance, if the dimension of
the subspace x∗ dominates by far all other subspaces (which corresponds to the usual criterion
of x∗ describing an equilibrium state in statistical mechanics), or if the times tk are carefully
chosen such that |ψx(tk)〉 is localized in one subspace. Moreover, if Πx commutes with the
Hamiltonian, its probability remains constant and always generates classical statistics.

However, excluding globally conserved quantities, considering interesting nonequilibrium
dynamics and rejecting the unrealistic idea that we are able to carefully choose the times tk,
the state |ψ(t)〉 cannot remain block diagonal. For instance, if the state has a high initial
probability p(x0) ≲ 1 for some x0 and a high probablity for some final state p(xn) ≲ 1 with
xn ̸= x0, then there must be some intermediate time t where the state passed from x0 to xn
such that px0

(t) = 1/2. Thus, global decoherence can only happen under trivial or unrealistic
circumstances.

A summary of this and the last section can be found in Fig. 2.

2.4 The new approach: General picture

We now discuss the general picture behind the new approach from Refs. [7,8,15]. It is claimed
to be “new” for two reasons. First, as discussed above, it defines classicality in terms of the
Kolmogorov consistency condition. This differs from the basic question in OQS decoherence
(“What is the measurement/pointer basis?”) and it is close to but still different from the his-
tories approach. In particular, Kolmogorov consistency can be independently well motivated
by asking the question “When can a quantum process be simulated by a classical process?”, as
also done recently in Refs. [9–12]. Second, emphasis is put on the following two physical as-
pects. First, the focus is not on OQS: even global observables of an isolated system can behave
classical. Second, non-integrability is regarded as essential, or at least very helpful, to derive
classicality. While the relation to chaos has been also studied in OQS decoherence (see, e.g.,
Refs. [71–79]), it has not been regarded as essential: the traditional workhorse model of OQS
theory uses an integrable bath of harmonic oscillators (“Caldeira-Leggett model”) prepared in
a canonical Gibbs ensemble. This is avoided in the following by considering pure states.

To the best of the author’s knowledge, the basic physical picture behind this emergence
of classicality has been already explained by van Kampen in 1954 [80] (without, however,
receiving any attention of the community working on the quantum-to-classical transition).
Three basic ingredients, which can hardly count as assumptions, plus one major assumption
are necessary to see the emergence of classicality. The three ingredients are: (i) the system
has a well-defined overall energy, i.e., the energy spread ∆E of the initial wavefunction is
sufficiently narrow;3 (ii) the system has many particles N ≫ 1, i.e., the Hilbert space dimen-
sion of the aforementioned energy shell is exponentially large: D ≡ dimH ∼ exp(N); (iii) the
system is non-integrable or, more precisely, it should obey the eigenstate thermalization hy-
pothesis (ETH). Given the success of the ETH this is considered a mild assumption for realistic
many-body systems found in nature [23,24].

The major assumption concerns the observable X that one is probing: according to
Refs. [15, 80] it should be coarse and slow. Coarseness means that the number of potential
measurement outcomes is much smaller than the Hilbert space dimension: M ≪ D. Again,
this can hardly count as an assumption. In particular, observe that an observable XS defined
for an OQS is a coarse observable in the full system-bath space. Slowness instead is the crucial
assumption and it has been discussed in detail (together with various subtleties) in Ref. [15].

3Recall that energy is conserved in an isolated system. So if the initial state is a superposition of macroscopically
different energies, the analysis should be carried out separately for each component. Moreover, if there are further
conserved quantities, the same argument has to be also applied to them.
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Intuitively, it means that the time scale τX on which 〈X 〉(t) = tr{X Utρ0U†
t } evolves is much

longer than the microscopic evolution time scale ħh/∆E. This is equivalent to saying that the
matrix with elements Xkm = 〈k|X |m〉 with respect to an ordered energy eigenbasis {|k〉} is
narrowly banded.

It is interesting to contrast this approach to previous work done within the consistent or
decoherent histories formalism, where slow (or quasi-conserved) observables also played an
essential role [63,65,66,81]. Without noting the work of von Kampen, the focus in these works
was to derive the consistent or decoherent histories condition by arguing that the wave packet
remains strongly localized along some trajectory, which is described by a classical determin-
istic equation, i.e., it was argued that the wave function |ψ(t)〉 should remain approximately
localized in one (time-dependent) subspace Πx(t) throughout the dynamics.

It is questionable whether this is always an adequate idea, but, importantly, the assumption
of remaining localized around some classical trajectory is also not necessary.

As it will come clear below, the pure state |ψ(t)〉 is allowed to have an abundance of
coherences (even maximal coherences) and can still behave classically. This marks another
and perhaps the most important novel aspect.

It is also interesting to connect the assumptions above to the OQS decoherence approach.
To this end, consider an OQS and let X = HS be the system Hamiltonian. Since HS is locally
conserved ([HS , HS] = 0), HS is a slow observable provided that the coupling VSB is weak
enough. Furthermore, it is also coarse since 1≪ dimHB. Thus, in the weak coupling regime
local measurements of the energy should give rise to classical statistics obeying the Kolmogorov
consistency condition (2). This is unison with the predictions of the pointer basis in the deco-
herence approach, but we repeat that the identification of a pointer basis is not necessary in
the present approach. However, it should be emphasized that the notion of slowness is subtle
and it does not seem to be a sufficient criterion for classicality: by precisely tuning the “fine-
structure” of Xkm it appears that one can generate arbitrary exceptions to the “rule” [82], albeit
those might not be generic. In any case, it provides a different perspective on the problem and
it gives an immediate intuitive explanation why the world around us appears classical: human
senses are simply to slow and coarse to resolve the evolution of fast observables that could
potentially show quantum effects.

So how can it be that decoherence is not necessary to generate classical measurement
statistics? The following picture lacks rigour, but gives some intuition.

To start with consider a two-level system with Hamiltonian ∆2σz =
∆
2 (|1〉〈1|−|0〉〈0|) and as

the observable choose X = σx . Moreover, let the initial state ρ0 with respect to the eigenbasis
|±〉= (|0〉 ± |1〉)/

p
2 of σx be parametrized as

ρ0 =

�

(1+δ)/2 reiφ

re−iφ (1−δ)/2

�

, δ ∈ [−1,+1] , 0≤ r ≤
p

1−δ2

2
, φ ∈ [0, 2π) . (9)

Here, the parameter r quantifies the “strength” of the coherences in the σx basis, which is
always upper bounded by

p
1−δ2/2 due to the positivity requirement ρ0 ≥ 0. Now, at an

arbitrary time t the system state in the same basis reads

ρt =

�

(1+δ cos∆t)/2+ r sinφ sin∆t r(cosφ + i sinφ cos∆t)− iδ
2 sin∆t

r(cosφ − i sinφ cos∆t) + iδ
2 sin∆t (1−δ cos∆t)/2− r sinφ sin∆t

�

. (10)

The diagonal elements equal the probabilities to measure spin up |+〉 or spin down |−〉 with
respect to the x-direction. Their time evolution is strongly influenced by the coherences and
therefore the dynamics is not classical. Of course, this is not a counterexample since the system
is neither a non-integrable many-body system nor is the observable coarse and slow.

So what happens for a coarse observable in a non-integrable many-body system? The
single elements of Eq. (10) now become blocks of many elements and the probability px(t)
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to find the system in some state x becomes the trace over block x . It will typically contain a
sum of contributions from many coherences 〈i|ρ0| j〉= ri je

iφi j of the initial state, schematically
written as:

px(t)∼
∑

i, j

ri j sinφi j sin∆i j t . (11)

Now, observe the following facts. First, for a coarse observable of a many-body system the
number of terms contributing to the sum is huge (of the order eN with N the particle number).
Second, for a non-integrable system the energy differences ∆i j are incommensurable (apart
from rare accidential degeneracies) and effectively random. Thus, unless the φi j are precisely
tuned or ri j = 0 for most but a few pairs (i, j), Eq. (11) is a sum of many terms of random
sign and small magnitude.4 Thus, the enormous amount of coherences cannot add up to a
significant contribution and therefore it effectively does not matter whether coherences are
present or not, i.e., as long as one only asks questions about the measurement statistics in
Eq. (1) we can set ri j = 0 for all (i, j).

This explanation for classical behaviour is essentially statistical and similar in spirit to the
explanation of the second law. Yes, it is possible that the positions and momenta of all the
molecules in the air surrounding you conspire such that they can be all found in one corner of
the room in the next second, yet this possibility is extremely unlikely. Similarly, it is possible
that all microscopic coherences of a coarse observable align in phase to give rise to a strong
contribution and, consequently, a strong violation of Kolmogorov consistency, yet this is again
extremely unlikely. In essence, this also underlies the decoherence approach. Yes, it is possible
that a qubit in contact with a bath suddenly “recoheres”, yet this would require again a very
unlikely because precisely tuned cooperation of many phases of the system-bath state. Thus,
the emergence of classical behaviour is related to the general phenomenon of irreversibility,
which is extremely hard to avoid given our coarse human senses.

Finally, one might wonder where above the assumption of slowness enters. This is indeed
not directly visible here. However, our argument why Eq. (11) is small was based on assump-
tions about the number of coherences ri j and the absence of correlations within and between
the coherences ri j , phases φi j and frequencies ∆i j . Unfortunately, and in particular for states
prepared out of equilibrium, these assumptions become questionable. Indeed, a state drawn
at random can be shown to give with overwhelming probability rise to equilibrium statis-
tics [83–86]. Nonequilibrium states thus cannot be completely random and must possess a
sufficient amount of correlations. Slowness now helps because the microscopic state evolves
on a much shorter time scale than the observable, effectively randomizing many phases before
any noticeable change in px(t) occurs. Thus, from the perspective of the slow observable X ,
the systems looks locally equilibrated and the precise microstate no longer matters [15,80].

3 Classicality: Derivation and numerical verification

3.1 Derivation using random matrix theory

To show the approximate validity of the Kolmogorov consistency condition (2) one needs a
model that, ideally, is as general as possible to cover a wide range of scenarios while being at
the same time also specific enough to permit explicit calculations. Unfortunately, these two
desiderata are often mutually exclusive. In Ref. [15] the model was assumed to obey the ETH,
which is currently considered to be a mild assumption for most realistic many-body systems

4Recall that r2
i j ≤ pi p j (by Cauchy-Schwarz) where pi is the probability to find the system in a certain microscopic

state |i〉. Generically, a system has overlap with an enormous amount of microscopic states and, since
∑

i pi = 1,
this implies that ri j must be very small.
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found in nature [23, 24]. The drawback of this generality was that some plausible but at the
end unproven assumptions entered the derivation.

Here, a random matrix theory approach is used, which has been successful in modelling a
variety of generic properties of complex systems [19–24]. Indeed, our current understanding
of the ETH is much based on random matrix theory although the ETH has been shown to
be valid for a much larger class of models. The model considered here is therefore more
restrictive than the model of Ref. [15], but it comes with the benefit that we need less unproven
assumptions (albeit we still need some).

To capture the relevant physics of a non-integrable many-body system we follow
Deutsch [87] and others [88–96] and consider a Hamiltonian of the form

H = H0 + εH1 . (12)

Here, H0 is some “baseline” Hamiltonian, ε a small parameter and H1 a banded random Her-
mitian matrix chosen, e.g., from the Gaussian orthogonal or unitary ensemble. For instance,
H0 = HS + HB could be the bare system and bath Hamiltonian and εH1 = VSB their (weak)
interaction, but many more examples are imaginable. Note that H0 does not need to be inte-
grable, it is only assumed to describe a many-body system with an extremely dense spectrum
in the considered energy interval (recall ingredients (i) and (ii) in Sec. 2.4). Moreover, the
model does not literally assume that the perturbation is random. Instead, the basic idea of
random matrix theory is that some property holds for the overwhelming majority of random
perturbations and that the real physical (and non-random) Hamiltonian then also belongs to
this overwhelming majority. Finally, the smallness of ε implies that the range of the spectrum
and the mean level spacing δe of H0 and H are comparable, but their eigenvectors are still
strongly perturbed as long as ε is larger than the extremely small level spacing δe.

Let |µ〉 and |m〉 be the eigenvectors of H0 and H, respectively. A central role in the following
is played by the unitary matrix

V m
µ ≡ 〈m|µ〉 , (13)

which transforms between the eigenbasis of H0 and H and quantifies their overlap. Denoting
by E[. . . ] averages over the random matrix ensemble, we use that

u(m,µ)≡ E
�
�

�

�V m
µ

�

�

�

2�

= u(m−µ) ,
∑

n

u(n) = 1 , max
n

u(n) =O
�

e−N
�

, (14)

which holds for both the Gaussian orthogonal or unitary ensemble (and even beyond strict
Gaussianity) and whose detailed justification is left to the literature [87–99]. The important
point is that the overlap between eigenvectors of H and H0 is exponentially small in the particle
number N and for our estimate below we will set for notational simplicity maxn u(n) = D−1

with D the Hilbert space dimension of the energy shell (which is exponentially large in N).
Next, as an observable we allow any coarse Hermitian operator X =

∑M
x=1λxΠx that

commutes with the unperturbed Hamiltonian, [H0, X ] = 0, but not with the perturbation H1
(the case [H1, X ] = 0 trivially gives rise to classical dynamics for X ). Coarseness means that
M ≪ D and the smallness of ε implies that X evolves on a slow time scale. Note that also
observables X with [H0, X ] ̸= 0 can behave classical [7,8,15], but the above assumption turns
out to be very convenient for the calculation below.

Then, we consider the joint probability

p(x2, x1)≡ tr
�

Πx2
U2Πx1

U1ρ0U†
1Πx1

U†
2

	

(15)

to measure x1 at time t1 and x2 at time t2 given an arbitrary initial state (perhaps far from
equilibrium) ρ0. We further introduce the single time probability

p(x2,��x1 )≡ tr
�

Πx2
U2U1ρ0U†

1 U†
2

	

, (16)
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and consider the difference

Q ≡ p(x2,��x1 )−
∑

x1

p(x2, x1) =
∑

x1 ̸=y1

tr{Πx2
U2Πx1

U1ρ0U†
1Πy1

U†
2} ∈ [−1, 1] . (17)

The goal in the following is to show that Q is extremely small. This then implies that the
Kolmogorov consistency condition (2) is satisfied at the level of arbitrary two-time probabili-
ties given any initial state ρ0. An extension of the derivation to arbitrary n-time probabilities
with n > 2 is certainly desirable, but it is a very complicated problem, likely requiring novel
techniques. However, abstracting from Refs. [100–103], where theorems about n-time corre-
lations functions for large n were proven under different circumstances, it appears likely that
approximate consistency continues to hold also for n> 2.

To make analytical progress, we first need some assumption about the initial stateρ0 and at
this stage we follow Ref. [15]. In summary, Ref. [15] has described the initial state by a prepa-
ration procedure using some completely positive map M such that ρ0 =Mψ0 =

∑

α Kαψ0K†
α,

where ψ0 is the state prior to the preparation. So far, this is completely general [13,14,104],
but now two assumptions are introduced. First, by polar decomposition we write Kα =

p

PαVα,
where Vα is a unitary and Pα a positive operator. It was now assumed that the Pα = Pα(X )
are functionally dependent on X . Translated into an experimental context, this means that
the experimentalist has control over X (for instance, by measuring it), but they are not in con-
trol over the precise microstate within the subspaces of Πx . Second, it was assumed that the
prior state ψ0 is at equilibrium or, technically speaking, Haar randomly distributed in the en-
ergy shell. Both assumptions thus express the idea that the initial state preparation can bring
a system, which is at equilibrium from a macroscopic point of view (note that ψ0 is a pure
state), arbitrarily far from equilibrium with respect to X . Then, using a measure concentration
inequality in form of Levy’s lemma [86], it was shown that smallness of Eq. (17) is (in almost
all cases) equivalent to showing smallness of

q(x2, x0)≡
1

Dx0

∑

x1 ̸=y1

tr
�

Πx2
U2Πx1

U1Πx0
U†

1Πy1
U†

2

	

, for x2 ̸= x0 . (18)

Here, Dx0
≡ tr{Πx0

} is the dimension of the subspace associated to measurement outcome x0.
Thus, in essence the term Q, which is a three-point correlation function for the projectors Πx
with unknown correlations with respect to the initial state ρ0, got transformed into the term
q(x2, x0), which is a four-point correlation function for the projectors Πx without any initial
state dependence.

We evaluate Eq. (18) in the energy eigenbasis of H and introduce the following convention,
which is perhaps unconventional but useful for later considerations. Since there will be many
terms indexed by many quantities m1, m2, . . . and µ1,µ2, . . . , where mi (µi) labels energy
eigenvalues of H (H0), we decide to write labels mi (µi) as superscripts (subscripts) as in
Eq. (13) and take the freedom to simply replace them by the number i whenever appropriate.
Thus, Eq. (18) then becomes

q(x2, x0) =
1

Dx0

∑

x1 ̸=y1

1,2,3,4
∑

eiω12(t2−t1)eiω43 t1Π12
x2
Π23

x1
Π34

x0
Π41

y1
, (19)

where ω12 = E1− E2 denotes the difference between two eigenenergies of H. Next, we recall
that X is a narrowly banded operator (due to its slowness) and this also implies that Πx is
narrowly banded (due to the coarseness of X ) [15]. Thus, in an ordered energy eigenbasis we
can safely assume Πmn

x = 0 if m− n ≥ d for a sufficiently large number d. Importantly, while
d ≫ 1 can be enormous in realistic applications, a central feature of slowness and coarseness is
that still d ≪ D. Thus, d/D serves as a small parameter in the following and the corresponding
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restricted summation is denoted as
∑1≈2≈3≈4. Finally, notice that q(x2, x0) = 0 if t2 = t1 or

t1 = 0, which allows to turn Eq. (19) into

q(x2, x0) =
1

Dx0

∑

x1 ̸=y1

1≈2≈3≈4
∑

(eiω12(t2−t1) − 1)(eiω43 t1 − 1)Π12
x2
Π23

x1
Π34

x0
Π41

y1
. (20)

We continue by using Eq. (13) and [H0, X ] = 0 to obtain

Πmn
x = 〈m|Πx |n〉=

∑

µ,ν

〈m|µ〉〈µ|Πx |ν〉〈ν|n〉=
∑

µ

χµ(x)V
m
µ V̄ n

µ . (21)

Here, χµ(x) is the indicator function which is one if and only ifΠx |µ〉= |µ〉 and zero otherwise.
Furthermore, note that we use an overbar to denote the complex conjugate. Inserting Eq. (21)
into Eq. (20), we arrive at

q(x2, x0) =
1

Dx0

∑

x1 ̸=y1

1≈2≈3≈4
∑

1,2,3,4

(eiω12(t2−t1) − 1)(eiω43 t1 − 1)

×χ1(x1)χ2(y1)χ3(x0)χ4(x2)V
1

4 V̄ 2
4 V 2

1 V̄ 3
1 V 3

3 V̄ 4
3 V 4

2 V̄ 1
2 .

(22)

We have now reached a point, where we can try to evaluate q(x2, x0) using random ma-
trix theory. However, since q(x2, x0) ∈ R can be positive or negative, showing smallness of
q(x2, x0) on average is only an indicator, but not a gurantee that q(x2, x0) is small in general
(because it could also strongly fluctuate for different realizations of the random Hamiltonian).
Thus, we will actually show that [q(x2, x0)]2 is small, which establishes smallness of q(x2, x0)
and its variance, and which is one point where we go beyond the treatment of Ref. [15]. Thus,
we aim to evaluate

E
�

[q(x2, x0)]
2
	

≈ (23)

1
D2

x0

∑

x1 ̸=y1

∑

x ′1 ̸=y ′1

1≈2≈3≈4
∑

1,2,3,4

5≈6≈7≈8
∑

5,6,7,8

(eiω12(t2−t1) − 1)(eiω43 t1 − 1)(eiω56(t2−t1) − 1)(eiω87 t1 − 1)

×χ1(x1)χ2(y1)χ3(x0)χ4(x2)χ5(x
′
1)χ6(y

′
1)χ7(x0)χ8(x2)

×E
�

V 1
4 V̄ 2

4 V 2
1 V̄ 3

1 V 3
3 V̄ 4

3 V 4
2 V̄ 1

2 V 5
8 V̄ 6

8 V 6
5 V̄ 7

5 V 7
7 V̄ 8

7 V 8
6 V̄ 5

6

�

.

Note that the ensemble average is only performed over the matrix elements V m
µ , but excludes

the frequencies ωmn. In principle, these should be included in the ensemble average as well,
but the smallness of the random perturbation and the extremely small mean energy level
spacing δe suggest that the behaviour of q(x2, x0) is insensitive to small perturbations of ωmn

for times much smaller than the extremely long Heisenberg time ħh/δe (for further justification
see Refs. [93–95,105]).

Evaluation of Eq. (23) is facilitated by the fact that ten constraints apply. First, due to the
factors eiωi j t − 1 we infer the four constraints m1 ̸= m2, m3 ̸= m4, m5 ̸= m6 and m7 ̸= m8.
Second, due to the fact that x1 ̸= y1, x ′1 ̸= y ′1 and x2 ̸= x0 (see Eq. (18)) we find the six
constraints µ1 ̸= µ2, µ3 ̸= µ4, µ5 ̸= µ6, µ7 ̸= µ8, µ3 ̸= µ8 and µ4 ̸= µ7. Nevertheless,
evaluation of Eq. (23) remains challenging even under the simplest approximation that we
will employ here (though we discuss corrections later on). This approximation assumes that
the V m

µ are independent zero-mean Gaussian random numbers obeying

E
�

V m
µ

�

= 0 , E
�

V m
µ V n

ν

�

= E
�

V̄ m
µ V̄ n

ν

�

= 0 , E
�

V m
µ V̄ n

ν

�

= δmnδµνu(m−µ) , (24)

with δmn and δµν denoting the standard Kronecker symbol with super- or subscripts, respec-
tively. The ensemble average in Eq. (23) can then be evaluated using Isserlis’ theorem, which
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turns an expectation value of 2n random variables into sums over “pairings” where each pair-
ing is a product of n pairs. As an example, consider

E
�

V 1
3 V̄ 2

4 V 2
4 V̄ 1

3

�

= E
�

V 1
3 V̄ 2

4

�

E
�

V 2
4 V̄ 1

3

�

+E
�

V 1
3 V̄ 1

3

�

E
�

V 2
4 V̄ 2

4

�

= δ12δ34u2(m1 −µ3) + u(m1 −µ3)u(m2 −µ4) .
(25)

Quite discomfortingly, the ensemble average in Eq. (23) involves sixteen random numbers.
In Appendix A.2 a numerical code is detailed that generates all pairings using Isserlis theorem
while respecting the ten constraints mentioned above. Then, from the total amount of 40,320
pairings 347 distinct pairings (no multiplicity) survive. It has been found too demanding to
write a programme that automatically estimates Eq. (23) and since it is very tiring to investi-
gate 347 cases manually, we look for the most dominant contributions. This is justified because
we are only interested in an order-of-magnitude estimate of E{[q(x2, x0)]2}, not its exact value.

To find the leading order contribution, we observe that each pairing gives rise to a different
number of distinct Kronecker deltas. In general, the fewer the Kronecker deltas, the larger the
contribution because each Kronecker delta “kills” a high dimensional sum. Some care, how-
ever, is required because the sums run over spaces with potentially very different dimension.
Specifically, every lower subscript runs over a subspace with dimension equal to the rank of
some projector Πx , which is always smaller than D but could still be comparable to it. In con-
trast, six out of the eight superscripts run over subspaces with dimension d ≪ D. Therefore,
the leading order contributions are given by the terms that have the fewest Kronecker deltas
in total or the fewest Kronecker deltas with respect to the subscripts.

Starting with the latter, the programme from Appendix A.2 shows that the pairing with the
fewest amount of subscript-Kronecker deltas is

E
�

V 1
2 V̄ 4

2

�

E
�

V 1
4 V̄ 6

8

�

E
�

V 2
1 V̄ 3

1

�

E
�

V 2
4 V̄ 5

8

�

E
�

V 3
3 V̄ 8

7

�

E
�

V 4
3 V̄ 7

7

�

E
�

V 5
6 V̄ 8

6

�

E
�

V 6
5 V̄ 7

5

�

≈ D−8δ14δ16δ23δ25δ38δ47δ48δ37 .
(26)

Here, all u(m−µ)≥ 0 were replaced for notational simplicity with their maximum value D−1

in agreement with the comment below Eq. (14). Then, inserting this term into Eq. (23) and
killing all the sums, one obtains the contribution

1
D2

x0
D8

1≈2
∑

(eiω12(t2−t1) − 1)(eiω12 t1 − 1)(eiω21(t2−t1) − 1)(eiω21 t1 − 1)

×
∑

x1 ̸=y1

∑

x ′1 ̸=y ′1

∑

1,2,3,4,5,6

χ1(x1)χ2(y1)χ3(x0)χ4(x2)χ5(x
′
1)χ6(y

′
1) .

(27)

Now, since |eiω − 1| ≤ 2 for all ω ∈ R the first line is estimated by setting eiω − 1 = O(1)
such that

∑1≈2 O(1) ≈ Dd. The second line can be exactly evaluated by introducing the
Hilbert subspace dimension Dx ≡ tr{Πx} =

∑

1χ1(x) associated to the projector Πx . Thus,
one obtains

1
D2

x0
D8

Dd
∑

x1 ̸=y1

∑

x ′1 ̸=y ′1

Dx Dy Dx0
Dx2

Dx ′Dy ′ =
dDx2

Dx0
D3

�

1−
∑

x

�

Dx

D

�2
�2

. (28)

We see that even in the worst case scenario, assuming Dx0
≈ 1 and Dx2

≈ D, the right hand
side scales at least as d/D2, which is certainly negligible small.

We continue by considering the terms with the fewest Kronecker deltas in total. The pro-
gramme from Appendix A.2 shows that these terms have six Kronecker deltas in total and there
are the following four of them (neglecting the universal prefactor D−8):

δ13δ57δ14δ67δ23δ58 , δ13δ68δ14δ68δ23δ57 , δ24δ57δ24δ67δ13δ58 , δ24δ68δ24δ68δ13δ57 .
(29)
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Let us look at the first one. Inserting it into Eq. (23) gives rise to the contribution

1
D2

x0
D8

1≈2≈4
∑

5≈6≈8
∑

(eiω12(t2−t1) − 1)(eiω41 t1 − 1)(eiω56(t2−t1) − 1)(eiω85 t1 − 1)

×
∑

x1 ̸=y1

∑

x ′1 ̸=y ′1

∑

1,2,5,6

χ1(x1)χ2(y1)χ2(x0)χ1(x2)χ5(x
′
1)χ6(y

′
1)χ6(x0)χ5(x2) .

(30)

Using the same reasoning as above, the summation over the superscripts is approximated as
D2d4 and the summation over the subscripts gives δx1 x2

δy1 x0
δx ′1 x2

δy ′1 x0
D2

x0
D2

x2
. Consequently,

1
D2

x0
D8

D2d4D2
x0

D2
x2
=

D2
x2

D2

d4

D4
, (31)

which is still negligible small, though potentially considerably larger than Eq. (28). Using the
same strategy, it turns out that also the remaining contributions in Eq. (29) have the same
scaling.

Thus, to summarize, it was shown that the dominant contributions to E{[q(x2, x0)]2} scale
like (d/D)4, which is negligible small due to the slowness and coarseness of the considered
observable X . Remarkably, this scaling holds for all times t1 and t2 (and is thus clearly ap-
plicable out of equilibrium). Several assumptions concerning the ETH ansatz as detailed in
Ref. [15] could be overcome due to the fact that we employed a more transparent but also
more restrictive random matrix theory approach from the beginning. Clearly, also the random
matrix theory approach is not without assumptions, but recalling its enormous success to deal
with non-integrable or chaotic many-body systems [19–24]most assumptions should turn out
to be mild in practice.

Nevertheless, a critical point concerns the approximation that the V m
µ are Gaussian and

uncorrelated. Both cannot be strictly true. First, unitarity implies |V m
µ |

2 ≤ 1, which is not
satisfied by a Gaussian distribution. Second, unitarity also implies that

∑

µ V m
µ V̄ n

µ = δ
mn and

∑m V m
µ V̄ m

ν = δµν, which is satified on average, see Eqs. (14) and (24), but not for a sin-
gle realization if the V m

µ are taken uncorrelated. While one might expect corrections to be
negligible in many cases due to the huge Hilbert space dimension and the smallness of V m

µ ,
Dabelow and Reimann have shown that they can be important [93, 95]. Yet, their goal was
to determine the exact time-dependent behaviour of expectation values, instead of the rough
order-of-magnitude estimate that we were interested in here. Nevertheless, Appendix A.3
confirms that at least the leading order correction does not give rise to a different scaling.
Unfortunately, the author found the calculation of higher order corrections to be intractable,
so the present derivation might be best interpreted as strong evidence, but no proof, that slow
and coarse observables imply classical measurement statistics in random matrix models and,
likely, also beyond.

Finally, we remark that the above derivation made use of the property x1 ̸= y1 in Eq. (18),
but the evaluation of the sum

∑

x1 ̸=y1
has not been crucial. Thus, we have indeed not only

shown the Kolmogorov consistency condition but also the strictly stronger decoherent histories
condition.

3.2 Numerical verification

To illustrate the main features of the present approach to classicality, we use a simple toy
model. This model cannot compete with the simulations of more realistic, non-random models
in Refs. [7, 8, 15]. Yet, the results clearly support our general findings and they are also used
to point out interesting features that were not yet investigated.

17

https://scipost.org
https://scipost.org/SciPostPhys.15.1.024


SciPost Phys. 15, 024 (2023)

The toy model describes energy exchanges between two energy bands and has been studied
in detail in Ref. [106]. Each band is described by N equidistant energy levels such that the
baseline (unperturbed) Hamiltonian is

H0 = δE
N−1
∑

i=0

i
N − 1

(|i〉〈i|+ |i + N〉〈i + N |) . (32)

Here, δE sets an overall energy scale, which we choose in our numerics equal to δE = 0.5.
Moreover, |i〉 describes an energy eigenstate of the first (second) band if i ∈ {0, . . . , N − 1}
(i ∈ {N , . . . , 2N − 1}). The random coupling between the bands is mediated by

εH1 = ε
N−1
∑

i, j=0

vi j|i〉〈 j + N |+H.c. , (33)

where the vi j are independent zero mean unit variance Gaussian random numbers. The ob-
servable X we consider quantifies the energy imbalance between the two bands and is defined
as

X =
1
p

2N

N−1
∑

i=0

(|i + N〉〈i + N | − |i〉〈i|) =
1
p

2N
(Π2 −Π1) , (34)

where Π1 (Π2) is the projector on the first (second) energy band. Clearly, this is a coarse
observable with two eigenspaces of dimension N . The prefactor (2N)−1/2 is pure convention,
but bears the advantage that the observable X has the same “size” (meaning that tr{X } = 0
and tr{X 2} = 1 always) for different N . The condition for X to be slow was worked out in
Ref. [106] and reads

16π2Nε2

δE2
≪ 1 , (35)

i.e., weak coupling gives rise to a slow observable as usual (note that [H0, X ] = 0). In
the numerical simulations we choose ε = ε(N) such that the left hand side of Eq. (35) be-
comes 0.01 unless otherwise stated. Moreover, the relaxation time-scale of X is given by
τX = (4πε2N)−1δE [106].

We first consider the structure of the observable X in more detail as it plays an important
role in our study. For this purpose Fig. 3 shows matrix elements of the observable X and the
projectorΠ1 and we can immediately confirm that X andΠ1 are narrowly banded. Besides the
observation of narrow bandedness, we also note that the off-diagonal elements of Π1 appear
random and vary erratically. Furthermore, they decay with system size. More specifically, the
black circles are roughly one order of magnitude larger than the blue circles, which suggests a
scaling 1/

p
D for the off-diagonal elements. These points are in complete agreement with the

general predictions of the ETH [23,24].
Let us now consider the dynamics and test whether the time evolution of X is sensitive to

a dephasing operation. To this end, we plot and compare in Fig. 4 the two quantities

1
∑

xs=0

p(1t , xs) =
1
∑

x=0

tr
�

Π1e−iH tΠx e−iHs|ψ0〉〈ψ0|eiHsΠx e−iH t
	

, (36)

p(1t ,��xs ) = tr
�

Π1e−iH(t+s)|ψ0〉〈ψ0|eiH(t+s)
	

, (37)

i.e., the probability to find the system in the first energy band at time t with or without de-
phasing operation at time s < t, respectively. Note that Fig. 4 plots these quantities for a
single realization of the random matrix Hamiltonian and for a single Haar-randomly chosen
initial state confined to the first energy band Π1, but (importantly) the results were found
to be representative as different realizations of the Hamiltonian or initial state give rise to a
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Figure 3: Matrix elements explaining the structure of the considered observable. (a)
“Matrix plot” of |Xkm| in an ordered energy eigenbasis of H = H0 + εH1 for N = 600
(note that the Hilbert space dimension is D = 2N). (b) Plot of the absolute value of
the matrix elements of Π1 along the “counter-diagonal” (from the lower left to the
upper right corner) in an ordered energy eigenbasis for N = 60 (larger black circles),
N = 600 (medium sized pink circles) and N = 6000 (tiny blue circles).

similar picture. We also note that the dephasing in Fig. 4 clearly happens before the system
equilibrates and it becomes immediately evident that the process becomes classical with in-
creasing N . This confirms our main result, but Fig. 4 contains two more important pieces of
information.

First, the circles and crosses in Fig. 4 are generated for the same Hamiltonian and initial
state, but by using truncated projectors, which are obtained from Πx by setting all off-diagonal
elements with a distance to the diagonal greater than d/2 to zero. The choice for d was
d = D0.7 and the reason for choosing this precise value of the exponent becomes clear later.
For now it only matters that we confirm that d/D = D−0.3 is very small for large D and that
we see in Fig. 4 that even for small D the dynamics is unchanged. This provides numerical
evidence that truncating the sums, which was a crucial step to arrive at Eq. (20) in our general
derivation, is justified.

Second, another important piece of information is revealed by the number ∆ in the top
right corner of each plot. It equals the trace norm between the states with and without de-
phasing defined as

∆=∆(ρ,Dρ)≡ 1
2

tr
Æ

(ρ −Dρ)2 ∈ [0, 1] , (38)

where Dρ =
∑

x ΠxρΠx denotes the dephased state. The trace norm is a distance measure
characterizing the distinguishability of two quantum states and it has a wide range of ap-
plications and favorable properties [104], including that (1 +∆)/2 is the maximum success
probability to distinguish between ρ and Dρ in an unbiased mixture given unlimited mea-
surement power. Thus, ∆ seems to be well suited to measure the amount of coherences in ρ.
Interestingly, we show in Appendix A.4 that maxρ∆(ρ,Dρ) = 1/2. Now, observing the values
for the trace norm in Fig. 4 we see that they are very close to the maximum possible value. In
that sense, the dephasing operation is (almost) maximally invasive and a lot of coherences is
destroyed. This demonstrates that (global) decoherence is not needed to explain classical be-
haviour and even maximally coherent states can show classical behaviour. This is not in conflict
with OQS decoherence, where decoherence happens locally but usually not globally.
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Figure 4: Exemplary check of the Kolmogorov consistency condition for the three
system sizes N = 60 (a), N = 600 (b) and N = 6000 (c). We plot Eq. (36) (pink
dashed lines) with a dephasing operation at time s = τX (indicated by a black vertical
line) and Eq. (37) (black solid lines). The pink crosses and black circles correspond to
Eqs. (36) and (37), respectively, but obtained with truncated projectors as explained
in the main text. Moreover, the value of ∆ in the upper right corner is the trace
distance introduced in Eq. (38).

Next, Fig. 5 shows the scaling behaviour of Q, Eq. (17), as a function of the Hilbert space
dimension. To this end, we plot the time average

〈Q〉 ≡
1
t

∫ t+s

s
du

�

�

�

�

�

1
∑

xs=0

p(1u, xs)− p(1u,��xs )

�

�

�

�

�

, (39)

for s = τX and t + s = 3τX , characterizing the (average) distance between the black solid and
pink dashed curves in Fig. 4. Moreover, to minimize the risk of statistical outliers, this is done
for three different realizations of the random matrix Hamiltonian and three Haar-randomly
chosen initial states, thus giving nine realizations for each N as indicated by black circles in
Fig. 5. To extract the scaling, we average these nine points for each N and fit a curve of the
form

〈Q〉 ∼
1

Dα
, (40)

which is inspired by Ref. [15]. By looking at Fig. 5 (note the logarithmic scale), one might
wonder whether it is a good idea to fit all the data by a straight line (pink dashed line with
exponent α = 0.9) because the behaviour for N ≲ 400 clearly deviates from the straight line
fit obtained for N ≥ 600 (blue solid line with exponent α = 0.6). It is not completely clear
to the author what causes the discrepancy, but in Ref. [106] it was observed that the weak
coupling approximation requires the side constraint 8π2N2ε2/δE2 > 1, which for our choice
of ε implies N > 200. This might explain the “anomalous” behaviour for small N . Also note
that the exponent α = 0.6 roughly fits the scaling behaviour observed in Ref. [15] (where α
was observed to be in the range [0.25, 0.6]).

In any case, we use the fit to determine the number d at which we truncated the projectors
to generate the pink crosses and black circles in Fig. 4. Namely, our main result predicted a
scaling of the form (d/D)4 for [qt,s(x0)]2 defined in Eq. (23). This suggests that 〈Q〉 should
scale as (d/D)2. Comparing with D−α for α= 0.6 gives d = D0.7 as used in Fig. 4.

Finally, we challenge the present approach by relaxing certain assumptions. First, we ask
what happens if the initial state is not randomly chosen within the first energy band. Fig-
ure 6(a) shows the breakdown of classicality for a highly atypical initial state |ψ0〉 = |i〉 for
some randomly selected i ∈ {0, . . . , N − 1} for N = 6000. Experimentally, preparing such
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α ≈ 0.9
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Figure 5: Scaling behaviour of a suitable time average of Q defined in Eq. (39).
Black circles correspond to different realizations of the random matrix Hamiltonian
or different Haar-randomly chosen initial states confined to the energy band Π1 (as
in Fig. 4). The lines are obtained from fitting 〈Q〉 ∼ D−α to the average of the black
circles including values for all N (pink dashed line) or excluding values for N ≤ 400
(blue solid line). Note the double logarithmic scale.

an initial state requires precise microscopic control over the eigenstates of each energy band,
which clearly violates the agreement made above Eq. (18). Nevertheless, classicality is quickly
restored for more realistic states as demonstrated in Fig. 6(b). It shows 〈Q〉 for N = 600,
N = 2000 and N = 6000 for five different realizations of |ψ0〉= |i〉 (black circles) and for five
different initial states |ψ0〉 ∼

∑

i∈K ci| f (i)〉, where K ⊂ {0, . . . , N − 1} is a randomly chosen
subset with 0.005N many elements (i.e., 0.5% of the energy levels in the first band are initially
populated) and the ci are zero mean unit variance Gaussian random numbers (pink triangles).
Despite quite large fluctuations, Fig. 6(b) indicates a scaling law and the pink triangles are (on
average) clearly below the black circles, showing the emergence of classicality even for mod-
erately atypical states with a small fraction of populated levels. Finally, Figure 6(c) shows
exemplarily what happens for two dephasing operations and an initial random state as used
also in Fig. 4. While this is certainly not conclusive, it indicates that for sufficiently large
dimensions the here introduced concept of classicality is robust also for n≥ 3 measurements.

Last but not least, Fig. 7 investigates the impact of the coupling strength on classicality,
which is directly related to the slowness of X . Here, weak, medium or strong coupling means
that the right hand side of Eq. (35) was fixed to 0.01, 0.1 or 1. One sees that classicality is
well satisfied up to medium coupling strength, but fails in the strong coupling regime. This is
not a deficit of the present theory because clearly not all observables can behave classical. For
strong coupling the eigenenergies of the total Hamiltonian can no longer be approximated by
the local eigenenergies of the two bands, but are strongly hybridized, and it is questionable
how far X describes any meaningful energy difference in this case.

4 Conclusion

The first half of this paper compared and contrasted well established and important approaches
to classicality, namely decoherence in OQS and consistent/decoherent histories, with recent
abstract research [9–12] as well as numerical evidence [7,8,15] and general derivations [15]
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Figure 6: (a) Violation of classicality for a highly atypical state (a random local
energy eigenstate |i〉 in the first energy band) for N = 6000 (other parameters and
conventions as in Fig. 4). (b) Scaling plot as in Fig. 5 for the just mentioned highly
atypical states (black circles) and for random superpositions of 0.005N such highly
atypical states (pink triangles). (c) Influence of two dephasing operations (indicated
by the vertical black lines) for N = 6000 and a typical nonequilibrium initial state as
considered in Fig. 4.

of classicality based on the Kolmogorov consistency condition. Arguably, the difference be-
tween the consistent/decoherent histories condition and the Kolmogorov consistency condi-
tion is small. However, Kolmogorov consistency is easier to verify experimentally than con-
sistent/decoherent histories and it can be independently well motivated from an operational
perspective. Moreover, we established that quantum Markovianity is a key concept to relate
decoherence in OQS to both the consistent/decoherent histories and the Kolmogorov consis-
tency condition. Figure 2 summarizes the first part.

The second half of the paper has given for an experimentally relevant class of initial states
an independent derivation of the Kolmogorov consistency and the decoherent histories condi-
tion based on a random matrix theory model. We carefully checked numerically the correct-
ness of the involved approximations. Remarkably, it was explicitly shown that even maximally
coherent states can give rise to classical dynamics for global observables.

Several interesting research avenues open up for the future. For instance, classicality could
here be only established for “mini-histories” with two measurement results and extending the
derivation to longer histories, as done in a different context in Refs. [100–103], is highly de-
sirable. Indeed, recent numerical results for up to five-time histories have confirmed that
the emergence of classicality is a robust phenomenon [107]. Moreover, various fundamen-
tal question might appear in a new light, for instance, the relationship between quantum
Darwinism [36–38] and quantum Markovianity, applications of decoherent histories to OQS
theory [108, 109], or the implications of the present findings for quantum cosmology [35].
Finally, the central quantity investigated in Eq. (18) can be more generally seen as a particular
example of a Kirkwood-Dirac quasiprobability [110]. The behaviour of these quasiprobabil-
ities for chaotic systems has also raised attention in relation to out-of-time-ordered correla-
tors [111–113], which might open up interesting possibilities for fruitful connections between
different fields.
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Figure 7: Exemplary violation of classicality at strong coupling/for fast X . Plots
are done as in Fig. 4 for N = 6000 and by choosing ε such that the right hand side
of Eq. (35) equals 0.01 (weak coupling, as before (a)), 0.1 (medium coupling (b))
and 1 (strong coupling (c)). Note that the relaxation time scale changes inversely
proportional to it.
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A Appendix

A.1 Decoherence, Markovianity and consistency

This appendix assumes the reader to be familiar with superoperators, in particular instruments
and completely positive (and trace preserving) maps. Introductions are provided, e.g., in
Refs. [13,14,43,104]. All superoperators are denoted with calligraphic symbols A,E ,P , . . . .

We start by defining a quantum Markov process following Ref. [16], for introductory treat-
ments see Refs. [13,14]. This definition recognizes the crucial role played by an external agent
(or experimenter or observer), who interrogates or intervenes the dynamics of an OQS at a set
of discrete times {tn, . . . , t2, t1}. Each intervention at each time tk is described by an instrument
{Ak(rk)}, which is a set of completely positive maps Ak(rk) adding up to a completely positive
and trace preserving map Ak ≡

∑

rk
Ak(rk). Importantly, these maps only act on the system

Hilbert space, encapsulating the idea that the external agent has no control over the bath de-
grees of freedom. Moreover, rk denotes some abstract measurement outcome, not necessarily
related to the xk appearing in the main text. Now, a quantum process is Markovian if the re-
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sponse of the OQS to any sequence (or history) of interventions {An(rn), . . . ,A2(r2),A1(r1)}
can be written as

ρ̃S(tn|rn, . . . , r2, r1) =An(rn)En,n−1 · · ·A2(r2)E2,1A1(r1)E1,0ρS(t0) , (A.41)

where {Ek,k−1}nk=1 is a set of completely positive and trace preserving maps, which—
importantly—do not depend on the interventions or initial system state. Moreover,
ρ̃S(tn|rn, . . . , r2, r1) is the subnormalized OQS state conditioned on the sequence of interven-
tions, which happens with probability p(rn, . . . , r2, r1) = trS{ρ̃S(tn|rn, . . . , r2, r1)}. Finally, no-
tice that the Ek,k−1 are also known as dynamical maps as they progragate the system state
forward in time from tk−1 to tk. These maps encode the influence of the bath or environment
and, according to Eq. (A.41), a Markov process is precisely characterized by the fact that the
influence of the bath can be neatly separated from the interventions Ak(rk) of the external
agent.

A few more words of clarification might be helpful. First, one can show that Eq. (A.41)
reduces to the classical Markov condition in an appropriate limit. Second, for classical causal
models it reduces to the causal Markov condition of Ref. [42]. Third, the validity of Eq. (A.41)
can be checked by local interventions on the system only. Fourth, the existence of a Markovian
quantum master equation for ρS(t), as often studied in OQS theory, does not imply the validity
of Eq. (A.41), although the converse is true (see in particular Ref. [18]). Note that the iden-
tity operator I (“do nothing!”) is an instrument too such that it is meaningful to define the
dynamical map Eℓ,k ≡ Eℓ,ℓ−1 · · ·Ek+1,k for any ℓ− k > 1. Fifth, Eq. (A.41) really is a statement
about the multi-time behaviour of an OQS, and the validity of Eq. (A.41) can be shown to be
equivalent to an appropriate formulation of the quantum regression theorem [114].

Next, we give a rigorous mathematical definition of OQS decoherence and a derivation
that it implies the decoherent histories condition for quantum Markov processes (which in
turn implies Kolmogorov consistency). To the best of the author’s knowledge, no definition of
OQS decoherence exists and the notion is used rather conceptually (what follows is, however,
closely related but not identical to the treatment of Refs. [9, 10, 12]). However, if one wants
to prove things mathematically, one has to start with a definition. For this purpose, we use
the dephasing operation D in the pointer basis as introduced in Sec. 2.2. Then, for a quantum
Markov process we define OQS decoherence by requiring that

[Eℓ,k,D] = 0 , for all n≥ ℓ > k ≥ 1 , (A.42)

where [A,B] =AB−BA is the commutator in superoperator space.
Is this a good definition of OQS decoherence? At least it implies that the dynamics induced

by the environment is not able to create coherences in the pointer basis. To see this, we
introduce the superoperator Px ,yρ ≡ ΠS

xρΠ
S
y . Next, suppose that ρS = DρS is some system

state without coherences. Then, Eq. (A.42) implies that Px ,yEρS = 0 for all x ̸= y , i.e., it is not
possible to create coherences in the pointer basis when starting from a decohered state. Clearly,
this captures a key aspect of the OQS decoherence concept, but one could naturally impose
further constraints. For instance, Eq. (A.42) makes no statement about the decoherence time
tdec and, since the short time dynamics of OQS is complex, one might additionally require that
Eq. (A.42) is only valid on a coarse time scale, i.e., for tℓ − tk not too small. In any case, the
minimal definition given here turns out to be sufficient to prove that histories in the sense of
Eq. (8) are decoherent.

To see this, we conveniently write the decoherence functional for a quantum Markov pro-
cess using superoperators:

D(x;y) = trS

�

Pxn,yn
En,n−1Pxn−1,yn−1

En−1,n−2 · · ·Px1,y1
E1,0ρS(t0)

	

. (A.43)
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Next, note that the decoherence functional does not change when subjecting it to a final de-
phasing operation D in the pointer basis (in fact, the decoherence functional does not change
under any final dephasing):

D(x;y) = trS

�

DPxn,yn
En,n−1Pxn−1,yn−1

En−1,n−2 · · ·Px1,y1
E1,0ρS(t0)

	

. (A.44)

Now, let k be the first index for which xk ̸= yk, i.e., xℓ = yℓ for all ℓ > k. By the definition of
OQS decoherence, we can then permute D through until we hit the time tk:

D(x;y) = trS

�

Pxn,yn
En,n−1 · · ·Ek+1,kDPxk ,yk

Ek,k−1 · · ·Px1,y1
E1,0ρS(t0)

	

. (A.45)

Finally, elementary algebra shows that DPxk ,yk
ρ = 0 whatever the input state ρ is. QED.

It is interesting to note that strictly weaker conditions suffice to show Kolmogorov con-
sistency for quantum Markov processes [9, 10, 12], but they seem insufficient to show the
decoherent histories condition.

A.2 Numerical implementation

This appendix includes some details about how to numerically fascilitate the evaluation of the
expectation values appearing in Eq. (23) using Mathematica [115].

We are interested in expectation values of the form E[V m1
µ4

V̄ m2
µ4

V m2
µ1

V̄ m3
µ1

. . . ] with an equal
amount of V - and complex conjugate V̄ -terms. Since each pair in Isserlis theorem requires
one V - and one V̄ -term, not all permutations of (V m1

µ4
, V̄ m2
µ4

, V m2
µ1

, V̄ m3
µ1

, . . . ) contribute to the
expectation value. One way to create all contributing permutations consists in generating two
lists A = {{m1,µ4}, {m2,µ1}, . . . } and B = {{m2,µ4}, {m3,µ1}, . . . } associated to the V - and
V̄ -terms, respectively, followed by

PermA= Permutations[A] ;
Pairings = Map[Sort,Table[Flatten[PermA[[α, k]], B[[k]]], {α, 1, LA!}, {k, 1, LA}], 2] ;

Here, LA = Length[A] denotes the lengths of the list A (which equals LB) and consequently
LA! is the length of PermA. The output Pairings now contains all possible pairings of the form

Pairings = {{{m1, m2,µ4,µ4}, {m2, m3,µ1,µ1}, . . . },
{{m2, m2,µ1,µ4}, {m1, m3,µ4,µ1}, . . . }, . . . } .

(A.46)

The lowest level angular bracket {. . . } contains one specific pair with always two Latin and
two Greek indices. The middle level angular bracket contains the product of all pairs, which
form one specific “pairing”.

In general, Pairings will contain many forbidden pairings due to constraints such as
m1 ̸= m2, µ1 ̸= µ2, etc. To filter them out, we map each pairing to a graph with vertices
(m1, m2, . . . ,µ1,µ2, . . . ) and edges created by the Kronecker symbols of each pair, e.g., the
pair {m1, m2,µ4,µ4} creates an edge between m1 and m2 and a (redundant) edge between µ4
and µ4. Then, e.g., to respect the constraint m1 ̸= m2, a pairing is only accepted if there exists
no path in the graph from m1 to m2, see Fig. 8 for a sketch. As an example, the following
code creates a list accepted that stores the numbers i for which the ith element of Pairings
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Figure 8: Three example pairings (here, each pairing has two pairs with Latin in-
dices) and the associated graphs. The constraint m1 ̸= m2 is violated in example (b)
and (c).

satisfies the constraints m1 ̸= m2 (further constraints can be easily included):

For[i = 1, i ≤ LA!, i ++,

network = {};
For[ j = 1, j ≤ LA, j ++,

network = Append[network,Pairings[[i, j]][[1]] •−• Pairings[[i, j]][[2]]];

];

G = Graph[network];

test = Length[Flatten[FindPath[G, m1, m2]]];

If[test == 0, accepted = Append[accepted, i]];

]

Here, the graph G for each pairing i is created using a set of edges stored in network, where
each edge is symbolized by •−• (typeset as “Esc ue Esc” in Mathematica).

Next, we create a list Rem that simply contains all remaining pairings that satisfy the con-
straints above. This can be done by

Rem= Map[Sort,Table[Pairings[[accepted[[k]]]], {k, 1, Laccepted], 2] ; (A.47)

Note that Sort brings the elements of the pairing in a standard form again.
As hinted at already above, the structure of the pairings can be nicely illustrated with

a graph with edges indicating Kronecker deltas. For further manipulation, we now like to
convert Rem into a list of graphs:

graphs = {};
ver t = {m1, m2, . . . ,µ1,µ2, . . . } ;
For[i = 1, i ≤ Laccepted , i ++ ,

med ges = Table[Rem[[i, j]][[1]] •−• Rem[[i, j]][[2]], { j, 1,Length[Rem[[1]]]}] ;
µed ges = Table[Rem[[i, j]][[3]] •−• Rem[[i, j]][[4]], { j, 1,Length[Rem[[1]]]}] ;
ed ges = Join[med ges,µed ges] ;

graphs = Append[graphs,Graph[ver t, ed ges]] ;

]

con= Map[Sort]@ ∗ ConnectedComponents/@graphs ;

The final output con contains the connectivity of each graph associated to each accepted pair-
ing. For instance, if {{m1, m1,µ1,µ3}, {m2, m3,µ2,µ4}, {m2, m4,µ4,µ4}} is one accepted pair-
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ing, then its connectivity is {{m2, m3, m4}, {µ1,µ3}, {µ2,µ4}, {m1}}. This format has nice prop-
erties as it directly reveals the “structure” of each pairing in terms of (multi-valued) Kronecker
deltas. To find out whether there are multiple pairings with the same structure, one can run
Tally[con].

Given the connectivity list con, it is also straightforward to count the total number of sums
that get killed due to Kronecker deltas. In the following, the function kil ls computes this
number for a given pairing and f inal stores these numbers for each element of con:

kil ls[l ist−] := Total[Map[Length, l ist]]− Length[l ist] ;

f inal = Table[kil ls[con[[m]]], {m, 1, Laccepted}] ;

Clearly, the above procedure can be also applied to the graphs formed by Greek indices
only—as we needed to do to find the terms with the fewest amount of subscript-Kronecker
deltas around Eq. (26).

A.3 Higher order corrections

In Ref. [93] (see also Sec. 3.4.4 of Ref. [105]) Dabelow and Reimann developed a systematic
way to take into account correlations among matrix elements, which we briefly summarize
here. Unfortunately, it will turn out that this procedure becomes quickly untractable due to
the fact that we already start with an expectation value over a product of sixteen random num-
bers. Moreover, the method does not take into account correlations with respect to both the
perturbed and unperturbed bases |m〉 and |µ〉, but only with respect to one of them. Therefore,
while that method was found to work well in Refs. [93, 95, 105], it still does not provide an
exact treatment of the problem.

To start with, notice that the matrix element V m
µ can be seen as the m’th component of a D-

dimensional vector Vµ. To each Vµ we associate two vectors vµ and wµ, where the components
of vµ are assumed to be independent Gaussian random variables with statistical properties
equal to those of Eq. (24). Then, what was effectively done in the main text was to approximate

E
�

V 1
4 V̄ 2

4 V 2
1 V̄ 3

1 V 3
3 V̄ 4

3 V 4
2 V̄ 1

2 V 5
8 V̄ 6

8 V 6
5 V̄ 7

5 V 7
7 V̄ 8

7 V 8
6 V̄ 5

6

�

≈ E
�

v1
4 v̄2

4 v2
1 v̄3

1 v3
3 v̄4

3 v4
2 v̄1

2 v5
8 v̄6

8 v6
5 v̄7

5 v7
7 v̄8

7 v8
6 v̄5

6

�

,
(A.48)

which disregards all correlations. Instead, we now replace

E
�

V 1
4 V̄ 2

4 V 2
1 V̄ 3

1 V 3
3 V̄ 4

3 V 4
2 V̄ 1

2 V 5
8 V̄ 6

8 V 6
5 V̄ 7

5 V 7
7 V̄ 8

7 V 8
6 V̄ 5

6

�

≈ E
�

w1
4w̄2

4w2
1w̄3

1w3
3w̄4

3w4
2w̄1

2w5
8w̄6

8w6
5w̄7

5w7
7w̄8

7w8
6w̄5

6

�

,
(A.49)

and obtain the vectors {wµ} from {vµ} using a Gram-Schmidt procedure, which orthonormal-
izes the set {vµ}, thereby taking into account constraints imposed by the unitarity of V m

µ . Thus,
starting from w1 = v1, we set5

wµ = vµ −
µ−1
∑

ν=1

〈wν|vµ〉wν , (A.50)

for all µ ≥ 2 and where 〈w|v〉 denotes the standard complex scalar product. Inserting the wµ
in Eq. (A.49) gives an explicit expression in terms of the independent Gaussian variables vm

µ

that can be calculated using Isserlis’ theorem and takes into account correlations.

5To be precise, the here presented procedure only ensures orthogonality, but not normalization. However, since
the real and imaginary coefficients of vµ are each drawn from a zero mean (approximate) Gaussian distribution
with variance 1/2D, it follows that vµ is not only normalized on average, but each single realization of vµ is strongly
concentrated around vectors with unit norm for large D [116].
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Unfortunately, we would need to do this for eight vectors in Eq. (A.49) (and their complex
conjugates) and the total number of vm

µ -terms, and consequently the number of pairings in
Isserlis’ theorem, quickly grows to astronomically large numbers, even when respecting the
constraints identified in the main text (m1 ̸= m2, µ1 ̸= µ2, etc.). To see this, it might be
helpful to explicity write down the components obtained via the Gram-Schmidt procedure.
Clearly, everything is simple for the first vector: wm

1 = vm
1 . The second vector is also still

managable: wm
2 = vm

2 −
∑

n v̄n
1 vn

2 vm
1 . The third vector, however, contains already six terms

with up to seven v-components:

wm
3 = vm

3 −
∑

n

v̄n
1 vn

3 vm
1 −

∑

n

v̄n
2 vn

3 vm
2 +

∑

no

vo
1 v̄o

2 v̄n
1 vn

3 vm
2 +

∑

np

v̄n
2 vn

3 v̄p
1 vp

2 vm
1

−
∑

nop

vo
1 v̄o

2 v̄n
1 vn

3 v̄p
1 vp

2 vm
1 ,

(A.51)

and it does not get simpler for the remaining vectors.
However, recall that we are only interested in an order-of-magnitude estimate. Each added

pair of v-terms comes with an extra D-dimensional summation, but also contributes a factor
of the order D−1 due to Eq. (24). In general, one therefore expects that these contributions
roughly cancel each other in an order-of-magnitude estimate provided that the minimum num-
ber of Kronecker deltas as identified in the main text remains the same (if one term in Isserlis’
theorem gives rise to fewer Kronecker deltas than before, then an additional sum appears
potentially contributing a huge factor).

Whether this is the case has been explicitly checked to lowest order in the Gram-Schmidt
procedure. This means one first sets

wµ ≈ vµ −
µ−1
∑

ν=1

〈vν|vµ〉vν , (A.52)

for µ ∈ {2,3, . . . , 8}, which follows from Eq. (A.50) by replacing wµ by vµ on the right hand
side. This approximation is then inserted into Eq. (A.49) and only terms with a single addi-
tional sum are kept. There are 2 · (1+ 2+ · · ·+ 7) = 56 such single sum contributions, where
the factor two arises because one has to take into account wµ and w̄µ for µ ∈ {2,3, . . . , 8}.
However, from the structure of the problem it does not appear that the complex conjugate en-
tries contribute differently (since we are interested in a real-valued object), so these additional
terms can be neglected. On the other hand, which of the 28 terms gives the worst contribution
to the scaling is not clear.

Therefore, this has been tested with the programme from Appendix A.2 and it was found
that each correction term contains enough (multi-valued) Kronecker deltas to kill at least 6
sums, i.e., the same number as identified in Eq. (29). The following table explicitly lists the 28
contributions together with their “Kronecker order” L(δ), which equals the number of sums
killed or, equivalently, the minimum of the list f inal defined at the end of Sec. A.2.
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replace... by... L(δ) replace... by... L(δ)

w1
4 −

∑9 v̄9
1 v9

4 v1
1 6 w6

5 −
∑9 v̄9

2 v9
5 v6

2 7

−
∑9 v̄9

2 v9
4 v1

2 6 −
∑9 v̄9

3 v9
5 v6

3 7

−
∑9 v̄9

3 v9
4 v1

3 6 −
∑9 v̄9

4 v9
5 v6

4 7

w3
3 −

∑9 v̄9
1 v9

3 v3
1 6 w7

7 −
∑9 v̄9

1 v9
7 v7

1 7

−
∑9 v̄9

2 v9
3 v3

2 6 −
∑9 v̄9

2 v9
7 v7

2 7

w4
2 −

∑9 v̄9
1 v9

2 v4
1 6 −

∑9 v̄9
3 v9

7 v7
3 7

w5
8 −

∑9 v̄9
1 v9

8 v5
1 7 −

∑9 v̄9
4 v9

7 v7
4 7

−
∑9 v̄9

2 v9
8 v5

2 7 −
∑9 v̄9

5 v9
7 v7

5 6

−
∑9 v̄9

3 v9
8 v5

3 7 −
∑9 v̄9

6 v9
7 v7

6 6

−
∑9 v̄9

4 v9
8 v5

4 7 w8
6 −

∑9 v̄9
1 v9

6 v8
1 7

−
∑9 v̄9

5 v9
8 v5

5 6 −
∑9 v̄9

2 v9
6 v8

2 7

−
∑9 v̄9

6 v9
8 v5

6 6 −
∑9 v̄9

3 v9
6 v8

3 7

−
∑9 v̄9

7 v9
8 v5

7 6 −
∑9 v̄9

4 v9
6 v8

4 7

w6
5 −

∑9 v̄9
1 v9

5 v6
1 7 −

∑9 v̄9
5 v9

6 v8
5 6

Finally, one might worry that, even when each single contribution to the expectation value
is very small, the sum of the enormous amount of terms involved gives rise to a giant pref-
actor. However, this is unlikely a problem because, first, this prefactor does not scale with
the particle number N and, second, recall that the contributions have different signs, see,
e.g., Eq. (A.51). Additonal cancellations are therefore likely and were indeed an important
observation in Refs. [93,95].

A.4 Trace distance bound under dephasing

The author owes the details of the following proof to Ref. [117].
We start by noting that strong convexity of the trace norm [104] implies

max
ρ
∆(ρ,Dρ) =max

ψ
∆(ψ,Dψ) , (A.53)

where ψ = |ψ〉〈ψ| is here used to denote pure states. Next, any such |ψ〉 can be written as
|ψ〉 =

∑M
x=1αx |ψx〉 with Πy |ψx〉 = δx ,y |ψx〉 and |αx |2 = 〈ψ|Πx |ψ〉 such that

∑

x |αx |2 = 1.
One then finds

∆(ψ,Dψ) = 1
2

tr

√

√

√

√

 

M
∑

x ,y=1

αxα∗y |ψx〉〈ψy | −
M
∑

x=1

|αx |2|ψx〉〈ψx |

!

. (A.54)

Since the {|ψx〉} are orthonormal for different x and because the trace norm is invariant under
unitary rotations [104] such that we can map |ψx〉 to some fixed standard vector for each
subspace x , Eq. (A.54) makes it evident that we can restrict the problem to an M -dimensional
Hilbert space, i.e.,

max
ρ
∆(ρ,Dρ) =max

ψ̃
∆
�

ψ̃, D̃ψ̃
�

, (A.55)

where |ψ̃〉 ∈ CM and the dephasing operation becomes D̃ρ̃ =
∑M

x=1 |x〉〈x |ρ̃|x〉〈x | for some
set of one-dimensional projectors {|x〉〈x |} spanning CM .
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Next, we note that we can write the dephasing map as D̃ρ̃ = 1
M

∑M−1
k=0 Zkρ̃Z−k

with the M -dimensional diagonal phase unitary Z =
∑M

x=1 e2πi(x−1)/M |x〉〈x |. Thus,

ρ̃ − D̃ρ̃ = 1
M

∑M−1
k=1 (ρ̃ − Zkρ̃Z−k) and it then follows from the triangle inequality that

∆(ψ̃, D̃ψ̃)≤ 1
M

M−1
∑

k=1

∆
�

ψ̃, Zkψ̃Z−k
�

≤
M − 1

M
. (A.56)

Finally, we confirm that the upper bound is satisfied by the maximally coherent state
|ψ̃〉=

∑

x |x〉/
p

M . Thus, for M = 2 we obtain the result used in the main text.
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